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ABSTRACT 
Controller Area Network (CAN) is widely used in automotive 
applications. With CAN, the network utilisation that may be 
obtained while ensuring that all messages meet their deadlines is 
strongly dependent on the policy used for priority (message 
identifier) assignment. This paper addresses the problem of 
priority assignment when some message identifiers are fixed. 
There are two variants of this problem: P1 where the gaps 
between fixed identifiers are large enough to accommodate the 
freely assignable messages and P2 when the gaps are too small. 
For problem P1, we provide algorithms that give optimal and 
robust priority orderings based on an adaptation of existing 
techniques. Problem P2 is more difficult to solve. We show via a 
counter example that the algorithms derived for P1 and others 
recently published can fail to find a schedulable priority ordering 
when the gaps are small, even though one exists. We derive an 
optimal and robust solution to this problem with respect to a 
simple form of schedulability analysis which assumes the same 
upper bound on the length of all messages. 

1. INTRODUCTION 
Controller Area Network (CAN) [3], [18] is a simple, efficient, 
and robust, broadcast communications bus for in-vehicle 
networks. Today, typical mainstream family cars contain 25-35 
Electronic Control Units (ECUs), many of which communicate 
using CAN. 

CAN is an asynchronous multi-master serial data bus that uses 
Carrier Sense Multiple Access / Collision Resolution (CSMA/CR) 
to determine access to the bus. The CAN protocol requires that 
nodes wait for a bus idle period before attempting to transmit. If 
two or more nodes attempt to transmit messages at the same time, 
then the node with the message with the lowest numeric identifier 
will win arbitration and continue to send its message. The other 
nodes will cease transmitting and wait until the bus becomes idle 
again before attempting to re-transmit their messages. (Full details 
of the CAN physical layer protocol are given in [3], with a 
summary in [6]). In effect CAN messages are sent according to 
fixed priority non-pre-emptive scheduling, with the message 
identifiers acting as priorities. 

In the configuration of CAN, the assignment of priorities 
(allocation of message identifiers) is of great importance. An 
optimal assignment of priorities enables maximum use to be made 
of network bandwidth, while ensuring that the network remains 
schedulable i.e. all messages meet their time constraints or 
deadlines. In his keynote talk at ECRTS 2012 [4], Darren Buttle of 
ETAS remarked on the myth of CAN bus utilisation believed by 
many in industry: “You cannot run CAN reliably at more than 35% 
utilisation1”. This myth comes about because it is general practice 
to assign message identifiers (i.e. priorities) in an ad-hoc way 
reflecting the data content of the message, ECU supplier and other 
legacy issues.  

In this paper, we revisit the problem of priority assignment for 
CAN for the case where some message identifiers (priorities) are 
fixed, and only a subset may be freely assigned. There are two 
variants of the problem, P1 where all of the gaps between the 
fixed message identifiers are sufficiently large to accommodate all 
of the freely assignable messages, and P2 where these gaps are 
too small. We provide an optimal and robust algorithm for 
problem P1, and show via a counter example that both this 
algorithm and a similar one recently proposed in [23] are not 
optimal for problem P2. Further, we derive an optimal and robust 
solution to this problem with respect to a simple form of 
schedulability analysis which assumes the same upper bound on 
the length of all messages (approximation A1). 

In 1994, Tindell et al. [24], [25], [26] showed how research 
into fixed priority scheduling for single processor systems could be 
adapted and applied to the scheduling of messages on CAN. The 
analysis of Tindell et al. provided a method of calculating the 
maximum queuing delay and hence the worst-case response time 
of each message on the network. They also recognised that with 
fixed priority scheduling, an appropriate priority assignment policy 
is key to obtaining effective real-time performance. Tindell et al. 
[26] suggested that messages should be assigned priorities in 
Deadline minus Jitter Monotonic Priority Order (DJMPO) [29]. In 
2007, Davis et al. [6] found and corrected significant flaws in the 
schedulability analysis given by Tindell et al. [24], [25], [26]. 
These flaws could potentially result in the original analysis 
providing guarantees for messages that could miss their deadlines 
during operation. Further, Davis et al. [6] showed that the DJMPO, 
claimed by Tindell et al. to be optimal for CAN, is not optimal 
with respect to exact tests; and that Audsley�s Optimal Priority 
Assignment (OPA) algorithm [1], [2] is required in this case.  

For the analysis in [6] to be applicable, it is necessary that all 
of the assumptions of the classical scheduling model are met. In 
particular, each CAN controller and device driver or 
communications stack must ensure that whenever message 
arbitration starts on the bus, the highest priority message queued 

1 Figure may vary but not significantly.
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at that node is entered into arbitration. This behaviour is essential 
if message transmission is to take place as if there were a single 
global priority queue and for the analysis to be correct. There are 
however many ways in which the communications stack, device 
driver, or CAN controller hardware can be implemented that do 
not match these assumptions. Issues include: Non-abortable 
transmit buffers [19], [16]; delays in refilling a transmit buffer 
[15]; the use of FIFO queuing policies [11]; work-conserving but 
otherwise ill-defined queuing policies [10], for example those 
using multiple levels of queues, or internal CAN controller 
message arbitration based on transmit buffer number. In this 
paper, we assume that the middleware and device drivers have 
been carefully designed to meet the assumptions of the classical 
analysis [6], as has been done for example with the Volcano 
Target Package2. 

In 2007, Davis and Burns [7] introduced the concept of robust 
priority ordering able to tolerate the most additional interference 
of any schedulable ordering. This concept was extended to CAN 
[8], where it is important in providing priority assignments that 
best tolerate errors on the bus. In 2014 Schmidt [23] applied a 
variant of the Robust Priority Assignment (RPA) algorithm [8] to 
problem P2, claiming in Theorem 1 of [23] that it gives an 
optimal and robust priority assignment with respect to the 
sufficient schedulability test used. (In this paper, we refer to this 
test as S1, see (6) and (7) in Section 2). 

The remainder of the paper is organised as follows. Section 2 
summarises the system model, terminology and notation used. 
Section 3 recapitulates the exact and the sufficient schedulability 
tests given in [6]. In Sections 4 and 5 we present solutions to the 
problem of providing an optimal and robust priority assignment 
when some message identifiers are fixed. Section 6 concludes 
with a summary and directions for future work. 

2. SYSTEM MODEL AND TERMINOLOGY 
In this section we describe the system model and notation used to 
analyse the worst-case response times of CAN messages. The 
system model is as described in [6]. Note that here we give only a 
high level description necessary to understand the message 
scheduling behaviour of CAN. Readers interested in details of the 
CAN protocol are directed to section 2.1 of [6]. 

The system is assumed to comprise a number of nodes 
(microprocessors) connected to each other via a CAN bus. Each 
node is assumed to ensure that, at any given time when arbitration 
starts, the highest priority message queued at that node is entered 
into arbitration on the bus. 

The system is assumed to contain a static set of hard real-time 
messages, each statically assigned to a single node. Each message 
m has a unique priority. We distinguish between the logical
priority of a message, which describes only its place in the priority 
order in relation to other messages, and the physical priority or ID
of a message, meaning the actual value used for its identifier. We 
note that a complete set of physical priorities fully defines a set of 
logical priorities, but the reverse is not the case, since there are 
many sets of physical priorities that can map to the same logical 
priority order. The priority assignment policies considered in this 
paper effectively determine logical priority orderings, with some 
scope remaining to set physical priorities, for example to make use 
of the least significant bits of the ID for message filtering. (Note 
when we refer to a message as having lowest physical priority, due 

2 http://www.mentor.com/products/vnd/in-
vehicle_software/volcano_target_package/

to the way in which arbitration works on CAN, this equates to the 
highest numerical ID). For brevity, we often just use the word 
priority when referring to the logical priority of a message, but are 
explicit when referring to physical priorities or IDs. 

As priority uniquely identifies each message, we overload m
to mean either message m or priority m as appropriate. We use 

)(mhp  to denote the set of messages with priorities higher than m, 
and )(mlp  to denote those with priorities lower than m. Similarly, 
we use )(mhep  to denote the set of messages with priorities 
higher than or equal to m, and )(mlep  to denote those with 
priorities lower than or equal to m. 

Each message m has a maximum transmission time of mC
(see [6] for details of how to compute the maximum transmission 
time, taking into account the number of data bytes and bit-
stuffing). The event that triggers queuing of an instance of 
message m is assumed to occur with a minimum inter-arrival time 
of mT , referred to as the message period. Each message m has a 
hard deadline mD , corresponding to the maximum permitted time 
from occurrence of the initiating event to the end of successful 
transmission of the message, at which time the message data 
becomes available on the receiving nodes that require it. The 
deadline of each message is constrained, i.e. equal to, or less than 
its period. Each message m is assumed to be placed in a queue and 
available for transmission in a bounded but variable amount of 
time between 0 and mJ  after its initiating event. mJ  is referred to 
as the queuing jitter of the message. The worst-case response time

mR  of message m is defined as the maximum possible delay from 
the initiating event for an instance of that message, until it is 
received at the receiving nodes. A message is said to be 
schedulable if its worst-case response time is less than or equal to 
its deadline )( mm DR  . A system is said to be schedulable if all 
of the messages in the system are schedulable. The utilisation mU
of a message m is given by its maximum transmission time 
divided by its period ( mU = mC / mT ). The total utilisation U of a 
set of messages is the sum of their individual utilisations. 
Definition 1: Optimal Priority Assignment (OPA): A priority 
assignment policy P is referred to as optimal with respect to a 
schedulability test S and a given system model, if and only if there 
is no set of messages that are compliant with the model that are 
deemed schedulable by test S using another priority assignment 
policy, that are not also deemed schedulable according to test S
using policy P. 

The following definition of Robust Priority Assignment (from 
[8]) relies on the idea of a general additional interference function 

),,( iwE  , where   is a scaling factor, used to model variability 
in the amount of interference, w is the length of the time interval 
over which the interference occurs and i is the priority level 
affected by the interference. The function ),,( iwE   is required to 
be a monotonically non-decreasing function of its parameters. We 
assume that the function ),,( iwE   is due to errors on the bus that 
cause messages to be re-transmitted3. 
Definition 2: Robust Priority Assignment (RPA) [7], [8]: For a 
given system model and a given additional interference function 

),,( iwE  , a priority assignment policy P is referred to as robust
with respect to a schedulability test S if there are no systems, 
compliant with the system model, that are both schedulable 
according to test S and can tolerate additional interference 
characterized by a scaling factor   using another priority 

3 An example of a realistic additional interference function for CAN is 
given by (1) in Section 3 based on the delay due to error recovery. 



assignment policy Q that are not also both schedulable according to 
test S and can tolerate additional interference characterized by the 
same or larger scaling factor using priority assignment policy P. 

We note that the above definitions are applicable to both 
sufficient and exact schedulability tests. While optimality and 
robustness w.r.t. an exact test is desirable, for problems where no 
tractable optimal or robust priority assignment algorithm is known 
for an exact test, then there is the option of either using a simple 
heuristic priority assignment with an exact test, or using a priority 
assignment policy that is optimal w.r.t. an effective sufficient test. 

3. SCHEDULABILITY ANALYSIS 
In this section we recapitulate the exact and sufficient 
schedulability analysis for CAN presented by Davis et al. [6] 
including extensions to account for errors on the bus.  

We consider a very general error model. We assume that the 
maximum number of errors present on the bus in some time 
interval t is given by an error arrival function )(tF . We assume no 
specific details about this function; save that it is a monotonic non-
decreasing function of t, which is required in order for the fixed 
point iteration used in response time analysis to be valid. In 
practice, this is no restriction, since in any reasonable error model 
one cannot have fewer errors in a longer interval of time than in a 
shorter one. 

The worst-case impact of a single bit error is to cause 
transmission of an additional 31 bits of error recovery overhead 
plus re-transmission of the affected message. Only errors affecting 
message m or higher priority messages can delay message m from 
being successfully transmitted4. The maximum additional delay 
caused by the error recovery mechanism is given by:  

)()(max31)(
)(

tFCtE kmhepkbitm 





 


     (1) 

As shown in [6], the worst-case response time of a message m
can be determined by examining the response time of all instances 
of message m that occur within a priority level-m busy period; 
assuming that message m and all higher priority messages are 
released with their maximum jitter at the start of the busy period, 
and then subsequently re-released as soon as possible. Further, 
immediately before the initial release of these messages, the 
longest message of lower priority than m begins transmission. mB
is the blocking factor at priority m, equivalent to the longest 
transmission time of any message of lower priority: 

)(max
)( kmlpkm CB


         (2)

In the following, we use the index variable q to represent an 
instance of message m. The first instance, released at the start of 
the busy period corresponds to 0q . The longest time from the 
start of the busy period to instance q beginning successful 
transmission is given by the solution to the following fixed point 
equation: 
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Note bit  is the time for one bit to be transmitted on the bus. 
The summation term represents interference from higher priority 
messages that can win arbitration over message m and so delay its 

4 An error could occur during the transmission of a lower priority message 
that blocks message m, but then that message would not be re-
transmitted until after m had been sent. 

transmission. Further, as errors can impact the transmission of 
message m itself, the time interval considered in calculating the 
error recovery overhead includes the transmission time of the final 
instance of message m. Iteration starts with a value of 

mmm qCBqw )(0 , and ends when )()(1 qwqw n
m

n
m  , or when 

mmm
n
mm DCqTqwJ   )(1  in which case the message is 

unschedulable. The response time of instance q is given by: 

mmmmm CqTqwJqR  )()(      (4) 
and the worst-case response time of message m by: 

))((max
1..0

qRR mQqm
m

        (5) 

where mQ  is the number of instances of message m in the priority 
level-m busy period (see [6] for details of how this value is 
computed). We refer to the exact schedulability test given by (5) as 
E1. 

As shown in [6], when messages have constrained deadlines, 
an upper bound on the worst-case response time of message m may 
be found by computing the maximum queuing delay mw  using 
the following fixed point iteration, where the revised blocking term 

),max( mm CB  accounts for push-through blocking from previous 
instances of the same message (see [6] for the full derivation): 
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Here, iteration starts with a suitable initial value such as 
mm Cw 0 , and continues until either mmm

n
m DCJw 1  in 

which case the message is not schedulable, or n
m

n
m ww 1  in which 

case the message is schedulable and an upper bound on its worst-
case response time is given by: 

mm
n
mm CJwR  1        (7) 

We refer to the sufficient test given by (7) as S1. Davis et al. [6] 
also gave a simpler sufficient test which replaces the term 

),max( mm CB  in (6) by MAXB , where MAXB  is the longest 
transmission time for any message on the network. We refer to this 
sufficient test as S2. 

We note that both S1 and S2 are used in commercial 
schedulability analysis tools, for example Mentor Graphics 
Volcano Network Architect5 toolset, due to their ease of 
implementation, speed of operation, and extensibility. In systems 
with soft real-time diagnostic messages of the maximum length at 
the lowest priorities, then schedulability tests S1 and S2 are 
equivalent to the exact test E1 for hard real-time messages. We 
note that other commercial tools such as RTaW6 NetCAR-
Analyzer and Symtavision SymTA/S7 make use of exact tests. 

Some of the results in this paper are derived using an 
approximation A1 whereby all messages are considered to have a 
length equal to that of the longest message in the system i.e. the 
same maximum transmission time. (Note we do not require that 
all messages are actually of the same length). Since a shorter 
message takes less time to transmit, approximation A1 leads to 
pessimism in the analysis when there are messages of different 
lengths; however, this is mitigated by the fact that it is common in 
automotive systems for a substantial majority of messages to be of 
the maximum possible length. This is because packing as many 
signals as possible into 8 data byte CAN messages reduces the 

5 http://www.mentor.com/products/vnd/communication-
management/vna/

6 http://www.realtimeatwork.com/
7 https://www.symtavision.com/products/network-timing/



relative overheads of the arbitration, control, and CRC fields. 
Schedulability tests S1 and S2 are equivalent under approximation 
A1, since the blocking term for all messages has the same value. 

4. OPTIMAL PRIORITY ASSIGNMENT 
WHEN SOME PRIORITIES ARE FIXED 
While in some CAN systems, for example those using Volcano 
Target Package, it is possible to perform post-deployment re-
configuration of message identifiers, often systems are constructed 
where the identifiers of messages sent by certain nodes (ECUs) are 
fixed. In fact this may apply to the messages sent by all nodes, with 
only the identifiers of new messages available for configuration 
(i.e. priority assignment). This is a common occurrence since very 
rarely are there clean sheet new designs, thus legacy ECUs 
requiring fixed message identifiers are used in the construction of 
new systems. 

Let us assume that there are two subsets of messages, those in 
set M have fixed identifiers which we may not change, while those 
in set N are new, and are yet to be assigned identifiers. We separate 
the priority assignment problem into two cases:  
P1: The gaps between the identifiers of messages in the fixed 
subset are sufficiently large that all of the new messages could fit 
into any gap, including the gap above the highest priority (lowest 
numeric identifier) fixed message, and the one below the lowest 
priority (highest identifier) fixed message. 
P2: Not all the gaps are large enough to accommodate all of the 
new messages. 
For these problems, we define an optimal priority assignment 
algorithm as follows: A priority assignment algorithm is optimal if 
it can find a schedulable priority ordering, whenever such an 
ordering exists, subject to the following constraints: 
 For cases P1 and P2, the messages with fixed IDs are in the 

priority order specified by their IDs; 
 For case P2, in addition the number of new messages that by 

virtue of their priorities must fit into a gap in the physical 
priorities between, above, or below messages with fixed IDs 
do not exceed the size of the gap (i.e. the number of available 
message IDs in that range).  

Similarly, a robust priority ordering algorithm can be defined as 
follows: A priority assignment algorithm is defined as robust if it 
finds a schedulable priority ordering which tolerates the maximum 
additional interference of any such ordering, whenever a 
schedulable priority ordering exists, subject to the above 
constraints. 

4.1 Problem P1: Fixed IDs and Large Gaps 
We now show that variants of Audsley�s OPA algorithm [1], [2] 
and the RPA algorithm [7], [8] are respectively optimal and robust 
for problem P1 where the gaps between message IDs are large. 
The OPA algorithm is shown below (Algorithm 1), with the 
modifications to the standard algorithm in italics. The same form 
of modification applies in the RPA algorithm. 

Proof that the OPA algorithm (Algorithm 1) is optimal for 
problem P1 assuming schedulability test E1, S1 or S2 is easily 
obtained via the standard proof strategy used for such algorithms. 
This proof strategy starts from an initial schedulable priority 
ordering Q, which in this case must also be valid, i.e. have the 
messages with fixed IDs in the partial priority order defined by 
those IDs. The logical priorities of pairs of messages are then 
swapped to move the message that the OPA algorithm first selects 
down to the lowest priority, while showing that all messages 
remain schedulable and the priority ordering remains valid. (We 

note that since both the initial priority ordering Q and that 
produced by the OPA algorithm have the messages with fixed IDs 
in the same logical priority order, there is never any need to swap a 
pair of such messages, which would in any case result in an invalid 
assignment). The swapping process is then repeated for the second 
message selected by the OPA algorithm, and so on until the 
priority ordering is transformed into that generated by the OPA 
algorithm, with no loss of schedulability. Proof of robustness for 
the modified RPA algorithm follows a similar approach. 

for (each logical priority level k, lowest first) { 
for (each message m selected from a set containing the 

 unassigned new  messages in N and the message with the 
 lowest physical priority (highest message ID) of those that 
 are currently unassigned in M ){ 

if m is schedulable at priority k with all unassigned  
  messages assumed to have higher priorities) { 

  assign m to priority k 
  }
} 
if (no messages are schedulable at priority k) { 
  return unschedulable 
} 

} 
return schedulable

Algorithm 1: OPA with fixed message IDs and large gaps 
Note that during the swapping process, it may be the case that 

all of the new messages have logical priorities between two of the 
messages with fixed IDs; however, by definition of problem P1, 
the gap between these fixed IDs must be large enough to 
accommodate all of the new messages, and so the message set 
remains schedulable and valid. This aspect of the proof sketch 
leads to a suspicion that the OPA and RPA algorithms may not be 
applicable to problem P2. 

4.2 Problem P2: Fixed IDs and Small Gaps 
With the interpretation that all messages are deemed unschedulable 
if the priority assignment is invalid, we can see that the OPA and 
RPA algorithms are not applicable to problem P2. This is the case 
because the Conditions required for compatibility with Audsley�s 
OPA algorithm, given in section 4.1 of [9] are broken. For 
completeness, these conditions are given below modified to apply 
to messages rather than tasks. 
Condition 1: The schedulability of a message m, may, according to 
test S, depend on any independent properties of other messages of 
higher priority, but not on any properties of those messages that 
depend on their relative priority ordering. 
Condition 2: The schedulability of a message m, may, according to 
test S, depend on any independent properties of other messages of 
lower priority, but not on any properties of those messages that 
depend on their relative priority ordering. 
Condition 3: When the priorities of any two messages with 
adjacent priorities are swapped, then the message being assigned 
the higher priority cannot become unschedulable according to test 
S, if it was previously schedulable at the lower priority. (As a 
corollary, the message being assigned the lower priority cannot 
become schedulable according to test S, if it was previously 
unschedulable at the higher priority). 
When considering these Conditions for problems P1 and P2, we 
may safely ignore any cases where the priorities of two messages 
with fixed IDs are swapped, since such an action can only turn an 
initially valid priority ordering into an invalid one. However, we 
must consider what happens when the logical priority of a new 



message is swapped with that of a message with a fixed ID, since 
this is essential in transforming one valid priority ordering onto 
another. For problem P1, as all of the gaps are large enough, all of 
the Conditions hold; however for problem P2, all three Conditions 
can be broken. This is because such a swap can overload one of the 
gaps between the messages with fixed IDs, making the priority 
assignment invalid and thus effectively causing the schedulability 
of a message to depend on the relative priority ordering of higher 
(Condition 1) or lower (Condition 2) priority messages, or a 
message to effectively become unschedulable, due to the 
assignment being invalid, when moved to a higher priority 
(Condition 3). 

In [23] Schmidt applies a variant of the RPA algorithm to 
problem P2 using schedulability test S1, claiming in Theorem 1 of 
[23] that it gives an optimal and robust priority assignment with 
respect to that test. (Note, for reasons of space, and due to their 
complexity, we do not recapitulate the three algorithms from [23] 
which are used to address problem P2. The interested reader is 
referred to that paper for a full description). We do; however, show 
via a simple counter example, that the claim of optimality with 
respect to schedulability test S1 made in [23] does not hold. 

Our counter example has just 4 messages, one of which has a 
fixed ID (of 2). We assume for the sake of simplicity that there are 
only 4 physical priorities available: 1 (highest), 2, 3, and 4 
(lowest). The messages are shown in Table 1 below.  

Table 1: Message Parameters 
Message C T D 

MA 125 1000 750
MF 125 1000 350
MB 125 1000 750
MC 75 1000 1000

Note that the parameters are given in terms of bit transmission 
times. Thus CM  corresponds to a message with 2 data bytes, and 

AM , BM , and FM  to messages containing 7 data bytes, on a bus 
using 11-bit identifiers. FM has a fixed ID of 2 and can therefore 
only ever have the second highest priority. The other messages 
may fit around the priority of FM  in any order. The problem is to 
find a schedulable priority order that can tolerate the most 
additional interference, modelled in this case simply as   bit 
transmission times i.e.  ),,( iwE  as done in [23]. 

Table 2: Computed values of 

 Message 
Priority MA MF MB MC

4 300 NS 300 550 
3 300 NS 300 -
2 375 NS -
1  - - -

Table 2 shows the computed values of   as we attempt to 
apply the modified version of the RPA algorithm using exact test 
E1 to this problem. Assigning any of the messages to priority level 
4 results in a worst-case response time of 450, and hence the values 
of   given in the first row of the table. As message CM  tolerates 
the largest value of  , then it is assigned priority 4. (Note NS 
means �Not Schedulable�). 

At priority level 3, the worst-case response time of the 
remaining messages is again 450. Hence message AM  is assigned 
to that priority (or BM , it makes no difference since their timing 
parameters are identical). At priority level 2, we must assign 
message FM  since the gap below it is now full; however, the 
message is unschedulable at that priority with message BM  (or 

AM ) at the highest priority, since it has a worst-case response time 

of 375 and a deadline of 350. Thus the variant of the RPA 
algorithm gives up and declares the set of messages unschedulable.  

The alternative priority ordering CM (highest), FM , BM , 
AM  (lowest) results in response times of 200, 325, 450, 450 and 

thus a schedulable system, with an overall tolerance to additional 
interference   of 25 (800, 25, 300, 300 for each message 
respectively). This priority ordering also meets the constraint that 
message FM  has a fixed ID of 2. It is the optimal and robust 
priority ordering; however, it is not found by our modified RPA 
algorithm, or by the variant of the RPA algorithm given in [23]. 

In the above example, we have used exact analysis (E1). We 
note that the same logic and conclusions still hold if instead we use 
the sufficient analysis S1 assumed in [23] for the robust priority 
assignment algorithms described there. Using S1, the variant of the 
RPA algorithm given in Algorithm 2 of [23] finds that at priority 
level 4, messages AM , BM , and FM  have an upper bound 
response time of 575 and message CM  an upper bound response 
time of 525. Message CM  is therefore assigned since it tolerates a 
value of   of 475. At priority level 3, the upper bound response 
time of the remaining messages is 500 (compared to 450 with exact 
analysis) and hence message AM  or BM is assigned to that 
priority. At priority level 2, message FM  is again found to be 
unschedulable, and the system declared unschedulable. By 
contrast, the alternative priority ordering CM (highest), FM ,  

BM , AM  (lowest) results in upper bound response times of 200, 
325, 450, and 575 and hence a schedulable system. 

We note that the above counter example is not meant to be 
representative of a real CAN system; rather, it is simplified as far 
as possible to illustrate the issues involved. The reader should; 
however, be in no doubt that the same problems apply to priority 
assignment in more complex systems. For example, if we assume 
that the full range of 11-bit identifiers are available, then we may 
add a further 11 messages of length 75 bits (with long periods and 
deadlines) at physical priorities which are the 5th to 15th highest. 
None of the 3 freely assignable messages in our example can then 
be placed at priorities below these messages, thus the problem 
effectively becomes the same as the one described for just 4 
physical priority levels. 

5. SOLUTIONS TO PROBLEM P2 
In this section, we consider optimal and robust solutions to 
problem P2, using sufficient tests S1 or S2 with approximation A1. 
(Note the tests are equivalent in this case). We prove that if there is 
some priority ordering that is schedulable according to S1 or S2 
then there exists a schedulable priority ordering that has all of the 
new messages in a relative priority order which is DJMPO with 
respect to each other, with the fixed messages with some 
interleaving between them. First, we introduce a Lemma that 
assists in the proof of the theorem. 
Lemma 1: Let i and j be two priority levels in a priority order for a 
set of messages that is schedulable according to S1 or S2 under 
approximation A1 with some additional interference function

),,( iwE   with a fixed value of  . Assume that i is of higher 
priority than j, and message X initially at priority i has a value of 
deadline minus jitter larger than that of message Y, which is 
initially at priority j (i.e. YYXX JDJD  ). If the priorities of 
X and Y are swapped, so that X is at the lower priority j, and Y is at 
the higher priority i, and the priorities of all other messages are 
undisturbed, then all of the messages remain schedulable. 
Proof: See Appendix A of the technical report [12] on which this 
paper is based. (We note approximation A1 is required for the 
Lemma to hold). 



Theorem 1: For problem P2 with a mix of fixed and new 
messages compliant with our model, then a priority ordering with 
the new messages in deadline minus jitter relative priority order is 
optimal and robust with respect to sufficient tests S1 and S2 under 
approximation A1 (same length assumed for all messages), 
independent of the additional interference function ),,( iwE   (and 
hence the error arrival function) provided only that ),,( iwE   is 
monotonically non-decreasing in its parameters. 
Proof: We show that any mixed set of fixed and new messages 
compliant with the model that is schedulable under some priority 
order Q and that is the most robust i.e. tolerates the most 
additional interference (i.e. largest value of   ) of any 
schedulable ordering is also schedulable with the same scaling 
factor   (same robustness) under a priority ordering P that has 
the new messages in deadline minus jitter relative priority order. 

Base case: The set of messages is schedulable with additional 
interference function ),,( iwE   assuming priority order kQ since 
we set kQ Q  and Q  is the schedulable priority ordering 
assumed in the theorem. 

Inductive step: We select a pair of new messages that are at 
some priorities i and j in priority ordering kQ , but out of deadline 
minus jitter relative priority order. Lemma 1 proves that 
irrespective of the details of the additional interference function 

),,( iwE  , we may swap the priorities of these two messages 
forming priority ordering 1kQ  without loss of schedulability. Note 
that since we directly swap these message priorities, there is no 
change to the number of new messages in any of the gaps between 
fixed messages, and thus any constraints due to the size of these 
gaps continue to hold. At most 2/)1(  vvk  steps (effectively a 
bubble sort of the v new messages) are required to transform 
priority ordering Q  into P without any loss of schedulability or 
robustness □

Theorem 1 tells us that we can obtain both optimal and robust 
priority orderings by sorting the new messages into DJMPO and 
then merging (interleaving) them in some way with the fixed 
messages; however, it gives no information on how to do so. We 
examine that problem in the next two subsections. 
Corollary 1: (From Theorem 1) DJMPO is optimal and robust 
with respect to sufficient tests S1 and S2 under approximation A1
when all messages are freely assignable. 
Corollary 1 appears similar to the claim made by Tindell et al.[24], 
[25] that DJMPO is optimal for the test given in those papers; 
however, it should be noted that the test given by Tindell et al. was 
flawed (neither sufficient, nor exact [6]) and that DJMPO has been 
shown to be not optimal for exact tests [6]. 

5.1 Optimal Priority Assignment for P2 
Algorithm 2 provides Optimal Priority Assignment for problem P2
with a mix of fixed and new messages, with respect to sufficient 
tests S1 (and S2) under approximation A1. (Note approximation 
A1 is required so that Lemma 1 and Theorem 1 hold and thus the 
new messages may be kept in DJMPO partial order). 

Algorithm 2 first sorts the set of new messages N into deadline 
minus jitter relative priority order, and the set of fixed messages in 
order of their physical priorities and thus message IDs, lowest 
priority (i.e. highest message ID) first. The algorithm then attempts 
to assign message IDs starting with the highest possible ID (lowest 
priority) and working upwards through the physical priority levels 
(possible CAN IDs). Effectively the algorithm gives precedence to 
the fixed messages. It always fills low priority levels with new 
messages (in the reverse of DJMPO) until this is not possible 
because either the next new message in reverse DJMPO is not 

schedulable, or the ID reached corresponds to that of the highest ID 
(lowest priority) as yet unassigned fixed message. In which case, 
there is no option but to assign the fixed message. In these cases if 
the fixed message is unschedulable, then there is no schedulable 
priority assignment possible. 

All messages in N and M are assumed to be unassigned 
Sort the new messages in N into DJMPO 
Sort the fixed messages in M by their IDs, highest first 
NextID = Highest_CAN_ID() 
while (there are unassigned messages) { 

m = unassigned message from M with the highest ID  
if (fixed ID of m is NextID) { 

if (m is schedulable with all unassigned messages 
     assumed to have higher priorities) { 
          assign message m with ID = NextID. 
     } 

else { 
return unschedulable 

     } 
} 
else { 

k = unassigned message from N with the largest value of 
          deadline minus jitter  

if (k is schedulable with all unassigned messages 
    assumed to have higher priorities) { 
          assign message k with ID = NextID. 
     } 

else if (m is schedulable with all unassigned messages 
     assumed to have higher priorities) { 
          NextID = ID of message m
          assign message m with ID = NextID. 
     } 

else { 
return unschedulable 

     } 
NextID = Next_higher_CAN_ID (NextID) 
} 

} 
return schedulable 

Algorithm 2: OPA for problem P2 
with fixed message IDs and small gaps 

We note that at each step the algorithm only checks the 
unassigned new message with the largest value of deadline minus 
jitter. This is sufficient to achieve optimality since Theorem 1 tells 
us that if a schedulable ordering exists, then there will also be a 
schedulable ordering with the new messages in deadline minus 
jitter relative priority order. 

We note that Algorithm 2 is similar to Algorithm 2 from [23] 
in that it seeks to place new messages at the lowest priorities 
(highest possible IDs) and hence fixed messages at the highest 
possible relative priorities. Algorithm 2 uses the helper functions 
Highest_CAN_ID() which returns the highest valid CAN ID 
(lowest physical priority), and Next_higher_CAN_ID (NextID) 
which takes a CAN ID (NextID) as input returns the next valid ID 
with a higher physical priority (smaller numerical value). 
Theorem 2: Algorithm 2 provides optimal priority assignment for 
problem P2 with a mix of fixed and new messages compliant with 
our model, with respect to sufficient tests S1 and S2 under 
approximation A1. (We assume an arbitrary but known error 
arrival function and hence an additional interference function that 
is monotonic in its other parameters and has a fixed value of  ). 
Proof: We prove the theorem by showing that any schedulable 
priority ordering Q may be transformed into the priority ordering P
found by Algorithm 2 without loss of schedulability. First, by 
Theorem 1, we swap pairs of new messages thus transforming 



priority order Q into order kQ  with all new messages in deadline 
minus jitter monotonic partial order without loss of schedulability. 

Base case: The set of messages is schedulable assuming 
priority order kQ . 

Inductive step: For vh  down to 1, where v is the number of 
new messages. Select the hth highest priority new message and 
change its ID to the ID selected by Algorithm 2 forming priority 
order 1kQ . Note this does not affect the relative priority order of 
the new messages; however, message h may now be at a lower 
priority than one or more fixed messages.  

We note that by starting with the lowest priority new message 
and only ever moving messages down in priority, then at each step 
the constraints on the number of new messages in the gaps 
between, above and below fixed messages are respected. This 
follows from the fact that they are respected in the priority order 
produced by Algorithm 2.  

To prove that priority order 1kQ is schedulable, we need to 
consider the schedulability of the following groups of messages: 
(i) Fixed messages in ),( kQhhp i.e. those with higher priority 

than message h in kQ , and fixed messages in ),( 1kQhlp . 
Each of these messages is subject to exactly the same 
interference (has the same set of higher priority messages and 
the same set of lower priority messages) in both priority orders 

kQ  and 1kQ , hence their response times are unchanged. 
(ii) All new messages except for h. These messages did not change 

their relative priority order with respect to either h or the fixed 
messages, hence each of these messages is subject to exactly 
the same interference in both priority orders kQ  and 1kQ , 
hence their response times are unchanged. 

(iii) Message h is schedulable in priority order 1kQ  otherwise it 
would not have been placed in that position relative to the 
fixed messages by Algorithm 2. 

(iv) Fixed messages in ),(),( 1 kk QhhpQhlp . These messages 
are schedulable when at a lower priority than h in kQ . The 
only change in 1kQ  is that they are now at a higher priority 
than h, hence they also remain schedulable. 

At most v steps where v is the number of new messages are 
required to transform priority ordering kQ  into PQ 1  without 
any loss of schedulability □

Algorithm 2 provides optimal priority assignment for problem 
P2; however, the priority ordering obtained gives precedence to 
messages with fixed IDs effectively forcing the set of new 
messages to the lowest relative priorities at which they are 
schedulable. This is problematic in that one or more of these 
messages may be on the brink of unschedulability and thus the 
ordering obtained is likely to be fragile rather than robust. (We 
note that the process of checking freely assignable messages at the 
lowest priorities is necessary in order to obtain an ordering that is 
optimal using a greedy and therefore tractable approach with 
complexity that is )( 2nO  in the number of schedulability tests). 

5.2 Robust Priority Assignment for P2 
In this subsection, we build on the previous results to provide a 
Robust Priority Assignment algorithm (Algorithm 3) for problem 
P2 using the sufficient tests S1 or S2 under approximation A1. 
From Theorem 1, we know that if any schedulable priority 
ordering exists then there is a robust ordering with all of the new 
messages in deadline minus jitter relative priority order. Further, 
Algorithm 2 provides us with an initial schedulable priority 
ordering if one exists, with the new messages in deadline minus 
jitter relative priority order and assigned the lowest possible 
priorities commensurate with schedulability. Intuitively, we need 
to move from the initial ordering provided by Algorithm 2 towards 

a robust ordering while preserving deadline minus jitter partial 
order among the new messages. 

CurrentOrder = Priority order from Algorithm 2 with 0 . 
if (CurrentOrder not valid) { // no schedulable ordering

return unschedulable 
} 
RobustOrder = CurrentOrder
Determine max value of  for each message in CurrentOrder 
MaxAlpha = min  over all messages in CurrentOrder 
while (true) { 

x = message with min  in CurrentOrder // break ties in  
// favour of fixed messages, then lower priority messages
if (x is a fixed message) { 

return schedulable 
} 
if (there is no fixed message at a higher priority than x in  
  CurrentOrder) { 

return schedulable 
} 
NewOrder = RippleUpwards(x, CurrentOrder) 
if (NewOrder not valid) { // i.e. cannot create a valid  
 // NewOrder due to no space at highest physical priorities  

return schedulable 
} 
Determine max value of  for each message in NewOrder 
NewMaxAlpha = min  over all messages in NewOrder 
if (NewMaxAlpha MaxAlpha) { 

RobustOrder = NewOrder 
MaxAlpha = NewMaxAlpha 

} 
CurrentOrder = NewOrder

}

Algorithm 3: RPA for problem P2 
 with fixed message IDs and small gaps 

This is the approach taken in Algorithm 3, which first uses 
Algorithm 2 to determine if there is a schedulable priority 
ordering. The main body of Algorithm 3 is then a loop which 
promotes new messages upwards in the priority order with respect 
to fixed messages so as to improve overall robustness, while 
retaining their deadline minus jitter partial order. The helper 
function RippleUpwards(x, CurrentOrder) forms a NewOrder of 
messages from CurrentOrder by moving message x up in priority 
to the first ID above the next fixed message of higher priority than 
x that is not occupied by a fixed message. Note that ID may be 
occupied by another new message, if so then RippleUpwards() 
ripples the higher priority new messages upwards in priority as 
little as possible to preserve their deadline minus jitter partial order 
and to avoid ID clashes with fixed messages. If this is not possible, 
due to insufficient space at the highest physical priorities (lowest 
numerical CAN IDs) then the function returns invalid. A detailed 
walk-through of the operation of Algorithm 3 and the 
RippleUpwards() function is given in Appendix B of [12]. 

The fact that Algorithm 3 terminates can be seen by 
considering that on each iteration of the loop, the algorithm either 
exits or it moves at least one new message to a priority that is 
higher than that of the next higher priority fixed message. Further, 
once all new messages have higher priorities than fixed messages, 
the algorithm exits (if it did not already do so due to running out of 
message IDs at high priorities). Therefore in the worst case, with v
new messages and n-v fixed messages, moving just one new 
message past one fixed message each time, then we have )( vnv 
iterations. This value is maximised when we have equal numbers 
of fixed and new messages, thus an upper bound on the number of 
iterations is given by 4/2n . On each iteration, we (somewhat 
pessimistically assume) that the value of   needs to be re-



computed for each message. This may be done to a reasonable 
level of precision via a fixed number of iterations (e.g. 10) of a 
binary search. The number of single message schedulability tests 
required is therefore )( 3nO . 
Theorem 3: Algorithm 3 provides robust and optimal priority 
assignment for problem P2 with a mix of fixed and new messages 
compliant with our model, with respect to sufficient tests S1 (and 
S2) under approximation A1. 
Proof: Proof of optimality follows from Theorem 2 and the use of 
Algorithm 2. We now prove robustness. We assume for 
contradiction that there is some priority ordering *Q  that has the 
maximum robustness of    of any valid priority ordering, and 
that robustness is strictly higher than that achieved by priority 
ordering P produced by Algorithm 3. Since Algorithm 2 is optimal 
we can apply that algorithm assuming an additional interference 
function with scaling factor   to obtain a schedulable priority 
ordering Q with the same robustness as *Q . We now show that 
the priority ordering P obtained by Algorithm 3 is equivalent to Q 
thus contradicting the hypothesis and proving the theorem.  

Let kP  be the priority ordering produced on the kth iteration 
of Algorithm 3. ( 0P  is the priority ordering produced by 
Algorithm 2 with 0  used to initialise Algorithm 3). Let 

),( mXhpN  be the set of new messages that have a higher priority 
than fixed message m in some priority order X. Similarly, let 

),( mXhp  be the set of all messages with higher priority than 
message m in priority order X. 

We note that in the following, all priority orders (P, kP , 0P , 
Q) have the new messages in deadline minus jitter partial order 
(Theorem 1) and the fixed messages in the partial order determined 
by their fixed message IDs, thus the priority orders only differ in 
the interleaving of those two sets of messages. 

We prove the theorem by showing that on each iteration k of 
Algorithm 3, then either the following condition (Condition 4) 
holds, in which case a further iteration occurs, or the priority 
ordering produced equates to Q. 

Condition 4: Q has robustness greater than that of kP , and for 
every fixed message m, the set of higher priority new messages in 

kP  is a subset of those in Q i.e. ),(),( mQhpNmPhpN k  . Since 
the new and fixed messages are in the same partial orders in kP
and Q then it follows that ),(),( mQhpmPhp k  . Further, for at 
least one fixed message, the relationship is a strict subset thus 

),(),( mQhpNmPhpN k   and ),(),( mQhpmPhp k 
We note that if for every fixed message m, the set of higher 

priority new messages is the same in both kP  and Q i.e. 
),(),( mQhpNmPhpN k  , then this implies that the two priority 

orders are equivalent and hence have the same robustness. 
Base case: Condition 4 holds by construction for 0P  since that 

order is produced by Algorithm 2 with 0 , which places new 
messages at the lowest possible priorities assuming no additional 
interference. Alternatively, 0P  is equivalent to Q, in which case 
we already reached a contradiction. 

Inductive case: From kP  to 1kP . Since the overall robustness 
of Q is   then it follows that all of the fixed messages in Q must 
tolerate additional interference equating to   . Since, by the 
induction hypothesis Condition 4 holds for kP  then since 

),(),( mQhpmPhp k   all fixed messages in kP  must also tolerate 
additional interference equating to   . As kP  has lower 
overall robustness than Q there must be one or more new messages 
in kP  that tolerate additional interference equating to some value 
of   . Let message j be such a message with the least value of 
  of any message in kP . This is the message that Algorithm 3 
selects to move up in priority. 

Since the overall robustness of Q is greater than that of kP , it 
must be the case that message j is at a higher priority in Q than the 
first (i.e. lowest priority) fixed message h with a higher priority 
than message j in kP  i.e. where ),( jPhph k . This follows 
because the new messages are in the same partial order in Q and 

kP  as are the fixed messages, thus if j were at a lower priority than 
h in Q then we would have ),(),( jQhpjPhp k   and hence by 
virtue of the additional interference tolerated by message j in kP , 
the robustness of Q would also be  .  

Priority order Q attests that there is a schedulable and valid 
priority ordering with message j at a higher priority than message 
h. It follows that the process of moving message j to a priority 
above message h and rippling up the priorities of the new messages 
with smaller values of deadline minus jitter than j as little as 
possible to maintain the deadline minus jitter partial ordering must 
result in a schedulable priority order 1kP  (The schedulability of 
priority order Q attests that this change cannot result in message h
or any of the other higher priority fixed messages becoming 
unschedulable, and since the new messages have their priorities 
increased, they cannot become unschedulable either). Further, 
since these messages are moved up in priority as little as possible 
to accommodate message j at higher priority than h, then either 
Condition 4 continues to hold or 1kP  and Q are equivalent. If 1kP
and Q are equivalent then we again reached a contradiction. 

Iterating over increasing k, we note that either 1kP  and Q
become equivalent and so a contradiction is reached, or Condition 
4 continues to hold, and there exists a new message j that 
Algorithm 3 can select to move to a higher priority above some 
fixed message h, and this move is valid (i.e. there is space at the 
lower numerical message IDs (higher physical priorities) to 
maintain the partial ordering of new messages). Since we know 
that Algorithm 3 terminates after a maximum of )( vnv 
iterations, where v is the number of new messages, this again 
results in a contradiction. Iteration cannot go on indefinitely, and 
therefore the final priority ordering P produced by Algorithm 3 
must equate to Q. This contradicts the hypothesis that priority 
order Q and hence Q*is strictly more robust than P □

The RPA algorithm (Algorithm 3) gives preference to 
messages with fixed IDs in that if there are multiple orderings with 
the same robustness, it will pick the one with the lowest possible 
priorities for the freely assignable messages. Of course if the 
system can be made more robust by a priority ordering with some 
of those messages at higher priorities, then the algorithm will find 
such an ordering.  

We note that although Algorithm 2 and Algorithm 3 assign 
message IDs to the new messages, effectively they produce a 
logical priority ordering. The system designer is free to adjust the 
IDs of new messages, and this will not affect schedulability, 
provided the logical priority ordering is unchanged. Such 
adjustments may be useful to set bits for message filtering, or to 
leave gaps for subsequent additions to the set of messages. 

5.3 Automotive Case Study 
We examined the performance of the OPA and RPA 

algorithms for problem P2 on a real automotive case study, first 
presented by Kollman et al. in [17]. This system comprises a CAN 
bus connecting 10 ECUs, with 85 messages sent over the network. 
The number of messages sent by each ECU is given by the 
annotations in Figure 1. All messages are sent periodically and 
share a common release time. The length of the messages varies 
from 1 to 8 data bytes. (There are 60 messages with 8 bytes of data, 
3 with 5 bytes, 9 with 4 bytes, 10 with 2 bytes and 3 with 1 byte). 
The original bus speed intended for the network was 500 kBit/s. 



Figure 1: Case study network architecture. 
Table 3. provides some preliminary results, comparing 

different schedulability tests and priority assignments. In Expts 1-3 
all of the messages were assumed to be new and hence their 
priorities freely assignable, while Expt 4 assumes the original 
priority order specified by the automotive supplier. The minimum 
schedulable bus speed and breakdown utilisation for the exact test 
E1 with Optimal Priority Assignment (OPA) [6] are 275.8 Kbit/s 
and 84.7% respectively, whereas for the sufficient test S2 with 
DJMPO [29], they are 276.3 Kbit/ and 84.5%, applying 
approximation A1, these values become 302.5 Kbit/ and 77.2%. 
All of which compare favourably with values of 750.9 kBit/s and 
31.1% using the priority assignment originally specified.  

Table 3: Case Study: Summary of Results 

Expt Schedulability 
test 

Priority 
order

Min bus 
speed  

Max bus 
util.

1 Exact E1 OPA 275.8 Kbit/s 84.7%
2 Sufficient S2 DJMPO 276.3 Kbit/s 84.5%
3  Sufficient S2 

& A1 
DJMPO  302.5 Kbit/s 77.2% 

4 Exact E1 Specified 750.9 Kbit/s 31.1%
To evaluate the performance of the OPA and RPA algorithms 

on problem P2, we assumed a 500 kBit/s bus, that messages sent 
by ECUs 1 and 6 were fixed, and that messages sent by other 
ECUs were freely assignable. First, we determined an optimal 
priority order using Algorithm 2. This is illustrated in Figure 2. 

The transmission deadlines of the new messages are shown in 
black and those of the fixed messages in red. As expected, the new 
messages are placed at the lowest possible priorities. For this 
priority order, we computed the maximum additional interference 
that could be tolerated by all messages according to a simple 
additional interference function:  ),,( iwE  bit times. This 
resulted in a maximum tolerance of  863 bit times, equivalent 
to the re-transmission and error recovery overhead for up to 5 
maximum length messages. The message response times are 
shown in Figure 2 with and without this additional interference. 
Using this priority assignment, the minimum schedulable bus 
speed is 408.6 kBit/s and the max. bus utilisation 57.1% (computed 
using test E1 or S1, both of which gave the same result). 

We then used the RPA algorithm (Algorithm 3) to determine a 
robust priority ordering assuming the same simple additional 
interference function. The results are illustrated in Figure 3. Notice 
that now some of the new messages are interleaved with the fixed 
messages. The robust priority ordering obtained tolerated a 
maximum additional interference of 1268 bit times equating to the 
re-transmission and error recovery overhead of up to 7 maximum 
length messages. Again, the message response times are shown 
with and without this additional interference. Using this priority 
assignment, the minimum schedulable bus speed is 378.8 kBit/s, 
and the max. bus utilisation 61.7% (computed using test E1 or S1, 
both of which again gave the same result). 

We note that comparison with a robust and optimal priority 
assignment produced using an exact test is not possible since no 
solutions are currently known which are tractable. A brute force 
approach would potentially need to test )!/(! vnn   combinations 
(where n is the number of messages, and v is the number of new 

messages). For our case study, this amounts to more than a googol 
( 10010 ) combinations. 

Figure 2: Priority assignment using OPA algorithm for P2. 

Figure 3: Priority assignment using RPA algorithm for P2.

6. SUMMARY AND CONCLUSIONS 
In this paper, we investigated the problem of priority assignment 
for CAN when some messages have fixed identifiers and only a 
subset may have their priorities (identifiers) modified. 

We showed that there are two flavours of this problem P1 and 
P2. In P1, the gaps between the identifiers of the fixed messages 
are large enough to potentially accommodate all of the messages 
whose priorities may be freely set. In P2 these gaps are 
insufficient. The main contributions of this paper are as follows: 
We proved that problem P1 using exact E1, or sufficient tests S1
or S2, may be solved optimally with respect to those tests using 
variants of the standard OPA [1], [2] and RPA [7], [8] algorithms. 
We proved by means of a counter example, that problem P2 is not
amenable to the same form of solution. This shows that a recent 
algorithm proposed for this problem by Schmidt [23] using 
sufficient test S1 is not optimal w.r.t. that test as was suggested. 
We derived an optimal and robust solution to problem P2 with 
respect to a simple form of schedulability analysis which uses 
sufficient test S1 and assumes the same upper bound on the length 
of all messages (approximation A1). Finding such solutions for 
more precise analysis, i.e. for S1 without this approximation and 
also for exact test E1, remains an interesting open problem. 

Problems P1 and P2 are strongly motivated by industrial 
practice. Nearly all new automotive systems are built using at least 



some legacy components. Thus unless message identifiers can be 
reprogrammed (as with the Volcano implementation), then there 
will be some ECUs that transmit CAN messages with fixed IDs 
that cannot be changed as part of the design. Further, once a system 
has been built using new ECUs, what were once messages with 
freely assignable IDs then become fixed, thus upgrades and 
extensions to the system suffer the same or worse problems of 
priority assignment; further strengthening the case for a solution 
that allows message IDs to be reprogrammed. 

When message IDs cannot be reprogrammed, then the choice 
of which IDs to assign to new messages added for a particular 
upgrade has an effect on the future priority assignments possible 
and hence the schedulability and robustness of the system on future 
upgrades. In this case, design for extensibility [21], [27] for 
example by leaving appropriate gaps between message IDs, 
becomes an additional concern. This problem merits further 
research. 

While the research detailed in this paper focuses on priority 
assignment for messages on a single CAN bus, many automotive 
systems make use of two or more such networks connected 
together via gateways. In these systems, timing requirements are 
specified as end-to-end deadlines on functionality implemented by 
tasks that communicate over the networks. Here, a simple approach 
can be taken, splitting the end-to-end deadlines into sub-deadlines 
on individual messages, thus dividing the larger problem into a set 
of smaller independent ones (one for each CAN bus). This enables 
the priority assignment policies discussed in this paper to be used. 
Such subdivision can however lead to sub-optimal solutions. An 
alternative is to use search techniques to solve the overall problem 
holistically [22], [28]. 
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