Schedule Table Generation for Time-Triggered
Mixed Criticality Systems

Jens Theis and Gerhard Fohler
Technische Universitidt Kaiserslautern, Germany

Abstract—Recent research in real-time scheduling for mixed
criticality systems has centered on an event-triggered/priority-
driven approach to scheduling. Current practice in many safety-
critical domains, however, favors a time-triggered approach.

We present here an effective and flexible approach for apply-
ing mode changes for time-triggered systems to handle mixed
criticality job sets.

It is based on a heuristic search algorithm for constructing
schedule tables for the different criticalities: a change of critical-
ity levels results in a change in the schedule table that is being
used. The sequence of steps in case of a change of criticality level
is known beforehand.

We present a search-tree based framework for our heuristic
search, and derive a heuristic function for guiding the search
that significantly reduces the search space for backtracking by
swapping search decisions over several levels in the search tree.

I. INTRODUCTION

The common approach to design embedded real-time sys-
tems with safety critical requirements, subject to certification,
has been complete spatial and temporal isolation between
activities in the system (e.g., in the ARINC standard [1] for
avionics). In many modern platforms, however, the impact on
performance and resource utilization of such strict separation
approaches can no longer be justified by certification efforts,
even more So as over pessimistic assumptions are mandated.

In order to certify a system as being correct, the certifi-
cation authorities (CAs) mandate certain assumptions about
the worst-case behavior of the system during run-time; these
assumptions, e.g., for execution time, are typically far more
conservative than the assumptions that the system designer
would use during the process of designing, implementing,
and testing the system if subsequent certification were not
required. However, while the CAs are only concerned with the
correctness of the safety-critical part of the system, the system
designer is responsible for ensuring that the entire system is
working correctly, including the non-critical parts. Traditional
scheduling criteria as deadlines, utilization, etc. have proved
inadequate for accommodating these contrasting demands of
low and high critical applications.

In the time-triggered (TT) paradigm [13] of real-time
scheduling, activities in the system are triggered by the pro-
gression of time only. A schedule for the entire duration of
a system’s execution is constructed prior to run-time. The
scheduling decision that is made at each instant during run-
time is completely determined by examining this pre-computed

This work has been supported in part by the European project DREAMS
under project No. 610640.

Sanjoy Baruah

The University of North Carolina, Chapel Hill, NC, USA.

schedule, represented, e.g., in a schedule table. The schedule
tables typically used for TT systems are particularly easy to
verify; hence, they have been popular in safety critical systems
subject to certification.

In mixed criticality systems as described above, however, the
inflexibility of TT scheduling poses additional challenges:
tasks with different assumptions cannot be fit into a single
schedule table or changed, should the need arise during system
operations.

While current practice in many safety-critical application
domains is centered on time-triggered (TT) scheduling, much
recent research on scheduling for mixed criticality systems has
focused on even-triggered/priority-based scheduling.

In [5], an effort was made to show that the results obtained
by this mixed criticality research could indeed be applied to TT-
scheduled systems. It advocated the creation of two different
schedule tables, one based upon the system designers’ job
parameters and the other using the CAs’ parameters. At run-
time the system starts operation with the schedule table that was
constructed assuming that the system designers’ parameters are
correct. If a violation of the designer assumptions is detected
during run-time, the run-time dispatcher switches tables and
henceforth begins using the schedule table that was constructed
assuming that the CAs’ parameters are the correct ones.

Challenges in the construction of these schedule tables in-
clude the need to build two matching schedule tables, which al-
low for feasible and consistent switching from one to the other
at run-time while ensuring, e.g., that even during a switch, the
computational demands of individual jobs that are active during
the switch are met. Since jobs with two different WCET values,
one for each criticality level (mode), have to be considered,
standard mode change schedule-generation algorithms (such as
the ones presented in [11], [12]) cannot be directly applied.
The simple table-generation algorithm of [5] was based on
identifying a common priority ordering of the jobs for both
schedules, with the priority of each job being based on its
criticality level. This priority ordering is inflexible, and the
resulting resource utilization is less than may be achieved by
dynamic scheduling approaches such as EDF.

We believe that [5] was to a large measure successful in
the sense that (i) mixed criticality scheduling principles were
transferred to the TT domain; (ii) a TT-based framework for
implementing mixed criticality systems was designed; and
(iii) proof-of-concept algorithms for generating the schedule
tables needed by this framework were derived. However, TT
scheduling typically uses very sophisticated search-based algo-

rithms for schedule table generation, thereby achieving good
resource utilization in practice despite the poor worst case
bounds that can be derived for pathological workload instances.
Hence, a true integration of TT and mixed criticality scheduling
requires that it must be shown that schedule tables can be
generated that are far more resource-efficient than the ones
generated by the method in [5].

In this paper, we present an algorithm for constructing the
schedule tables and for run-time execution that results in far
more efficient resource utilization and enhanced flexibility;
in contrast to the highly simplified proof-of-concept tables
obtained by the techniques of [5], these tables can be used
for actual system implementation. We have developed a tree-
based search algorithm based on a heuristic function called
the leeway (described in Section V), and a sophisticated and
innovative backtracking algorithm based on this heuristic, that
we believe shows this.

Related work. It is beyond the scope of this paper to discuss
all work on mixed criticality scheduling; instead, we refer the
interested reader to the recent survey by Burns and Davis [9].
In [4], Baruah et al. proved that mixed criticality scheduling
is NP-hard in the strong sense even for two criticality levels
— this provides some justification for seeking heuristic ap-
proaches to schedule construction. Further, [4] considered two
classes of mixed criticality scheduling algorithms. Reservation-
based scheduling policy, e.g., the straightforward approach by
assigning WCET := max (WCET(y;)) for all criticality
levels x;, is a very pessimistic approach. Depending on the
difference between the minimum and maximum WCET of the
criticality levels, huge differences between the reserved WCET
and the WCET of the actual criticality level are possible.
Hence, this leads to an under-utilization of the system. The
advantage of this approach is low complexity schedulability
test. Additionally [4] considered the class of priority-based
scheduling policies. As an example, they used the “Audsley-
approach” (see [2], [3]) of assigning priorities; this assignment
of fixed priorities to jobs compromises resource utilization and
reduces flexibility.

In [10], de Niz et al. presented a preemptive, priority based
algorithm. In this algorithm, high criticality tasks are pro-
tected from interference by low criticality tasks. This Rate-
Monotonic-based algorithm determines the point in time when
the priority has to be increased such that the deadline can be
met with the high criticality WCET.

Park and Kim presented in [15] an online algorithm based on
EDF for scheduling mixed criticality jobs. Based on the dead-
lines of the jobs, they created intervals and calculated slacks
for these intervals. An earlier completion of a high criticality
job, i.e., actual execution is less than WCET, increases the
“remaining slack”. Further, the available time when all high
criticality jobs are guaranteed with high criticality WCET is
considered as so-called “empty slack”. Low criticality jobs are
only executed if “remaining slack” or “empty slack” is greater
than zero.

Organization. The remainder of the paper is structured as
follows: in Section II, we present terms and the basic task

model. Section III shows the basic idea of handling mixed
criticality jobs based on our time-triggered approach with mode
changes. The allocation of jobs to modes, depending on their
criticality levels, is shown in Section IV. In Section V, we show
the algorithm to construct the time-triggered schedule tables.
We discuss our backtracking heuristic and the consequences
for the scheduling process in Section VI. The evaluation of
our methods is shown in Section VII. Finally, Section VIII
concludes the paper.

II. TERMINOLOGY AND NOTATION

In the following, we present the terms that we use in the
rest of the paper. We assume a system with two criticali-
ties: low (LO) and high (HI). Unless otherwise specified we
will represent relative time values (e.g. WCETs) by using
upper case variables, whereas lower case variables represent
absolute time values (e.g. release times). The dual criticality
jobs J; with ¢ € {1,..,n} are characterized by the 5-tuple
(xi,7i, di, Ci(LO), C;(HI)), with x; € {LO,HI}: criticality
level of job i, r; € R™: release time of job i, d; € RT: absolute
deadline of job i with d; > r;, C;(LO): LO criticality WCET
(as estimated by system designer), and C;(HI): HI criticality
WCET (as estimated by certification authority).

For LO criticality jobs, we assume C;(LO) = C;(HI),
whereas for HI criticality jobs C;(L0) < C;(HI). Note that
the assumption that C;(L0O) = C;(HI) for low criticality jobs
supposes the presence of run-time mechanisms for monitoring
the amount of time that a job has executed, and preventing
a job from executing beyond an allocated “budget”. Such
mechanisms are commonly found in most real-time operating
systems. A low criticality job would then be allocated an
execution budget equal to its LO criticality WCET, its C;(LO)
value.

The demand g(¢1,t2) in an interval [t1,to] is defined as
the amount of processing time requested by jobs that are
activated in that interval. The demand calculation considers all
jobs whose release time is after the beginning of the interval
(r; > t1) and must be completed before the end of the interval
(d; < t9). It is known that it is sufficient to check the intervals
from zero to the latest deadline in the system [6].

III. TT SYSTEMS WITH MODE CHANGES

In this section, we state the requirements placed on the
scheduling of mixed criticality job sets and how we can ac-
commodate these requirements within the framework of a time-
triggered system. HI criticality jobs are subject of certification
under pessimistic assumptions of the CAs. Furthermore, the
designer has to ensure that the entire job set is feasible under his
less pessimistic assumptions. Time-triggered schedule tables
allow to simplify the certification process by their complete
determinism. A feasible schedule table represents a construc-
tive proof of timing correctness. The disadvantage of schedule
tables is their inflexibility. Baruah and Fohler showed in [5]
that constructing one schedule table per criticality level can
fulfill CAs’ requirements. The challenge in the construction
of the schedule tables is to meet the requirements of mixed

original jobs split jobs
job release time deadline WCETs criticality | job release time deadline WCET criticality
Ji T4 d; Ci(LO) = CZ(HI) LO Ji T4 d; Ci(LO) LO
LO LO LO LO
J; i d; Ci(Lo) < Cy(H1) HI :];ZA ’;ZZA CclliA %ZA El:l))) ::
TABLE 1

OVERVIEW OF JOB PARAMETERS

criticality jobs and guaranteeing CAs’ requirements when
switching between the two schedule tables. A possible solution
for this can be accomplished via the mechanism of mode
changes. By the use of mode change schedulers (e.g. [11]),
we can accommodate for the afore-mentioned demands. [5] de-
scribes the requirements for a mode-change-based scheduler
for certification-cognizant mixed criticality jobs as a proof of
concept. Two modes are used, one for each criticality level,
to accommodate for the requirements of LO and HI criticality
behavior. In the LO criticality mode LO-fable, correct system
behavior for the entire job set is guaranteed, based on the
system designer’s assumptions. Assumptions of the CAs are
incorporated into the HI criticality mode HI-fable. Note that
for the purposes of certification it is sufficient to guarantee the
correct execution of only the HI criticality jobs, but these must
be guaranteed based on the pessimistic assumptions about the
WCET of the CAs. However, the table-generation technique
presented in [5] includes all jobs, both the LO-criticality and
the Hi-criticality ones, in the HI-table; this leads to an under-
utilization of system resources.

We will construct two schedule tables, one for LO and one
for HI criticality mode, such that switching from LO-fable to
HI-fable is possible at every point in time, so-called switch
through property [11]. At run-time, the system starts execution
of the LO criticality schedule table. Violation of the system
designer’s assumptions (exceeding C;(LO) of a HI criticality
job) leads to directly switching to the HI criticality mode HI-
table. In case such a switch occurs, we must guarantee that no
HI criticality job misses its deadline. Furthermore, the CAs’
pessimistic assumptions must be guaranteed for HI criticality
jobs. According to the problem statement in [5], switching back
to the LO criticality mode is not specified.

IV. ALLOCATION OF JOBS TO MODES

Our method works on jobs, hence, it is also able to handle
task sets as each individual task is composed of a sequence of
recurring jobs. In this section, we describe how we split the
jobs to separate the WCET of the LO criticality level and the
additionally needed WCET in HI criticality case. After doing
s0, each resulting job is specified only with a single WCET.

LO criticality jobs .J;, which only are present in LO-table,
are not split and the WCET is set to C;(LO). The remaining
parameters of these jobs remain unchanged. Each HI criticality
job J; is split into a job J}©, which is the portion present in both
tables and a job J2, which is the portion that is additionally
needed in HI criticality case. The calculation of the WCETs,
which we will use as input for our scheduler, are shown in
equations (1) - (3).

J; : Ci(LO) « C;(Lo), i€ {1,..,n} A x; = LO (1)
Ji?: Cr°(Lo) «— Ci(Lo), i € {1,..,n} A x; = HI (2)
JA CA(HI) « Ci(H1) — Cy(LOo), i € {1,..,n}

Axi=HI (3)

For the split jobs we derive now new parameters based on

the original parameters of the HI criticality job. The release
time r° of JI° is equal to original release time 7;. The
deadline of J}° must be early enough such that there remains
enough time to schedule the additionally needed WCET in the
HI criticality case. As a result, the deadline of J}° is set to
d° = d; — CA(H1) = d; — (Ci(HI) — C;(LO)).
The earliest release time of J2 is possible when its corre-
sponding job J[° is scheduled directly at the beginning of
the execution window. Hence, we set the release time of a job
JA to r2 := r; + C°(L0) = r; + C;(LO). The deadline of
JZ-A is equal to the deadline of its corresponding original job
d2 := d;. This results in maximum slack for both J:° and J2.
To avoid that J2 is scheduled before J-°, we add a precedence
constraint between them: JM° < JiA. As a consequence, we
can guarantee with J# that in HI criticality case the additionally
needed WCET is scheduled. The two resulting jobs (J}° and
JA) of a split HI criticality job (J;) keep their criticality level
HI. Table I gives an overview of the original and the split jobs’
parameters.

The LO criticality table LO-table contains all the jobs in the
set S(LO) while the HI criticality table HI-fable contains all the
jobs in the set S(HI) with:

S(Lo) ={J;, J;°}. (i €{1,..,n} A x; =LO)
Ak e{l,..,n} A xi =HI)

(i €{1,..,n} A x; = HI)

(4a)

S(HI) = {JF°, JAY, (4b)

V. CONSTRUCTION OF THE SCHEDULING TABLE

The schedule table is divided into slots, which means that
this is the granularity of our scheduler, hence, it is preemptive
at slot borders. Construction of the scheduling tables is done
concurrently for both tables, i.e. first slot ¢ — which refers to the
time interval [¢,7 4+ 1) — is scheduled in both tables (first LO-
table, then Hi-table), before in the next step slot (i+1) is sched-
uled. The length of the schedule table is determined by the last
deadline of the job set or the hyper-period in case of a periodic
task set. Scheduling decisions are represented by a search tree
which is based on iterative deepening [14]. Each scheduling
decision for a slot in both tables (i.e. a pair of selected jobs) is
represented by an edge in the search tree. Based on the history
of decisions a node represents a possible partial schedule of

both tables at a given point in time. In each node of a path,
several scheduling decisions can be taken, leading to different
(partial) schedules. All combinations of possible scheduling
decisions form the complete search tree. Leaf nodes represent
feasible and infeasible complete schedules. The selection of
jobs in both tables uses a heuristic which is based on EDF and
the criticality levels. If a scheduling decision leads to infeasible
schedule tables, we use backtracking to search for another
schedule table. In “classic” backtracking, an exhaustive search
checks all possible decisions in a search tree which is extremely
complex. We use a heuristic for backtracking which is based
on the demand of HI criticality jobs to reduce the complexity
of backtracking.

A. Low Criticality Scheduling Decisions

In the LO criticality mode LO-table, we select the job of the
set S(LO) with the earliest deadline which is ready.

We introduce the concept of the leeway 0(s..) of the current
slot s., see equation (5), as a heuristic function for our back-
tracking mechanism. The calculation of the leeway depends on
the criticality level of the selected job: for LO criticality jobs
J;, the leeway represents the difference between the deadline
of the selected job and the current time (i.e. end of current slot).
For HI criticality jobs J;©, the leeway represents the difference
between the deadline of the selected job (J}°) and the current
point in time reduced by the remaining demand of all .J ,CA with
k € {1,..,n} which have to be scheduled in HI-table until the
deadline of J2. The demand g~ (t) at time t represents the
demand in the interval [0,¢] accumulated by all jobs J2. The
function gﬁ:he 4(t) keeps track of the already scheduled demand
of HI criticality jobs JA. If there is no job scheduled in a slot,
we define the leeway to be infinity.

di—(86+1) iin:LO
o [dz - (sc + 1)}
Oee) = —[92(d2) = gRpealse)] if xi = H ®
00 else

Slot s. in the HI criticality schedule table HI-table has not
been scheduled yet, hence, g%,.4(sc) does not include the
scheduled demand of HI criticality jobs J2 in the current slot
in HI-table. For each slot in the mode LO-table, we calculate
the leeway. A non-negative leeway means it can be possible to
schedule remaining jobs J2 in the HI criticality mode. Thus,
we continue the scheduling process by scheduling the current
slot in mode HI-fable. If the leeway is negative, then indepen-
dent of succeeding scheduling decisions, all paths will lead
to leaves representing infeasible schedules. As a consequence,
we start backtracking based on our heuristic (see section VI).
Based on the heuristic function (leeway), a preceding node
is searched for backtracking, i.e., we change the scheduling
decision for that slot.

B. High Criticality Scheduling Decisions

Based on the decision in LO-fable, we select a job for mode
HI-fable. If the scheduled job in the current slot in mode LO-
table has criticality level HI, i.e. J1°, then we schedule the same

(I) backtracking (IT) no need to change decisions |(III) change of decisions necessary|

Fig. 1.
job J! in the current slot in mode Hi-fable. If the scheduled job
is a LO criticality job J; (or no job is scheduled) then we select
a HI criticality job J, kA with fulfilled precedence constraints and
earliest deadline. After scheduling a HI criticality job JZ-A, we
increase the amount of already-scheduled demand gSAche a(se)
by one slot. After scheduling the current slot, we check whether
a deadline miss of a HI criticality job J2. occurred. In this
case, the scheduling process is aborted. After scheduling the
HI criticality mode HI-fable, we continue with scheduling the
next slot.

Backtracking and consequences for the scheduling decisions

VI. BACKTRACKING HEURISTIC

If the scheduler calculates a negative leeway for a slot,
we start backtracking with our heuristic based on the leeway.
In Figure 1 column (I), scheduling decision (b) for current
slot s. led to a negative leeway and hence, all succeeding
scheduling decisions will yield infeasible schedule tables. As
a consequence, we may skip the search for a feasible schedule
in this part of the search tree. By this doing this, we save the
time to check all succeeding decisions.

Based on the heuristic function (leeway), we look for a
promising predecessor node to continue the scheduling process
with a different scheduling decision for that node (see dotted
arrow in Figure 1 column (I) from s, t0 Sgyqap). We start in
the current slot s. and proceed upwards in the tree structure,
checking based on the leeway for a slot s, at which we
can swap the scheduling decision. The conditions for this
swapping slot are: The swapping slot must be later than the
release time of job ¢ scheduled by decision (b). Furthermore,
the leeway of a candidate for the swapping slot must be greater
than or equal to the difference in number of slots between
the current slot and the candidate for the swapping slot, i.e.
d(Sswap) = Sec — Sswap- If these conditions are fulfilled, we
can delay scheduling decision (a) for the swapping slot.

Once we have found a slot which fulfills the swapping
conditions, we swap scheduling decisions (b) and (a), hence,
decision (b) is now taken for sg,q, and decision (a) for s
(see Figure 1 column (II)). The scheduling decisions after
the swapping slot — e.g. decision (¢) — remain unchanged.
After swapping of the decisions of the two slots, we have to
recalculate the leeways of these slots.

By swapping scheduling decisions (a) and (b), it is possible
that fulfilled precedence constraints are not fulfilled anymore
and/or scheduled demand of HI criticality jobs J2 is changed.
In this case, we cannot continue with scheduling decision (c)

after s4,qp and we continue the scheduling process after sap
with a possibly different decision (d) for the next slot (see
Figure 1 column (III)). As a result, the current slot is set to
the swapping slot and we continue the scheduling process from
that slot.

Depending on the scheduled jobs in the current slot and
the swapping slot, there are different cases which we have to
consider when making swapping decisions. In the following,
we present these cases and the consequences for the scheduling
process. We refer to slots in mode LO-fable by s-© and slots in
mode HI-table by s™.

Case 1: In both slots s¢° and s, a LO criticality job is
scheduled. In sg,,,,.,, no job is scheduled (Figure 2). We swap
slots in LO criticality mode LO-table and update the leeway of
Sc and Sguap. The swapping slot in the HI criticality mode
remains unchanged. In a last step, we schedule the current
slot in the HI criticality mode. Swapping of this case does not
change any precedence constraints and this refers to Figure 1
column (II).

leewaly” O(Sgwap) > 0 (s.) <0
o [[[]
mo [o [] |
slot Sswap Se

Fig. 2. Backtracking case 1: slots before backtracking

Case 2: In both slots 5.° and s3,,,, a LO criticality job
is scheduled. In ¥, . a HI criticality job J2 is scheduled
(Figure 3). We swap slots in LO criticality mode LO-table and
update the leeway of s. and s,,qp. SWapping two LO criticality
jobs does not change precedence constraints, and hence, the
scheduled job in sg,,,,,, remains unchanged. In the last step, we
schedule the current slot in the HI criticality mode. This case

refers to Figure 1 column (II).

leewaly” O(Sgwap) > 0 (s.) <0
o [[[]
O A |
slot Sswap Se

Fig. 3. Backtracking case 2: slots before backtracking

Case 3: In slot st°, a LO criticality job J; and in slot
Sgwap> @ HI criticality job Ji© are scheduled. In s§,,,,. the
same HI criticality job J;;° as in sij, ., is scheduled (Figure
4).We swap slots in LO criticality mode LO-table and update the
leeway of s, and 54y4p. Now, we must check whether fulfilled
precedence constraints have been changed by swapping. If
fulfilled precedence constraints have been changed then we re-
schedule slot sy,,,,, and set the swapping slot as current slot
and continue the scheduling process. This refers to Figure 1
column (III). If fulfilled precedence constraints have not been
changed then we swap s, and s;' (unscheduled yet) and
re-schedule sy, based on the fulfilled precedence constraints
at that time — as described in subsection V-B. This refers to

Figure 1 column (II).

leeway O(Sswap) > 0 (s.) <0

o [[g]
CIO 7 |
slot Sswap Se

Fig. 4. Backtracking case 3: slots before backtracking

Case 4: In slot s.°, a HI criticality job J;° and in slot
Ssewap» & LO criticality job J, are scheduled. In s(;, .., no job is
scheduled (Figure 5). We swap slots in LO criticality mode LO-
table. In slot s§,,,,,,, we scheduled the same job Ji© asin 517,
(after swapping). As a consequence, we update gsAChe 4(s) and
leeway 6(s) for s € {Sgwap; --, Sc |- In the last step, we schedule
the current slot in the HI criticality mode. This case refers to

Figure 1 column (II).

leeway O(Sswap) > 0 (s.) <0

o [o [[J°]
mo [o [T]
slot Sswap Se

Fig. 5. Backtracking case 4: slots before backtracking

Case 5: In slot s.°, a HI criticality job J;° and in slot
Sgwap» @ LO criticality job Jj are scheduled. In sy, a HI
criticality job J2 is scheduled (Figure 6). First, we check
whether scheduling J2 in s leads to a deadline miss. If yes,
then we have to search for another swapping slot. If no, then
we swap slots in LO criticality mode LO-table. Then, we swap
Sqwap and sy’ (unscheduled yet) and schedule in sg,,, the
same job J;© as in slot siy .. (after swapping in LO-table).
As a consequence, we update g-;,.,(s) and leeway §(s) for

s € {Sswap; --» Sc}- This case refers to Figure 1 column (II).

leeway O(Sguap) > 0 (s.) <0
o [s [[J"]
O I |

slot Sswap Se

Fig. 6. Backtracking case 5: slots before backtracking

Case 6: In both slot s¢° and sy, a HI criticality job J;©
and J;° are scheduled. In sf; ., the same HI criticality job
J};0 is scheduled as in slot sgy, ., (Figure 7). We swap slots in
LO criticality modes and update the leeway of s. and sgyqp.
Now, we must check whether fulfilled precedence constraints
are not fulfilled after swapping anymore. If fulfilled precedence
constraints have been changed, then we schedule J° in slot
Stwap S€t the swapping slot as current slot, and continue the
scheduling process. This refers to Figure 1 column (III). If
fulfilled precedence constraints have not been changed, then
we schedule J;© in slot st} .. This refers to Figure 1 column

swap*
).

VII. EVALUATION

In this section, we show first evaluation results. We evaluated
our algorithm by generating job sets with uniformly distributed
utilizations by means of the UUniFast algorithm [8]. We
generate a set of periodic tasks and unroll them into a set

1eewa¥ ‘ O(Sswap) > 0 (s.) <0
o [1]
O 7 |
slot Sswap Se

Fig. 7. Backtracking case 6: slots before backtracking

of jobs which are then handled by our algorithm. We use
these synthetic workloads to show the correctness for general
workloads. Rounding to full slot size values causes errors in the
obtained utilization, hence, we specified that resulting job sets
have errors less than 3%. We generated the mixed criticality
job sets with the following constraints: the demand of all jobs
with C'(LO) and the demand of HI criticality jobs with C(HI)
(original job parameters before splitting) have to be feasible by
demand.

As input parameters, we used the utilization of all tasks with
C(LO) and the ratio of HI criticality jobs within each job set,
which is in line with [7]. We evaluated the set of utilizations
from 10% to 80% in steps of 10% with a ratio of HI criticality
jobs of 50%. The range of LO criticality WCETs is C;(LO) €
[1; 15]. For the WCETs of HI criticality jobs, we used a high-
scale factor hsf = 3, i.e. C;(HI) € [C;(LO); hsf - C;(LO)].
The range of relative deadlines D; was chosen within the
interval [45;120] For each combination of input parameters,
we generated N = 1,000 random job sets and scheduled
them with our scheduler. We evaluated also other ratios of high
criticality jobs and high scale factors, but for space reason, we
only show a representative example.

Table II shows the success ratio of scheduling the generated
job sets. The results are plotted in Figure 8. Due to hsf = 3,

success >, Ui(Lo)
ratio 10% 20% 30% 40%| 50%| 60%| 70%| 80%
swapping | 100.0 | 100.0 | 100.0 | 90.9| 14.6| 1.1 0.2 | 0.0
FPS 100.0 | 100.0 | 99.6 70.21 3.5 | 0.0 | 0.0 | 0.0
TABLE II

RESULTS: SUCCESS RATIO FOR N = 1000 AND hsf = 3

it is possible to obtain a utilization for all jobs under CAs’
assumption of nearly 100% for low criticality utilizations above
30%. This leads to a drop of the success ratio, whereas the fixed
priority approach is affected more strongly.

100% —=—swapping approach

90%- N ~*-FPS approach
80%- N
70%

60%

50%

success ratio

40%-
30%-
20%
10%

0% i i ! 2
10% 20% 30% 40% 50% 60% 70% 80%

utilization based on designer assumptions U(LO)

Fig. 8. Comparison between FPS approach [5] and our approach

VIII. CONCLUSION

Due to its run-time simplicity, extreme determinism, and
ease of validation, the TT approach to real-time scheduling is
heavily favored in industrial practice in many safety-critical
application domains. In [5] an effort was made to extend
results from the recently emergent field of mixed criticality
scheduling to time-triggered scheduling, by proposing a TT-
based framework for implementing mixed criticality systems,
and presenting proof-of-concept algorithms for generating the
schedule tables needed by this framework.

In this paper, we have extended and generalized the work
described in [5]. We presented an algorithm for handling
mixed criticality applications in time-triggered systems re-
placing these proof-of-concept methods with an algorithm for
run-time execution and construction of schedule tables for
efficiency and flexibility, providing realistic applicability. Our
algorithm for the construction of the schedule tables is search-
based; it is implemented as a tree search with backtracking. We
devised two heuristics, one for the construction of the schedule
tables and another for backtracking, based on the demand of HI
criticality applications. These heuristics allow for a reduction
of the search space and the time-complexity for scheduling
decisions and backtracking; in addition to immediately yielding
a constructive proof of the correctness of the schedule tables.

Due to the search tree based scheduling, the algorithm will
be augmented to consider further constraints, in future. For
example, extending the search not only to find a feasible
schedule but also a schedule minimizing the preemptions.

REFERENCES

[1] ARINC 653-1 Avionics application software standard interface. 2003.

[2] N. C. Audsley. Optimal priority assignment and feasibility of static
priority tasks with arbitrary start times. Technical report, The University
of York, 1991.

[3] N. C. Audsley. Flexible Scheduling in Hard-Real-Time Systems. PhD
thesis, Department of Computer Science, University of York, 1993.

[4] S. Baruah, V. Bonifaci, G. D’Angelo, Haohan Li, A. Marchetti-
Spaccamela, N. Megow, and L. Stougie. Scheduling real-time mixed-
criticality jobs. IEEE Transactions on Computers, 2012.

[5] S. Baruah and G. Fohler. Certification-cognizant time-triggered schedul-
ing of mixed-criticality systems. In Real-Time Systems Symposium, 2011.

[6] S. K. Baruah, L. E. Rosier, and R. R. Howell. Algorithms and complexity
concerning the preemptive scheduling of periodic, real-time tasks on one
processor. Real-Time Systems Journal, 1990.

[71 S.K.Baruah, A. Burns, and R.I. Davis. Response-time analysis for mixed
criticality systems. In Real-Time Systems Symposium (RTSS), 2011.

[8] Enrico Bini and GiorgioC. Buttazzo. Measuring the performance of
schedulability tests. Real-Time Systems, 30:129-154, 2005.

[91 A. Burns and R. Davis. Mixed criticality systems: a review. www-
users.cs.york.ac.uk/ burns/review.pdf.

[10] D. de Niz, K. Lakshmanan, and R. Rajkumar. On the scheduling of
mixed-criticality real-time task sets. In RTSS, 2009.

[11] G. Fohler. Changing operational modes in the context of pre run-time
scheduling. IEICE Transactions on Information and Systems, 1993.

[12] G. Fohler. Flexibillity in Statically Scheduled Hard Real-Time Systems.
PhD thesis, Technische Universitiat Wien, 1994.

[13] H. Kopetz. Real-Time Systems - Design Principles for Distributed
Embedded Applications. Springer, 2011.

[14] R. E. Korf. Depth-first iterative-deepening: An optimal admissible tree
search. Artificial Intelligence, 1985.

[15] T. Park and S. Kim. Dynamic scheduling algorithm and its schedula-
bility analysis for certifiable dual-criticality systems. In International
Conference on Embedded Software, 2011.

