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Abstract—Fixed priority scheduling is used in many real-time
systems; however, both preemptive and non-preemptive
variants (FP-P and FP-NP) are known to be sub-optimal when
compared to an optimal uniprocessor scheduling algorithm
such as preemptive Earliest Deadline First (EDF-P). In this
paper, we investigate the sub-optimality of fixed priority
non-preemptive scheduling. Specifically, we derive the exact
processor speed-up factor required to guarantee the feasibility
under FP-NP (i.e. schedulablability assuming an optimal
priority assignment) of any task set that is feasible under
EDF-P. As a consequence of this work, we also derive a lower
bound on the sub-optimality of non-preemptive EDF (EDF-NP),
which since it matches a recently published upper bound gives
the exact sub-optimality for EDF-NP.

It is known that neither preemptive, nor non-preemptive
fixed priority scheduling dominates the other, i.e., there are
task sets that are feasible on a processor of unit speed under
FP-P that are not feasible under FP-NP and vice-versa. Hence
comparing these two algorithms, there are non-trivial speedup
factors in both directions. We derive the exact speed-up factor
required to guarantee the FP-NP feasibility of any FP-P
feasible task set. Further, we derive upper and lower bounds on
the speed-up factor required to guarantee FP-P feasibility of
any FP-NP feasible task set. Empirical evidence suggests that
the lower bound may be tight, and hence equate to the exact
speed-up factor in this case.

Keywords-real-time; uniprocessor; resource augmentation;
speedup factor; sub-optimality; non-preemptive scheduling;
preemptive scheduling; EDF; fixed priority.

I. INTRODUCTION

Real-time systems are prevalent in a wide variety of
application areas including telecommunications, consumer
electronics, aerospace systems, automotive electronics,
robotics, and medical systems. The functionality of these
systems is typically mapped to a set of periodic or sporadic
real-time tasks, with each task giving rise to a potentially
unbounded sequence of jobs. Timely execution of the tasks
and their jobs is supported by the use of real-time scheduling
algorithms.

Real-time scheduling algorithms for single processor
systems may be classified into two main types: fixed priority
and dynamic priority. Fixed priority scheduling is the defacto
standard approach used in many applications. Here, a unique
static priority is assigned to each task and inherited by all of
its jobs. At runtime, the scheduler uses these priorities to
determine which job to execute. Earliest Deadline First

(EDF) is the most common example of a dynamic priority
scheduling algorithm. EDF uses priorities based on the
absolute deadline of each job to make scheduling decisions.

Real-time scheduling algorithms may also be classified in
terms of when and if preemption is permitted. Thus we have
preemptive and non-preemptive variants of both fixed priority
(FP-P and FP-NP) and EDF (EDF-P and EDF-NP) scheduling.

There are a number of different ways in which the
performance of real-time scheduling algorithms can be
compared. Empirical techniques typically rely on generating
a large number of task sets with parameters chosen from
some appropriate distributions. The performance of the
scheduling algorithms are then compared by determining
task set schedulability according to exact or sufficient
schedulability tests and plotting a graph of the success ratio,
i.e. the proportion of task sets that are deemed schedulable,
at different utilisation levels. More advanced approaches use
a weighted schedulability metric [8] to illustrate how
schedulability varies with a further parameter, for example
task set cardinality, or the range of task periods. Similar
comparisons may be obtained by using a simulation of each
algorithm as a necessary schedulability test, hence showing
the proportion of task sets found to be definitely
unschedulable due to a deadline miss in the simulation.
These empirical approaches tend to focus on the
average-case behaviour over large numbers of task sets rather
than highlighting those task sets that are particularly difficult
to schedule using one algorithm, but may be easy to
schedule using another. Metrics such as breakdown
utilisation [26] and optimality degree [9] can also be used to
examine average-case performance.

In this paper, we focus on a theoretical method of
comparing the worst-case performance of real-time
scheduling algorithms based on a resource augmentation
metric referred to as the processor speedup factor [25].
Specifically, we derive bounds on the factor by which the
speed of the processor needs to be increased to ensure that
any task set that is feasible under some scheduling algorithm
A is guaranteed to be feasible under another algorithm B.
When A is an optimal algorithm then this speedup factor
provides a measure of the sub-optimality of algorithm B.
Note, when we refer to a task set as being feasible under a
particular scheduling algorithm, if that algorithm uses fixed



priorities, then we mean that the task set is schedulable
under that algorithm with an optimal priority assignment.

In this paper, we use speedup factors to compare fixed
priority non-preemptive scheduling (FP-NP) with both fixed
priority preemptive (FP-P) and Earliest Deadline First
(EDF-P) scheduling.

Our interest in FP-NP scheduling stems from the fact that
in modern uniprocessor systems, pre-emption can
significantly increase overheads due to a number of factors.
These include context switch costs and cache related
pre-emption delays (CRPD) which have to be accounted for
in both FP-P [2] and EDF-P [30] scheduling. CRPD can
have a substantial impact, increasing task execution times by
as much as 33% [11]. One way of reducing or eliminating
CRPD is to partition the cache; however, allocating each task
a cache partition, which is some fraction of the overall size
of the cache, has an impact on the task’s worst-case
execution time (WCET) which may be significantly inflated.
Such partitioning rarely improves upon schedulability
compared to accounting for CRPD and allowing tasks to use
the entire cache [3]. An alternative method which eliminates
CRPD without increasing WCETs is to employ a fully
non-preemptive scheduler. Non-preemptive scheduling has
the additional advantage of reducing memory requirements,
as well as improving the dependability of real-time systems
[32]. It is however well known that non-preemptive
scheduling can be infeasible at low processor utilization
levels due to the long task problem [32], where some task
has a WCET greater than the deadline of another task.

When considering the theoretical optimality of
uniprocessor scheduling algorithms (i.e., without accounting
for overheads), then EDF-P is optimal in the sense that any
task set that is feasible on a uniprocessor under some other
scheduling algorithm is also feasible using EDF-P [21]. As a
result, EDF-P dominates other uniprocessor scheduling
algorithms such as FP-P, FP-NP, and EDF-NP.

When using fixed priority scheduling, priority assignment
has a significant impact on schedulability. For FP-P
scheduling, Deadline Monotonic Priority Ordering (DMPO)
is optimal for constrained-deadline task sets [28]. In other
words, any constrained-deadline task set that is schedulable
under FP-P with some other priority ordering is also
guaranteed to be schedulable with DMPO. DMPO is not
however optimal if task deadlines are arbitrary [27] (i.e. may
be larger than their periods). In that case, Audsley’s
algorithm [5] can be used to provide an optimal priority
assignment.

Within the class of non-preemptive scheduling algorithms,
no work-conserving algorithm is optimal. This is because in
general it is necessary to insert idle time to achieve a feasible
schedule [22]. EDF-NP is however weakly optimal in the sense
that if a work conserving non-preemptive schedule exists for
a task set, then EDF-NP can schedule it [23], hence EDF-
NP dominates FP-NP. With FP-NP scheduling, DMPO is not
optimal for constrained-deadline task sets; however, Audsley’s
algorithm [5] can again be applied [22].

Comparing the preemptive and non-preemptive paradigms,
EDF-P dominates EDF-NP; however, the same is not true
with fixed priorities, FP-P does not dominate FP-NP. Instead,
they are incomparable. In other words, task sets exist that
are feasible under FP-NP that are not feasible under FP-P
and vice-versa [39]. This lack of any dominance relationship
means that when fixed priorities are used, some systems are
easier to schedule preemptively, while others are easier to
schedule non-preemptively. (Optimality for fixed priority
scheduling requires limited preemption with final
non-preemptive regions [14]; consideration of that more
complex model is however beyond the scope of this paper).

A. Speedup Factors

In 2009, Davis et al. [20] derived the exact sub-optimality
S = 1/Ω ≈ 1.76 of FP-P scheduling for constrained-deadline
task sets. This exact bound complements the one for implicit-
deadline task sets S = 1/ln(2) ≈ 1.44 that may be derived
from Liu and Layland’s famous results [29]. In 2009, Davis et
al. [19] also derived upper and lower bounds of S = 1/Ω and
S = 2 on the sub-optimality of FP-P scheduling for arbitrary-
deadline task sets. In 2015, Davis et al. [15] completed the
exact characterization of the sub-optimality of FP-P scheduling
by proving that the exact speedup factor required for arbitrary-
deadline task sets is in fact S = 2. In the same paper, the
authors also extended these results to the case where tasks
share resources under mutual exclusion according to the Stack
Resource Policy (SRP) [6] or the Dead Floor Protocol (DFP)
[12], thus providing exact speedup factors comparing FP-P +
SRP to EDF + SRP or EDF + DFP.

In 2010, Davis et al. [17] derived upper and lower bounds
on the speedup factor required to guarantee FP-NP feasibility
of all EDF-NP feasible task sets. These bounds are S = 1/Ω
and S = 2 respectively for all three classes of task set
(implicit, constrained and arbitrary deadline). In 2015, von
der Brüggen et al. [38] proved upper bounds of S = 1/Ω for
the implicit and constrained deadline cases, thus along with
the prior results, showing that these values are exact. Later
in 2015, Davis et al. [15] also completed the exact
characterization of the speedup factors required to guarantee
FP-NP feasibility of EDF-NP feasible task sets by showing
that the exact speedup factor for the arbitrary deadline case
is S = 2 (the same as in the preemptive case for FP-P v.
EDF-P).

In 2013, Thekkilakattil et al. [35][36] quantified the
sub-optimality of EDF-NP (with respect to EDF-P), bridging
between the preemptive and non-preemptive paradigms.
(This result was subsequently extended to the case of global
deadline based scheduling [34]). In 2015, Abugchem et al.
[1] subsequently provided a tighter upper bound on the
sub-optimality of EDF-NP.

In this paper, we focus on quantifying the sub-optimality
of uniprocessor FP-NP scheduling with respect to an optimal
algorithm such as EDF-P. As a consequence of this work, we
also quantify the exact sub-optimality of uniprocessor
EDF-NP scheduling. Further, we use the speedup factor



metric to compare the performance of FP-P and FP-NP
scheduling in both directions, given the lack of any
dominance relation between them.

The main contributions of this paper are in determining for
uniprocessor systems:

S1: The exact speedup factor required to guarantee FP-NP
feasibility of any EDF-P feasible task set (i.e. the exact
sub-optimality of FP-NP).

S2: The exact speedup factor required to guarantee FP-NP
feasibility for any task set that is FP-P feasible.

S3: The exact speedup factor required to guarantee EDF-NP
feasibility of any EDF-P feasible task set (i.e. the exact
sub-optimality of EDF-NP).

S4: Upper and lower bounds on the speedup factor required to
guarantee FP-P feasibility for any task set that is FP-NP
feasible.

Note, where we refer to the exact sub-optimality, or exact
speedup factor for a non-preemptive scheduling algorithm
compared to a preemptive one, then it is important to clarify
precisely what we mean. Since non-preemptive scheduling
suffers from the long task problem [32], whereby a task set
may be trivially unschedulable because the longest execution
time Cmax of one task exceeds the shortest deadline Dmin

of another, then assuming freely determined task parameters
no finite speedup factor exists. This is the case, because
Cmax/Dmin can be made arbitrarily large. Instead, in this
paper we provide exact speedup factors that are parametric
in the ratio Cmax/Dmin, and thus hold with this minimal
constraint on task parameters such that a finite speedup
factor exists. We note that with further information about
task set characteristics it may be possible to determine more
precise speedup factors with narrower scope, i.e. more
constraints on their validity. In the extreme, each individual
task set effectively has a precise speedup factor which may
be computed by referring to all of the parameters of its
component tasks.

In this paper, as in previous work on speedup factors [20],
[19], [17], [35], [15] we assume that changes in processor
speed have a linear effect on the time required to execute
each task. Considering a uniprocessor system in more detail,
our assumption is that the clock frequency may be changed
and that this has a linear effect on the speed of all hardware
components (processor, memory etc.) thus producing a linear
scaling of execution times. Such behaviour is a reasonable
approximation for simple systems.

While the results presented in this paper are mainly
theoretical, they may also have practical utility in enabling
system designers to quantify the maximum penalty for using
FP-NP scheduling in terms of the additional processing
capacity required as compared to FP-P or EDF-P. This
performance penalty can then be weighed against other
factors such as the additional overheads (such as context
switch costs and CRPD) incurred by preemptive scheduling,
when considering which algorithm to use.

B. Organization

The rest of the paper is organized as follows: the system
model is presented in Section II. Section III recaps on the
schedulability analyses for preemptive and non-preemptive
EDF and fixed priority scheduling. Our main results on
sub-optimality and speedup factors are presented in Sections
IV and V, with the results of an empirical investigation
reported in Section VI. Section VII concludes with a
summary and a discussion of open problems.

II. SYSTEM MODEL

In this section we describe the system model, terminology,
and notation used in the rest of the paper.

A. Task Model

We consider the schedulability of a set of sporadic tasks
on a uniprocessor system. A task set Γ comprises a static set
of n tasks {τ1, τ2, ...τn}. Each task τi is characterized by its
minimum inter-arrival time Ti, bounded worst-case execution
time Ci, and relative deadline Di. Deadlines may be implicit
(Di = Ti), constrained (Di ≤ Ti), or arbitrary (independent
of the task’s period). The longest execution time of any of
the tasks is denoted by Cmax = max

∀τi∈Γ
Ci. Similarly, the

shortest deadline is denoted by Dmin = min
∀τi∈Γ

Di. In the case

of fixed priority scheduling, we use hp(i) and hep(i) to
denote respectively the set of tasks with priorities higher
than, and higher than or equal to that of task τi. Similarly,
we use lp(i) to denote the set of tasks with priorities lower
than that of task τi. (Note, we assume that priorities are
unique). Further, we use Bi to denote the longest time for
which task τi may be blocked by a lower priority task that is
executing non-preemptively.

The utilization Ui of a task τi is given by Ui =
Ci

Ti
and the

utilization of the task set is the sum of the utilizations of the
individual tasks U =

∑n
i=1 Ui.

B. Execution Time Model

To ease readability, and without loss of generality, we
assume that the task set of interest is initially executing on a
processor of unit speed. Accordingly, we assume that Ci

represents the WCET of task τi on a processor of speed
S = 1. We assume a linear relationship between execution
time and processor speed. The WCET of task τi on a
processor of speed S is therefore given by CS

i = Ci/S.
Conversely, the speed S required to obtain an execution time
of CS

i is given by S = Ci/C
S
i . This model allows us to use

processor speedup factors and processor speeds
interchangeably. In other words, changing the processor
speed from S = 1 to S = x, is equivalent to speeding up the
processor by a factor of x.

C. Scheduling Model

In this paper, we consider four scheduling algorithms
EDF-P, EDF-NP, FP-P, and FP-NP. With EDF-P, at any given
time the ready task with the job that has the earliest absolute
deadline is executed by the processor. Similarly, with FP-P



scheduling, at any given time the processor executes the job
of the ready task with the highest priority. By contrast, with
EDF-NP, whenever a job is released that has an earlier
absolute deadline than the currently executing job, instead of
preempting the executing job the scheduler blocks the new
job until the currently executing job completes. Only at that
point is the ready job with the earliest absolute deadline
dispatched for execution. Similarly, with FP-NP scheduling,
whenever a higher priority task is released during the
execution of a lower priority task τi, instead of preempting
τi the scheduler blocks the higher priority task until τi
completes its execution. Only at that point is the highest
priority ready task dispatched for execution. We note that all
four scheduling algorithms are work-conserving and so never
idle the processor when there is a task ready to execute.

D. Definitions

We now provide formal definitions for the terms speedup
factor, speedup optimal task set and sub-optimality. Recall
that when we use the term feasible, then in the case of fixed
priority scheduling, we mean schedulable with an optimal
priority assignment.

Definition II.1. The speed-up factor of a scheduling algorithm
A with respect to a scheduling algorithm B is defined as the
minimum factor S, S ≥ 1, such that any task set that is feasible
under B on a processor of unit speed, is guaranteed to be
feasible under A on a processor that is S times faster.

Definition II.2. A task set is said to be speed-up optimal for
the comparison between scheduling algorithms A and B if it
is feasible on a processor of unit speed under B and requires
the processor speed to be increased by the speedup factor S
in order to be feasible under A.

Definition II.3. The sub-optimality of a scheduling algorithm
A is defined by its speedup factor with respect to an optimal
scheduling algorithm.

Definition II.4. A scheduling algorithm is said to be optimal if
it can schedule every task set that is feasible under some other
scheduling algorithm, on a processor of equivalent speed.

The lower the sub-optimality of a particular scheduling
algorithm, the closer it is to being optimal, with a value of
S = 1 implying optimality. We note that FP-P, FP-NP, and
EDF-NP are all sub-optimal with respect to an optimal
uniprocessor scheduling algorithm such as EDF-P.

III. SCHEDULABILITY ANALYSIS

In this section, we recapitulate schedulability analysis for
fixed priority and EDF scheduling under both preemptive and
non-preemptive paradigms.

A. Fixed Priority Preemptive Scheduling

The schedulability of a set of arbitrary-deadline sporadic
tasks under FP-P can be determined using response time
analysis [37] [27]. Response time analysis involves

calculating the worst-case response time RP
i of each task τi

and comparing it to its deadline Di. To determine
schedulability, the analysis must check each job of task τi in
the longest priority level-i busy period. This busy period
starts with a critical instant corresponding to the synchronous
arrival of a job of task τi and jobs of all higher priority
tasks. Jobs of these tasks are then re-released as soon as
possible. The length of the priority level-i busy period is
given by the solution to the following recurrence relation:

AP
i =

∑

∀τj∈hep(i)

⌈
AP

i

Tj

⌉
Cj (1)

The number of jobs of task τi in the busy period is given by
QP

i = �AP
i

Ti
�. The completion time WP

i (q) of job q of task τi
relative to the start of the busy period is given by the following
recurrence relation:

WP
i (q) = (q + 1)Ci +

∑

∀τj∈hp(i)

⌈
WP

i (q)

Tj

⌉
Cj (2)

Iteration starts with WP
i (q) = (q + 1)Ci and ends either on

convergence or when WP
i (q)−qTi > Di in which case the job

and therefore the task is unschedulable. Assuming that all QP
i

jobs in the busy period are schedulable, then the worst-case
response time of the task is given by:

RP
i = max

q=0,1,2,...QP
i −1

(Wi(q)− qTi) (3)

For task sets with constrained deadlines, only the response
time of the first job in the busy period need be checked,
leading to a simpler exact test [4], [24], based on the
following recurrence relation:

RP
i = Ci +

∑

∀τj∈hp(i)

⌈
RP

i

Tj

⌉
Cj (4)

Iteration starts with RP
i = Ci and ends either on convergence

or when RP
i > Di in which case the task is unschedulable.

B. Fixed Priority Non-Preemptive Scheduling

Determining exact schedulability of a task τi under FP-NP
also requires checking all of the jobs of task τi within a priority
level-i busy period [10]. In this case, the busy period starts
with an interval of blocking and so its length is given by the
solution to the following recurrence relation:

ANP
i = Bi +

∑

∀τj∈hep(i)

⌈
ANP

i

Tj

⌉
Cj (5)

where Bi is the blocking factor:

Bi =

{
max

∀τk∈lp(i)
Ck −∆ i < n

0 i = n
(6)

and ∆ is the time granularity1.

1Without loss of generality, we assume that ∆ is the granularity of the
processor clock and that ∆ � Ck for every task τk even when we increase
the processor speed.



The number of jobs of task τi in the busy period is given by
QNP

i = �ANP
i

Ti
�. The start time WNP

i (q) of job q of task τi
relative to the start of the busy period is given by the following
recurrence relation:

WNP
i (q) = Bi + qCi +

∑

∀τj∈hp(i)

⌈
WNP

i (q) + ∆

Tj

⌉
Cj (7)

Iteration starts with WNP
i (q) = Bi + qCi and ends either

on convergence or when WNP
i (q) +Ci − qTi > Di in which

case the job and therefore the task is unschedulable. Assuming
that all QNP

i jobs in the busy period are schedulable, then the
worst-case response time of the task is given by:

RNP
i = max

q=0,1,2,...QNP
i −1

(WNP
i (q) + Ci − qTi) (8)

Note, in the above formulation we use a ceiling function
with +∆, rather than the alternative of a floor function +1,
since this assists in the proofs given later in the paper. The
two formulations are however equivalent.

We make use of the following sufficient schedulability tests
for each task τi under FP-NP. The first is based on a linear
equation [17]:

Bi +
∑

∀τj∈hep(i)

⌈
Di

Tj

⌉
Cj ≤ Di (9)

The second, which is only applicable to
constrained-deadline task sets is based on a recurrence
relation [16]:

WNP
i = Cmax +

∑

∀τj∈hp(i)

⌈
WNP

i +∆

Tj

⌉
Cj

RNP
i = WNP

i + Ci (10)

where WNP
i is an upper bound on the longest time from

release to the start of any job of task τi.

C. Preemptive Earliest Deadline First Scheduling

A task set is schedulable under preemptive EDF if and only
if in every time interval, the total processor demand requested
by the task set is no greater than the length of the interval [7].
A task set is EDF-P feasible if and only if :

∑

∀τi∈Γ

DBFi(t) ≤ t (11)

∀t = kTj +Dj , ∀k ∈ N, j ∈ [1, n]

t ≤ AP
n

where

DBFi(t) = max

(
0, 1 +

⌊
t−Di

Ti

⌋)
Ci (12)

and AP
n is the length of the longest busy period, given by (1)

[31] [33].

IV. EXACT SUB-OPTIMALITY AND SPEEDUP FACTORS

In this section, we compare the effectiveness of fixed
priority non-preemptive scheduling (FP-NP) with that of
preemptive scheduling; both FP-P and EDF-P. We determine
the exact sub-optimality of FP-NP. Specifically, we derive
the exact speedup factor S1 required to guarantee feasibility
under FP-NP of all EDF-P feasible task sets. Further, we
derive the exact speedup factor S2 required to guarantee
feasibility under FP-NP of all FP-P feasible task sets.
Surprisingly these two speedup factors are the same (S1 =
S2). We also derive an exact speedup factor for the case of
FP-NP v. FP-P, when tasks have constrained deadlines. This
speedup factor is smaller than in the arbitrary-deadline case.

We obtain the exact speedup factors by deriving upper
bounds via analysis and lower bounds from example task
sets and then showing that they are the same. The example
task set we use to provide a lower bound for FP-NP v.
EDF-P also applies to EDF-NP v. EDF-P, hence we also
obtain S3, the exact sub-optimality of EDF-NP, since our
lower bound is the same as the upper bound recently
published by Abugchem et al. [1].

Lemma IV.1. An upper bound on the speedup factor
required such that FP-NP, using optimal priority assignment
can schedule any arbitrary-deadline sporadic task set that is
feasible under EDF-P is given by:

S = 2 +
Cmax

Dmin

Proof: We show that the speedup factor in the lemma is
enough to ensure schedulability under FP-NP according to the
sufficient test given by (9) using DMPO, since that suffices
to also prove schedulability with an exact test and optimal
priority assignment.

Comparing (9) and (12) and assuming DMPO we observe
that:

∑

∀τj∈Γ

DBFj(2Di) ≥
∑

∀τj :Dj≤Di

⌈
Di

Tj

⌉
Cj ≥ (13)

∑

∀τj∈hep(i)

⌈
Di

Tj

⌉
Cj

From (9), (13), and the fact that Bi ≤ Cmax then
schedulability under FP-NP is assured on a processor of
speed S provided that for every task τi:

Cmax +
∑

∀τk∈Γ DBFk(2Di)

S
≤ Di (14)

Since the task set is schedulable under EDF-P on a processor
of unit speed, then it follows from (11) that∑

∀τk∈Γ DBFk(2Di) ≤ 2Di. Substituting into (14) and
re-arranging, we have:

S ≥ 2 +
Cmax

Di

Substituting Dmin for Di gives an upper bound on the speed-
up factor required.



Lemma IV.2. An upper bound on the speedup factor
required such that FP-NP, using optimal priority assignment
can schedule any arbitrary-deadline sporadic task set that is
feasible under FP-P scheduling is given by:

S = 2 +
Cmax

Dmin

Proof: Follows directly from Lemma IV.1 and the fact
that EDF-P can schedule all task sets that are feasible under
FP-P scheduling. [21].

Lemma IV.3. A lower bound on the speedup factor required
such that FP-NP, using optimal priority assignment can
schedule any implicit, constrained, or arbitrary-deadline
sporadic task set that is feasible under EDF-P (or FP-P) is
given by:

S = 1 +
Cmax

Dmin

Proof: Consider the following task set:
τ1: C1 = k − 1, D1 = k, T1 = k
τ2: C2 = k2 + 1, D2 = ∞, T2 = ∞

We note that the task set is trivially schedulable on a processor
of unit speed using either EDF-P or FP-P. For the task set to be
schedulable with FP-NP effectively requires that the execution
time of both tasks2 (i.e. k2 + k) can be accommodated within
the smallest deadline D1 = k.

Hence we have S ≥ (k2+k)/k = k+1. Since Cmax

Dmin
= k+ 1

k
we obtain:

S ≥ 1 +
Cmax

Dmin
− 1

k

and so as k → ∞ we have a lower bound of:

S ≥ 1 +
Cmax

Dmin

Theorem IV.1. The exact sub-optimality (S3) of EDF-NP,
i.e, the exact speedup factor required such that EDF-NP can
schedule any implicit, constrained, or arbitrary-deadline
sporadic task set that is feasible under EDF-P is given by:

S = 1 +
Cmax

Dmin

Proof: Follows from a consideration of the task set in
Lemma IV.3. For the task set to be schedulable under EDF-
NP also requires that the total execution time of both tasks
can be accommodated within the smallest deadline resulting
in the same requirement on the speedup factor. Since the lower
bound from Lemma IV.3 matches the upper bound given by
Abugchem et al. [1] the value is exact.

Lemma IV.4. An upper bound on the speedup factor required
such that FP-NP scheduling, using optimal priority assignment
can schedule any constrained-deadline sporadic task set that
is feasible under FP-P scheduling is given by:

S = 1 +
Cmax

Dmin

2For ease of presentation, and since it does not affect the result, we omit
the small reduction in blocking due to the time granularity ∆ � 1.

(Note this Lemma does not apply to arbitrary-deadline tasks
sets).

Proof: Let Γ be a task set that is schedulable under FP-P
scheduling on a processor of unit speed, using DMPO, which
is optimal in the constrained deadline case. We will prove
that Γ is schedulable on a processor of speed S under FP-NP
scheduling using the same priority ordering. We note that this
ordering is not necessarily optimal for FP-NP scheduling, but
suffices to prove feasibility.

Let WP
i be the completion time of the first job of task τi

in the priority level-i busy period under FP-P scheduling.
Since all tasks are schedulable and have constrained
deadlines, then WP

i = RP
i ≤ Di. We consider two cases.

Case 1: WP
i ≥ Dmin

Let EP
i (t) equate to Ci plus the maximum amount of

execution from tasks of higher priority than τi released in an
interval of length t:

EP
i (t) = Ci +

∑

∀τj∈hp(i)

⌈
t

Tj

⌉
Cj (15)

From (4), it follows that EP
i (WP

i ) = WP
i = RP

i where RP
i

is the exact response time of task τi under FP-P scheduling.
Let ENP

i (t) be the maximum amount of execution from
tasks of higher priority than τi released in an interval of length
t including any releases at the end of the interval:

ENP
i (t) =

∑

∀τj∈hp(i)

⌈
t+∆

Tj

⌉
Cj (16)

From the sufficient test for constrained-deadline task sets under
FP-NP scheduling (10) we have ENP

i (WNP
i )+Cmax+Ci =

WNP
i +Ci where WNP

i is an upper bound on the time from
the release of a job of task τi until it starts to execute, under
FP-NP scheduling, and WNP

i + Ci is an upper bound on the
task’s response time.

From (15) and (16), observe that the following holds ∀x ≥
∆ and ∀t ≥ x:

ENP
i (t− x) + Ci ≤ EP

i (t) (17)

To ensure schedulability under FP-NP scheduling, we
speed up the processor by some factor S ≥ 1 such that the
latest completion time of task τi under FP-NP scheduling is
no greater than WP

i the completion time under FP-P
scheduling on a processor of unit speed. It follows that the
start time of τi must be at the latest WP

i − Ci

S . An upper
bound on the interference from higher priority tasks in an
interval of this length is given by ENP

i (WP
i − Ci

S ).
Schedulability under FP-NP is then ensured provided that:

Cmax + ENP
i (WP

i − Ci

S ) + Ci

S
≤ WP

i (18)

This follows, since if (18) holds then the upper bound response
time for task τi computed via (10) will be ≤ WP

i .
Since even on the faster processor of speed S, the execution

time of τi cannot be less than the time granularity (Ci

S ≥



∆), then from (17), it follows that ENP
i (WP

i − Ci

S ) + Ci ≤
EP

i (WP
i ). As EP

i (WP
i ) = WP

i , substituting into (18) and
re-arranging we have:

S ≥ 1 +
Cmax

W p
i

(19)

From the assumption of this case (Case 1) WP
i ≥ Dmin and

hence the task set is guaranteed to be schedulable on a
processor of speed S, where:

S ≥ 1 +
Cmax

Dmin
(20)

Case 2: WP
i < Dmin

Since deadlines are constrained, there are no tasks with
periods that are less than Dmin, and so under FP-P
scheduling on a processor of unit speed, we have:

WP
i = Ci +

∑

∀j∈hp(i)

Cj (21)

In this case, to ensure schedulability under FP-NP on a
processor of speed S, we simply require that task τi
completes before Dmin hence, we require that:

Cmax + ENP
i (Dmin − Ci

S ) + Ci

S
≤ Dmin (22)

where S is the processor speed.
Following the same logic as in Case 1, we observe that

ENP
i (Dmin− Ci

S )+Ci ≤ EP
i (WP

i ) = WP
i . Since in this case

(Case 2) WP
i < Dmin substituting into (22) and re-arranging

we obtain the speed S at which the task set is guaranteed to
be schedulable:

S ≥ 1 +
Cmax

Dmin
(23)

Theorem IV.2. The exact speedup factor required such that
FP-NP, using optimal priority assignment can schedule any
implicit, or constrained-deadline sporadic task set that is
feasible under FP-P scheduling is given by:

S = 1 +
Cmax

Dmin

Proof: Proof follows from the lower bound given by
Lemma IV.3 and the upper bound given by Lemma IV.4
which have the same value.

Lemma IV.5. A lower bound on the speedup factor required
such that FP-NP scheduling, using optimal priority assignment
can schedule any arbitrary-deadline sporadic task set that is
feasible under FP-P scheduling is given by:

S = 2 +
Cmax

Dmin

Proof: Consider the following task set:
τi with i = 1, . . . , k − 1: Ci = 1, Di = k + 1, Ti = k
τk: Ck = 1, Dk = k + 1, Tk = k + 1
τk+1: Ck+1 = k2, Dk+1 = ∞, Tk+1 = ∞

This task set is trivially schedulable on a processor of unit
speed under FP-P. In the priority order shown, then for j = 1
to k, task τj has a response time of j. Further, task τk+1

executes in the one spare unit of execution time in each Least
Common Multiple k(k + 1) of the periods of tasks τ1 to τk
and therefore has a worst-case response time of k3(k + 1).

Under FP-NP on a processor of speed S ≥ 1 consider the
operation of Audsleys OPA algorithm, which is optimal in
this case [22]. First, task τk+1 is assigned as it is trivially
schedulable at the lowest priority on a processor of unit speed
or higher. There are then two cases to consider3.

Case 1: τk is assigned the next higher priority level above
τk+1 . In this case, task τk is subject to blocking due to task
τk+1 and interference (before it starts to execute) from tasks
τ1 to τk−1. Considering the critical instant for task τk, there
are two possible scenarios which could result in the task
being schedulable. In the first scenario, the first jobs of all
tasks except τk must complete their execution strictly before
the second jobs of tasks τ1 to τk−1 are released at time k.
This allows task τk to start executing before time k, thus
avoiding interference from the second job of each higher
priority task. For this to happen implies the following
constraint: S > (k2 + k − 1)/k = k + (k − 1)/k. Further,
task τk must also complete by time k + 1, which gives the
weaker constraint S ≥ (k2 + k)/(k + 1) = k. The alternative
scenario is that task τk does not get to start before the
second jobs of tasks τ1 to τk−1 are released at time k. In
this scenario, for task τk to be schedulable, the first job of
task τk+1, the first and second jobs of tasks τ1 to τk−1, and
the first job of task τk must complete their execution by time
k + 1, which leads to the constraint that
S ≥ (k2 + 2k − 1)/(k + 1) = k + (k − 1)/(k + 1).

Case 2: τk−1 is assigned the next higher priority level
above τk+1 (since τ1 to τk−1 are identical this is effectively
the only other option aside from Case 1 for this priority
level). Considering the critical instant for task τk−1, there
are two possible scenarios which could result in the task
being schedulable. In the first scenario, the first jobs of all
tasks except τk−1 must complete their execution strictly
before the second jobs of tasks τ1 to τk−2 are released at
time k. This allows task τk−1 to start executing before time
k, thus avoiding interference from the second job of each
higher priority task. As in Case 1, this implies the following
constraint: S > (k2 + k − 1)/k = k + (k − 1)/k. In addition
task τk−1 must also complete by time k + 1, which again
gives S ≥ (k2 + k)/(k + 1) = k. The alternative scenario is
that the first job of task τk−1 does not get to start before the
second jobs of tasks τ1 to τk−1 are released at time k. In
this scenario, for task τk−1 to be schedulable, then the first
job of task τk+1, the first and second jobs of tasks τ1 to
τk−2, and the first job of task τk−1 must complete their
execution by time k + 1, which leads to the constraint
S ≥ (k2 + 2k − 2)/(k + 1) = k + (k − 2)/(k + 1).

3Again, for ease of presentation, and since it does not affect the result, we
omit the small reduction in blocking due to the time granularity ∆ � 1.



Considering both Case 1 and Case 2, then the minimum
speed necessary for FP-NP schedulability is S ≥ (k2 + 2k −
2)/(k + 1) = k + (k − 2)/(k + 1). Since Cmax/Dmin =
k2/(k + 1) we obtain:

S ≥ Cmax

Dmin
+

k2 + 2k − 2

k + 1
− k2

k + 1

=
Cmax

Dmin
+

2k − 2

k + 1

As k → ∞ this gives a lower bound of S = 2+ Cmax

Dmin
for the

speedup factor

Theorem IV.3. The exact speedup factor (S2) required such
that FP-NP scheduling, using optimal priority assignment
can schedule any arbitrary-deadline sporadic task set that is
feasible under FP-P scheduling is given by:

S = 2 +
Cmax

Dmin

Proof: Proof follows from the lower bound given by
Lemma IV.5 and the upper bound given by Lemma IV.2
which have the same value.

From Theorems IV.2 and IV.3, it is interesting to note that
when comparing FP-NP against FP-P scheduling, then the
relaxation from constrained-deadline task sets to the general
case of arbitrary-deadline tasks results in an increase in the
exact speedup factor required from

S = 1 +
Cmax

Dmin
to 2 +

Cmax

Dmin

Theorem IV.4. The exact sub-optimality (S1) of FP-NP i.e.
the exact speedup factor required such that FP-NP scheduling,
using optimal priority assignment can schedule any arbitrary-
deadline sporadic task set that is feasible under EDF-P is
given by:

S = 2 +
Cmax

Dmin

Proof: Lemma IV.1 shows that the speedup factor in the
theorem is a valid upper bound. Lemma IV.5 and the fact that
EDF-P dominates FP-P shows that it is also a valid lower
bound and hence exact for arbitrary-deadline task sets.

V. PREEMPTIVE FPS VS. NON-PREEMPTIVE FPS

Preemptive and non-preemptive fixed priority scheduling
are incomparable, i.e., there are task sets that FP-P can
schedule that FP-NP cannot and vice versa, hence there are
non-trivial speed-up factors in both directions between these
two scheduling algorithms.

In this section, we derive upper and lower bounds on the
processor speed-up factor S4 that guarantees FP-P feasibility
of FP-NP feasible task sets.

Theorem V.1. An upper bound on the speed-up factor that
guarantees FP-P feasibility of all FP-NP feasible task sets is
given by:

S = 2

Fig. 1. Fixed Priority Non-Preemptive Schedule.

Fig. 2. Fixed Priority Preemptive Schedule.

Proof: Since EDF-P dominates FP-NP and Theorem 2
from [20] states that an upper bound on the speed-up factor
required to guarantee FP-P feasibility of any EDF-P feasible
task set is S = 2 then such an increase in processor speed must
also be sufficient to guarantee FP-P feasibility of all FP-NP
feasible task sets.

Theorem V.2. A lower bound on the speed-up factor that
guarantees FP-P feasibility of all FP-NP feasible task sets is
given by:

S =
√
2

Proof: Consider the following task set scheduled on a
processor of unit speed under FP-NP scheduling.

τ1: C1 = 2−
√
2, D1 = 1, T1 = 1

τ2: C2 =
√
2− 1, D2 =

√
2, T2 = ∞

τ3: C3 =
√
2− 1, D3 =

√
2, T3 = ∞

This task set is schedulable with DMPO under FP-NP as
evidenced by the exact schedulability test embodied in (8).
The response times of the three tasks are as follows:
R1 = 1 − ∆, R2 =

√
2 − ∆, R3 =

√
2. Note, that in each

case we need only examine the response time of the first job.
For task τ1, the priority level-1 busy period is of length 1
and so includes only one job of the task, while tasks τ2 and
τ3 have infinite periods and so only give rise to a single job.
The schedule starting with task τ1 is illustrated in Figure 1.

Next, consider the same task set scheduled on a processor
of speed S =

√
2 under FP-P scheduling, again using DMPO

which is optimal in this case. The scaled task execution times
are now CS

1 =
√
2 − 1, CS

2 = (2 −
√
2)/2, and CS

3 = (2 −√
2)/2. The schedule is as illustrated in Figure 2, again starting

with task τ1. In this case, the worst-case response time of task
τ3 is 1. Further, any increase in the execution times of the
tasks (i.e. by using a smaller speedup factor) would result in
task τ3 missing its deadline, due to preemption by the second
job of task τ1 which is released at time t = 1. Hence the
speedup factor required by this task set is S =

√
2.

In the next section, we describe the results of an empirical



study which hints that the lower bound derived above may be
tight (i.e., the exact speed-up factor may be

√
2 rather than

some larger value such as the upper bound of 2).

VI. EMPIRICAL INVESTIGATION

In this section, we describe the results of an empirical
investigation into the speed-up factor needed to ensure that
FP-NP feasible task sets are schedulable under FP-P. This
was done by using a genetic algorithm to explore the search
space of task parameters. The operation of the genetic
algorithm is outlined below.

First, an initial population of N task sets each with n tasks
were created. The task utilisations were assigned according
to the UUnifast [9] algorithm. Task periods were chosen in
the range [104, 107] according to a log uniform distribution.
For task sets with constrained deadlines, deadlines were
chosen according to a log uniform distribution in the range
[C, T ] and for arbitrary deadline task sets from the range
[C, 10T ]. Computation times were determined according to
Ci = UiTi. All parameters were discrete and represented
using 64-bit integers. The speed-up factor for each task set
was found by performing two binary searches to determine
respectively, the scaling factors fFP−NP and fFP−P

required such that that the task set was just schedulable
according to FP-NP and just unschedulable according to
FP-P. Audsleys algorithm was used in both cases to
determine the optimal priority assignment, along with exact
schedulability tests for arbitrary deadline task sets under
FP-NP (8), and FP-P (3). The speed-up factor for the task
set was then given by S = fFP−P

fFP−NP . This approach ensured
that any lack of precision in the computed speed-up factor
caused by imprecision in the binary searches could only
result in a small underestimate (and no overestimate) of the
precise speed-up factor for the specific task set. The
precision of the binary searches was 0.01% (i.e., the
termination condition was such that the low and high values
for the scaling factor were within 0.01% of each other).

Crossover type 1-point
Crossover probability 0.5

Mutation 20% of C, D, or T
Mutation probability 0.6

Parent selection Tournament

Survival selection Tournament on combined old
and new population

Population size 20,000
Tournament size 50

Generations 400

TABLE I
EXPERIMENTAL PARAMETERS

The computed speed-up factor for each task set was used
as the fitness function in the genetic algorithm. The genetic
algorithm operated as follows. First a population of N random
task sets each with n tasks were created, as described above.
The fitness (speed-up factor) of each of these task sets was

Fig. 3. Empirical results

evaluated, with the maximum speed-up factor of any task set
in the population recorded at this and each subsequent stage. A
new generation of N child task sets was then produced. Parent
task sets were selected from the existing population using a
tournament selection process. These parents produced children
via crossover and mutation operations, which occurred with
specified probabilities. First copies were made of the parent
task sets, which became the children. If crossover occurred,
then a random position in the list of tasks was chosen and the
child task sets split and recombined at that point. (The head of
one being joined to the tail of the other). Each child task set
was then potentially subject to mutation. If mutation occurred,
then a single parameter C, D, or T was selected at random,
and increased or decreased by a random value in the range
[0, 20%]. The parameters were then repaired as necessary to
ensure that any constraints on task deadlines continued to be
met. For example, with constrained deadlines, if the period of
a task was decreased below its deadline, then the deadline was
adjusted to be equal to the period. (Repairs were also made
to avoid parameters going out of range).

Once N child nodes had been produced, then their fitness
was evaluated, and a further tournament selection used to
reduce the overall population (parents and children) to N
task sets. This overall process was then repeated for further
generations, with task sets with higher speed-up factors more
likely to survive and produce offspring. The tournament
selection process involved random selection of 50 task sets
with the one with the highest speed-up factor selected for the
next part of the process. Here a large tournament size
increases selection pressure, but reduces diversity in the
population. The parameters enumerated in Table I were
found empirically to be effective for this problem.

Figure 3 shows the results obtained for task sets with
implicit, constrained and arbitrary deadlines. These results
were produced using the genetic algorithm described above.
400 generations of a population of 20, 000 task sets, i.e., 8
million task sets were generated for each task set cardinality
and deadline type. We note that with both implicit and
constrained deadlines, task sets of cardinality two have a



speed-up factor of 1. This is because with FP-NP both tasks
have the same worst-case response time which must be less
than the smaller of their deadlines, and hence periods. This
response time is the same as that of the lowest priority task
under FP-P, hence all task sets of cardinality two that are
schedulable under FP-NP are also schedulable under FP-P,
implying a speed-up factor of 1.

For three or more tasks, then with constrained or arbitrary
deadlines, the maximum speed-up factor found by the genetic
algorithm is very close to

√
2 = 1.414213562. In fact the

values range from 1.4118 to 1.4139 (constrained deadlines)
and from 1.4089 to 1.4128 (arbitrary deadlines) for task sets
of cardinality 3 to 10. With implicit-deadline task sets, the
largest speed-up factor found was somewhat lower at 1.3405.

The fact that the maximum value found empirically (1.4139)
is very close to but does not exceed

√
2 = 1.414213562 gives

credence to the hypothesis that the theoretical lower bound (of√
2 ) on the speed-up factor is the exact value. It remains an

interesting open question whether or not this is the case [18].

VII. SUMMARY AND CONCLUSIONS

The main contribution of this paper is the derivation of
resource augmentation bounds for preemptive and
non-preemptive scheduling algorithms on a uniprocessor.
Specifically, we derived the following sub-optimality and
speedup factor results:
S1: Exact sub-optimality of FP-NP for tasks with arbitrary

deadlines:
S = 2 +

Cmax

Dmin

For task sets with implicit or constrained-deadlines:

Lower Bound S = 1+
Cmax

Dmin
Upper Bound S = 2+

Cmax

Dmin

S2: Exact speedup factor required for FP-NP feasibility of
any arbitrary deadline task set that is FP-P feasible:

S = 2 +
Cmax

Dmin

For task sets with implicit or constrained deadlines:

S = 1 +
Cmax

Dmin

S3: Exact sub-optimality of EDF-NP for implicit, constrained
or arbitrary deadline task sets:

S = 1 +
Cmax

Dmin

S4: Speedup factor required for FP-P feasibility of any
constrained or arbitrary deadline task set that is FP-NP
feasible.

Lower Bound S =
√
2 Upper Bound S = 2

A summary of the results derived in this paper (underlined),
together with the state-of-the-art for arbitrary deadline task
sets is presented in Figure 4. (The dashed arrows on the figure

represent dominance relationships, where the exact speed-up
factor in the reverse direction is 1).

The major remaining open problems involve tightening the
upper and lower bounds where exact values are not yet
known. These include determining the exact sub-optimality
of FP-NP for the case of implicit and constrained deadline
task sets, and determining the exact speedup factor required
for FP-P feasibility of any task set that is FP-NP feasible for
the implicit, constrained and arbitrary deadline cases.

While the speedup factor results derived in this paper are
mainly of interest in providing a theoretical comparison
focusing on the worst-case behaviour of the different
scheduling algorithms, these results also help provide
practical guidance. For example, the majority of real-time
operating systems support fixed priority scheduling, with
those mandated for automotive systems by the OSEK and
AUTOSAR standards supporting both FP-P and FP-NP
scheduling. Here, it is interesting to consider the comparison
between FP-P and FP-NP; even though the two scheduling
policies are incomparable. The exact speedup factor required
for FP-NP feasibility of any constrained deadline task set
that is FP-P feasible is S = 1 + Cmax

Dmin
(see Theorem IV.2).

Thus if we have a system where the longest execution time
of any task is substantially less than the shortest deadline
(Cmax � Dmin), we can quantify the small processing
speed penalty for using non-preemptive scheduling. This can
then be weighed against the additional overheads (e.g.
preemption costs, cache related preemption delays, support
for mutually exclusive resource accesses etc.) incurred in
using preemptive scheduling; as well as other considerations
such as the additional complexity involved in accurately
modelling and testing a preemptive system. When
Cmax � Dmin then it is clear that the penalty for using
fully non-preemptive scheduling is very high (the long task
problem [32]), in such cases methods that support limited
preemption, effectively breaking long tasks into a set of
non-preemptive regions may be preferable. A further avenue
for the extension of this work is to systems that support
limited preemption [13], in particular including final
non-preemptive regions, since that paradigm dominates both
FP-P and FP-NP scheduling [14].
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