Maximizing the execution rate of low-criticality
tasks in mixed criticality systems

Mathieu Jan and Lilia Zaourar
CEA, LIST
Embedded Real Time Systems Laboratory
F-91191 Gif-sur-Yvette, France
Email: Firstname.Lastname @cea.fr

Abstract—Industrial fields must build at the most competi-
tive price real-time systems made of an increasing number of
functionalities. This can be achieved by hosting high-criticality
tasks as well as consumer real-time low-criticality tasks on a same
chip. The design of such Mixed-Criticality (MC) systems requires
the use of an appropriate task model and a specific scheduling
strategy. In this work, inspired by the existing elastic task model,
we introduce stretching factors as a way for the low-criticality
tasks to reduce their utilization, as well as a level of importance in
order to define an order for applying these stretching factors. At
run-time, the slack time generated by both the over-provisioned
high-criticality and the low-criticality tasks is used to maximize
the execution rate of the low-criticality tasks. We also show how
to integrate this approach in the Time-Triggered paradigm (TT),
in particular its impact on the data visibility principle between
the low-criticality tasks when they have been stretched.

I. INTRODUCTION

Traditionally, industrial systems use a dedicated (possibly
multiprocessor) chip for executing a set of real-time tasks
with a same level of criticality. When such tasks are safety-
critical, high margins are taken on their Worst-Case Execution
Time (WCET). This leads to the specification of high allocated
budgets of time for such high-criticality tasks. Besides, the
probability that the WCET of a set of high-criticality tasks
occur simultaneously is very low. However, the schedulability
demonstration of safety-critical systems must be performed in
the worst-case situation, due to certification constraints. This
therefore leads to a huge over-sizing of the CPU resources that
are needed compared to what is really used, in average, while
the system is running. This practice becomes incompatible
with the current trend of tighter economical constraints of
various industrial domains, such as the automotive or energy
distribution fields. Therefore, there is a need to use these
generally unused processing capabilities for executing the low-
criticality tasks.

This type of system where both the low and high-criticality
tasks are allocated on a single chip are called Mixed Criticality
(MC) systems. Note that in general, two criticality levels
are generally considered in existing work on this topic, as
well as in the remainder of this paper. To fulfil certification
requirements, mainly from the avionic domain, and enable
an efficient scheduling of the high and low-criticality tasks,
task models and scheduling algorithms addressing MC systems
have recently been proposed ([18], [10], [3]). The goal is to
increase the schedulability of the low-criticality tasks, while

Maurice Pitel
Schneider Electric Industries
37, quai Paul Louis Merlin
F-38050 Grenoble, France
Email: Maurice.Pitel @schneider-electric.com

still guaranteeing in the worst-case scenario the schedulability
of the high-criticality tasks. Classical scheduling algorithms
can indeed lead to well-known priority inversion problems, as
they are unaware of the criticality parameter of the tasks. Most
existing work defines two modes for a MC system and each
task must specify its criticality level. The MC system starts in
the low-criticality mode where all tasks are executed. However,
when a deadline is missed the MC system switches to the
high-criticality mode, where only the high-criticality tasks are
executed. The low-criticality tasks are simply dropped. This
degrades the level of service provided by MC systems. Besides,
processing capabilities are wasted.

Maximizing the level of service provided by a set of
real-time tasks for controlling a physical system has been
the subject of numerous work in the domain of real-time
control ([7], [1]). When a perturbation/event suddenly affects
the controlled system, the higher the sampling period is, the
better the reactivity of the system is. However, the higher the
processing load is. This requirement has therefore led to the
proposal of a more flexible task model, called the elastic task
model [5], where the periodicities of tasks can take a range
of values. This task model, combined with an appropriate
scheduling algorithm, avoids the need of dropping tasks when a
deadline is missed. The periodicity of some tasks must simply
be increased appropriately. Recently, the elastic task model
has been studied in the context of MC systems for the low-
criticality tasks [16]. The goal is to deal with the service abrupt
problem of dropping the low-criticality tasks when the MC
system switches to the high-criticality mode.

This work also proposes a solution to this problem. In
this work, we also adapt the elastic task model for solving
the following problem: how to maximize the utilization of the
processing capabilities of an architecture, in which high- and
low-criticality tasks are schedulable taken separately, while
the sum is not? One goal is therefore to avoid dropping the
low-criticality tasks. Off-line, we use a linear programming
approach to compute the different stretching factors that must
be applied on the periodicity of the low-criticality tasks, so that
the schedulability of the high-criticality tasks are guaranteed.
On-line, we bet on the availability of slack time generated
by high and low-criticality tasks. No stretching factors are
therefore applied in order to execute the low-criticality tasks
at their fastest rates. However, when a deadline is going to be
missed by a low-criticality task, its deadline is stretched up to
point that prevents the deadline miss.

Another contribution of this work is to show how our
proposed approach to deal with the low-criticality tasks can
be used within the TT paradigm [13], used to build safety-
critical real-time systems. Using this paradigm, the triggering
of activities, that correspond to task releases and deadlines, are
specified by the application designer. At these dates, data ex-
changed between the tasks are made visible. Stretching a task
introduces a modification in these statically defined triggering
points as well as in the visibility date of the produced data.
Therefore, when stretching a low-criticality task, the deadline
of some other low-criticality tasks must also be postponed in
order to keep the system temporally consistent.

The remainder of this paper is as follows. Section II
describes the related work in the scheduling algorithms for
MC systems as well as their practical implementation. Then
Section III formulates the problem, while Section IV presents
the proposed task model and the on-line decision algorithm
used within the TT paradigm to stretch the low-criticality
tasks. Finally, Section V evaluates the proposed solution and
Section VI concludes.

II. RELATED WORK

In [18], Vestal introduces the most used task model for
specifying MC real-time systems, therefore sometimes called
the MC task model. The classical periodic task model is
extended with two WCET values, named C;(LO) and C;(H1I),
and a criticality level, which can be either low or high. As
stated previously, we consider that a MC system has only two
modes of criticality: high and low. C;(LO) is the maximum
allowed execution time for the task in the low-criticality mode,
while C;(HI) is the maximum allowed execution time for
the task in the high-criticality mode (C;(LO) < C;(HI)).
The rationale for specifying two WCETS is that the higher the
criticality level, the more conservative the verification process
and hence the greater will be the value of C;.

In the context of digital control systems, early work has fo-
cused on an off-line analysis to compute the tasks frequencies
that minimize the cost of the control and tracking error. This
has lead to the definition of the so-called elastic task model [5]
to increase the flexibility of the periodic task model. In addition
to its execution time, each task is characterized by: a nominal
period T}, a minimum period 7T;, ., a maximum period T;
and an elastic coefficient e; > 0. The elastic coefficient
specifies the flexibility of the task to vary its utilization
within the range of possible periods. [17] also presents a task
model which allows to jointly optimize the used computing
resources and the control performance of a computer-based
instrumentation and control system. Each control task is able
to trigger itself: the timing constraints are dynamically adjusted
based on the whether the controlled system is stable or subject
to perturbations. Finally, [14] proposes to integrate in the task
model a parameter to specify a minimal distance between two
consecutive skips of instances of a task, that is between two
deadline misses.

In this area, our closest related work is [16], where the
elastic task model is applied in the context of MC systems for
specifying the behavior of the low-criticality tasks. However,
this task model does not allow to specify an order between the
low-criticality tasks, as how a set of elastic tasks is compressed
depends on their utilization.

Appropriate scheduling algorithms must then be defined to
support task models used within MC systems, in particular the
criticality-level parameter. The goal is to ensure the schedula-
bility in the worst-case scenario of the high-criticality tasks,
while improving the schedulability of the low-criticality tasks.
This is possible thanks to the introduction of C;(LO) for each
high-criticality task. Several approaches have been followed:
using either a fixed priority algorithm [18], a zero-slack
algorithm on top a fixed priority scheduler [10], the assignment
of virtual and smaller deadlines for the high-criticality tasks
(EDF-VD for EDF-Virtual Deadlines) [3] or the definition or
early release points for accelerating the execution rate of the
low-criticality tasks [16] (ER-EDF for Early Release EDF).
This last decision algorithm for releasing earlier or not the low-
criticality tasks is the closest related work to ours. However, it
takes the opposite approach to execute the tasks at their fastest
execution rate: it computes a new (early) release point when
the task finishes, while we extend the deadline of the task when
it is going to miss its deadline.

On the implementation side of MC systems, [11] presents
a first implementation of a MC hierarchical scheduling frame-
work on a multi-core system, that addresses the criticality
levels of the avionic domain. It is based on LITMUS [6], an
extension to Linux that was developed to study in practice real-
time multiprocessor schedulers. The focus is put on optimizing
the implementation of the proposed hierarchical schedulers
for MC systems, by using fine-grained locking mechanisms
to reduce scheduling overheads. In our work, we are also
interested in the integration of MC scheduling into real-time
operating systems, but more specifically in the TT paradigm.
Finally, [2] presents an implementation in ADA of mode
changes in MC systems, from low-criticality to high-criticality
as well as the opposite. The authors consider the problem of
when returning to the original ordering, as doing it prematurely
can cause a high-criticality task to miss its deadline. However,
none of these works have considered the impact on data
exchanges between the tasks when switching to another mode
of execution.

III. PROBLEM FORMULATION
A. Motivation

Within an embedded system, the tasks can be either critical,
less (or even non-) critical. Let us for instance, take a protec-
tion relay used within medium voltage electrical networks. The
safety-function of the software part of protection relays is to
first detect any faults within the supervised power network, and
then ask the tripping of the circuit breakers in order to isolate
the faulty portion of the network. More details on the required
set of high-criticality tasks needed to achieve this functionality
can be found in [12]. As any safety-related system, protection
relays have to comply with a Safety Integrated Level (SIL), as
defined by the IEC 61508 standard. This standard requires that
the schedulability demonstration of the high-criticality tasks
must be performed. To take into account worst-case situations,
high margins are taken on the WCET of these high-criticality
tasks. This leads to an over sizing of the required CPU power,
compared to what is required in average while the system is
running.

On the other hand, there is a need to embed additional less
(or non) safety functionalities, such as displaying information,

optimizing the distribution of energy to the current need, etc.,
in order to distinguish the product from competitors. This leads
to the requirement of executing applications with different
levels of criticality on the same system. Besides, assuming the
WCET for the high-criticality tasks and executing the low-
criticality tasks in the remaining CPU power is no longer a
viable approach: too much processing power is wasted. Such
an approach is no longer compatible with current economical
constraints that push for minimizing the CPU power. Such
products must take advantage of the slack time generated by
the tasks, when they are not using their WCET, in order
to execute the low-criticality tasks. Therefore, the problem
we address is to enable the design of MC systems, where
taken separately the high and the low criticality tasks are
schedulable but the union is not.

B. Approach

Our goal in this work is to allow the low-criticality tasks to
use the slack time and, when a deadline is going to be missed
by a low-criticality task, to relax its temporal constraints. To
this end, we consider the deadline of the low-criticality task
as a flexible parameter that can be extended. This flexibility
is handled through a so-called stretching period factor (or
simply stretching) that we introduce in the classical implicit-
deadline periodic task model. A stretching factor is a value
by which the periodicity of a low-criticality task can be
multiplied. Stretching factors should be specified off-line by
the application designer so that a bound is defined. They can
be a set of values or a range of values and a same value of
stretching factor can be given to several tasks. Besides, we
assign to each low-criticality task an importance level. This
importance level denotes an order for choosing which low-
criticality tasks should be stretched first. Our task model is
simpler than the elastic task model [5], as it does not contain
a minimum period and an elastic coefficient, linked to the
utilization of the task.

Off-line, the stretching factors are used in the schedulability
analysis of a task set, made of both the high and the low-
criticality tasks. This guarantees that the stretching factors used
on-line cannot lead to a situation where a deadline is missed.
Besides our task model introduces a way to specify an order
between the low-criticality tasks for applying the stretching
factors. This gives more control to the application designer
to specify a set of possible temporal behavior for the low-
criticality tasks. Furthermore, the formal demonstration of the
fulfilment of end-to-end constraints for these tasks is therefore
still possible. This was main requirement that lead us to the
definition of our task model.

IV. USING STRETCHING FACTORS
A. Task model and notations

Let I' = {71,72,...,7n} be a set of n independent,
synchronous, preemptible and periodic tasks. The set I' is
partitioned into two disjoint subsets: I'.; the set of the high-
criticality tasks, made of npqp tasks, and I',c; the set of the
low-criticality tasks, made of n;,, tasks. We therefore have
N = Njow + Nhigh-

T" is handled using the classical implicit-deadline periodic
task model. Each task 7; € I' has the following temporal

parameters 7; = (P;, C;, D;). P; is the period of the task, C; is
its WCET, D; its deadline and we have P; = D,. Furthermore,
each non-critical task 7; € I';,.; has two additional parameters
Vi and S; a4, Where V; is the importance level of the task and
Si mag 1s the maximum stretching factor that can be applied to
P;. We denote by S; an actual value for the stretching factor
of task 7; and we have: 1 < S; < S} 0. We denote by
P snaz the period when S 1,4, is applied and corresponds to
the maximum period the task can have. The higher the value
of V;, the higher is the importance level of the low-criticality
task. But the later its stretching factor will be increased first
when a deadline is going to be missed.

The processor utilization of 7;, a low-criticality task, is:
u; = 5'p- The lower bound of u; (noted w;, .) is reached
when the maximum stretch factor (Si,maz) is applied to 7;,
while its upper bound (noted wu;,) is reached when its
nominal period is used. The processor utilization of a high-
criticality task is u; = % We note respectively Uj,,, and
Uhign the total utilization of the low and the high-criticalit
tasks: Ujpw = ZﬂeFm Scﬁ and Upign = Znerct %
The total utilization of the system is noted U and 1s equals
t0 Ujow + Unign- Finally, let m be the number of processors.

B. Off-line CPU maximization

Off-line, we compute for each low-criticality task the
minimum stretching factor (S; in) that must be used so that
no deadline is missed, assuming that each task uses it WCET.
Therefore, we have S; min < Simaz- Si,min is a feedback to
the application designer on the worst-case temporal behavior
the low-criticality task may use on-line. As we focus on the
low-criticality tasks only, we can therefore remove from U the
utilization generated by the high-criticality tasks. We denote by
U, this remaining CPU capacity, which is equal to m — Up;gp.
A first constraint therefore expresses the fact that U, upper
bounds the utilization that can generate the low-criticality

tasks:
<y, (1)

UlowéUr@ Z Sﬁ,

i€ et

Then, a second constraint therefore expresses the fact that
the utilization value of a low-criticality task is bounded, as
seen in the previous section.

G
u, o < <y 2
tmin — Si X Pz — Ytmaz ()
Our objective is to maximize the utilization of the re-
sources, while stretching the less important low-criticality tasks
first, that is:

MaxZ = Z Vi X u; =

iernct

Ci
> Vixgsm O

iernct

By applying the following change of variable: z; =
%, V7; € I')et, we obtain the following linear program:

Max : Zierm Vi X x; X %’
(LP-1) st ZiEFmt T; X % <U,
Wi o ST X % < uimm,VTi e e
4)

Algorithm 1 Decision algorithm for setting the stretching
factors of low-criticality tasks.

Algorithm 2 Additionnal steps in the decision algorithm when
integrated in the TT paradigm, compared to algorithm 1.

Require: 7; € I, and the current time ¢
1: S; + ComputeStretching(r;, t, D;, S;);
2: if S; > S; min then Stop 7; and log the error; end if
3: D; + S; x Py
4: UpdateReady(7;);
5: Call the scheduler;

The total number of decision variables of the linear pro-
gram LP-1 is equal to mj,y, the number of low-criticality
tasks. The total number of constraints is equal to 214, + 1.
Indeed, there are two constraints for each decision variable
in order to express the upper and lower bounds, plus the
constraint of remaining CPU capacity. LP-1 can thus be solved
in polynomial time.

C. On-line decision algorithm

We now focus on the on-line decision algorithm that sets
the stretching factors. We assume that the high-criticality tasks
have a higher priority over the low-criticality tasks. Clearly,
this increases the number of times the low-criticality tasks are
preempted. As in [19], a wrapper-task mechanism for the slack
time can be used to avoid such situations.

Our decision algorithm is called when the system detects
that one of the low-criticality task is going to miss its deadline.
This is the beginning of an overloaded situation for the low-
criticality tasks, during which other low-criticality tasks may
reach a point where they are also going to miss or have already
missed their deadlines. This last case can occur when the
system reschedules the low-criticality tasks after some high-
criticality tasks have been executed, while in an overloaded
situation. Therefore, our decision algorithm is also called
before scheduling the low-criticality tasks.

When our decision algorithm is called, we assume that
the most important low-criticality task is being executed. To
achieve this, the low-criticality tasks could be scheduled using
a hierarchical approach: first using the importance level and
then using EDF within a given importance level. Another
solution would be to use EDF-VD [3] to favour important
low-criticality tasks that have far away deadlines over less
important low-criticality tasks that have closer deadlines. More
generally, our decision algorithm can be combined with any
scheduling algorithm if the aforementioned hypotheses are
fulfilled. Finally, when a low-criticality task finishes, if it
has stretched, then its stretching factor is reset to 1. Note
that other strategies could be defined, such as a fixed-timeout
strategy before resetting the stretching factor in order to avoid
additional calls to our decision algorithm and the associated
system calls overhead, if the overloaded situation goes on. The
definition and the evaluation of such strategies is currently left
as future work.

Algorithm 1 presents the major steps of our decision
algorithm when the low-criticality task 7; is going to miss its
deadline. The function ComputeStretching, used to compute
the stretching factor of 7; (line 1), can be implemented using
different strategies. An optimistic strategy would be to choose
a first reasonable value that leads to set a deadline in the future

Require: I',,.;, with 7; € T’y
1: forall 7; € I'y, # 7; do
2: if 7; is ready then RemoveFromReady(7;);
3: else RemoveFromSleeping(7;); end if
4: if S; > S min then Stop Iy, , log the error; end if
5: DJ<—P]+(DJ—R),
6: if 7; is finished then SetFlag(Stretched); end if
7: InsertReady(7;);
8: end for

(S;* P; > t). By reasonable, we mean that the task has a good
chance, according to the distribution of its execution time, to
finish its execution before its new deadline (set at line 5). Other
strategies are possible that might reduce the number of times
the stretched deadline is reached.

D. Using stretching factors within the TT paradigm

Applying stretching factors to the low-criticality tasks
within the TT paradigm raises an issue. The hypothesis of
independent tasks that can be made at a system level, does not
hold any more at the application level. In the TT paradigm,
to each produced data is indeed associated a timestamp: the
deadline of the producer task. Then, a task may only use data
whose timestamps are equals or inferior to its release date,
leading to a deterministic execution with demonstrable end-
to-end temporal constraints. Therefore, the visibility date of
data produced by a low-criticality task changes when the task
is stretched. However, the low-criticality tasks have defined
triggering points (release date and deadlines) assuming the
non-stretched temporal behavior. This leads to an inconsistency
between the expected temporal behavior of the tasks, if the
stretching factor of a single task is modified. In addition, this
inconsistency has an impact on the various worst-case end-to-
end temporal behaviors that can fulfil the low-criticality tasks.

To solve this issue, we assume that the application designer
can gather in groups the low-criticality tasks that must be kept
temporally consistent between them. Therefore, I';,.; is made
of a set of groups, noted I';,c¢,. A low-criticality task 7; can
only be inside a single group and the multiplicity of a group
can range between 1 to ny,,. Off-line, our task model must
be adapted so that the importance level and the stretching-
factor parameter is applied to the group level. Therefore, the
only modification to the linear program LP-1 is to consider
the utilization of each group I';,., and not the utilization of

each task. The utilization of a group I',,.¢, is defined as S% X

Ci
Zn €lnety, P

Algorithm 2 then presents the additional steps that must
be done before calling the scheduler (line 5 in algorithm 1) to
stretch the other tasks within a group I',,.¢,, in which task 7;
is going to miss its deadline. Two cases must be considered
when recomputing the deadline of a task 7;: either it has been
released but is not finished (line 2) or it is already finished (line
3). In this last case, the visibility date of already produced data
must be changed and the part of the task that sets the visibility
date must therefore be re-executed. This is signaled by setting
the flag Stretched (line 6) and setting back the task in the set

of tasks waiting to be executed (line 7) using the InsertReady
function. This function is also called in the other case to sort
the tasks according to the scheduling policy, as their deadlines
have changed. Computing the new deadlines simply consists of
translating the offsets triggering points of I';,.¢, with the initial
deadline to the stretched deadline of 7; (line 5). The Stretched
flag is also used by the tasks, from I',,.;, with [# k, to avoid
updating the values of data they use while the visibility dates
of the stretched tasks are recomputed.

Note that the low-criticality tasks cannot use at a given
timestamps different values of the same data (i.e., a data
inconsistency). Our algorithm is indeed called at the visibility
date of data, produced by the initial stretched task. Therefore
by definition, these data are not yet visible by the other
tasks. While on a uniprocessor system implementing this is
straightforward, on a multiprocessor this can be achieved using
a spin-lock for the management of scheduling structures. Also
note that the stretching factors of the other groups I'y,.;, (with
l # k) do not need to be modified. These groups are indeed
by definition less important, so their stretching factors will be
computed when the hierarchical scheduler will schedule them.

V. PRELIMINARY EVALUATIONS

The goal of our simulation experiments is to validate our
proposed task model in its ability to specify an order for
choosing which tasks should stretch. We therefore focus on
the off-line part of our proposal.

A. Simulation environment

We generate random task sets for both the low-criticality
and the high-criticality tasks. The utilization of each task is
computed randomly between 0.01 and 0.99 with a uniform
distribution using the UUniFast-Discard algorithm from Davis
and Burns [9], an extended version of the UUniFast algorithm
from Bini and Buttazzo [4] targeting multiprocessor systems.
We bound the range of possible periods between 10ms and
100ms and use a uniform distribution when assigning F;.
The task sets with a hyper-period larger than 10s are rejected
to remain in a realistic bound of typical industrial systems.
Each task is assigned a boolean value that determines whether
it is a high-criticality or a low-criticality task. This step is
repeated until the number of high-criticality tasks and their
total utilization Up,gp, reaches a value of 50%. Then, for each
low-criticality task a value between 10 and 100 is randomly
generated. This value represents the importance of this task
in the system (in practice less importance levels would be
used). Finally, we assume for each low-criticality task that
Si,mam =2.

For the evaluation, three task sets are generated. In order to
get as close as possible to expected MC systems, we assume
that each task set is made of 20% of high-criticality tasks. The
first task set (7'S1) is made of 50 tasks with 5 high-criticality
tasks. The second task set (7'S;) is made of 60 tasks with
12 high-criticality tasks. Finally, the third task set (7'S3) is
made of 70 tasks with 14 high-criticality tasks. For each set,
we generated the tasks three times so that the initial total CPU
utilization is 100%, 125% and 150% on a 2 processors system.

TABLE L OBTAINED S} min ACCORDING TO METRICS Aver, Aver25+
AND Aver75 FOR THE TASK SETS T'S1, T'S2 AND T'S3 RESPECTIVELY.

U Aver Aver25+ Aver75 Aver wlo V;
125 | 1.69/1.36/1.59 1/171 1.94/1.48/1.79 1.65/1.3/1.48
150 | 1.86/1.65/1.83 | 1.5/1/1.37 2/1.87/2 1.97/1.67/1.74

B. Stretching factors analysis

We use the following metrics to evaluate the behavior of
our task model for the different aforementioned initial total
CPU utilization: Aver, Aver25+ and Aver75. Aver is the average
stretching factor for all the low-criticality tasks. Aver25+ is
the average stretching factor for the 25% most important low-
criticality tasks, while Aver75 is the average stretching factor
for the remaining tasks, i.e. the 75% less important tasks.

Table I shows the numerical results obtained for the stretch-
ing factors S; i according to the previously introduced
metrics and for each initial utilizations on a 2 processors
system. The last column presents the results of S; ,,;, When
the importance level parameter is not used, i.e. all the low-
criticality tasks have the same importance. Therefore, all the
low-criticality tasks will have the same S ,,,;,, value, making
the use of the Aver25+ and the Aver75 metrics unnecessary. In
each cell, the three values are respectively the value of S; ,in
for the task set T'S1, T'So and T'S5. The result for the initial
utilization of 100% is omitted as all the stretching factors are
equal to 1 by construction.

As expected, these results show that the stretching factors
are reduced for the most important tasks (Aver25+) and much
higher for the less important tasks (Aver75). For instance,
when the initial utilization is 150%, the most important low-
criticality tasks have in average their stretching factors ranging
from 1 (stretching is not required) to 1.5. On the other
hand, the less important low-criticality tasks have in average
their stretching factors ranging from 1.87 to 2, the maximum
possible value (S; nqz)- Table I also shows that without the
importance level the stretching factors are slightly inferior
(column 5) than when the importance parameter is used (col-
umn 2). That is, the low-criticality tasks should be stretched
more when using the importance level parameter. However,
when using this parameter in the model to compute stretching
factors, the most important low-criticality tasks (column 3)
have their stretching factors greatly reduced and even not used
in most cases. These results demonstrate that our improved
model of elastic tasks allows to execute both the low and the
high-criticality tasks of a MC system, while giving first priority
to the high-criticality tasks and then to the low-criticality tasks
according to their importance level.

Figure 1 shows the distribution of the values of S; i, in
two different configurations. Tasks are ordered by decreasing
importance level. Configuration A corresponds to the task set
T'Ss with an utilization of 150% where the values of V; are
randomly generated. In the configuration B, the application
designer specified that the 25% most important low-criticality
tasks should have their values of S; ,,in set to 1.25, while
the other tasks can have higher stretching factors (S; maz =
2). Such control over the values of the stretching factor for
each task opens the opportunity for application designers to
more easily dimension the required processing power when

T
Config. A ——
| Config. B ==

Minimum stretching factor

1 1 1 1 1
10 20 30 40 50
Tasks sorted by decreasing importance level

Fig. 1. Evolution of the distribution of stretching factors when setting the
Si,min for the 25% most important low-criticality tasks.

designing a MC system.

VI. CONCLUSION

Within real-time embedded systems, there is a need to
embed less (or even non-) safety tasks in addition to hard real-
time tasks. This requires executing applications with different
levels of criticality on a same chip. Such systems are called
Mixed-Criticality (MC) systems. Certification constraints to
prove the schedulability of MC systems lead to an over sizing
of the CPU power, compared to what is required in average
while the system is running. Such an approach is no longer
compatible with current economical constraints that push for
minimizing the CPU power.

In this work, we propose a task model and an associated on-
line decision algorithm to maximize the execution rate of the
low-criticality tasks within a safety-critical real-time system.
Our task model, inspired by the elastic task model, allows to
specify an order between the low-criticality tasks for applying
so called stretching factors. Off-line, the minimum value for
these stretching factors so that a MC system can be scheduled
are computed. On-line, we then show how these stretching
factors are used to relax the temporal constraints of the low-
criticality tasks in order to avoid any deadline miss, while
maximizing the execution rate of the low-criticality tasks. This
approach can be used to size the required processing power for
designing a MC system.

In future work, we plan to evaluate the actual values
stretching factors can take depending on the distribution of
the actual execution time of the low-criticality tasks. Besides,
we plan to evaluate the overhead introduced by the different
possible on-line decision algorithms for increasing/resetting
the stretching factors. We also plan to investigate a different
approach for supporting the execution part of our contribu-
tion, by relying on the use of a generalized form of the
time-triggered paradigm, called eXternal-Triggered (xT) [8].
Using this paradigm, recomputing the visibility dates of low-
criticality tasks being stretched would no longer be necessary.
Finally, it would be interesting to apply the proposed task
model in order to lessen the deadline miss ratio of the low-
criticality tasks when setting a trade-off with energy consump-
tion [15].

REFERENCES

[1] P. Albertos, A. Crespo, 1. Ripoll, M. Valles, and P. Balbastre. Rt control
scheduling to reduce control performance degrading. In Proc. of the

(2]

(3]

(4]

[5]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(7]

[18]

[19]

39th IEEE Conf. on Decision and Control, volume 5, pages 4889-4894,
Sydney, Australia, 2000.

S. Baruah and A. Burns. Implementing mixed criticality systems in
ada. In Proc of the 16th Ada-Europe Intl. Conf. on Reliable software
technologies, pages 174-188, Edinburgh, UK, 2011.

S. K. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-
Spaccamela, S. van der Ster, and L. Stougie. The preemptive unipro-
cessor scheduling of mixed-criticality implicit-deadline sporadic task
systems. In 24th Euromicro Conference on Real-Time Systems (ECRTS
2012), pages 145-154, Pisa, Italy, July 2012.

E. Bini and G. C. Buttazzo. Biasing effects in schedulability measures.
In Proc. of the 16th Euromicro Conf. on Real-Time Systems (ECRTS
2004), pages 196-203, 2004.

G. C. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni. Elastic
scheduling for flexible workload management. [EEE Trans. Comput.,
51(3):289-302, Mar. 2002.

J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H.
Anderson. Litmus®7: A testbed for empirically comparing real-time
multiprocessor schedulers. In Proc. of the 27th IEEE Real-Time Systems
Symposium (RTSS’06), pages 111-126, Washington, USA, 2006.

A. Cervin and J. Eker. The control server: a computational model for
real-time control tasks. In Real-Time Systems, 2003. Proceedings. 15th
Euromicro Conference on, pages 113-120, 2003.

D. Chabrol, D. Roux, V. David, M. Jan, M. A. Hmid, P. Oudin, and
G. Zeppa. Time- and angle-triggered real-time kernel for powertrain
applications. In Proc. of the Design, Automation & Test in Europe
Conference & Exhibition (DATE 13), pages 1060-1063, Grenoble,
France, March 2013.

R. Davis and A. Burns. Improved priority assignment for global fixed
priority pre-emptive scheduling in multiprocessor real-time systems.
Real-Time Syst., 47(1):1-40, Jan. 2011.

D. de Niz, K. Lakshmanan, and R. Rajkumar. On the scheduling of
mixed-criticality real-time task sets. In Proc. of the 30th IEEE Real-
Time Systems Symposium (RTSS 2009), pages 291-300, Washington,
DC, USA, December 2009.

J. Herman, C. Kenna, M. Mollison, J. Anderson, and D. Johnson.
Rtos support for multicore mixed-criticality systems. In Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2012 IEEE
18th, pages 197-208, 2012.

M. Jan, V. David, J. Lalande, and M. Pitel. Usage of the safety-oriented
real-time OASIS approach to build deterministic protection relays. In
Proc. of the 5" Intl. Symp. on Industrial Embedded Systems (SIES
2010), pages 128-135, Trento, Italy, 2010.

H. Kopetz. The time-triggered model of computation. In Proc. of
the IEEE Real-Time Systems Symposium (RTSS’98), pages 168-177,
Madrid, Spain, 1998.

G. Koren and D. Shasha. Skip-over: algorithms and complexity for
overloaded systems that allow skips. In Real-Time Systems Symposium,
1995. Proceedings., 16th IEEE, pages 110-117, 1995.

V. Legout, M. Jan, and L. Pautet. Mixed-criticality multiprocessor real-
time systems: Energy consumption vs deadline misses. In Proc. of the
1st workshop on Real-Time Mixed Criticality Systems, Tapei, Taiwan,
August 2013.

H. Su and D. Zhu. An elastic mixed-criticality task model and its
scheduling algorithm. In Design, Automation and Test in Europe (DATE
13), pages 147-152, Grenoble, France, March 2013.

M. Velasco, J. M. Fuertes, and P. Marti. The self triggered task
model for real-time control systems. In 24th IEEE Real-Time Systems
Symposium (work in progress, RTSS 2003), pages 67-70, Cancun,
Mexico, 2003.

S. Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In Proc. of the 28th
IEEE Intl. Real-Time Systems Symposium (RTSS 2007), pages 239-243,
Tucson, USA, 2007.

D. Zhu and H. Aydin. Reliability-aware energy management for periodic

real-time tasks. IEEE Transactions on Computers, 58(10):1382-1397,
2009.

