State-Based Mode Switching with Applications to

Mixed-Criticality Systems

Pontus Ekberg, Martin Stigge, Nan Guan and Wang Yi
Uppsala University, Sweden

Email: {pontus.ekberg | martin.stigge | nan.guan | yi}@it.uu.se

Abstract—We present a new graph-based real-time task model
that can specify complex job arrival patterns and global state-
based mode switching. The mode switching is of a mixed-
criticality style, enabling immediate changes to the parameters
of active jobs upon mode switches. The resulting task model
therefore generalizes previously proposed task graph models as
well as mixed-criticality (sporadic) task models, and further
allows for the modeling of timing properties not found in any of
these models. We outline an EDF uniprocessor schedulability
analysis procedure by combining ideas from prior analysis
methods for graph-based and mixed-criticality task scheduling.

I. INTRODUCTION

We present the Mode-Switching Digraph Real-Time
(MS-DRT) task model, a model that can express complex ar-
rival patterns of jobs and global mode switching. The tasks are
represented with graphs that specify both the arrival patterns
and the synchronization points (mode switches) between tasks.
MS-DRT is a strict generalization of the Digraph Real-Time
(DRT) task model [1] and of the common mixed-criticality
sporadic task model [2], its variations [3] and generaliza-
tions [4]. MS-DRT also enables the modeling of many timing
properties that have no counterpart in the above models, some
examples of which are shown in Section III.

The modes in MS-DRT are system-wide, meaning that all
tasks synchronously switch from one mode to another. Mode-
switching logic is specified per state (vertex) of the task
graphs, so that behaviors may differ depending on the local
state of the tasks. The mode change protocol is of a generalized
mixed-criticality style, enabling immediate changes to the
timing parameters of active jobs at mode changes. As opposed
to the usual mixed-criticality setting, it is possible to have
cyclic mode changes in MS-DRT. In addition to being a
mixed-criticality task model, MS-DRT could, for example, find
applications as a timing model for statecharts [5] by consider-
ing the orthogonal components as tasks and expressing their
arrival and synchronization patterns.

We outline an EDF schedulability analysis procedure for
MS-DRT task systems on uniprocessors. The analysis proce-
dure combines ideas from previously published EDF schedu-
lability analysis methods for DRT task systems [1] and mixed-
criticality sporadic task systems [6], [4]. These are all based on
computing demand bound functions for tasks, and are therefore
possible to combine.

A. Related Work

Mixed-criticality scheduling theory has seen a process of
slowly generalized task models. After the seminal paper by
Vestal [2], which described fixed-priority response-time anal-
ysis for mixed-criticality sporadic task systems, the initial
research effort was based on scheduling static sequences of
mixed-criticality jobs. The work by Baruah et al. [7] provides
a good overview of such mixed-criticality job scheduling.

One of the scheduling theories developed for static job
sequences, the OCBP scheduling approach, was then gen-
eralized for sporadic tasks systems by Li and Baruah [8].
Shortly thereafter, Baruah et al. developed a new EDF-based
scheduling algorithm, called EDF-VD [9], for mixed-criticality
sporadic tasks. The initial work by Vestal on response-time
analysis of fixed-priority scheduling was also improved by
Baruah et al. [10]. This list is by no means exhaustive, many
other works have since been based on the mixed-criticality
sporadic task model.

EDF-based scheduling of mixed-criticality sporadic tasks
was further investigated by Ekberg and Yi [6]. This was based
on very similar runtime scheduling as the previous work on
EDF-VD by Baruah et al. [9], but the analysis was based on
computing demand bound functions for the mixed-criticality
tasks. Demand bound functions offer a handy abstraction for
use in EDF-based schedulability analysis, and have been suc-
cessfully applied to many varying task models outside of the
mixed-criticality setting. For example, EDF scheduling anal-
yses based on demand bound functions have been presented
for task models that offer greater expressiveness than sporadic
tasks regarding job arrival patterns, such as the GMF [11]
and DRT [1] task models. This wide applicability of demand
bound functions is what allows us analyze a combination of
mixed-criticality style mode switching with more general task
models for this paper.

Baruah [3] has also proposed a variation of the standard
mixed-criticality sporadic task model, in which the periods
of sporadic tasks rather than their execution-time estimates
are subject to uncertainties. A generalization by Ekberg and
Yi [4] covers the case where all parameters of the sporadic
tasks may change, and the potential mode switches can be
expressed as a directed acyclic graph instead of being linearly
ordered. Contrary, the MS-DRT task model proposed in this
paper is not constrained to sporadic behavior, and allows cyclic
mode switches.

II. THE MODE-SWITCHING DIGRAPH REAL-TIME
TASK MODEL

In this section we describe the syntax and semantics of the
MS-DRT task model in as abstract terms as possible. Concrete
examples of MS-DRT tasks, outlining some more real-world
interpretations of the semantics, are presented in Section III.

A. Syntax

An MS-DRT task system is formally defined by a set of
tasks T = {71,...,7,} together with an associated set of
modes M(T) = {p1,...,ux}. An MS-DRT task 7 € T is
defined by an ordered tuple (V(7), Ect(7), Ems(7)), where

e V(7) is a set of vertices, representing job types,

e each vertex v € V(1) is labeled with an ordered tuple
(e(v),d(v), u(v)) € (N3 x Nxg x M(T)), representing
worst-case execution time, relative deadline and mode of
the corresponding job type, respectively,

o E.¢(7) is a set of directed edges representing task control
flow, such that p(u) = p(v) for each (u,v) € Ect(7),

o cach edge (u,v) € E(7) is labeled with a minimum
inter-release separation time p(u, v) € N>,

e E,s(7) is a set of directed edges representing possible
mode switches, such that p(u) # pu(v) for each (u,v) €
Eps(7).

We assume that each task 7 € T satisfies the frame sepa-
ration property, a generalization of the constrained deadlines
concept for sporadic tasks. In other words, for each vertex
u € V(7) and (u,v) € E¢e(7) we have d(u) < p(u,v).

Note that, by the above definition, E.¢(7) and Ep,s(7) are
disjoint sets, that (V' (7), Ect(7)) is a directed graph with up to
k disjoint subgraphs (one subgraph per mode of the task), and
that (V' (7), Ems(7)) is a directed multipartite graph (colorable
with one color per mode).

B. Semantics

An MS-DRT system consists of a number of tasks that
all run in the same mode at any particular time point, i.e.,
the modes are system wide. While running in any mode, an
MS-DRT task 7 behaves in the same way as an ordinary DRT
task: the task runs by traversing the graph (V(7), E¢(7)),
releasing a job every time a vertex is visited. More formally, a
job is defined by a triple (r, e,d) € R3, representing the job’s
release time, execution-time budget and absolute deadline, re-
spectively. A valid job sequence [(r1,e1,dy), (72, €2,d2), ..]
is generated by 7 if there is a path (my,7m2,...) through
(V(7), Ect(7)) such that for all

e €; — 6(771'),

[dl =7r; + d(’ﬂ'i),

o Tip1 =1 + p(mi, Tig1).

As edges in E.¢(7) only go between vertices labeled with
job types of the same mode, traversing (V(7), Fct(T)) never
causes the task to switch mode.

For any point in time and any mode p, if the latest visited
vertex u of each task 7 € T has an outgoing mode-switch edge
(u,v) € Ens(7) with p(v) = p, then an event can trigger
the system to switch to mode w. At that time point, each

task 7 immediately and synchronously switches to the new
mode p through one of the edges in Fy,s(7), chosen non-
deterministically if there are several such edges. Note that the
model does not specify the origin of the events triggering mode
switches, but rather just says that such events can arrive at
any time. Any event-triggering scheme chosen by the system
designer is then valid for the model. For example, mode-switch
events can be emitted due to the run-time behavior of the
tasks themselves, or due to execution-time overruns of jobs.
They could also be the result of errors or faults, or come from
external sources.

The mode switch protocol is of a (generalized) mixed-
criticality style, meaning that if the last released job of T is
still active (released, but not finished), it immediately has its
parameters changed to that of the job type at the target vertex.
In this way, the job types labeled on any two vertices u,v,
for which (u,v) € Eps(7), can be thought of as representing
different versions of the same job. Note that when a mode-
switch edge (u,v) € Eng(7) is taken, no new job is released
at vertex v. The job type labeled on v serves to update the
parameters of a job from wu that is still active as follows.

1) The job’s total execution-time budget is changed from
e(u) to e(v), but is not replenished. If the job has already
executed for at least e(v) time units, it is immediately
considered to be finished.

2) The job’s absolute deadline is changed to be d(v) time
units after its release time.

Jobs that are active during a mode switch are called carry-over
Jjobs. Note that a job is still eligible to become a carry-over job
at the time point where its execution-time budget reaches zero;
this allows modeling of mode switches due to execution-time
overruns.

After the switch, the tasks can go on to generate new
job sequences by continuing to traverse (V(7), Ec¢(7)), now
only being able to visit vertices labeled with job types of the
new mode. The inter-release separation constraints hold across
mode switches. In other words, if the last released job of T
(active or not) was released at time ¢ in a previous mode, then
the first control-flow edge (v, w) € E¢(7) to be followed in
the new mode can be taken earliest at time ¢ + p(v, w).

A system may start with any mode as the initial one, and
with any vertices with job types of that mode as the initial
vertices of the tasks.!

ITI. EXAMPLES

In this section we present some example tasks, showing a
few of the properties that can be modeled with the MS-DRT
task model. In the figures we draw the control-flow edges as
straight arrows and the mode-switch edges as wiggly arrows.
The colors help reading, but carry no semantic information.

'In practice, systems will likely have just one or a few well-defined
initial states. However, allowing the system to start in any reachable state
does not negatively affect schedulability. As the goal of the model is to
over-approximate all the possible behaviors of the system, we found it
counterproductive to add syntax to needlessly restrict the behaviors of the
model.

Example III.1 (Dual-criticality tasks). Figure 1 shows some
tasks that are similar to ordinary mixed-criticality tasks [2],
but with some additional semantics that can not be expressed
in the original model. Upon an execution-time overrun, the
system would switch from mode 1.0 to mode HI.

T is equivalent to a dual-criticality sporadic task that
gets its execution-time budget increased at a switch
to the high-criticality mode (HI).

To will instead drop any active job at a mode switch,
and after a delay start a less intensive sporadic
workload. Recall that the inter-release separation
constraints hold transparently across mode switches,
so the extra dummy job at ug is introduced to ensure
that uy is visited no earlier than 100 time units after
the mode switch as opposed to 100 time units after
the last job release at u;.

T3 will stop releasing new jobs after a mode switch, but
must finish any active job that it has at that time;
the time given to finish the last job is increased to
70 time units instead of the 30 time units that are
normally given.

T is a direct extension of a two-vertex DRT task to the
dual-criticality semantics with different execution-
time estimates.

Ts represents overhead from the mode switch (e.g.,
reordering priority queues) by creating a one-off job
that must be executed immediately after the switch.
Note that the “worst-case” behavior of Ts is to
defer the release of a job at z1 until the time point
where a switch to HI occurs, and then immediately
transforming it with the parameters at zs. It is often
the case that the model will have many possible
behaviors that are irrelevant for the concrete system,
as long as the behaviors of the system are a subset of
those of the model it is not an issue for performing
safety analysis.

(3,12, 1)

Fig. 2.

An example task with coarse-grained mode switching.

21oLo (4,15, H1)

z

(0,0, HI)
@ (2,50, HI)
T2 20 0 @ 50
(3,20, L0) @ 100
(0,0, Hr)
(6,30, L0) (6,70, HI)
T3
(3,16,L0) (6,16, HI)
T4
(1,25,L0) (3,25, HI)
0 0, LO .4, HI
T5
Fig. 1. Some example tasks of the ordinary dual-criticality style.

Example IIL.2 (Coarse-grained mode switching). More tra-
ditional, coarse-grained mode switching can also be modeled
in MS-DRT. Figure 2 shows a task that only has a single
entry point per mode. The rectangular boxes are syntactic
sugar expressing that the outgoing edges have copies from
each of the vertices inside the box. From any of the vertices
v1,...,VUs, the task can switch to mode o by going to vg.
Any active job is dropped at vg, and some initial work has to
be performed immediately at v;. The task can switch to vy in
mode (11 from any of the vertices vg, ..., vy, in the process
dropping any active job and delaying at least 50 time units
before continuing to release the first non-dummy job at vs.
Note that while the model dictates that all active jobs of the
task, if any, are dropped at a mode switch, a perfectly valid
behavior of the system that is modeled would be to only switch
to a new mode when the task actually has no active jobs.

Example III.3 (Period-adapting tasks). In this example we
model two tasks, shown in Figure 3, that periodically read
some sensor values and release jobs to process the readings.
Depending on the values that are read, the resulting jobs have

different execution-time requirements. Some readings result in
“small jobs” with an execution-time requirement of 1 time
unit, and other readings result in “big jobs” that take up to
4 time units to complete.

The tasks are together adapting to the current sensor values
by switching to different modes where the periodicity of the
readings are matched against the execution-time requirements
of the resulting jobs. In mode (1, both tasks are reading and
processing small jobs at the highest possible pace in v and
uy, respectively. If 71 reads a sensor value implying a big job,
it goes to the dummy job vs and triggers a mode switch to
mode o, upon which the dummy job is transformed into a
big job at vo. At the same time, To must also switch to po and
goes to us, where the current (small) job continues with the
same execution-time budget. The period of the sensor readings
in o is changed to 5 in order to match the total execution-
time requirements of the jobs. If T, later reads a sensor value
implying a small job, it will go to vy and trigger a mode
switch back to . Task o will switch back to py through us,
allowing it to finish its current job with the deadline given to it
before reverting back to the smaller period of sensor readings.
Similarly, the system switches to mode us if To reads sensor
values resulting in big jobs, and to ., if both tasks do.

IV. ANALYSIS

In this section we will briefly outline an EDF schedulability
analysis of MS-DRT task systems on uniprocessors. It is
based on ideas from previously published EDF schedulability
analyses of regular DRT task systems [1] and mixed-criticality
sporadic task systems [6], [4].

Following the analysis for the generalized mixed-criticality
sporadic task model [4], we define the mode structure G(T') of
an MS-DRT task system 7T as the directed graph (V, E) where
V = M(T) is the set of modes and F contains edges for the
possible mode switches.? That is, (1, pt;) € E if and only if
each task 7 € T has vertices u, v such that (u,v) € Ens(7)
and p(u) = p,; and p(v) = p;. For example, Figure 4 shows
the mode structure for the tasks in Example IIL.3.

To reduce the complexity of the schedulability analysis we
analyze each mode and mode switch separately. For each mode
1 we will analyze its schedulability during all possible time
intervals that do not include a mode switch. For every mode
switch (p;, ;) € E we will analyze the schedulability of p;
for all possible time intervals that start with a switch from p;
to pj, over-approximating any workload that can be carried
over from the previous mode.

The analysis is based on finding demand bound functions
for each task. The demand bound functions must safely over-
approximate the total execution demand of all jobs from the
task that together can have their entire scheduling windows
(from release time to deadline) within a time interval of a given
length. Let dbf,; (7, £) denote a demand bound function for 7
in mode p; for any time interval of length £ that do not contain

’In [4] the mode structure is constrained to be a directed acyclic graph,
here it can be any directed graph.

Fig. 3.

Two tasks that dynamically adapt to each other’s requirements.

a mode switch. Let dbf,,, ,, (7,¢) instead denote a demand
bound function for task 7 in mode y; for any time interval of
length £ that start with a switch from p; to 1;. Only the latter
kind of demand bound function will be over-approximate. The
pessimism there comes from assuming the worst-case behavior
in the previous mode when bounding the demand of carry-over
jobs; this is the price that we pay for analyzing the modes
in relative separation. Experimental results from [4], where a
similar source of pessimism exists, shows that the resulting
analysis procedure still offers good performance compared to

&

Fig. 4. The mode structure of the tasks in Example III.3.

other methods. Considering modes in separation also enables
us to handle systems with cyclic mode switches with relative
ease, as we only need to look to the immediately previous
mode to over-approximate the demand of carry-over jobs.
The demand bound functions described above can be used in
a schedulability test as expressed by the following proposition.

Proposition IV.1. An MS-DRT task system T with mode
structure G(T) = (V,E) is schedulable by EDF if the
following two conditions hold for all u; € V:

VEZ0: Y dbfy, (r,0) <, (1)
TeT

Vui € pred(p;), V€= 0: Y dbf, (1,0 <€, (2)
TeT

where pred(p;) = {p; | (i, 1) € E} .

Conceptually, the above proposition checks the schedula-
bility of each mode in complete isolation. It can be thought
of as |M(T)| separate schedulability tests. For each mode
5, we ensure in condition (1) that the demand of workload
released entirely inside p; is schedulable and in condition (2)
that workload including carry-over jobs from all possible
predecessor modes is schedulable. Considering this, a proof
of the above proposition can be made very similar to, e.g., the
proof of Theorem 1 in [11] and is omitted for space reasons.

A. Computing demand bound functions

The computation of demand bound functions for MS-DRT
tasks is based on the method for computing such functions
for regular DRT tasks [1]. A quick review of this method is
presented below.

1) Demand bound function computation for DRT: For any
path 7 = (my,...,m,) through a DRT graph, the execution-
time demand e() and deadline d(m) of 7 is defined as
Z 6(71’1-),
i=1
m—1
= Z p(ﬂ'h 7Ti+1) + d(ﬂ'm)-

i=1

e(m) “

To compute a (precise) demand bound function of a DRT task
for a time interval length ¢, we must find the maximum e(7)
for all paths 7 through the graph with d(7) < £.

As the number of paths through a graph grows exponentially
with the path length, a path abstraction called demand tuples
was introduced in [1] to alleviate this problem. Each demand
tuple can abstractly represent several concrete paths that are
equivalent for the purposes of computing the demand bound
function. The most basic demand tuple abstraction of a path
m = (m,...,T,) is simply a triple (e(m),d(w), m,) with
the execution demand, deadline and final vertex of the path.
The same demand tuple would abstract all paths that share
these three properties. The demand tuples can be used instead
of concrete paths for traversing the task graph by extending
them with more vertices. If (u,v) is an edge of the graph
and (e,d,u) a demand tuple for path 7, then {¢’,d’,v) with
e =e+e(v)and d =d—d(u)+p(u,v) +d(v) is a demand
tuple for 7 extended by wv.

The problem of finding the maximum e(7) for any path
7 with d(w) < ¢ can then be transformed into finding
max {e | {e,d,v) demand tuple with d < ¢}. To generate all
demand tuples required to compute the demand bound function
for all relevant values of the interval length ¢, we first
find an upper bound /.« on the values of ¢ that must be
considered for schedulability. We then create demand tuples
(e(v),d(v),v) for all vertices (or O-length paths) v, and then it-
eratively extend each demand tuple (e, d, v) with more vertices
as explained above, as long as d < £p,,x. Duplicate demand
tuples can be discarded on the fly, and other optimizations
can be applied as well [1]. It was shown in [1] that a pseudo-
polynomial ¢, can be found assuming that the utilization of
the task set is bounded by a constant strictly smaller than
1. There are therefore at most pseudo-polynomially many
demand tuples to consider, and the process of computing
the demand bound function is of pseudo-polynomial time
complexity.

2) Demand bound function computation for MS-DRT: The
above method for computing demand bound functions can
be used for finding the intra-mode demand bound functions
dbf,, (7, £) for MS-DRT tasks 7. The initial demand tuples
(e(v),d(v),v) are created from vertices v € V(7) with u(v) =
;, and the tuples are extended using edges from E¢(7). In
fact, one can apply the demand bound function computation
for DRT tasks directly on the subgraph (V' (y;,7), Ect (7)),
where V(u;,7) = {v € V(r) | p(v) = p;}. Computing a
bound /,,.x on the values of ¢ that must be considered for
mode p; in Proposition IV.1 can be done exactly as in [1],
using the set {(V (u;,7), Ect(7)) | 7 € T} as the set of DRT
tasks.

It is more difficult to compute the demand bound functions
dbf,,, ., (7,¢) for time intervals starting with a mode switch,
as these must account for possible carry-over jobs from the
previous mode. To achieve this, we adapt the ideas from [6],
[4] for bounding the demand of carry-over jobs for mixed-
criticality sporadic tasks. Consider a task 7 that switches from
mode p; to ; through an edge (u,v) € Eng(7), as illustrated
in Figure 5.

We will assume that mode ; is schedulable when comput-
ing dbf,,, ., (7, £), i.e., that all deadlines are met in y;. By

Mode switch via edge (u,v) € FEms(T).
The job is transformed to the job type labeled on v.

xT

! N l

t ' t+ d(u) t+ d(v): Time
' ~—
d(v) — d(u)

Release of job type labeled on wu.

Fig. 5. Task 7 switches from p; to pu; trough an edge (u,v) € Ems(7).
The parameters of the active job are updated with the parameters of the job
type labeled on vertex v. The job’s remaining execution-time budget in p; is
at most x time units, assuming that p; is schedulable.

reasoning similar to that in [4], this is a safe assumption for
the purposes of finding demand bound functions to be used
for schedulability analysis as in Proposition IV.1. With this
assumption, we can conclude that if the mode switch happens
x time units before the carry-over job’s absolute deadline in
1, the job can have at most x time units left of its execution-
time budget in p; at that time point. The job’s remaining
execution time budget as it enters mode u; is then at most
e(z,u,v) = min(z, e(u)) +e(v) —e(u) time units. The length
of the time interval until its new absolute deadline in p; is
d(z,u,v) = x + d(v) — d(u) time units. For the purposes
of computing the demand bound function, we consider the
carry-over job in j; as a new job released at the time of
the mode switch, with execution-time budget and deadline
as above. Such a job, if it exists, must be the first job to
contribute demand to a time interval starting at a mode switch.
A straightforward approach to computing dbf,,, (7, £) is
then to create the initial demand tuples

<6($, u7 U)? d(x7 u? ,U)’ v>

for all (u,v) € Eps(7) and z € [0, e(u)] such that p(u) = p;
and p(v) = p;. Note, however, that © = e(u) corresponds to
the “worst-case” demand in the sense that a smaller = leads
to e(x, u,v) decreasing by the same amount as d(x,u,v). If
the demand of the entire task set can be too high for some
interval length ¢; with « < e(u), then it can also be too high
for another interval length /o > ¢; when x = e(u).? It is
therefore enough for our purposes to create the above demand
tuples with = = e(u).

If the task has no active job at the time of the switch from
f4; to pj, then the first job to contribute demand in y; must be
of a job type labeled on a vertex w such that (v, w) € Ee¢(7)
and (u,v) € Eys(7) for some u, v with p(u) = p; and p(v) =
(5. For all such vertices w, we need to create demand tuples
(e(w), d(w),w). These demand tuples, together with the ones

3This reasoning only holds under the assumption of a unit-speed dedicated
processor as in Proposition IV.1. If we instead use some supply bound
function (that is piecewise-linear between integer points) as a model of the
computing platform, we might have to create demand tuples for all integers
z€{0,...,e(u)}.

for the carry-over jobs above, are all that are needed for safely
abstracting the demand of all O-length paths that start at a
switch from p; to p;. These initial demand tuples can then
be extended with additional vertices in the same manner as
for regular DRT tasks, and ultimately be used to construct a
dbf,, ,, (7, £) for use in Proposition IV.1.

V. CONCLUSIONS

We have presented MS-DRT, a task model that supports
the modeling of complex arrival and synchronization patterns
with state-based mode changes. The mode switching proto-
col is of a mixed-criticality style, implying that MS-DRT
generalizes both previous graph-based and mixed-criticality
(sporadic) task models. MS-DRT also enables the modeling
of many types of systems that fall outside of what is usually
considered for mixed-criticality scheduling, some examples of
such systems were shown in Section III. We have outlined how
EDF schedulability analysis for MS-DRT can be performed
by combining ideas from previous methods that use demand
bound functions. We believe that MS-DRT offers a type of
expressiveness not seen in commonly used models of mode-
switching systems. At the same time, it offers the possibility
of schedulability analysis that is significantly more efficient
than for powerful timing models such as timed automata [12].

The schedulability analysis for mixed-criticality sporadic
tasks that we adapted for MS-DRT can be greatly improved
by a parameter-tuning preprocessing procedure [6], [4]. This
tuning artificially decreases some of the relative deadlines in
order to shift demand between the demand bound functions
of different modes. A similar procedure can be applied to
MS-DRT tasks, although the process of tuning is considerably
more involved. As future work we plan to tackle this challenge,
as well as to work out the remainder of the schedulability
analysis in more technical detail.

REFERENCES

[1] M. Stigge, P. Ekberg, N. Guan, and W. Yi, “The digraph real-time task
model,” in RTAS, 2011, pp. 71-80.

[2] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in RTSS, 2007, pp. 239-
243.

[3] S. Baruah, “Certification-cognizant scheduling of tasks with pessimistic
frequency specification,” in SIES, 2012, pp. 31-38.

[4] P. Ekberg and W. Yi, “Bounding and shaping the demand of generalized
mixed-criticality sporadic task systems,” Real-Time Systems, 2013.

[5] D. Harel, “Statecharts: a visual formalism for complex systems,” Science
of Computer Programming, vol. 8, no. 3, pp. 231 — 274, 1987.

[6] P. Ekberg and W. Yi, “Bounding and shaping the demand of mixed-
criticality sporadic tasks,” in ECRTS, 2012, pp. 135-144.

[71 S. Baruah, K., V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-
Spaccamela, N. Megow, and L. Stougie, “Scheduling real-time mixed-
criticality jobs,” IEEE Transactions on Computers, Jul. 2011.

[8] H. Li and S. Baruah, “An algorithm for scheduling certifiable mixed-
criticality sporadic task systems,” in RTSS, 2010, pp. 183 —-192.

[9]1 S. Baruah, V. Bonifaci, G. D’Angelo, A. Marchetti-Spaccamela,

S. van der Ster, and L. Stougie, “Mixed-criticality scheduling of sporadic

task systems,” in ESA, 2011, pp. 555-566.

S. Baruah, A. Burns, and R. Davis, “Response-time analysis for mixed

criticality systems,” in RTSS, 2011, pp. 34 —43.

S. Baruah, D. Chen, S. Gorinsky, and A. Mok, “Generalized multiframe

tasks,” Real-Time Systems, vol. 17, pp. 5-22, 1999.

E. Fersman, P. Krcal, P. Pettersson, and W. Yi, “Task automata: Schedu-

lability, decidability and undecidability,” Information and Computation,

vol. 205, no. 8, pp. 1149 — 1172, 2007.

[10]
(1]

[12]

