A Generic and Compositional Framework
for Multicore Response Time Analysis

Sebastian Altmeyer, Robert |. Davis
Leandro Indrusiak, Claire Maiza
Vincent Nelis, Jan Reineke

RTNS 2015



Motivation and Context

Multicore Response Time Analysis

Evaluation

Conclusions

1/26



Multicore Timing Verification: Traditional Approach

1. Step:
("] P

S Timing Analysis
Derives worst-case execution time
(WCET) of each tasks
2. Step:
Scheduling Analysis
Checks if all tasks it = == L
seheniiedibieiieh - -h \_ =
meet their timing e @ % & 4 B e 7 8 & .
constraints

Implicit assumptions:
» Tasks can be analyzed independently
» WCETSs are context independent

2/26



Problems with context-independent WCETs
Non-pre-emptive uniprocessor:

works well

Pre-emptive uniprocessor:

works relatively well

Multicore:

Core +: N
Core2:
ore 5:

3/26



Problems with context-independent WCETs

10/
n?IObaI
emory

Core 2:

Memory Access

4/26



Problems with context-independent WCETs

10/
n?IObaI
emory

Core 1:
Core 2:
Core 3:

Memory Access

What is the context-independent worst-case delay?

4/26



Problems with context-independent WCETs

10/
n?IObaI
emory

Core 1:
Core 2:
Core 3:

Memory Access

What is the context-independent worst-case delay?

4/26



Problems with context-independent WCETs

10/
n?IObaI
emory

Core 1:
Core 2:
Core 3:

Memory Access

What is the context-independent worst-case delay?

4/26



Problems with context-independent WCETs

10/
n?lobal
emory

Core 1: I

Core 2:
Core 3:

Memory Access

= Highly inflated execution time bounds

(multicore may perform worse than single cores)
4/26



Multicore Timing Verification: Isolation

1 Step

- Timing Analysis
DSt v El-Ca WEBZ 0 TI0a
(WCET) of eoch ks

2. Step
Scheduling Analysls
Chacks 1 al ks > - = -
scheduled logether - "
et thelr rirg i L o )
carsiarks

Isolate tasks from each other, remove interference

5/26



Multicore Timing Verification: Isolation

- 1 Siep:
Timing Analysis
Dt vargl-case axesfio dira
[WCET) of ench ks
2. 5tep
Scheduling Analysls
Chyacka sl ks = — - -
scheduisg logetner i T VIR

mact thelr 3mirg
carslirts

Isolate tasks from each other, remove interference

Core 1: [N

Core 2:
Core 3:

Memory Access

5/26



Multicore Timing Verification: Isolation

1 Step

- Timing Analysis
DSt v El-Ca WEBZ 0 TI0a
(WCET) of eoch ks

2. Step
Scheduling Analysls
Chacks 1 al ks > - = -
scheduled logether - "
et thelr rirg i L o )
carsiarks

Isolate tasks from each other, remove interference

Core 1:
Core 2:
Core 3:

Memory Access

Still inflated, but smaller bounds ...

5/26



Multicore Timing Verification
é Timin glAsr'::;ysls

Dirhies pagl-cags exoz.rion ira
WCET) of exch saks

. Isolation

2. 5tep
Scheduling Analysls
Cryecka |l sk - - -
sm:m.‘l’:n‘l‘lme’.;r — - et e

mact thelr 3mirg
carslirts

Isolate tasks from each other, remove interference

Core 1:

Core 2: [l

Core 3:

Pays for interference, even

Memory Access

if there is none

5/26



Multicore Timing Verification: Fully Integrated Approach

» One, all-combining analysis
» Analyze exact interleavings

6/26



Multicore Timing Verification: Fully Integrated Approach

» One, all-combining analysis
» Analyze exact interleavings

N i
oo |
core 3:  [ED [] Memory Access

Promises best precision

6/26



Multicore Timing Verification: Fully Integrated Approach

» One, all-combining analysis

» Analyze exact interleavings

oo |
core 3: [ Memory Access

< Jitter

Promises best precision

6/26



Multicore Timing Verification: Fully Integrated Approach

» One, all-combining analysis
» Analyze exact interleavings

Core 1:« NI
Coro2: « N
Core5: <

Memory Access

< Jitter

Promises best precision

6/26



Multicore Timing Verification: Fully Integrated Approach

» One, all-combining analysis
» Analyze exact interleavings

A A w4

Core 1: NN
Core2: <N
core3: <

Memory Access
<« Jitter

Promises best precision, but very high complexity. Too high?

6/26



Multicore Timing Verification: Comparisons

Guaranteed
performance
A )( FU”y
Integrated

X Isolation

Traditional Timing
Verification

X

N

Complexity

7/26



Multicore Timing Verification: Comparisons

Guaranteed
performance

AN

Fully
Integrated

X

Interference Analysis

X Isolation

Traditional Timing
Verification

X

N

Complexity

7/26



Interference Analysis

Decompose
N [ = 10
N = [ §
[ = 1] [ = 10

8/26



Interference Analysis

Decompose
N [ = 10
N = [ §
[ = 1] [ = 10

and re-assemble

8/26



Interference Analysis
Decompose

5 N
[ = ] =
[ = [T] [ = 0

and re-assemble

over the response time:

release deadline

response time



Multicore Response Time Analysis

9/26



Analysis Framework

Multicore architecture with shared components:

oo oo
o

10/26



Analysis Framework

Multicore architecture with shared components:

Core

Loc Mem | | Loc Mem Loc Mem
10/

rT%;Iobal
emory

Loc Mem | | Loc Mem

Loc Mem

What is the impact of each component on a task’s response time:

R; = Delay on the core +
Delay on the bus/local memory +

Delay on the global memory

10/26



Targeted Processor Model

ey EREE |
obal
i

v

¢ identical cores {P4, ..., Py},

v

fixed-priority pre-emptive scheduling, partitioned tasks
one shared bus

v

v

local memories

v

a global memory (DRAM)

11/26



Impact of the Multicore Components

10/
rr%;Iobal
emory

Core How long does it take to execute a task?
Local Memory How many memory requests go to the bus?
Bus How many competing accesses can occur?
Global Memory How many DRAM refreshes can occur?

12/26



Core: Processor Demand

[ Loc Mem | [ Loc Mem ] [ Loc Mem|
------------- |
ermory [ Loc Mem | [ Loc Mem ] [ Loc Mem]

How long does it take to execute a task?

Provides:
» processor demand PD of a task
i.e., execution time without any interference, memory delays, etc.

13/26



Local Memory: Memory Demand

MEM(o0) = (MD, UCB, ECB)
EaED - Ea

How many memory requests go to the bus?

Provides:
» memory demand MD, i.e., # bus accesses

> metrics for the pre-emptions costs (UCB,ECB)

14/26



Bus: Competing Accesses

BUS(’, X, t) ‘LDEME"\"LOCM-er-VI-‘--------‘I:D-c;VIem‘
-ff?ﬂmm'y [ Loc Mem | [ Loc Mem ] [ Loc Mem|

How many competing accesses can occur?

Provides:
» #bus accesses that delay task t; on processor P, during time t

15/26



Bus: Competing Accesses

BUS([ X t) [Loc Mem | [ Loc Mem | [ Lo Mem |
el | ol = |
emery [ Loc Mem | [ Loc Mem ] [ Loc Mem|

How many competing accesses can occur?

Provides:
» #bus accesses that delay task 7; on processor Py during time t

Uses
S(t) #competing accesses on same core
A(t) #competing accesses on all other cores

Derived using output of the memory function: MD, UCBs and ECBs

15/26



DRAM: Number of DRAM refreshes

DRAM(t, m) T [Cosien]
............. .l
-\LocMemHLocMem\ [ Loc Mem|

How many DRAM refreshes can occur?

Provides:
» #DRAM refreshes during time t with up to m memory accesses

16/26



Which components can we model so far?

[ Loc Mem | [ Loc Mem ] [ Loc Mem|
jobal (—F——F---------- = 1
ermory [ Loc Mem | [ Loc Mem ] [ Loc Mem]

Core: any timing-compositional core

Local Mem.: Scratchpads, LRU/DM caches, partitioned caches,
uncached systems (all for instruction and data)

Bus: Fixed-Priority Bus, TDMA, Round-Robin, Processor
Priority

DRAM: burst refreshes, distributed refreshes

and any combination thereof.

17/ 26



From Component Model to Interferences

1°(i, x, Ri)
Interference/Delay of component C during the response time R;
of task 1; executing on processor Py

18/26



From Component Model to Interferences

1°(i, x, Ri)
Interference/Delay of component C during the response time R;
of task 1; executing on processor Py

PPROC(j . 1) = Z {%}PD,

jelxnjehp(i) !

18/26



From Component Model to Interferences

1°(i, x, Ri)
Interference/Delay of component C during the response time R;
of task 1; executing on processor Py

PPROC(j . 1) = Z {%}PD,

jelxnjehp(i) !

1BYS(i, x, t) = BUS(i, X, t) - dain
where dnain is the bus access latency to the global memory.

18/26



From Component Model to Interferences

1°(i, x, Ri)
Interference/Delay of component C during the response time R;
of task 1; executing on processor Py

PPROC(j . 1) = Z {%}PD,

jelxnjehp(i) !

1BYS(i, x, t) = BUS(i, X, t) - dain
where dnain is the bus access latency to the global memory.

PRAM(j x. t) = DRAM(t, BUS((i, X, 1)) - Crefresh
where diefresh is the refresh latency.

18/26



Multicore Response Time Analysis

A -

Ri = PD;+ IPROC(i,x, R)) + PBYS(i,x,R;) + PRAM(i,x, R;)

(solved via fixed-point iteration)

Task set feasible, if:
Yi: R; < D;

19/26



Evaluation

20/26



Proof-of-Concept Instantiation

» System based on the ARM Cortex A5:

| ICache " DCache | | ICache " DCache |
| | | |

10/
L | - ng{;lobal
| ICache " DCache | | ICache " DCache | emory

» 4 cores, separate instruction and data caches,
FP/FIFO/TDMA bus, and distributed DRAM controller.

» Compared different configurations for a large number of
randomly generated task sets

21/26



Randomly generated task sets

Task set parameters
» 32 tasks in total, with 8 tasks per core, uniform core utilization

» each task was randomly assigned a task from Malardalen
benchmark suite (see table)

> implicit deadlines

» priorities in deadline monotonic order.

Name # Instr. (PD) | Read/Write MD | UCB | ECB
adpcm_enc 628795 124168 38729 155 | 346
bsort100 272715 1305613 25464 31 135
compress 8793 3358 993 74 174
fdct 5923 3098 1088 67 | 193
Ims 3023813 373874 | 120821 150 276
nsichneu 8648 4841 1582 | 397 | 589

22/26



Results: Core Utilization

Schedulable Tasksets

0.8 4

0.4 4

1000 task sets per (core) utilization

0.4
Core Utilization

reference config - perfect bus

reference config - FP bus
reference config - RR bus

reference config - TDMA bus

full-isolation architecture
reference config - PP bus

reference config - FIFO bus

0.6

uncached architecture

RARELER

23/26



Results: Core Utilization

Schedulable Tasksets

0.8

0.6

0.4

0.2

1000 task sets per (core) utilization

reference config - perfect bus ——
reference config - FP bus —>¢—
reference config - RR bus —¥—
reference config - TDMA bus —H—
full-isolation architecture
reference config - PP bus —&—
reference config - FIFO bus —@—
uncached architecture —A—

0.6
Core Utilization

without local caches: worst performance

23/26



Results: Core Utilization

Schedulable Tasksets

0.8

0.6

0.4

0.2

1000 task sets per (core) utilization

reference config - perfect bus ——
reference config - FP bus —>¢—
reference config - RR bus —¥—
reference config - TDMA bus —H—
full-isolation architecture
reference config - PP bus —&—
reference config - FIFO bus —@—
uncached architecture —A—

0.6
Core Utilization

full isolation (TDMA bus + cache partitioning)

23/26



Results: Core Utilization

Schedulable Tasksets

0.8

0.6

0.4

0.2

1000 task sets per (core) utilization

reference config - perfect bus ——
reference config - FP bus —>¢—
reference config - RR bus —¥—
reference config - TDMA bus —H—
full-isolation architecture
reference config - PP bus —&—
reference config - FIFO bus —@—
uncached architecture —A—

0.6
Core Utilization

round-robin/TDMA bus

23/26



Results: Core Utilization

Schedulable Tasksets

1000 task sets per (core) utilization

14
reference config - perfect bus ——

reference config - FP bus —>¢—

reference config - RR bus —¥—

0.8 reference config - TDMA bus —H—

full-isolation architecture

reference config - PP bus —&—
reference config - FIFO bus —@—
uncached architecture —A—

0.6

0.4 4

0.2

0.6

pre Utilization

Fixed-Priority Bus: work-conserving, best performance

23/26



Results: Core Utilization

Schedulable Tasksets

0.8 4

0.6

0.4 4

0.2

1000 task sets per (core) utilization

reference config - perfect bus ——
reference config - FP bus —>¢—
reference config - RR bus —¥—
reference config - TDMA bus —H—
full-isolation architecture
reference config - PP bus —&—
reference config - FIFO bus —@—
uncached architecture —A—

Core Utilizpffion

perfect bus: theoretical upper bound on the performance

23/26



Results: Bus Utilization

Schedulable Tasksets

schedulable task sets vs. bus utilization

14
reference config - perfect bus ——
reference config - FP bus —>¢—
reference config - RR bus —¥—
reference config - TDMA bus —H—
0.8 4 full-isolation architecture

reference config - PP bus —&—

reference config - FIFO bus —@—

uncached architecture —A—
0.6 +
0.4 +
0.2 H

Bus Utilization

better results: bus/global memory is the bottleneck

0 0.2 0.4 0.6 0.8 1

24 /26



Conclusions

25/26



Conclusions

Multicore Response Time Analysis framework
» based on interference modelling
» directly aiming at response time
» parametric in the hardware configuration
» extensible to other sources of interference
» but ignores overlapping

Proof-Of-Concept Implementation
» based on ARM Cortex A5
» temporal isolation not needed
» promising results for work-conserving bus policies

26/26



Questions?



1/1



