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Abstract 
Audsley’s Optimal Priority Assignment (OPA) algorithm 
can be applied to multiprocessor scheduling provided that 
three conditions hold with respect to the schedulability 
tests used. In this short paper, we prove that no exact test 
for global fixed priority pre-emptive scheduling of 
sporadic tasks can be compatible with Audsley’s 
algorithm, and hence the OPA algorithm cannot be used to 
obtain an optimal priority assignment for such systems. 

1. Introduction 
Davis and Burns (2009) proved an important result about 
the applicability of Audsley�s Optimal Priority 
Assignment (OPA) algorithm (Audsley; 1991, 2001). They 
showed that three simple Conditions are both sufficient 
and necessary for Audsley�s algorithm to provide optimal 
priority assignment with respect to a given schedulability 
test. Davis and Burns (2011a) used the three Conditions to 
categorise schedulability tests for global fixed priority pre-
emptive scheduling on identical multiprocessors according 
to their compatibility or otherwise with Audsley�s OPA 
algorithm. They showed that the following schedulability 
tests are compatible with OPA: 
o Deadline Analysis (DA test) of Bertogna et al. (2009). 
o Improved DA-LC test (Davis and Burns, 2011a) based 

on the RTA-LC test � see below. 
o Response Time test of Andersson and Jonsson (2000). 
While the following tests are incompatible:  
o Response time analysis (RTA test) of Bertogna and 

Cirinei (2007). 
o Improved response time analysis (RTA-LC test) with 

limited carry-in of Guan et al. (2009). 
In Theorem 5 of their paper, Davis and Burns (2011a) 
showed via a counter example, that any exact test for 
global fixed priority pre-emptive scheduling of periodic
task sets, such as those given by Cucu and Goossens 
(2006, 2007) is also incompatible with Audsley�s OPA 
algorithm. In this short paper, we extend that result, 
proving that any exact test for global fixed priority pre-
emptive scheduling of sporadic task sets, such as those 
given by Baker and Cirinei (2007), and Bonifaci and 
Marchetti-Spaccamela (2012), is also incompatible with 
Audsley�s OPA algorithm. 

2. System model, terminology and notation 
The system comprises a static set of n tasks that are 

scheduled to execute on m identical processors. Before the 
tasks can be scheduled, a priority assignment policy is 
used to assign a unique static priority i, from 1 to n (where 
n is the lowest priority) to each task.  

We assume that each task gives rise to a potentially 
infinite sequence of jobs. Each job may arrive at any time 
once a minimum inter-arrival time has elapsed since the 
arrival of the previous job of the same task. 

Each task i  is characterised by: its relative deadline 
iD , worst-case execution time iC , and minimum inter-

arrival time or period iT . A task�s worst-case response 
time iR  is defined as the longest time from a job of the 
task arriving to it completing execution. We make no 
assumptions about the relationship between the deadlines 
and the periods of the tasks (i.e. task deadlines may be 
arbitrary). 

At any given time, the scheduler selects the m highest 
priority tasks with ready jobs to execute on the m
processors. (In the case of tasks with arbitrary deadlines, 
jobs of the same task are executed sequentially in order of 
arrival). The tasks are assumed to be independent and so a 
job of one task cannot be blocked from executing by a job 
of another task other than due to contention for the 
processors. Further, it is assumed that once a job starts to 
execute it will not voluntarily suspend itself. Intra-task 
parallelism is not permitted; hence, at any given time, each 
job may execute on at most one processor. As a result of 
pre-emption and subsequent resumption, a job may 
however migrate from one processor to another. The cost 
of pre-emption, migration, and the run-time operation of 
the scheduler is assumed to be subsumed into the worst-
case execution time of each task. 

In systems using global fixed priority scheduling, it is 
useful to separate the two concepts of priority assignment 
and schedulability testing. The priority assignment 
problem is one of determining the relative priority 
ordering of a set of tasks. Given a set of tasks with some 
priority ordering, then the schedulability testing problem 
involves determining if the tasks are all schedulable with 
that priority ordering.  

A schedulability test S can be classified as follows. 
Test S is said to be sufficient if all of the priority ordered 



sets of tasks that it deems schedulable are in fact 
schedulable. Similarly, test S is said to be necessary if all 
of the priority ordered sets of tasks that it deems 
unschedulable are in fact unschedulable. Finally, test S is 
referred to as exact if it is both sufficient and necessary.  

The concept of an optimal priority assignment policy
can be defined with respect to a schedulability test S:  
Definition: Optimal priority assignment policy: A priority 
assignment policy P is referred to as optimal with respect 
to a schedulability test S and a given task model, if and 
only if every set of tasks that is compliant with the task 
model and is deemed schedulable by test S with some 
priority assignment policy is also deemed schedulable by 
test S using policy P. 

We note that the above definition is applicable to both 
sufficient (and not necessary) schedulability tests and 
exact schedulability tests. 

A schedulability test is said to be OPA-compatible, if 
Audsley�s algorithm provides an optimal priority 
assignment with respect to that test. 

3. OPA-Compatibility of Exact Schedulability 
Tests for Sporadic Tasks 

Davis and Burns (2009, 2011a) showed that three 
simple Conditions are both sufficient and necessary for 
Audsley�s algorithm (see Algorithm 1 below) to provide 
optimal priority assignment with respect to a given 
schedulability test S. In other words to show that test S is 
OPA-compatible. This is a powerful result since it enables 
the OPA algorithm to be applied in a wide range of 
scenarios, while lowering the burden of proof of optimality 
to one of showing compliance with the three Conditions, 
something that is typically easily proved or disproved. 
for each priority level k, lowest first { 
 for each unassigned task  { 
  if( is schedulable according to test S 
   at priority k with all other   
   unassigned tasks assumed to  have  
   higher priorities) { 
   assign  to priority k
   break (continue outer loop) 
  } 
 } 
 return unschedulable 
} 
return schedulable

Algorithm 1: OPA Algorithm 
The three Conditions are stated below. They refer to 

properties or attributes of the tasks which make up the task 
set. Task properties are referred to as independent if they 
have no dependency on the priority assigned to the task. 
For example in the sporadic task model used in this paper, 
the worst-case execution time, deadline, and minimum 
inter-arrival time are all independent properties of a task, 
while the worst-case response time depends on the task�s 
priority and so is a dependent property. 

Condition 1: The schedulability of a task k  may, 
according to test S, depend on any independent properties 
of tasks with priorities higher than k, but not on any 
properties of those tasks that depend on their relative 
priority ordering. 
Condition 2: The schedulability of a task k  may, 
according to test S, depend on any independent properties 
of tasks with priorities lower than k, but not on any 
properties of those tasks that depend on their relative 
priority ordering. 
Condition 3: When the priorities of any two tasks of 
adjacent priority are swapped, the task being assigned the 
higher priority cannot become unschedulable according to 
test S, if it was previously schedulable at the lower 
priority. (As a corollary, the task being assigned the lower 
priority cannot become schedulable according to test S, if 
it was previously unschedulable at the higher priority). 
Theorem 1: Any exact test for global fixed priority pre-
emptive scheduling of sporadic task systems is 
incompatible with Audsley�s OPA algorithm. 
Proof: We prove the theorem via a counter example. It 
suffices to show that for some sporadic task set, the 
schedulability of the lowest priority task (according to an 
exact test1) depends on the relative priority assignment of 
the higher priority tasks. This shows that Condition 1 
which has been shown to be a necessary condition for 
OPA-compatibility by Davis and Burns (2011a) does not 
hold. 

The counter example uses a task set that was 
introduced by Davis and Burns (2011a), and used there to 
prove that any exact test for strictly periodic tasks 
scheduled under global fixed priority pre-emptive 
scheduling is not OPA-compatible. 

We assume a dual processor system, and a task set 
with 4 tasks labelled A, B, C, D. The task parameters are as 
follows (worst-case execution time, deadline, minimum 
inter-arrival time): task A (1,2,3), task B (1,2,3), task C 
(2,4,4), task D (2,4,4). We prove the theorem by showing 
that the priority order (A,B,C,D) is schedulable, whereas 
the priority order (A,C,B,D) is not. 

First we show that priority ordering (A,C,B,D) is not 
schedulable. This is trivially done by examining the 
schedule assuming that all tasks are released at time t=0 
and re-released as soon as possible. In this case, task D
misses its deadline at time t=4 as shown in Figure 1 below.  

Figure 1 unschedulable priority ordering (A,C,B,D) 

1 Note all exact tests give the same result.



Now we consider the priority ordering (A,B,C,D). Since 
there are two processors, the two highest priority tasks, A
and B, are trivially schedulable. Further, task C is easily 
seen to be schedulable, since it is schedulable with task B
on one processor even if we assume that task A takes the 
whole of the other processor. (The predictability of global 
fixed priority pre-emptive scheduling (Ha and Liu, 1994) 
means that task C remains schedulable for execution times 
of task A less than 4). Note that task C is also schedulable 
according to the sufficient RTA test of Bertogna and 
Cirinei (2007) 

To show that task D is also schedulable is more 
difficult; however, since the example is a relatively simple 
one, we can prove schedulability by an exhaustive method. 
We note that if there is a deadline miss, then this must 
necessarily occur within a busy interval. Here, a busy 
interval is defined as a contiguous time interval during 
which there is pending workload (i.e. remaining execution 
of a task) that was released at the start of the interval, or 
during the interval, but not including workload that is 
released at the end of the interval. Further, the start of a 
busy interval corresponds to a time when at least one task 
is released and there was no pending workload released 
prior to that time. Hence, by definition, no execution 
released before the start of a busy interval can possibly 
interfere with execution within that interval. 

We consider all possible patterns of execution that can 
occur within a busy interval. To aid in the examination of 
these patterns, we use the notation (v,w,x,y) to indicate the 
release time of the first job of tasks A, B, C, and D
respectively relative to the start of the busy interval. 
Further, we use the notation �>x� to mean all values greater 
than x. For example (0,1,0,2) means that task A and task C
were released at the start of the interval (at t=0), task B
was released at t=1, and task D at t=2. We systematically 
cover all possible distinct combinations of release times 
within a single busy interval. For each combination, we 
give the length of the busy interval. In all cases, we find 
that the job(s) of task D are schedulable. We note that as 
there are two processors and the parameters of tasks A and 
B are identical, then there is an equivalence between the 
schedules produced (i.e. tasks A and B are 
interchangeable), hence the schedule produced for release 
times (v,w,x,y) is the same as that for (w,v,x,y) with the 
task labels A and B swapped around; thus task D executes 
at identical times in the two cases. This allows us to 
eliminate all equivalent combinations (i.e. showing that 
task D is schedulable for (0,1,x,y) implies that it is 
schedulable for (1,0,x,y) etc.).  

In the following table we give all of the distinct 
combinations (not including the equivalent cases 
mentioned above), with additional notes provided where 
appropriate. Where we indicate �Trivial’ we mean that the 
busy interval ends before the first job of task D is actually 
released. 

In determining the different combinations, note we 
only need consider initial release offsets for tasks A and B
of 0, 1, or 2. This is because their minimum inter-arrival 
time is 3, hence any larger offset would allow an 
additional release at t=0 which is guaranteed to make the 
scenario harder to schedule and equates to one of the 
combinations listed. The combinations are grouped 
together where the resulting schedule within the busy 
interval is the same.  

Combinations Busy interval 
(0,0,0,0), (0,0,0,1), 
(0,0,1,0) 

3 

(0,0,0,2), (0,0,2,0) Extended cases 
(0,0,>0,>0), 1 Trivial 
(0,0,>2,0), 3 
(0,0,0,>2), 3 Trivial 
(0,1,0,0),(0,1,0,1) 4 
(0,1,1,0) 3 
(0,1>0,>0) 1 Trivial 
(0,1,0,>1) 2 Trivial 
(0,1,>1,0) 2 
(0,2,0,0), (0,2,0,1) 3 
(0,2,1,0) 3 
(0,2,>0,>0) 1 Trivial 
(0,2,0,>1) 2 Trivial 
(0,2,>1,0) 2 
(1,1,0,0) 3 
(1,1,1,0), (1,1,2,0) 4 
(1,1,0,1), (1,1,0,2) 4 
(1,1,>0,>0) 0 Trivial 
(1,1,>2,0) 3 
(1,1,0,>2) 3 Trivial 
(1,2,0,0) 3 
(1,2,0,1) 4 
(1,2,1,0) 4 
(1,2,>0,>0) 0 Trivial 
(1,2,0,>1) 2 Trivial 
(1,2,>1,0) 2 
(2,2,0,0) 3 
(2,2,1,0) 4 
(2,2,0,1) 4 
(2,2,>0,>0) 0 Trivial 
(2,2,0,>1) 2 Trivial 
(2,2,>1,0) 2 

As noted in the table, the extended cases are (0,0,0,2) 
and (0,0,2,0) in all other cases, the busy period ends after 
the time given in the table, irrespective of any valid 
subsequent release of another job of any of the tasks. 

We now look at the extended cases. Figure 2 
illustrates the schedule for (0,0,0,2) assuming that the 
second jobs of tasks A and B are both released at time t=3. 
Here, the busy interval extends to t=6. If instead the 
second job of task A or B (or both) is released later, then 
the busy interval would end at t=4. In all cases the job of 
task D meets its deadline (at t=6).  



Figure 2: Extended cases: (0,0,0,2) 
Similar behaviour can be observed for the schedule 

corresponding to (0,0,2,0), see Figure 3 below. Assuming 
that the second jobs of tasks A and B are both released at 
time t=3, then the first job of task D meets its deadline at 
t=4 and the second job easily meets its deadline at t=8. If 
the release of either (or both) of the second jobs of tasks A
or B were postponed, then the busy interval would end at 
t=4. Alternatively, if release of the second job of task D
occurred any later, the busy interval would end at t=5. 

Figure 3: Extended cases: (0,0,2,0) 

We have exhaustively covered every combination of 
release times of the set of sporadic tasks that can produce a 
distinct pattern or schedule within a busy interval 
(including the equivalent cases where the labels for tasks A
and B are swapped). In all cases, task D was schedulable. 
Hence with priority ordering (A,B,C,D), the task set is 
schedulable. Since with priority ordering (A,C,B,D) task D
is unschedulable, this shows that the schedulability of task 
D at the lowest priority level depends on the relative 
priority ordering of the higher priority tasks. This result 
contradicts Condition 1 which was proven necessary for 
OPA compatibility by Davis and Burns (2011a) □

Note we also checked schedulability of the example 
task set with the two priority orderings (A,B,C,D), and 
(A,C,B,D) using an implementation of the exact 
schedulability test given by Bonifaci and Marchetti-
Spaccamela (2012) confirming the above results. 

Intuitively, it is clear that the example shows that the 
OPA algorithm cannot be used, since it is impossible to 
correctly determine the schedulability of task D2 at the 
lowest priority without first knowing the relative priority 
order of the other tasks. 

4. Discussion 
To prove Theorem 1 for the sporadic case, it is 

necessary to prove the existence of a task set   with the 
following two properties: 
(i) There is a task X in task set   that is schedulable at 

the lowest priority, according to an exact test, 

2 Or task C, since they have the same parameters and so are 
interchangeable. 

with the n-1 higher priority tasks in some priority 
order P. 

(ii) Task X in task set   is not schedulable at the lowest 
priority, according to an exact test, with the n-1 
higher priority tasks in some other priority order 
Q. 

Theorem 5 of Davis and Burns (2011a) shows that there 
exist periodic task sets where both these properties hold. 
Since sporadic behaviour is a generalisation of periodic 
behaviour, one might assume that Theorem 1 (of this 
paper) follows directly from Theorem 5 of Davis and 
Burns (2011a). However, this is not the case. 

For global fixed priority scheduling, schedulability in 
the sporadic case implies schedulability in the periodic 
case, since sporadic task behaviour is a generalisation of 
periodic task behaviour. However, unlike in the 
uniprocessor case (Liu and Layland 1973) the converse 
does not hold; even for synchronous periodic systems. 
Schedulability in the periodic case does not imply
schedulability in the sporadic case. (This is demonstrated 
by an example below). Hence, unschedulability in the 
sporadic case does not imply unschedulability in the 
periodic case. The converse of course holds: 
unschedulability in the periodic case implies 
unschedulability in the sporadic case. This means that 
neither Theorem 1 in this paper (sporadic case) nor 
Theorem 5 of Davis and Burns (2011a) (periodic case) can 
be derived directly from the other. Considering properties 
(i) and (ii) stated above, if both properties hold for task set 
  and task X according to an exact test for sporadic 
systems, then that implies (i) holds for any equivalent 
periodic system; however, it tells us nothing about whether 
(ii) holds in that case. Similarly, if both properties hold for 
task set   and task X according to an exact test for 
periodic systems, then that implies (ii) holds for the 
equivalent sporadic system; but tells us nothing about 
whether (i) holds in that case. Thus independent proofs are 
needed for both the periodic case (Theorem 5 of Davis and 
Burns (2011a)) and the sporadic case (Theorem 1 in this 
paper). 

We now provide a simple example which shows that 
there exist task sets that are schedulable under global fixed 
priority scheduling with synchronous periodic behaviour, 
that are not schedulable with sporadic behaviour. 

Lauzac et al. (1998) showed that due to the so called 
critical instant effect, under global fixed priority 
scheduling, a task does not necessarily have its worst-case 
response time when released simultaneously with all 
higher priority tasks. This happens because simultaneous 
release may not be the scenario that results in all 
processors being occupied by higher priority tasks for the 
longest possible time during the interval over which the 
task is active.  

From the example given in section 4.6.2 of the survey 
on multiprocessor scheduling by Davis and Burns (2011b), 
we now construct task set which is trivially schedulable, 



with synchronous periodic behaviour, but is not 
schedulable with any priority ordering if it instead has 
sporadic behaviour. We assume a dual processor system, 
and a task set with 4 tasks labelled A, B, C, D. The task 
parameters are as follows (worst-case execution time, 
deadline, minimum inter-arrival time or period): task A 
(2,2,8), task B (2,2,8), task C (4,6,8), task D (4,6,8). As a 
periodic system with synchronous release of all tasks at 
time t=0, the task set is schedulable with priority ordering 
(A,B,C,D) as shown in Figure 4. However, as a sporadic 
system, this task set is not schedulable with any priority 
ordering. If either task C or D is given the highest or 
second highest priority, then either task A or B (whichever 
is given priority 3) would be unschedulable following a 
synchronous release of all tasks. Since tasks A and B are 
equivalent, as are tasks C and D, that only leaves priority 
ordering (A,B,C,D) as a distinct possibility (all other 
orderings either being unschedulable following 
synchronous release or equivalent to it). This priority 
ordering is not however schedulable if the release of task B
is delayed until time t=2, as shown in Figure 5. 

Figure 4: Periodic synchronous release 

Figure 5: Sporadic asynchronous release 

5. Conclusions 
In this short paper, which acts as an addendum to the 

work of Davis and Burns (2011a), we proved in Theorem 
1 that any exact test for global fixed priority pre-emptive 
scheduling of sporadic task systems, such as those given 
by Baker and Cirinei (2007) and Bonifaci and Marchetti-
Spaccamela (2012), is incompatible with Audsley�s OPA 
algorithm. This complements the similar result in Theorem 
5 of Davis and Burns (2011a), that any exact test for 
global fixed priority pre-emptive scheduling of strictly 
periodic task systems, such as those given Cucu and 
Goossens (2006, 2007), is incompatible with Audsley�s 
OPA algorithm. 

For these exact tests, currently the only known optimal 
priority assignment policy involves checking all n! 
possible priority orderings. The complexity of these 
optimal priority assignment problems, and thus whether 
more efficient priority assignment policies exist for them, 
remains an interesting open question. 
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