
Multiprocessor Fixed Priority Scheduling
with Limited Preemptions

Abhilash Thekkilakattil, Rob Davis, Radu Dobrin, Sasikumar Punnekkat and
Marko Bertogna

Motivation
 Preemptive scheduling on multi (-core) processors introduces new

challenges

• Complex hardware, e.g., different levels of caches
- Difficult to perform timing analysis

• Potentially large number of task migrations
- Difficult to demonstrate predictability
- Difficult to reason about safety

 Non-preemptive scheduling can be infeasible at arbitrarily small
utilization
• Long task problem: at least one task has execution time greater

than the shortest deadline

 One solution: limit preemptions

System Model

Release time

Minimum inter-arrival time (period)

Relative Deadline

Fixed Preemption Points

Non-Preemptive Region (NPR) Σ = WCET

Identical multiprocessor platform with m processors

job 1 job 2

Combines best of preemptive and non-preemptive scheduling

• Controls preemption related overheads
- Context switch costs, cache related preemption delays, pipeline

delays and bus contention costs

• Improves processor utilization
- Reduce preemption related costs while eliminating infeasibility due

to blocking

Anecdotal evidence: “limiting preemptions improves safety and makes it
easier to certify software for safety-critical applications”

Limited Preemptive Scheduling

blocking

preemption
overheads

low

high

Uniprocessor
Limited preemptive FPS
(Burns’94, Bril et al., RTSJ’09, Yao

et al., RTSJ’11)

Limited preemptive EDF
(Baruah, ECRTS’05)

Multiprocessor
Global limited preemptive

FPS
(Block et al., RTCSA’07, Marinho et
al., RTSS’13, Davis et al., TECS’15)

Global limited preemptive
EDF

(Block et al., RTCSA’07,
Thekkilakattil et al., ECRTS’14,

Chattopadhyay and Baruah,
RTNS’14)

Limited preemptive scheduling
landscape

… of course the references are by no way exhaustive!

Managing Preemptions in Global
Limited Preemptive Scheduling

Processor 1

Processor 2
High priority

Lazy Preemption Approach

Medium priority

Low priority

High priority

Managing Preemptions in Global
Limited Preemptive Scheduling

Processor 1

Processor 2

High priority

Eager Preemption Approach

Medium priority

Low priority

blocking

High priority

Global Limited Preemptive FPS with
Fixed Preemption Points

Lazy Preemption
Approach

Block et al., RTCSA’07 and
Marinho et al., RTSS’13

Eager Preemption
Approach

Block et al., RTCSA’07: Link
Based Scheduling

Lazy Preemption Approach: Link
Based Scheduling

• Developed in the context of resource sharing by Block et al., RTCSA’07
- Applicable to limited preemptive scheduling

• Implements lazy preemption approach

• Higher priority tasks blocked on a processor is linked to that processor

• Analyzable using a simple and generic inflation based test (Brandenburg
and Anderson, MPI-Tech Report’14)

1) Inflate WCET with largest blocking factor
2) Determine schedulability using any standard test e.g., response time

analysis for global preemptive FPS

Global Limited Preemptive FPS with
Fixed Preemption Points

Lazy Preemption
Approach

Block et al., RTCSA’07: Link
Based Scheduling

Eager Preemption
Approach No significant work!

How can we perform schedulability analysis of tasks scheduled using
G-LP-FPS with eager preemptions?

Schedulability Analysis under G-LP-FPS
with Eager Preemptions

Interference
(higher and lower priority)

Task i

Schedulability Analysis under G-LP-FPS
with Eager Preemptions

Interference
(higher and lower priority)

• Case 1: no “push through” blocking
• Case 2: presence of “push through” blocking

Task i

Schedulability Analysis under G-LP-FPS
with Eager Preemptions

Interference
(higher and lower priority)

• Case 1: no “push through” blocking
• Case 2: presence of “push through” blocking

Task i

Lower Priority Interference before Task
Start Time

Processor 1

Processor 2

Task i
(high)

blocking= sum of m largest ({lower priority NPRs})

ε
Medium priority

Low priority

Case 1: no push through blocking

blocking

Schedulability Analysis under G-LP-FPS
with Eager Preemptions

Interference
(higher and lower priority)

• Case 1: no “push through” blocking
• Case 2: presence of “push through” blocking

Task i

Lower Priority Interference before Task
Start Time

Processor 1

Processor 2

Task i
(high)

blocking= sum of m largest ({lower priority NPRs, final NPR of i})

ε
Highest priority

Low priority

Case 2: presence of push through blocking

blocked

Task i
(high)

Schedulability Analysis under G-LP-FPS
with Eager Preemptions

Interference
(higher and lower priority)

Task i

Schedulability Analysis under G-LP-FPS
with Eager Preemptions

Interference
(higher and lower priority)

Task i

Lower Priority Interference after Task
Start Time

blocking= sum of (m-1) largest ({lower priority NPRs})

Processor 1

Processor 2

High priority

Task i

blocked

Number of processors executing a lower priority NPR ≤ (m-1)

ε

Task i

Low priority

Schedulability Analysis under G-LP-FPS
with Eager Preemptions

Interference
(higher and lower priority)

Interference
(higher and lower priority)

Interference
(higher and lower priority)

Interference
(higher and lower priority)

+ + + Ri = + Ci

Of course, preemption may not occur at all preemption points
• No. of preemptions as a function of response time to reduce pessimism
• Details in the paper

Task i

Experiments

Which among eager and lazy preemption approaches is
better for Global Limited Preemptive FPS (G-LP-FPS)?

• Compared schedulability under eager preemptions and
lazy preemptions

• Test for lazy preemptions: test for link-based scheduling that
implements lazy preemptions
− Inflate task execution time with largest blocking time
− Perform response time analysis for G-P-FPS

Overview of Experiments

• Task utilizations generated using UUnifastDiscard
• Periods in the range 50 to 500
• Taskset utilization in the range 2.4 to m

• We investigated how weighted schedulability varies with:
1. Varying number of tasks
2. Varying number of processors
3. Varying NPR lengths

a. relatively large NPR w.r.t task WCETs
b. relatively small NPR w.r.t task WCETs

Weighted Schedulability
• Weighs schedulability with utilization (Bastoni et al., OSPERT’10)

Weighted Schedulability
• Weighs schedulability with utilization (Bastoni et al., OSPERT’10)

Schedulability of taskset Γ
w.r.t parameter p

Weighted Schedulability
• Weighs schedulability with utilization (Bastoni et al., OSPERT’10)

Utilization of taskset Γ

Weighted Schedulability
• Weighs schedulability with utilization (Bastoni et al., OSPERT’10)

• Enables investigation of schedulability w.r.t a second
parameter in addition to utilization

• Higher weighted schedulability implies a better algorithm
with respect to scheduling high utilization tasksets (and
thus better algorithm w.r.t efficiency)

Experiments

We investigated how weighted schedulability varies with:

1. Varying number of tasks
2. Varying number of processors
3. Varying NPR lengths

a. relatively large NPR w.r.t task WCETs
b. relatively small NPR w.r.t task WCETs

Varying Number of Tasks

Eager preemptions

Lazy preemptions

Eager approach outperforms lazy approach for larger number of tasks

Experiments

We investigated how weighted schedulability varied with:

1. Varying number of tasks
2. Varying number of processors
3. Varying NPR lengths

a. relatively large NPR w.r.t task WCETs
b. relatively small NPR w.r.t task WCETs

Varying Number of Processors

Eager preemptions

Lazy preemptions

Higher utilization and fixed n large execution times  large NPRs

 more blocking after start time

Experiments

We investigated how weighted schedulability varied with:

1. Varying number of tasks
2. Varying number of processors
3. Varying NPR lengths

a. relatively large NPR w.r.t task WCETs
b. relatively small NPR w.r.t task WCETs

Varying Lengths of NPRs (large)

Eager preemptions

Lazy preemptions

number of preemptions=3

number of preemptions=3

number of preemptions=2

number of preemptions=2

number of preemptions=1

number of preemptions≈1
number of preemptions=0

Experiments

We investigated how weighted schedulability varied with:

1. Varying number of tasks
2. Varying number of processors
3. Varying NPR lengths

a. relatively large NPR w.r.t task WCETs
b. relatively small NPR w.r.t task WCETs

Varying Lengths of NPRs (small)

Eager preemptions

Lazy preemptions

Lazy approach outperforms eager approach for smaller NPR lengths

Small NPR lengths  many preemption points  more blocking

Conclusions
• Presented a schedulability test for global LP FPS with eager

preemptions

• Compared eager and lazy approaches using synthetically
generated tasksets
– Eager approach outperforms lazy approach

• Eager preemption is beneficial if high priority tasks have short
deadlines relative to their WCETs
– Need to schedule them ASAP

• Lazy preemption is beneficial if tasks have many preemptions
points
– Need to reduce blocking occurring after tasks start their execution

Future Work
• Evaluation of runtime preemptive behaviors of eager and

lazy approaches under global EDF and FPS
– LP scheduling with eager approach generates more runtime

preemptions compared to preemptive scheduling (under submission to RTAS’16)

• Evaluation on a real hardware
– Context Switch Overheads
– Cache related preemptions delays

• Efficient preemption point placement strategies for
multiprocessor systems

Questions ?

Thank you !

	Multiprocessor Fixed Priority Scheduling with Limited Preemptions
	Motivation
	Slide Number 3
	Limited Preemptive Scheduling
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37

