
On Priority Assignment for Controller Area Network
when some Message Identifiers are Fixed

Robert I. Davis1,2, Alan Burns1, Victor Pollex3, Frank Slomka3,
1Real-Time Systems Research Group, Department of Computer Science, University of York, York, UK.

2AOSTE Team, INRIA Paris-Rocquencourt, France.
3Institute of Embedded Systems / Real-Time Systems, Ulm University, Germany

{rob.davis, alan.burns}@york.ac.uk, {victor.pollex, frank.slomka}@uni-ulm.de
ABSTRACT
Controller Area Network (CAN) is widely used in automotive
applications. With CAN, the network utilisation that may be
obtained while ensuring that all messages meet their deadlines is
strongly dependent on the policy used for priority (message
identifier) assignment. This paper addresses the problem of
priority assignment when some message identifiers are fixed.
There are two variants of this problem: P1 where the gaps
between fixed identifiers are large enough to accommodate the
freely assignable messages and P2 when the gaps are too small.
For problem P1, we provide algorithms that give optimal and
robust priority orderings based on an adaptation of existing
techniques. Problem P2 is more difficult to solve. We show via a
counter example that the algorithms derived for P1 and others
recently published can fail to find a schedulable priority ordering
when the gaps are small, even though one exists. We derive an
optimal and robust solution to this problem with respect to a
simple form of schedulability analysis which assumes the same
upper bound on the length of all messages.

1. INTRODUCTION
Controller Area Network (CAN) [3], [18] is a simple, efficient,
and robust, broadcast communications bus for in-vehicle
networks. Today, typical mainstream family cars contain 25-35
Electronic Control Units (ECUs), many of which communicate
using CAN.

CAN is an asynchronous multi-master serial data bus that uses
Carrier Sense Multiple Access / Collision Resolution (CSMA/CR)
to determine access to the bus. The CAN protocol requires that
nodes wait for a bus idle period before attempting to transmit. If
two or more nodes attempt to transmit messages at the same time,
then the node with the message with the lowest numeric identifier
will win arbitration and continue to send its message. The other
nodes will cease transmitting and wait until the bus becomes idle
again before attempting to re-transmit their messages. (Full details
of the CAN physical layer protocol are given in [3], with a
summary in [6]). In effect CAN messages are sent according to
fixed priority non-pre-emptive scheduling, with the message
identifiers acting as priorities.

In the configuration of CAN, the assignment of priorities
(allocation of message identifiers) is of great importance. An
optimal assignment of priorities enables maximum use to be made
of network bandwidth, while ensuring that the network remains
schedulable i.e. all messages meet their time constraints or
deadlines. In his keynote talk at ECRTS 2012 [4], Darren Buttle of
ETAS remarked on the myth of CAN bus utilisation believed by
many in industry: “You cannot run CAN reliably at more than 35%
utilisation1”. This myth comes about because it is general practice
to assign message identifiers (i.e. priorities) in an ad-hoc way
reflecting the data content of the message, ECU supplier and other
legacy issues.

In this paper, we revisit the problem of priority assignment for
CAN for the case where some message identifiers (priorities) are
fixed, and only a subset may be freely assigned. There are two
variants of the problem, P1 where all of the gaps between the
fixed message identifiers are sufficiently large to accommodate all
of the freely assignable messages, and P2 where these gaps are
too small. We provide an optimal and robust algorithm for
problem P1, and show via a counter example that both this
algorithm and a similar one recently proposed in [23] are not
optimal for problem P2. Further, we derive an optimal and robust
solution to this problem with respect to a simple form of
schedulability analysis which assumes the same upper bound on
the length of all messages (approximation A1).

In 1994, Tindell et al. [24], [25], [26] showed how research
into fixed priority scheduling for single processor systems could be
adapted and applied to the scheduling of messages on CAN. The
analysis of Tindell et al. provided a method of calculating the
maximum queuing delay and hence the worst-case response time
of each message on the network. They also recognised that with
fixed priority scheduling, an appropriate priority assignment policy
is key to obtaining effective real-time performance. Tindell et al.
[26] suggested that messages should be assigned priorities in
Deadline minus Jitter Monotonic Priority Order (DJMPO) [29]. In
2007, Davis et al. [6] found and corrected significant flaws in the
schedulability analysis given by Tindell et al. [24], [25], [26].
These flaws could potentially result in the original analysis
providing guarantees for messages that could miss their deadlines
during operation. Further, Davis et al. [6] showed that the DJMPO,
claimed by Tindell et al. to be optimal for CAN, is not optimal
with respect to exact tests; and that Audsley�s Optimal Priority
Assignment (OPA) algorithm [1], [2] is required in this case.

For the analysis in [6] to be applicable, it is necessary that all
of the assumptions of the classical scheduling model are met. In
particular, each CAN controller and device driver or
communications stack must ensure that whenever message
arbitration starts on the bus, the highest priority message queued

1 Figure may vary but not significantly.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.

RTNS 2015, November 04-06, 2015, Lille, France
© 2015 ACM. ISBN 978-1-4503-3591-1/15/11�$15.00
DOI: http://dx.doi.org/10.1145/2834848.2834866

at that node is entered into arbitration. This behaviour is essential
if message transmission is to take place as if there were a single
global priority queue and for the analysis to be correct. There are
however many ways in which the communications stack, device
driver, or CAN controller hardware can be implemented that do
not match these assumptions. Issues include: Non-abortable
transmit buffers [19], [16]; delays in refilling a transmit buffer
[15]; the use of FIFO queuing policies [11]; work-conserving but
otherwise ill-defined queuing policies [10], for example those
using multiple levels of queues, or internal CAN controller
message arbitration based on transmit buffer number. In this
paper, we assume that the middleware and device drivers have
been carefully designed to meet the assumptions of the classical
analysis [6], as has been done for example with the Volcano
Target Package2.

In 2007, Davis and Burns [7] introduced the concept of robust
priority ordering able to tolerate the most additional interference
of any schedulable ordering. This concept was extended to CAN
[8], where it is important in providing priority assignments that
best tolerate errors on the bus. In 2014 Schmidt [23] applied a
variant of the Robust Priority Assignment (RPA) algorithm [8] to
problem P2, claiming in Theorem 1 of [23] that it gives an
optimal and robust priority assignment with respect to the
sufficient schedulability test used. (In this paper, we refer to this
test as S1, see (6) and (7) in Section 2).

The remainder of the paper is organised as follows. Section 2
summarises the system model, terminology and notation used.
Section 3 recapitulates the exact and the sufficient schedulability
tests given in [6]. In Sections 4 and 5 we present solutions to the
problem of providing an optimal and robust priority assignment
when some message identifiers are fixed. Section 6 concludes
with a summary and directions for future work.

2. SYSTEM MODEL AND TERMINOLOGY
In this section we describe the system model and notation used to
analyse the worst-case response times of CAN messages. The
system model is as described in [6]. Note that here we give only a
high level description necessary to understand the message
scheduling behaviour of CAN. Readers interested in details of the
CAN protocol are directed to section 2.1 of [6].

The system is assumed to comprise a number of nodes
(microprocessors) connected to each other via a CAN bus. Each
node is assumed to ensure that, at any given time when arbitration
starts, the highest priority message queued at that node is entered
into arbitration on the bus.

The system is assumed to contain a static set of hard real-time
messages, each statically assigned to a single node. Each message
m has a unique priority. We distinguish between the logical
priority of a message, which describes only its place in the priority
order in relation to other messages, and the physical priority or ID
of a message, meaning the actual value used for its identifier. We
note that a complete set of physical priorities fully defines a set of
logical priorities, but the reverse is not the case, since there are
many sets of physical priorities that can map to the same logical
priority order. The priority assignment policies considered in this
paper effectively determine logical priority orderings, with some
scope remaining to set physical priorities, for example to make use
of the least significant bits of the ID for message filtering. (Note
when we refer to a message as having lowest physical priority, due

2 http://www.mentor.com/products/vnd/in-
vehicle_software/volcano_target_package/

to the way in which arbitration works on CAN, this equates to the
highest numerical ID). For brevity, we often just use the word
priority when referring to the logical priority of a message, but are
explicit when referring to physical priorities or IDs.

As priority uniquely identifies each message, we overload m
to mean either message m or priority m as appropriate. We use

)(mhp to denote the set of messages with priorities higher than m,
and)(mlp to denote those with priorities lower than m. Similarly,
we use)(mhep to denote the set of messages with priorities
higher than or equal to m, and)(mlep to denote those with
priorities lower than or equal to m.

Each message m has a maximum transmission time of mC
(see [6] for details of how to compute the maximum transmission
time, taking into account the number of data bytes and bit-
stuffing). The event that triggers queuing of an instance of
message m is assumed to occur with a minimum inter-arrival time
of mT , referred to as the message period. Each message m has a
hard deadline mD , corresponding to the maximum permitted time
from occurrence of the initiating event to the end of successful
transmission of the message, at which time the message data
becomes available on the receiving nodes that require it. The
deadline of each message is constrained, i.e. equal to, or less than
its period. Each message m is assumed to be placed in a queue and
available for transmission in a bounded but variable amount of
time between 0 and mJ after its initiating event. mJ is referred to
as the queuing jitter of the message. The worst-case response time

mR of message m is defined as the maximum possible delay from
the initiating event for an instance of that message, until it is
received at the receiving nodes. A message is said to be
schedulable if its worst-case response time is less than or equal to
its deadline)(mm DR  . A system is said to be schedulable if all
of the messages in the system are schedulable. The utilisation mU
of a message m is given by its maximum transmission time
divided by its period (mU = mC / mT). The total utilisation U of a
set of messages is the sum of their individual utilisations.
Definition 1: Optimal Priority Assignment (OPA): A priority
assignment policy P is referred to as optimal with respect to a
schedulability test S and a given system model, if and only if there
is no set of messages that are compliant with the model that are
deemed schedulable by test S using another priority assignment
policy, that are not also deemed schedulable according to test S
using policy P.

The following definition of Robust Priority Assignment (from
[8]) relies on the idea of a general additional interference function

),,(iwE  , where  is a scaling factor, used to model variability
in the amount of interference, w is the length of the time interval
over which the interference occurs and i is the priority level
affected by the interference. The function),,(iwE  is required to
be a monotonically non-decreasing function of its parameters. We
assume that the function),,(iwE  is due to errors on the bus that
cause messages to be re-transmitted3.
Definition 2: Robust Priority Assignment (RPA) [7], [8]: For a
given system model and a given additional interference function

),,(iwE  , a priority assignment policy P is referred to as robust
with respect to a schedulability test S if there are no systems,
compliant with the system model, that are both schedulable
according to test S and can tolerate additional interference
characterized by a scaling factor  using another priority

3 An example of a realistic additional interference function for CAN is
given by (1) in Section 3 based on the delay due to error recovery.

assignment policy Q that are not also both schedulable according to
test S and can tolerate additional interference characterized by the
same or larger scaling factor using priority assignment policy P.

We note that the above definitions are applicable to both
sufficient and exact schedulability tests. While optimality and
robustness w.r.t. an exact test is desirable, for problems where no
tractable optimal or robust priority assignment algorithm is known
for an exact test, then there is the option of either using a simple
heuristic priority assignment with an exact test, or using a priority
assignment policy that is optimal w.r.t. an effective sufficient test.

3. SCHEDULABILITY ANALYSIS
In this section we recapitulate the exact and sufficient
schedulability analysis for CAN presented by Davis et al. [6]
including extensions to account for errors on the bus.

We consider a very general error model. We assume that the
maximum number of errors present on the bus in some time
interval t is given by an error arrival function)(tF . We assume no
specific details about this function; save that it is a monotonic non-
decreasing function of t, which is required in order for the fixed
point iteration used in response time analysis to be valid. In
practice, this is no restriction, since in any reasonable error model
one cannot have fewer errors in a longer interval of time than in a
shorter one.

The worst-case impact of a single bit error is to cause
transmission of an additional 31 bits of error recovery overhead
plus re-transmission of the affected message. Only errors affecting
message m or higher priority messages can delay message m from
being successfully transmitted4. The maximum additional delay
caused by the error recovery mechanism is given by:

)()(max31)(
)(

tFCtE kmhepkbitm 





 


 (1)

As shown in [6], the worst-case response time of a message m
can be determined by examining the response time of all instances
of message m that occur within a priority level-m busy period;
assuming that message m and all higher priority messages are
released with their maximum jitter at the start of the busy period,
and then subsequently re-released as soon as possible. Further,
immediately before the initial release of these messages, the
longest message of lower priority than m begins transmission. mB
is the blocking factor at priority m, equivalent to the longest
transmission time of any message of lower priority:

)(max
)(kmlpkm CB


 (2)

In the following, we use the index variable q to represent an
instance of message m. The first instance, released at the start of
the busy period corresponds to 0q . The longest time from the
start of the busy period to instance q beginning successful
transmission is given by the solution to the following fixed point
equation:

k
mhpk k

bitk
n
m

mmm
n
mm

n
m

C
T

Jqw

qCBCwEqw
















 



)(

1

)(

)()(

 (3)

Note bit is the time for one bit to be transmitted on the bus.
The summation term represents interference from higher priority
messages that can win arbitration over message m and so delay its

4 An error could occur during the transmission of a lower priority message
that blocks message m, but then that message would not be re-
transmitted until after m had been sent.

transmission. Further, as errors can impact the transmission of
message m itself, the time interval considered in calculating the
error recovery overhead includes the transmission time of the final
instance of message m. Iteration starts with a value of

mmm qCBqw )(0 , and ends when)()(1 qwqw n
m

n
m  , or when

mmm
n
mm DCqTqwJ  )(1 in which case the message is

unschedulable. The response time of instance q is given by:

mmmmm CqTqwJqR )()((4)
and the worst-case response time of message m by:

))((max
1..0

qRR mQqm
m

 (5)

where mQ is the number of instances of message m in the priority
level-m busy period (see [6] for details of how this value is
computed). We refer to the exact schedulability test given by (5) as
E1.

As shown in [6], when messages have constrained deadlines,
an upper bound on the worst-case response time of message m may
be found by computing the maximum queuing delay mw using
the following fixed point iteration, where the revised blocking term

),max(mm CB accounts for push-through blocking from previous
instances of the same message (see [6] for the full derivation):

k
mhpk k

bitk
n
m

mmm
n
mm

n
m

C
T
Jw

CBCwEw
















 



)(

1),max()(

 (6)

Here, iteration starts with a suitable initial value such as
mm Cw 0 , and continues until either mmm

n
m DCJw 1 in

which case the message is not schedulable, or n
m

n
m ww 1 in which

case the message is schedulable and an upper bound on its worst-
case response time is given by:

mm
n
mm CJwR  1 (7)

We refer to the sufficient test given by (7) as S1. Davis et al. [6]
also gave a simpler sufficient test which replaces the term

),max(mm CB in (6) by MAXB , where MAXB is the longest
transmission time for any message on the network. We refer to this
sufficient test as S2.

We note that both S1 and S2 are used in commercial
schedulability analysis tools, for example Mentor Graphics
Volcano Network Architect5 toolset, due to their ease of
implementation, speed of operation, and extensibility. In systems
with soft real-time diagnostic messages of the maximum length at
the lowest priorities, then schedulability tests S1 and S2 are
equivalent to the exact test E1 for hard real-time messages. We
note that other commercial tools such as RTaW6 NetCAR-
Analyzer and Symtavision SymTA/S7 make use of exact tests.

Some of the results in this paper are derived using an
approximation A1 whereby all messages are considered to have a
length equal to that of the longest message in the system i.e. the
same maximum transmission time. (Note we do not require that
all messages are actually of the same length). Since a shorter
message takes less time to transmit, approximation A1 leads to
pessimism in the analysis when there are messages of different
lengths; however, this is mitigated by the fact that it is common in
automotive systems for a substantial majority of messages to be of
the maximum possible length. This is because packing as many
signals as possible into 8 data byte CAN messages reduces the

5 http://www.mentor.com/products/vnd/communication-
management/vna/

6 http://www.realtimeatwork.com/
7 https://www.symtavision.com/products/network-timing/

relative overheads of the arbitration, control, and CRC fields.
Schedulability tests S1 and S2 are equivalent under approximation
A1, since the blocking term for all messages has the same value.

4. OPTIMAL PRIORITY ASSIGNMENT
WHEN SOME PRIORITIES ARE FIXED
While in some CAN systems, for example those using Volcano
Target Package, it is possible to perform post-deployment re-
configuration of message identifiers, often systems are constructed
where the identifiers of messages sent by certain nodes (ECUs) are
fixed. In fact this may apply to the messages sent by all nodes, with
only the identifiers of new messages available for configuration
(i.e. priority assignment). This is a common occurrence since very
rarely are there clean sheet new designs, thus legacy ECUs
requiring fixed message identifiers are used in the construction of
new systems.

Let us assume that there are two subsets of messages, those in
set M have fixed identifiers which we may not change, while those
in set N are new, and are yet to be assigned identifiers. We separate
the priority assignment problem into two cases:
P1: The gaps between the identifiers of messages in the fixed
subset are sufficiently large that all of the new messages could fit
into any gap, including the gap above the highest priority (lowest
numeric identifier) fixed message, and the one below the lowest
priority (highest identifier) fixed message.
P2: Not all the gaps are large enough to accommodate all of the
new messages.
For these problems, we define an optimal priority assignment
algorithm as follows: A priority assignment algorithm is optimal if
it can find a schedulable priority ordering, whenever such an
ordering exists, subject to the following constraints:
 For cases P1 and P2, the messages with fixed IDs are in the

priority order specified by their IDs;
 For case P2, in addition the number of new messages that by

virtue of their priorities must fit into a gap in the physical
priorities between, above, or below messages with fixed IDs
do not exceed the size of the gap (i.e. the number of available
message IDs in that range).

Similarly, a robust priority ordering algorithm can be defined as
follows: A priority assignment algorithm is defined as robust if it
finds a schedulable priority ordering which tolerates the maximum
additional interference of any such ordering, whenever a
schedulable priority ordering exists, subject to the above
constraints.

4.1 Problem P1: Fixed IDs and Large Gaps
We now show that variants of Audsley�s OPA algorithm [1], [2]
and the RPA algorithm [7], [8] are respectively optimal and robust
for problem P1 where the gaps between message IDs are large.
The OPA algorithm is shown below (Algorithm 1), with the
modifications to the standard algorithm in italics. The same form
of modification applies in the RPA algorithm.

Proof that the OPA algorithm (Algorithm 1) is optimal for
problem P1 assuming schedulability test E1, S1 or S2 is easily
obtained via the standard proof strategy used for such algorithms.
This proof strategy starts from an initial schedulable priority
ordering Q, which in this case must also be valid, i.e. have the
messages with fixed IDs in the partial priority order defined by
those IDs. The logical priorities of pairs of messages are then
swapped to move the message that the OPA algorithm first selects
down to the lowest priority, while showing that all messages
remain schedulable and the priority ordering remains valid. (We

note that since both the initial priority ordering Q and that
produced by the OPA algorithm have the messages with fixed IDs
in the same logical priority order, there is never any need to swap a
pair of such messages, which would in any case result in an invalid
assignment). The swapping process is then repeated for the second
message selected by the OPA algorithm, and so on until the
priority ordering is transformed into that generated by the OPA
algorithm, with no loss of schedulability. Proof of robustness for
the modified RPA algorithm follows a similar approach.

for (each logical priority level k, lowest first) {
for (each message m selected from a set containing the

 unassigned new messages in N and the message with the
 lowest physical priority (highest message ID) of those that
 are currently unassigned in M){

if m is schedulable at priority k with all unassigned
 messages assumed to have higher priorities) {

 assign m to priority k
 }
}
if (no messages are schedulable at priority k) {
 return unschedulable
}

}
return schedulable

Algorithm 1: OPA with fixed message IDs and large gaps
Note that during the swapping process, it may be the case that

all of the new messages have logical priorities between two of the
messages with fixed IDs; however, by definition of problem P1,
the gap between these fixed IDs must be large enough to
accommodate all of the new messages, and so the message set
remains schedulable and valid. This aspect of the proof sketch
leads to a suspicion that the OPA and RPA algorithms may not be
applicable to problem P2.

4.2 Problem P2: Fixed IDs and Small Gaps
With the interpretation that all messages are deemed unschedulable
if the priority assignment is invalid, we can see that the OPA and
RPA algorithms are not applicable to problem P2. This is the case
because the Conditions required for compatibility with Audsley�s
OPA algorithm, given in section 4.1 of [9] are broken. For
completeness, these conditions are given below modified to apply
to messages rather than tasks.
Condition 1: The schedulability of a message m, may, according to
test S, depend on any independent properties of other messages of
higher priority, but not on any properties of those messages that
depend on their relative priority ordering.
Condition 2: The schedulability of a message m, may, according to
test S, depend on any independent properties of other messages of
lower priority, but not on any properties of those messages that
depend on their relative priority ordering.
Condition 3: When the priorities of any two messages with
adjacent priorities are swapped, then the message being assigned
the higher priority cannot become unschedulable according to test
S, if it was previously schedulable at the lower priority. (As a
corollary, the message being assigned the lower priority cannot
become schedulable according to test S, if it was previously
unschedulable at the higher priority).
When considering these Conditions for problems P1 and P2, we
may safely ignore any cases where the priorities of two messages
with fixed IDs are swapped, since such an action can only turn an
initially valid priority ordering into an invalid one. However, we
must consider what happens when the logical priority of a new

message is swapped with that of a message with a fixed ID, since
this is essential in transforming one valid priority ordering onto
another. For problem P1, as all of the gaps are large enough, all of
the Conditions hold; however for problem P2, all three Conditions
can be broken. This is because such a swap can overload one of the
gaps between the messages with fixed IDs, making the priority
assignment invalid and thus effectively causing the schedulability
of a message to depend on the relative priority ordering of higher
(Condition 1) or lower (Condition 2) priority messages, or a
message to effectively become unschedulable, due to the
assignment being invalid, when moved to a higher priority
(Condition 3).

In [23] Schmidt applies a variant of the RPA algorithm to
problem P2 using schedulability test S1, claiming in Theorem 1 of
[23] that it gives an optimal and robust priority assignment with
respect to that test. (Note, for reasons of space, and due to their
complexity, we do not recapitulate the three algorithms from [23]
which are used to address problem P2. The interested reader is
referred to that paper for a full description). We do; however, show
via a simple counter example, that the claim of optimality with
respect to schedulability test S1 made in [23] does not hold.

Our counter example has just 4 messages, one of which has a
fixed ID (of 2). We assume for the sake of simplicity that there are
only 4 physical priorities available: 1 (highest), 2, 3, and 4
(lowest). The messages are shown in Table 1 below.

Table 1: Message Parameters
Message C T D

MA 125 1000 750
MF 125 1000 350
MB 125 1000 750
MC 75 1000 1000

Note that the parameters are given in terms of bit transmission
times. Thus CM corresponds to a message with 2 data bytes, and

AM , BM , and FM to messages containing 7 data bytes, on a bus
using 11-bit identifiers. FM has a fixed ID of 2 and can therefore
only ever have the second highest priority. The other messages
may fit around the priority of FM in any order. The problem is to
find a schedulable priority order that can tolerate the most
additional interference, modelled in this case simply as  bit
transmission times i.e.  ),,(iwE as done in [23].

Table 2: Computed values of 

 Message
Priority MA MF MB MC

4 300 NS 300 550
3 300 NS 300 -
2 375 NS -
1 - - -

Table 2 shows the computed values of  as we attempt to
apply the modified version of the RPA algorithm using exact test
E1 to this problem. Assigning any of the messages to priority level
4 results in a worst-case response time of 450, and hence the values
of  given in the first row of the table. As message CM tolerates
the largest value of  , then it is assigned priority 4. (Note NS
means �Not Schedulable�).

At priority level 3, the worst-case response time of the
remaining messages is again 450. Hence message AM is assigned
to that priority (or BM , it makes no difference since their timing
parameters are identical). At priority level 2, we must assign
message FM since the gap below it is now full; however, the
message is unschedulable at that priority with message BM (or

AM) at the highest priority, since it has a worst-case response time

of 375 and a deadline of 350. Thus the variant of the RPA
algorithm gives up and declares the set of messages unschedulable.

The alternative priority ordering CM (highest), FM , BM ,
AM (lowest) results in response times of 200, 325, 450, 450 and

thus a schedulable system, with an overall tolerance to additional
interference  of 25 (800, 25, 300, 300 for each message
respectively). This priority ordering also meets the constraint that
message FM has a fixed ID of 2. It is the optimal and robust
priority ordering; however, it is not found by our modified RPA
algorithm, or by the variant of the RPA algorithm given in [23].

In the above example, we have used exact analysis (E1). We
note that the same logic and conclusions still hold if instead we use
the sufficient analysis S1 assumed in [23] for the robust priority
assignment algorithms described there. Using S1, the variant of the
RPA algorithm given in Algorithm 2 of [23] finds that at priority
level 4, messages AM , BM , and FM have an upper bound
response time of 575 and message CM an upper bound response
time of 525. Message CM is therefore assigned since it tolerates a
value of  of 475. At priority level 3, the upper bound response
time of the remaining messages is 500 (compared to 450 with exact
analysis) and hence message AM or BM is assigned to that
priority. At priority level 2, message FM is again found to be
unschedulable, and the system declared unschedulable. By
contrast, the alternative priority ordering CM (highest), FM ,

BM , AM (lowest) results in upper bound response times of 200,
325, 450, and 575 and hence a schedulable system.

We note that the above counter example is not meant to be
representative of a real CAN system; rather, it is simplified as far
as possible to illustrate the issues involved. The reader should;
however, be in no doubt that the same problems apply to priority
assignment in more complex systems. For example, if we assume
that the full range of 11-bit identifiers are available, then we may
add a further 11 messages of length 75 bits (with long periods and
deadlines) at physical priorities which are the 5th to 15th highest.
None of the 3 freely assignable messages in our example can then
be placed at priorities below these messages, thus the problem
effectively becomes the same as the one described for just 4
physical priority levels.

5. SOLUTIONS TO PROBLEM P2
In this section, we consider optimal and robust solutions to
problem P2, using sufficient tests S1 or S2 with approximation A1.
(Note the tests are equivalent in this case). We prove that if there is
some priority ordering that is schedulable according to S1 or S2
then there exists a schedulable priority ordering that has all of the
new messages in a relative priority order which is DJMPO with
respect to each other, with the fixed messages with some
interleaving between them. First, we introduce a Lemma that
assists in the proof of the theorem.
Lemma 1: Let i and j be two priority levels in a priority order for a
set of messages that is schedulable according to S1 or S2 under
approximation A1 with some additional interference function

),,(iwE  with a fixed value of  . Assume that i is of higher
priority than j, and message X initially at priority i has a value of
deadline minus jitter larger than that of message Y, which is
initially at priority j (i.e. YYXX JDJD ). If the priorities of
X and Y are swapped, so that X is at the lower priority j, and Y is at
the higher priority i, and the priorities of all other messages are
undisturbed, then all of the messages remain schedulable.
Proof: See Appendix A of the technical report [12] on which this
paper is based. (We note approximation A1 is required for the
Lemma to hold).

Theorem 1: For problem P2 with a mix of fixed and new
messages compliant with our model, then a priority ordering with
the new messages in deadline minus jitter relative priority order is
optimal and robust with respect to sufficient tests S1 and S2 under
approximation A1 (same length assumed for all messages),
independent of the additional interference function),,(iwE  (and
hence the error arrival function) provided only that),,(iwE  is
monotonically non-decreasing in its parameters.
Proof: We show that any mixed set of fixed and new messages
compliant with the model that is schedulable under some priority
order Q and that is the most robust i.e. tolerates the most
additional interference (i.e. largest value of  ) of any
schedulable ordering is also schedulable with the same scaling
factor  (same robustness) under a priority ordering P that has
the new messages in deadline minus jitter relative priority order.

Base case: The set of messages is schedulable with additional
interference function),,(iwE  assuming priority order kQ since
we set kQ Q and Q is the schedulable priority ordering
assumed in the theorem.

Inductive step: We select a pair of new messages that are at
some priorities i and j in priority ordering kQ , but out of deadline
minus jitter relative priority order. Lemma 1 proves that
irrespective of the details of the additional interference function

),,(iwE  , we may swap the priorities of these two messages
forming priority ordering 1kQ without loss of schedulability. Note
that since we directly swap these message priorities, there is no
change to the number of new messages in any of the gaps between
fixed messages, and thus any constraints due to the size of these
gaps continue to hold. At most 2/)1( vvk steps (effectively a
bubble sort of the v new messages) are required to transform
priority ordering Q into P without any loss of schedulability or
robustness □

Theorem 1 tells us that we can obtain both optimal and robust
priority orderings by sorting the new messages into DJMPO and
then merging (interleaving) them in some way with the fixed
messages; however, it gives no information on how to do so. We
examine that problem in the next two subsections.
Corollary 1: (From Theorem 1) DJMPO is optimal and robust
with respect to sufficient tests S1 and S2 under approximation A1
when all messages are freely assignable.
Corollary 1 appears similar to the claim made by Tindell et al.[24],
[25] that DJMPO is optimal for the test given in those papers;
however, it should be noted that the test given by Tindell et al. was
flawed (neither sufficient, nor exact [6]) and that DJMPO has been
shown to be not optimal for exact tests [6].

5.1 Optimal Priority Assignment for P2
Algorithm 2 provides Optimal Priority Assignment for problem P2
with a mix of fixed and new messages, with respect to sufficient
tests S1 (and S2) under approximation A1. (Note approximation
A1 is required so that Lemma 1 and Theorem 1 hold and thus the
new messages may be kept in DJMPO partial order).

Algorithm 2 first sorts the set of new messages N into deadline
minus jitter relative priority order, and the set of fixed messages in
order of their physical priorities and thus message IDs, lowest
priority (i.e. highest message ID) first. The algorithm then attempts
to assign message IDs starting with the highest possible ID (lowest
priority) and working upwards through the physical priority levels
(possible CAN IDs). Effectively the algorithm gives precedence to
the fixed messages. It always fills low priority levels with new
messages (in the reverse of DJMPO) until this is not possible
because either the next new message in reverse DJMPO is not

schedulable, or the ID reached corresponds to that of the highest ID
(lowest priority) as yet unassigned fixed message. In which case,
there is no option but to assign the fixed message. In these cases if
the fixed message is unschedulable, then there is no schedulable
priority assignment possible.

All messages in N and M are assumed to be unassigned
Sort the new messages in N into DJMPO
Sort the fixed messages in M by their IDs, highest first
NextID = Highest_CAN_ID()
while (there are unassigned messages) {

m = unassigned message from M with the highest ID
if (fixed ID of m is NextID) {

if (m is schedulable with all unassigned messages
 assumed to have higher priorities) {
 assign message m with ID = NextID.
 }

else {
return unschedulable

 }
}
else {

k = unassigned message from N with the largest value of
 deadline minus jitter

if (k is schedulable with all unassigned messages
 assumed to have higher priorities) {
 assign message k with ID = NextID.
 }

else if (m is schedulable with all unassigned messages
 assumed to have higher priorities) {
 NextID = ID of message m
 assign message m with ID = NextID.
 }

else {
return unschedulable

 }
NextID = Next_higher_CAN_ID (NextID)
}

}
return schedulable

Algorithm 2: OPA for problem P2
with fixed message IDs and small gaps

We note that at each step the algorithm only checks the
unassigned new message with the largest value of deadline minus
jitter. This is sufficient to achieve optimality since Theorem 1 tells
us that if a schedulable ordering exists, then there will also be a
schedulable ordering with the new messages in deadline minus
jitter relative priority order.

We note that Algorithm 2 is similar to Algorithm 2 from [23]
in that it seeks to place new messages at the lowest priorities
(highest possible IDs) and hence fixed messages at the highest
possible relative priorities. Algorithm 2 uses the helper functions
Highest_CAN_ID() which returns the highest valid CAN ID
(lowest physical priority), and Next_higher_CAN_ID (NextID)
which takes a CAN ID (NextID) as input returns the next valid ID
with a higher physical priority (smaller numerical value).
Theorem 2: Algorithm 2 provides optimal priority assignment for
problem P2 with a mix of fixed and new messages compliant with
our model, with respect to sufficient tests S1 and S2 under
approximation A1. (We assume an arbitrary but known error
arrival function and hence an additional interference function that
is monotonic in its other parameters and has a fixed value of ).
Proof: We prove the theorem by showing that any schedulable
priority ordering Q may be transformed into the priority ordering P
found by Algorithm 2 without loss of schedulability. First, by
Theorem 1, we swap pairs of new messages thus transforming

priority order Q into order kQ with all new messages in deadline
minus jitter monotonic partial order without loss of schedulability.

Base case: The set of messages is schedulable assuming
priority order kQ .

Inductive step: For vh  down to 1, where v is the number of
new messages. Select the hth highest priority new message and
change its ID to the ID selected by Algorithm 2 forming priority
order 1kQ . Note this does not affect the relative priority order of
the new messages; however, message h may now be at a lower
priority than one or more fixed messages.

We note that by starting with the lowest priority new message
and only ever moving messages down in priority, then at each step
the constraints on the number of new messages in the gaps
between, above and below fixed messages are respected. This
follows from the fact that they are respected in the priority order
produced by Algorithm 2.

To prove that priority order 1kQ is schedulable, we need to
consider the schedulability of the following groups of messages:
(i) Fixed messages in),(kQhhp i.e. those with higher priority

than message h in kQ , and fixed messages in),(1kQhlp .
Each of these messages is subject to exactly the same
interference (has the same set of higher priority messages and
the same set of lower priority messages) in both priority orders

kQ and 1kQ , hence their response times are unchanged.
(ii) All new messages except for h. These messages did not change

their relative priority order with respect to either h or the fixed
messages, hence each of these messages is subject to exactly
the same interference in both priority orders kQ and 1kQ ,
hence their response times are unchanged.

(iii) Message h is schedulable in priority order 1kQ otherwise it
would not have been placed in that position relative to the
fixed messages by Algorithm 2.

(iv) Fixed messages in),(),(1 kk QhhpQhlp . These messages
are schedulable when at a lower priority than h in kQ . The
only change in 1kQ is that they are now at a higher priority
than h, hence they also remain schedulable.

At most v steps where v is the number of new messages are
required to transform priority ordering kQ into PQ 1 without
any loss of schedulability □

Algorithm 2 provides optimal priority assignment for problem
P2; however, the priority ordering obtained gives precedence to
messages with fixed IDs effectively forcing the set of new
messages to the lowest relative priorities at which they are
schedulable. This is problematic in that one or more of these
messages may be on the brink of unschedulability and thus the
ordering obtained is likely to be fragile rather than robust. (We
note that the process of checking freely assignable messages at the
lowest priorities is necessary in order to obtain an ordering that is
optimal using a greedy and therefore tractable approach with
complexity that is)(2nO in the number of schedulability tests).

5.2 Robust Priority Assignment for P2
In this subsection, we build on the previous results to provide a
Robust Priority Assignment algorithm (Algorithm 3) for problem
P2 using the sufficient tests S1 or S2 under approximation A1.
From Theorem 1, we know that if any schedulable priority
ordering exists then there is a robust ordering with all of the new
messages in deadline minus jitter relative priority order. Further,
Algorithm 2 provides us with an initial schedulable priority
ordering if one exists, with the new messages in deadline minus
jitter relative priority order and assigned the lowest possible
priorities commensurate with schedulability. Intuitively, we need
to move from the initial ordering provided by Algorithm 2 towards

a robust ordering while preserving deadline minus jitter partial
order among the new messages.

CurrentOrder = Priority order from Algorithm 2 with 0 .
if (CurrentOrder not valid) { // no schedulable ordering

return unschedulable
}
RobustOrder = CurrentOrder
Determine max value of  for each message in CurrentOrder
MaxAlpha = min  over all messages in CurrentOrder
while (true) {

x = message with min  in CurrentOrder // break ties in
// favour of fixed messages, then lower priority messages
if (x is a fixed message) {

return schedulable
}
if (there is no fixed message at a higher priority than x in
 CurrentOrder) {

return schedulable
}
NewOrder = RippleUpwards(x, CurrentOrder)
if (NewOrder not valid) { // i.e. cannot create a valid
 // NewOrder due to no space at highest physical priorities

return schedulable
}
Determine max value of  for each message in NewOrder
NewMaxAlpha = min  over all messages in NewOrder
if (NewMaxAlpha MaxAlpha) {

RobustOrder = NewOrder
MaxAlpha = NewMaxAlpha

}
CurrentOrder = NewOrder

}

Algorithm 3: RPA for problem P2
 with fixed message IDs and small gaps

This is the approach taken in Algorithm 3, which first uses
Algorithm 2 to determine if there is a schedulable priority
ordering. The main body of Algorithm 3 is then a loop which
promotes new messages upwards in the priority order with respect
to fixed messages so as to improve overall robustness, while
retaining their deadline minus jitter partial order. The helper
function RippleUpwards(x, CurrentOrder) forms a NewOrder of
messages from CurrentOrder by moving message x up in priority
to the first ID above the next fixed message of higher priority than
x that is not occupied by a fixed message. Note that ID may be
occupied by another new message, if so then RippleUpwards()
ripples the higher priority new messages upwards in priority as
little as possible to preserve their deadline minus jitter partial order
and to avoid ID clashes with fixed messages. If this is not possible,
due to insufficient space at the highest physical priorities (lowest
numerical CAN IDs) then the function returns invalid. A detailed
walk-through of the operation of Algorithm 3 and the
RippleUpwards() function is given in Appendix B of [12].

The fact that Algorithm 3 terminates can be seen by
considering that on each iteration of the loop, the algorithm either
exits or it moves at least one new message to a priority that is
higher than that of the next higher priority fixed message. Further,
once all new messages have higher priorities than fixed messages,
the algorithm exits (if it did not already do so due to running out of
message IDs at high priorities). Therefore in the worst case, with v
new messages and n-v fixed messages, moving just one new
message past one fixed message each time, then we have)(vnv 
iterations. This value is maximised when we have equal numbers
of fixed and new messages, thus an upper bound on the number of
iterations is given by 4/2n . On each iteration, we (somewhat
pessimistically assume) that the value of  needs to be re-

computed for each message. This may be done to a reasonable
level of precision via a fixed number of iterations (e.g. 10) of a
binary search. The number of single message schedulability tests
required is therefore)(3nO .
Theorem 3: Algorithm 3 provides robust and optimal priority
assignment for problem P2 with a mix of fixed and new messages
compliant with our model, with respect to sufficient tests S1 (and
S2) under approximation A1.
Proof: Proof of optimality follows from Theorem 2 and the use of
Algorithm 2. We now prove robustness. We assume for
contradiction that there is some priority ordering *Q that has the
maximum robustness of   of any valid priority ordering, and
that robustness is strictly higher than that achieved by priority
ordering P produced by Algorithm 3. Since Algorithm 2 is optimal
we can apply that algorithm assuming an additional interference
function with scaling factor   to obtain a schedulable priority
ordering Q with the same robustness as *Q . We now show that
the priority ordering P obtained by Algorithm 3 is equivalent to Q
thus contradicting the hypothesis and proving the theorem.

Let kP be the priority ordering produced on the kth iteration
of Algorithm 3. (0P is the priority ordering produced by
Algorithm 2 with 0 used to initialise Algorithm 3). Let

),(mXhpN be the set of new messages that have a higher priority
than fixed message m in some priority order X. Similarly, let

),(mXhp be the set of all messages with higher priority than
message m in priority order X.

We note that in the following, all priority orders (P, kP , 0P ,
Q) have the new messages in deadline minus jitter partial order
(Theorem 1) and the fixed messages in the partial order determined
by their fixed message IDs, thus the priority orders only differ in
the interleaving of those two sets of messages.

We prove the theorem by showing that on each iteration k of
Algorithm 3, then either the following condition (Condition 4)
holds, in which case a further iteration occurs, or the priority
ordering produced equates to Q.

Condition 4: Q has robustness greater than that of kP , and for
every fixed message m, the set of higher priority new messages in

kP is a subset of those in Q i.e.),(),(mQhpNmPhpN k  . Since
the new and fixed messages are in the same partial orders in kP
and Q then it follows that),(),(mQhpmPhp k  . Further, for at
least one fixed message, the relationship is a strict subset thus

),(),(mQhpNmPhpN k  and),(),(mQhpmPhp k 
We note that if for every fixed message m, the set of higher

priority new messages is the same in both kP and Q i.e.
),(),(mQhpNmPhpN k  , then this implies that the two priority

orders are equivalent and hence have the same robustness.
Base case: Condition 4 holds by construction for 0P since that

order is produced by Algorithm 2 with 0 , which places new
messages at the lowest possible priorities assuming no additional
interference. Alternatively, 0P is equivalent to Q, in which case
we already reached a contradiction.

Inductive case: From kP to 1kP . Since the overall robustness
of Q is  then it follows that all of the fixed messages in Q must
tolerate additional interference equating to   . Since, by the
induction hypothesis Condition 4 holds for kP then since

),(),(mQhpmPhp k  all fixed messages in kP must also tolerate
additional interference equating to   . As kP has lower
overall robustness than Q there must be one or more new messages
in kP that tolerate additional interference equating to some value
of   . Let message j be such a message with the least value of
 of any message in kP . This is the message that Algorithm 3
selects to move up in priority.

Since the overall robustness of Q is greater than that of kP , it
must be the case that message j is at a higher priority in Q than the
first (i.e. lowest priority) fixed message h with a higher priority
than message j in kP i.e. where),(jPhph k . This follows
because the new messages are in the same partial order in Q and

kP as are the fixed messages, thus if j were at a lower priority than
h in Q then we would have),(),(jQhpjPhp k  and hence by
virtue of the additional interference tolerated by message j in kP ,
the robustness of Q would also be  .

Priority order Q attests that there is a schedulable and valid
priority ordering with message j at a higher priority than message
h. It follows that the process of moving message j to a priority
above message h and rippling up the priorities of the new messages
with smaller values of deadline minus jitter than j as little as
possible to maintain the deadline minus jitter partial ordering must
result in a schedulable priority order 1kP (The schedulability of
priority order Q attests that this change cannot result in message h
or any of the other higher priority fixed messages becoming
unschedulable, and since the new messages have their priorities
increased, they cannot become unschedulable either). Further,
since these messages are moved up in priority as little as possible
to accommodate message j at higher priority than h, then either
Condition 4 continues to hold or 1kP and Q are equivalent. If 1kP
and Q are equivalent then we again reached a contradiction.

Iterating over increasing k, we note that either 1kP and Q
become equivalent and so a contradiction is reached, or Condition
4 continues to hold, and there exists a new message j that
Algorithm 3 can select to move to a higher priority above some
fixed message h, and this move is valid (i.e. there is space at the
lower numerical message IDs (higher physical priorities) to
maintain the partial ordering of new messages). Since we know
that Algorithm 3 terminates after a maximum of)(vnv 
iterations, where v is the number of new messages, this again
results in a contradiction. Iteration cannot go on indefinitely, and
therefore the final priority ordering P produced by Algorithm 3
must equate to Q. This contradicts the hypothesis that priority
order Q and hence Q*is strictly more robust than P □

The RPA algorithm (Algorithm 3) gives preference to
messages with fixed IDs in that if there are multiple orderings with
the same robustness, it will pick the one with the lowest possible
priorities for the freely assignable messages. Of course if the
system can be made more robust by a priority ordering with some
of those messages at higher priorities, then the algorithm will find
such an ordering.

We note that although Algorithm 2 and Algorithm 3 assign
message IDs to the new messages, effectively they produce a
logical priority ordering. The system designer is free to adjust the
IDs of new messages, and this will not affect schedulability,
provided the logical priority ordering is unchanged. Such
adjustments may be useful to set bits for message filtering, or to
leave gaps for subsequent additions to the set of messages.

5.3 Automotive Case Study
We examined the performance of the OPA and RPA

algorithms for problem P2 on a real automotive case study, first
presented by Kollman et al. in [17]. This system comprises a CAN
bus connecting 10 ECUs, with 85 messages sent over the network.
The number of messages sent by each ECU is given by the
annotations in Figure 1. All messages are sent periodically and
share a common release time. The length of the messages varies
from 1 to 8 data bytes. (There are 60 messages with 8 bytes of data,
3 with 5 bytes, 9 with 4 bytes, 10 with 2 bytes and 3 with 1 byte).
The original bus speed intended for the network was 500 kBit/s.

Figure 1: Case study network architecture.
Table 3. provides some preliminary results, comparing

different schedulability tests and priority assignments. In Expts 1-3
all of the messages were assumed to be new and hence their
priorities freely assignable, while Expt 4 assumes the original
priority order specified by the automotive supplier. The minimum
schedulable bus speed and breakdown utilisation for the exact test
E1 with Optimal Priority Assignment (OPA) [6] are 275.8 Kbit/s
and 84.7% respectively, whereas for the sufficient test S2 with
DJMPO [29], they are 276.3 Kbit/ and 84.5%, applying
approximation A1, these values become 302.5 Kbit/ and 77.2%.
All of which compare favourably with values of 750.9 kBit/s and
31.1% using the priority assignment originally specified.

Table 3: Case Study: Summary of Results

Expt Schedulability
test

Priority
order

Min bus
speed

Max bus
util.

1 Exact E1 OPA 275.8 Kbit/s 84.7%
2 Sufficient S2 DJMPO 276.3 Kbit/s 84.5%
3 Sufficient S2

& A1
DJMPO 302.5 Kbit/s 77.2%

4 Exact E1 Specified 750.9 Kbit/s 31.1%
To evaluate the performance of the OPA and RPA algorithms

on problem P2, we assumed a 500 kBit/s bus, that messages sent
by ECUs 1 and 6 were fixed, and that messages sent by other
ECUs were freely assignable. First, we determined an optimal
priority order using Algorithm 2. This is illustrated in Figure 2.

The transmission deadlines of the new messages are shown in
black and those of the fixed messages in red. As expected, the new
messages are placed at the lowest possible priorities. For this
priority order, we computed the maximum additional interference
that could be tolerated by all messages according to a simple
additional interference function:  ),,(iwE bit times. This
resulted in a maximum tolerance of  863 bit times, equivalent
to the re-transmission and error recovery overhead for up to 5
maximum length messages. The message response times are
shown in Figure 2 with and without this additional interference.
Using this priority assignment, the minimum schedulable bus
speed is 408.6 kBit/s and the max. bus utilisation 57.1% (computed
using test E1 or S1, both of which gave the same result).

We then used the RPA algorithm (Algorithm 3) to determine a
robust priority ordering assuming the same simple additional
interference function. The results are illustrated in Figure 3. Notice
that now some of the new messages are interleaved with the fixed
messages. The robust priority ordering obtained tolerated a
maximum additional interference of 1268 bit times equating to the
re-transmission and error recovery overhead of up to 7 maximum
length messages. Again, the message response times are shown
with and without this additional interference. Using this priority
assignment, the minimum schedulable bus speed is 378.8 kBit/s,
and the max. bus utilisation 61.7% (computed using test E1 or S1,
both of which again gave the same result).

We note that comparison with a robust and optimal priority
assignment produced using an exact test is not possible since no
solutions are currently known which are tractable. A brute force
approach would potentially need to test)!/(! vnn  combinations
(where n is the number of messages, and v is the number of new

messages). For our case study, this amounts to more than a googol
(10010) combinations.

Figure 2: Priority assignment using OPA algorithm for P2.

Figure 3: Priority assignment using RPA algorithm for P2.

6. SUMMARY AND CONCLUSIONS
In this paper, we investigated the problem of priority assignment
for CAN when some messages have fixed identifiers and only a
subset may have their priorities (identifiers) modified.

We showed that there are two flavours of this problem P1 and
P2. In P1, the gaps between the identifiers of the fixed messages
are large enough to potentially accommodate all of the messages
whose priorities may be freely set. In P2 these gaps are
insufficient. The main contributions of this paper are as follows:
We proved that problem P1 using exact E1, or sufficient tests S1
or S2, may be solved optimally with respect to those tests using
variants of the standard OPA [1], [2] and RPA [7], [8] algorithms.
We proved by means of a counter example, that problem P2 is not
amenable to the same form of solution. This shows that a recent
algorithm proposed for this problem by Schmidt [23] using
sufficient test S1 is not optimal w.r.t. that test as was suggested.
We derived an optimal and robust solution to problem P2 with
respect to a simple form of schedulability analysis which uses
sufficient test S1 and assumes the same upper bound on the length
of all messages (approximation A1). Finding such solutions for
more precise analysis, i.e. for S1 without this approximation and
also for exact test E1, remains an interesting open problem.

Problems P1 and P2 are strongly motivated by industrial
practice. Nearly all new automotive systems are built using at least

some legacy components. Thus unless message identifiers can be
reprogrammed (as with the Volcano implementation), then there
will be some ECUs that transmit CAN messages with fixed IDs
that cannot be changed as part of the design. Further, once a system
has been built using new ECUs, what were once messages with
freely assignable IDs then become fixed, thus upgrades and
extensions to the system suffer the same or worse problems of
priority assignment; further strengthening the case for a solution
that allows message IDs to be reprogrammed.

When message IDs cannot be reprogrammed, then the choice
of which IDs to assign to new messages added for a particular
upgrade has an effect on the future priority assignments possible
and hence the schedulability and robustness of the system on future
upgrades. In this case, design for extensibility [21], [27] for
example by leaving appropriate gaps between message IDs,
becomes an additional concern. This problem merits further
research.

While the research detailed in this paper focuses on priority
assignment for messages on a single CAN bus, many automotive
systems make use of two or more such networks connected
together via gateways. In these systems, timing requirements are
specified as end-to-end deadlines on functionality implemented by
tasks that communicate over the networks. Here, a simple approach
can be taken, splitting the end-to-end deadlines into sub-deadlines
on individual messages, thus dividing the larger problem into a set
of smaller independent ones (one for each CAN bus). This enables
the priority assignment policies discussed in this paper to be used.
Such subdivision can however lead to sub-optimal solutions. An
alternative is to use search techniques to solve the overall problem
holistically [22], [28].

7. ACKNOWLEDGMENTS
This work was funded in part by the EPSRC project MCC
(EP/K011626/1) and the INRIA International Chair program.
EPSRC Research Data Management: No new primary data was
created during this study.

8. REFERENCES
[1] Audsley, N.C. 1991.Optimal priority assignment and feasibility of

static priority tasks with arbitrary start times, Technical Report YCS
164, Dept. Computer Science, University of York.

[2] Audsley, N.C. 2001. On priority assignment in fixed priority
scheduling, Information Processing Letters, 79(1): 39-44.

[3] Bosch. 1991. CAN Specification version 2.0. Robert Bosch GmbH,
Postfach 30 02 40, D-70442 Stuttgart.

[4] Buttle, D. 2012. Real-Time in the Prime Time Keynote talk at
Euromicro Conference on Real-Time Systems. Presentation:
http://ecrts.eit.uni-kl.de/index.php?id=69 .

[5] Casparsson, L., Rajnak, A., Tindell, K., and Malmberg, P. 1998.
Volcano - a revolution in on-board communications. Volvo
Technology Report, 1998/1.

[6] Davis, R.I., Burns, A., Bril, R.J., and Lukkien, J.J. 2007. Controller
Area Network (CAN) Schedulability Analysis: Refuted, Revisited
and Revised. Real-Time Systems, Vol. 35, No. 3, pp. 239-272.

[7] Davis, R.I., and Burns, A. 2007. Robust Priority Assignment for
Fixed Priority Real-Time Systems. In proceedings Real-Time
Systems Symposium (RTSS), pp. 3-14. 2007.

[8] Davis, R.I., and Burns, A. 2009.Robust priority assignment for
messages on Controller Area Network (CAN). Real-Time Systems,
Vol. 41, No. 2, pp. 152-180.

[9] Davis, R.I., and Burns, A. 2011. Improved Priority Assignment for
Global Fixed Priority Pre-emptive Scheduling in Multiprocessor
Real-Time Systems. Real-Time Systems, Vol. 47, No. 1, pp.1-40.

[10] Davis, R.I., and Navet, N., 2012. Controller Area Network (CAN)
Schedulability Analysis for Messages with Arbitrary Deadlines in

FIFO and Work-Conserving Queues. In proceedings Workshop on
Factory Communication Systems (WFCS). pp. 33-42.

[11] Davis, R.I., Kollmann, S., Pollex, V., and Slomka, F. 2013.
Schedulability Analysis for Controller Area Network (CAN) with
FIFO Queues Priority Queues and Gateways. Real-Time Systems,
Vol. 49, No. 1, pp. 73-116.

[12] Davis, R.I., Burns, A.,Pollex, V., and Slomka, F. 2015. On Priority
Assignment for Controller Area Network when some Message
Identifiers are Fixed. Technical Report YCS-2015-498 Dept. of
Computer Science, University of York.
https://www.cs.york.ac.uk/ftpdir/reports/2015/YCS/498/YCS-2015-
498.pdf

[13] Ferreira, J., Oliveira, A., Fonseca, P., and Fonseca, J.A. 2004. An
Experiment to Assess Bit Error Rate in CAN. In Proceedings
International Workshop of Real-Time Networks (RTN), pp. 15-18.

[14] Hansson, H., Nolte, T., Norstrom, C., and Punnekkat, S. 2002.
Integrating Reliability and Timing Analysis of CAN-based Systems.
IEEE Transaction on Industrial Electronics, 49(6): 1240-1250.

[15] Khan, D.A., Bril, R.J., and Navet, N. 2010. Integrating hardware
limitations in CAN schedulability analysis, In proceedings
Workshop on Factory Communication Systems (WFCS), pp.207-210.

[16] Khan, D.A., Davis, R.I., and Navet, N. 2011. Schedulability
Analysis of CAN with Non-abortable Transmission Requests. In
proceedings Emerging Technologies and Factory Automation
(ETFA).

[17] Kollmann, S., Pollex, V., Kempf, K., Slomka, F., Traub, M., Bone,
T.,and Becker, J. 2010. Comparative Application of Real-Time
Verification Methods to an Automotive Architecture. In Proceedings
Real Time and Network Systems (RTNS)

[18] ISO 11898-1. 1993. Road Vehicles � interchange of digital
information � controller area network (CAN) for high-speed
communication, ISO Standard-11898, International Standards
Organisation.

[19] Di Natale, M. 2006. Evaluating message transmission times in
Controller Area Networks without buffer preemption. In proceedings
Brazilian Workshop on Real-Time Systems.

[20] Nolte, T., 2006 Share-driven scheduling of embedded networks,
PhD Thesis, Malardalen University Press.

[21] Polzlbauer, F.; Bate, I.; Brenner, E., 2013.On Extensible Networks
for Embedded Systems In proceedings Workshops on the
Engineering of Computer Based Systems (ECBS), pp.69,77.

[22] Richard, M., Richard, P., and Cottet, F. 2001. "Task and message
priority assignment in automotive systems." In proceedings IFAC
Conference on Fieldbus Systems and their Applications, pp. 105-
112.

[23] Schmidt, K.W., 2013. Robust Priority Assignments for Extending
Existing Controller Area Network Applications. IEEE Transactions
on Industrial Informatics, Vol.10, No.1, pp.578,585.

[24] Tindell, K.W., and Burns, A. 1994. Guaranteeing message latencies
on Controller Area Network (CAN), In Proceedings International
CAN Conference, pp. 1-11.

[25] Tindell, K.W., Burns, A., and Wellings, A.J. 1995. Calculating
Controller Area Network (CAN) message response times. Control
Engineering Practice, 3(8): 1163-1169.

[26] Tindell, K.W., Hansson, H., and Wellings, A.J. 1994. Analysing
real-time communications: Controller Area Network (CAN). In
proceedings Real-Time Systems Symposium (RTSS), pp. 259-263.

[27] Zhu, Q., Yang, Y., Scholte, E., Di Natale, M., and Sangiovanni-
Vincentelli, A. 2009. �Optimizing Extensibility in Hard Real-Time
Distributed Systems�. In Proceedings Real-Time and Embedded
Technology and Applications Symposium (RTAS), pp 275-284.

[28] Zhu, Q., Zeng, H., Zheng, W., Di Natale, M., Sangiovanni-
Vincentelli, A. �Optimization of task allocation and priority
assignment in hard real-time distributed systems�. ACM Trans.
Embed. Comput. Syst. 11, 4, Article 85 (January 2013).

[29] Zuhily, A., and Burns, A. 2007. Optimality of (D-J)-monotonic
priority assignment. Information Processing Letters, Vol. 103 No. 6.

