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Abstract 
This paper addresses the problem of priority 

assignment in multiprocessor real-time systems using 
global fixed task-priority pre-emptive scheduling. 

In this paper, we prove that Audsley’s Optimal Priority 
Assignment (OPA) algorithm, originally devised for 
uniprocessor scheduling, is applicable to the 
multiprocessor case, provided that three conditions hold 
with respect to the schedulability tests used. 

Our empirical investigations show that the 
combination of optimal priority assignment policy and a 
simple compatible schedulability test is highly effective, in 
terms of the number of tasksets deemed to be schedulable.  

We also examine the performance of heuristic priority 
assignment policies such as Deadline Monotonic, and an 
extension of the TkC priority assignment policy called 
DkC that can be used with any schedulability test. Here we 
find that Deadline Monotonic priority assignment has 
relatively poor performance in the multiprocessor case, 
while DkC priority assignment is highly effective. 

1. Introduction 
Today real-time embedded systems are found in many 

diverse application areas including; automotive 
electronics, avionics, space systems, telecommunications, 
and consumer electronics. In all of these areas, there is 
rapid technological progress. Companies building 
embedded real-time systems are driven by a profit motive. 
To succeed, they aim to meet the needs and desires of their 
customers by providing systems that are more capable, 
more flexible, and more effective than their competition, 
and by bringing these systems to market earlier. This 
desire for technological progress has resulted in a rapid 
increase in both software complexity and processing 
demands. To address these demands for increased 
processor performance, silicon vendors no longer 
concentrate on increasing processor clock speeds, as this 
approach has lead to problems with high power 
consumption and the need for excessive heat dissipation. 
Instead, there is now an increasing trend towards using 
multiprocessor platforms for high-end real-time 
applications. 

Approaches to multiprocessor real-time scheduling, 
can be categorised into two broad classes: partitioned and 
global. Partitioned approaches allocate each task to a 
single processor, dividing the multiprocessor scheduling 
problem into one of task allocation (bin-packing) followed 

by uniprocessor scheduling. In contrast, global approaches 
allow tasks to migrate from one processor to another at 
run-time. Real-time scheduling algorithms can be 
categorised into three classes based on when priorities can 
change: fixed task-priority (all invocations, or jobs, of a 
task have the same priority), fixed-job priority and 
dynamic-priority. 

In this paper, we focus on priority assignment policies 
for global fixed task-priority pre-emptive scheduling, 
which for brevity we refer to as global FP scheduling. 
1.1. Related work 

In the context of uniprocessor fixed priority 
scheduling, there are three fundamental results regarding 
priority assignment. In 1972, Serlin [32] and Liu and 
Layland [30] showed that Rate Monotonic priority 
ordering (RMPO) is optimal for independent synchronous 
periodic tasks (that share a common release time), that 
have implicit deadlines (equal to their periods). In 1982, 
Leung and Whitehead [31] showed that Deadline 
Monotonic priority ordering (DMPO) is optimal for 
independent synchronous tasks with constrained deadlines 
(less than or equal to their periods). In 1991, Audsley [6], 
[7] devised an optimal priority assignment (OPA) 
algorithm that solved the problem of priority assignment 
for asynchronous tasksets, and for tasks with arbitrary 
deadlines (which may be greater than their periods). 

In the context of multiprocessor global FP scheduling, 
work on priority assignment has focussed on 
circumventing the so called “Dhall effect”. In 1978, Dhall 
and Liu [25] showed that under global FP scheduling with 
RMPO, a set of periodic tasks with implicit deadlines and 
total utilisation just greater than 1 can be unschedulable on 
m processors. For this problem to occur at least one task 
must have a high utilisation. In 2000, Andersson and 
Jonsson [2] designed the TkC priority assignment policy to 
circumvent the Dhall effect. TkC assigns priorities based 
on a task’s period ( iT ) minus k times its worst-case 
execution time ( iC ), where k is a real value computed on 
the basis of the number of processors. Via an empirical 
investigation, Andersson and Jonsson showed that TkC is 
an effective priority assignment policy for periodic 
tasksets with implicit deadlines. 

In 2001, Anderson et al. [3] gave a utilisation bound 
for global FP scheduling of periodic tasksets with implicit 
deadlines using the RM-US{ς } priority assignment 
policy. RM-US{ς } gives the highest priority to tasks with 
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utilisation greater than a threshold ς . In 2003, Andersson 
and Jonsson [4] showed that the maximum utilisation 
bound for global FP scheduling of such tasksets is 

mm 41.0)12( ≈− , when priorities are defined as a scale 
invariant function of worst-case execution times and 
periods. In 2005, Bertogna [15] extended the work of 
Andersson et al. [3] to sporadic tasksets with constrained 
deadlines forming the DM-DS{ς } priority assignment 
policy. DM-DS{ς } gives the highest priority to at most 

1−m  tasks with densities greater than the threshold ς , 
and otherwise uses DMPO. Bertogna [15] provided a 
density-based schedulability test for DM-DS{ς }. In 2008, 
Andersson [5] proposed a form of Slack Monotonic 
priority assignment called SM-US{ς } Using a threshold 
of )53/(2 + , SM-US{ς } has a utilisation bound of  

mm 382.0)53/(2 ≈+  for sporadic tasksets with implicit-
deadlines. 

More sophisticated schedulability tests for global FP 
scheduling of sporadic tasksets with constrained and 
arbitrary deadlines have been developed using analysis of 
response times and processor load. In 2000, Andersson 
and Jonsson [1] gave a simple response time upper bound 
applicable to tasksets with constrained-deadlines. In 2001, 
Baker [8] developed a fundamental schedulability test 
strategy, based on considering the minimum amount of 
interference in a given interval that is necessary to cause a 
deadline to be missed, and then taking the contra-positive 
of this to form a sufficient schedulability test. This basic 
strategy underpins an extensive thread of subsequent 
research into schedulability tests for global EDF [11], [17], 
[14], [13], and global FP scheduling [12], [18], [9], [27]. 

Baker’s work was subsequently built upon by Bertogna 
et al. [15] in 2005, and Bertogna and Cirinei [18] in 2009. 
They developed sufficient schedulability tests for: (i) any 
work conserving algorithm, (ii) global EDF, and (iii) 
global FP, based on bounding the maximum workload in a 
given interval. This basic approach was extended to form 
an iterative schedulability test using the computed slack 
for each task to limit the amount of carry-in interference 
and hence to calculate a new value for the slack. In 2007, 
Bertogna and Cirinei [16] adapted this approach to 
iteratively compute an upper bound on the response time 
of each task, using the upper bound response times of 
other tasks to limit the amount of interference considered. 

Global multiprocessor scheduling is intrinsically a 
much more difficult problem than uniprocessor scheduling 
due to the simple fact that a task can only use one 
processor at a time, even when several are free [29]. This 
restriction manifests itself as the critical instant effect [28], 
where simultaneous release of tasks does not necessarily 
lead to worst-case response times. As a result, to the best 
of our knowledge, no exact tests are currently known for 
global FP scheduling of sporadic tasksets. Exact tests are 
only known for the strictly periodic case [20], [21]. 

1.2. Intuition and motivation 
The research described in this paper is motivated by 

the need to close the large gap that currently exists 
between the best known approaches to multiprocessor real-
time scheduling for sporadic tasksets with constrained 
deadlines and what may be possible as indicated by 
feasibility / infeasibility tests. We hypothesise that a key 
factor in closing this gap is priority assignment. The 
intuition behind our work is the idea that for fixed priority 
scheduling, finding an appropriate priority ordering is as 
important as using an effective schedulability test. 

In the simulation chapter of his thesis, Bertogna [17] 
showed that for sporadic tasksets with constrained 
deadlines, the response time test [16] for global FP 
scheduling – using DMPO, outperformed all other tests 
known at the time, including those for global FP, global 
EDF, and EDZL [10]; a minimally dynamic global 
scheduling algorithm that dominates global EDF. While 
DMPO is known to be an optimal priority assignment 
policy for the equivalent uniprocessor case [31], this 
optimality does not extend to multiprocessors. 

In this paper, we prove that Audsley’s Optimal Priority 
Assignment (OPA) algorithm [6], [7], originally devised 
for uniprocessor scheduling, is applicable to the 
multiprocessor case provided that the schedulability test 
used meets three simple conditions. These conditions 
allow us to classify schedulability tests for global FP 
scheduling into two categories: OPA-compatible and 
OPA-incompatible. We show via an empirical 
investigation that optimal priority assignment combined 
with a simple OPA-compatible schedulability test can be 
significantly more effective in terms of the number of 
tasksets deemed schedulable, than using a state-of-the-art, 
OPA-incompatible schedulability test with DMPO. 
Further, we build on the work of Andersson and Jonsson 
[2], developing heuristic priority assignment policies: D-
CMPO and DkC that are applicable to any schedulability 
test. Our empirical studies show that DkC significantly 
outperforms DMPO, giving close to optimal results. 
1.3. Organisation 

The remainder of the paper is organised as follows: 
Section 2 describes the terminology, notation and system 
model used. Section 3 recapitulates existing sufficient tests 
for global FP scheduling. Section 4 discusses both optimal 
and heuristic approaches to priority assignment. Section 5 
outlines an unbiased method of taskset generation based 
on techniques developed for the uniprocessor case. Section 
6 presents an empirical investigation into the effectiveness 
of priority assignment policies and sufficient 
schedulability tests. Finally, Section 7 concludes with a 
summary and suggestions for future research. 

2. System model, terminology and notation 
In this paper, we are interested in global FP scheduling 

of an application on a homogeneous multiprocessor system 



comprising m identical processors. The application or 
taskset is assumed to comprise a static set of n tasks 
( nττ ...1 ), where each task iτ  is assigned a unique priority 
i, from 1 to n (where n is the lowest priority). 

We are interested in two task models, referred to as 
periodic and sporadic. In both models, tasks give rise to a 
potentially infinite sequence of jobs. In the periodic task 
model, the jobs of a task arrive strictly periodically, 
separated by a fixed time interval. In the sporadic task 
model, each job of a task may arrive at any time once a 
minimum inter-arrival time has elapsed since the arrival of 
the previous job of the same task. 

Each task iτ  is characterised by: its relative deadline 
iD , worst-case execution time iC , and minimum inter-

arrival time or period iT . The utilisation iU  of each task 
is given by ii TC / . A task’s worst-case response time iR  
is defined as the longest time from the task arriving to it 
completing execution. 

It is assumed unless otherwise stated that all tasks have 
constrained deadlines ( ii TD ≤ ). The tasks are assumed to 
be independent and so cannot be blocked from executing 
by another task other than due to contention for the 
processors. Further, it is assumed that once a task starts to 
execute it will not voluntarily suspend itself. 

Intra-task parallelism is not permitted; hence, at any 
given time, each job may execute on at most one 
processor. As a result of pre-emption and subsequent 
resumption, a job may migrate from one processor to 
another. The cost of pre-emption, migration, and the run-
time operation of the scheduler is assumed to be either 
negligible, or subsumed into the worst-case execution time 
of each task. 
2.1. Feasibility, schedulability and optimality 

A taskset is referred to as feasible if there exists a 
scheduling algorithm that can schedule the taskset without 
any deadlines being missed. Further, we refer to a taskset 
as being global FP feasible if there exists a priority 
ordering under which the taskset is schedulable using 
global FP scheduling. 

In systems using global FP scheduling, it is useful to 
separate the two concepts of priority assignment and 
schedulability testing. The priority assignment problem is 
one of determining the relative priority ordering of a set of 
tasks. Given a taskset with some priority ordering, then the 
schedulability testing problem involves determining if the 
taskset is schedulable with that priority ordering. Clearly 
the two concepts are closely related. For a given taskset, 
there may be many priority orderings that are 
unschedulable, and just a few that are schedulable. 

A schedulability test S can be classified as follows. 
Test S is said to be sufficient if all of the tasksets / priority 
ordering combinations that it deems schedulable are in fact 
schedulable. Similarly, test S is said to be necessary if all 
of the tasksets / priority ordering combinations that it 
deems unschedulable are in fact unschedulable. Finally, 

test S is referred to as exact if it is both sufficient and 
necessary. 

The concept of an optimal priority assignment policy 
can be defined with respect to a schedulability test S:  
Definition 1: Optimal priority assignment policy: A 
priority assignment policy P is referred to as optimal with 
respect to a schedulability test S and a given task model, if 
and only if the following holds: P is optimal if there are no 
tasksets that are compliant with the task model that are 
deemed schedulable by test S using another priority 
assignment policy, that are not also deemed schedulable by 
test S using policy P. 

We note that the above definition is applicable to both 
sufficient schedulability tests and exact schedulability 
tests. 

An optimal priority assignment policy for an exact 
schedulability test facilitates classification of all global FP 
feasible tasksets compliant with a particular task model. 
For example, for periodic tasksets, Cucu and Goossens 
[20], [21] showed that exact schedulability can be 
determined by simulating the schedule over an interval 
related to the hyperperiod1 of the taskset. For this exact 
test the only known optimal priority assignment policy 
involves checking all n! possible priority orderings [22]. 
Combining the two, it is theoretically possible, but 
computational intractable, to determine if any given 
periodic taskset is global FP feasible. 

Using an optimal priority assignment policy for a 
sufficient test S we cannot classify all global FP feasible 
tasksets, due to the sufficiency of the test. However, 
optimal performance is still provided with respect to the 
limitations of the test itself. For example, the set Y of all 
tasksets that are deemed schedulable by a sufficient test S 
using its optimal priority assignment policy is a superset of 
the set Z of all tasksets that are deemed schedulable by test 
S using any other priority assignment policy. Further due 
to the sufficiency of the test, Y is a strict subset of the set G 
containing all global FP feasible tasksets ( ZYG ⊇⊃ ). 

3. Recapitulation of schedulability tests 
In this section, we outline two sufficient schedulability 

tests for global fixed priority scheduling of sporadic 
tasksets developed by Bertogna et al [18], and Bertogna 
and Cirinei [16]. Both of these tests are based on the 
fundamental strategy derived by Baker [8], the outline of 
which is as follows: 
1. Consider an interval referred to as the problem 

window, at the end of which a deadline is missed, for 
example the interval of length kD  from the arrival to 
the deadline of some job of task kτ . 

2. Establish a condition necessary for the job to miss its 
deadline, for example, all m processors executing 

                                                 
1 The hyperperiod of a taskset is the least common multiple of the task 
periods.  



other tasks for more than kk CD −  during the interval. 
3. Derive an upper bound UBI  on the maximum 

interference in the interval due to other tasks. 
4. Form a necessary unschedulability test; i.e. an 

inequality between UBI  and the amount of execution 
necessary for a deadline miss, then negate this 
inequality to form a sufficient schedulability test. 

In [18], Bertogna et al. derived a sufficient 
schedulability test using the above approach, by 
considering the maximum amount of interference that 
could occur in the problem window due to each higher 
priority task. This maximum interference occurs when the 
first job of the higher priority task in the problem window 
starts executing at the start of the problem window, and 
completes at its deadline, with all subsequent jobs 
executing as early as possible – see Figure 1. 

 
Figure 1 

Bertogna et al. [18] showed that )(LW D
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bound on the workload of task iτ  in an interval of length 
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If task kτ  is schedulable, then an upper bound on the 
interference due to a higher priority task iτ  in an interval 
of length kD  is given by: 
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Note, the ‘+1’ term in Equation (3) is a result of the 
approach to time representation2 used in [18]. 

A sufficient schedulability test for each task kτ  is then 
given by the following inequality: 
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where hp(k) refers to the set of tasks with priorities higher 
than k. Note we have re-written Equation (4) in a different 
form from that presented in [18] for ease of comparison 
with the schedulability test given in [16].  
 Bertogna and Cirinei [16] extended the method 
described above to iteratively compute an upper bound 
response time UB

kR  for each task, using the upper bound 
                                                 
2 Time is represented by non-negative integer values, with each time 
value t viewed as representing the whole of the interval [t, t+1). This 
enables mathematical induction on clock ticks and avoids confusion with 
respect to end points of execution. 

response times of higher priority tasks to limit the amount 
of interference considered. This extended approach applies 
the same logic as [18], while recognising that the latest 
time that a task can execute is when it completes with its 
worst-case response time rather than at its deadline. 

Below, we give the schedulability test for this method. 
Note we have simplified the equations given by Bertogna 
and Cirinei [16] to remove the slack terms and use upper 
bound response times directly. This is possible for global 
FP scheduling as the response times computed are 
unaffected by lower priority tasks3. 

Taking upper bound response times into account, an 
upper bound )(LW R

i  on the workload of task iτ  in an 
interval of length L is given by: 
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If task kτ  is schedulable, then an upper bound on the 
interference due to a higher priority task iτ  in an interval 
of length UB

kR  is given by: 
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An upper bound on the response time of each task kτ  
can then be found via the following fixed point iteration 
(Theorem 7 in [16]). 
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Iteration starts with k
UB
k CR = , and continues until the 

value of UB
kR  converges or until k

UB
k DR > , in which case 

task kτ  is unschedulable.  
For convenience, in the rest of this paper, we refer to 

the sufficient schedulability test based on deadline 
analysis, given by Equation (4), as the “DA test”, and that 
based on response time analysis, given by Equation (8), as 
the “RTA test”. 

4. Priority assignment 
In 2000, Andersson and Jonsson [1] made the 

following observation about periodic tasksets:  
“For fixed priority pre-emptive global multiprocessor 

scheduling, there exist task sets for which the response 
time of a task depends not only on iT  and iC of its higher-
priority tasks, but also on the relative priority ordering of 
those tasks”. 

Andersson and Jonsson concluded that even if an exact 
schedulability test were known4, then it would not be 
possible to use Audsley’s OPA algorithm [6], [7] to 
determine the optimal priority ordering. While this is 
undoubtedly true, we believe that it has also lead to a 
                                                 
3 Bertogna and Cirinei [16] also investigated global EDF scheduling and 
the slack terms are necessary in that case. 
4 Note, such a test is now known, see [20], [21]. 



common misconception that the OPA algorithm cannot be 
applied to schedulability tests for global FP scheduling. 

In this section, we explore the problem of optimal 
priority assignment for global FP scheduling. First we 
provide an overview of Audsley’s OPA algorithm, [6], [7] 
derived for uniprocessor systems. 
4.1. Optimal priority assignment 

The pseudo code for the OPA algorithm, using some 
schedulability test S is given below. 

Optimal Priority Assignment Algorithm 
for each priority level k, lowest first 
{ 

for each unassigned task τ 
{ 
  if τ is schedulable at priority k  

  according to schedulability test S 
  { 
   assign τ to priority k 
   break (continue outer loop) 
  } 
} 
 return unschedulable 

} 
return schedulable 

For n tasks, the algorithm performs at most n(n+1)/2 
schedulability tests and is guaranteed to find a priority 
assignment that is schedulable according to schedulability 
test S, if one exists. This is a significant improvement over 
inspecting all n! possible orderings. Note that the OPA 
algorithm does not specify the order in which tasks should 
be tried at each priority level. 

Let S be some schedulability test for global FP 
scheduling which complies with the following conditions: 
Condition 1: The schedulability of a task kτ  may, 
according to test S, be dependent on the set of higher 
priority tasks, but not on the relative priority ordering of 
those tasks. 
Condition 2: The schedulability of a task kτ  may, 
according to test S, be dependent on the set of lower 
priority tasks, but not on the relative priority ordering of 
those tasks. 
Condition 3: When the priorities of any two tasks of 
adjacent priority are swapped, the task being assigned the 
higher priority cannot become unschedulable according to 
test S, if it was previously schedulable at the lower 
priority. (As a corollary, the task being assigned the lower 
priority cannot become schedulable according to test S, if 
it was previously unschedulable at the higher priority). 
We now prove the following theorem about the 
applicability of the OPA algorithm to global FP 
scheduling. 
Theorem 1: The Optimal Priority Assignment (OPA) 
algorithm is an optimal priority assignment policy (see 
Definition 1) for any global FP schedulability test S 
compliant with Conditions 1-3. 
Proof: We assume for contradiction that there exists a 
taskset X that is schedulable according to test S with 

priority ordering Q , and further that the OPA algorithm is 
unable to generate a schedulable priority ordering for 
taskset X. 

In the proof, we will show that when applied to taskset 
X, each iteration k of the OPA algorithm, from priority 
level n down to 1, is able to find a task that is schedulable 
according to test S. Thus the OPA algorithm is able to find 
a priority ordering P for taskset X that is schedulable 
according to test S. This contradicts the assumption and 
hence proves the theorem. 

For the purposes of the proof, we refer to priority 
ordering Q  as nQ . Over the n iterations, we will 
transform nQ  into 1−nQ … 0Q , where 0Q  is equivalent to 
P, the priority ordering generated by the OPA algorithm. 
The transformation will be such that after each iteration k, 
(from n to 1), the transformed priority ordering 1−kQ  
remains schedulable according to test S, and the tasks at 
priority levels k and below are the same in 1−kQ  and P. 

We now introduce a concise notation to aid in the 
discussion of tasks and groups of tasks within a priority 
ordering: 
o )(iQk  is the task at priority level i in priority ordering 

kQ . 
o ),( kQihep  is the set of tasks with priority higher than 

or equal to i in priority ordering kQ . 
o ),( kQihp  is the set of tasks with priority strictly 

higher than i in priority ordering kQ . 
o ),( kQilep  is the set of tasks with priority lower than 

or equal to i in priority ordering kQ . 
o ),( kQilp  is the set of tasks with priority strictly lower 

than i in priority ordering kQ . 
In the proof that follows, we use k to represent both 

the iteration of the OPA algorithm, i.e. the priority level 
examined, and also the index for the transformed priority 
ordering. 

Proof by iterating over values of k from n to 1: At the 
start of each iteration k, all tasks in priority ordering kQ  
are known to be schedulable according to test S. 

As the tasks with lower priority than k are the same in 
both kQ  and P ( ),( kQklp = ),( Pklp ), then it follows that 

),( kQkhep  = ),( Pkhep . Given Condition 1 and the fact 
that kQ  is a schedulable priority ordering according to test 
S, on iteration k the OPA algorithm is guaranteed to find a 
task in the set of unassigned tasks (i.e. ),( Pkhep  = 

),( kQkhep ) that is schedulable at priority k according to 
test S. We note that one such task is )(kQk . The task 
chosen by the OPA algorithm is designated )(kP . 

There are two cases that need to be considered: 
1. )(kP  is the same as )(kQk , in which case no 

transformation is necessary to form priority ordering 
1−kQ  ( kk QQ =−1 ) and hence 1−kQ  is trivially a 

schedulable priority ordering. 
2. The OPA algorithm chose a different schedulable 

task; in other words )(kP  is the task at some higher 
priority level i in kQ , i.e. )(iQk . In this case, we 
transform kQ  into 1−kQ  by moving task )(iQk  down 



in priority from priority level i to priority level k and 
the tasks in kQ  at priority levels i+1 to k up one 
priority level, as illustrated in Figure 2. 

Comparing the tasks in priority order 1−kQ  with their 
counterparts in kQ . There are effectively four groups of 
tasks to consider: 
1. ),( 1−kQihp : These tasks are assigned the same 

priorities in both kQ  and 1−kQ , given Condition 2, all 
of these tasks remain schedulable. 

2. ),(),( 11 −− ∩ kk QilepQkhp : These tasks retain the 
same partial order but are shifted up one priority level 
in 1−kQ . This shift in priority can be affected by 
repeatedly swapping the priorities of task )(kP  and 
the task immediately below it in the priority order, 
until task )(kP  reaches priority k. Hence, given 
Condition 3, all the tasks increasing in priority, i.e. 
those in the set ),(),( 11 −− ∩ kk QilepQkhp , remain 
schedulable. 

3. Task )()()(1 kPiQkQ kk ==− : The tasks of lower 
priority than k are the same in both kQ  and P, hence 

),(),( kQkhepPkhep = . The OPA algorithm selected 
task )(kP  from the set of tasks ),( kQkhep  on the 
basis that it is schedulable at priority k with the set of 
tasks )}({),( iQQkhep kk −  = ),( 1−kQkhp  at higher 
priorities. Given Condition 1, task )()(1 kPkQk =−  is 
schedulable at priority k, irrespective of the priority 
order of the tasks in ),( 1−kQkhp  and therefore it 
remains schedulable in priority order 1−kQ . 

4. ),( 1−kQklp : These tasks are assigned the same 
priorities in both kQ  and 1−kQ . Given Condition 1 
and the fact that ),(),( 1 kk QkhepQkhep =− , all of the 
tasks in ),( 1−kQklp  remain schedulable according to 
test S. 

The above analysis shows that every task in 1−kQ  remains 
schedulable according to test S. A total of n iterations of 
the above process (for k = n down to 1) correspond to 
iteration of the OPA algorithm over all n priority levels. 
On each iteration the OPA algorithm is able to identify a 
task that is schedulable according to test S and therefore 
generate a priority ordering P that is schedulable according 
to test S □ 

 
Figure 2 

The proof of Theorem 1 shows that Conditions 1-3 are 
sufficient for schedulability test S to be OPA-compatible. 
We now show that each of these conditions is also 

necessary. 
Theorem 2: Conditions 1-3 are all necessary conditions 
for the OPA algorithm to correctly identify a priority 
ordering that is deemed schedulable by schedulability test 
S if such an ordering exists. 
Proof: Necessity of Condition 1: The OPA algorithm does 
not specify the priority ordering of unassigned tasks; 
therefore when determining the schedulability of a task A 
at priority k, the schedulability test S is effectively free to 
choose any arbitrary priority ordering for the unassigned 
(higher priority) tasks. Let us assume that with the 
arbitrary priority ordering chosen for the unassigned tasks, 
task A is deemed schedulable at priority k, and it therefore 
assigned to that priority level. If Condition 1 does not 
hold, then a different priority ordering later established by 
the OPA algorithm for the higher priority tasks can result 
in task A becoming unschedulable at priority k according 
to test S. In this case, the priority ordering found by the 
OPA algorithm is erroneous; it is not in fact schedulable 
according to test S. 

Necessity of Condition 2: If Condition 2 does not hold 
then the schedulability of a task according to test S is 
dependent on the priority order of lower priority tasks. In 
this case, the OPA algorithm could place tasks at priorities 
lower than k in an order that results in no task being 
schedulable at priority level k. Yet, if the lower priority 
tasks were placed in a different priority order, then a task 
could be found that was schedulable at priority k according 
to test S. In this case, the OPA-algorithm fails to find a 
priority ordering that is schedulable according to test S 
when such a priority ordering exists.  

Necessity of Condition 3: If Condition 3 does not 
hold, then two tasks A and B may both be schedulable 
according to test S when assigned the lowest priority; 
however task B may be unschedulable when assigned the 
next highest priority. Let us assume that the OPA 
algorithm arbitrarily chooses to assign task A to the lowest 
priority. In this case, no tasks are found that are 
schedulable at the next highest priority. Thus the OPA-
algorithm fails to find a priority ordering that is 
schedulable according to test S, even though one exists; 
with task B at the lowest priority □ 

Condition 2 holds for all of the schedulability tests 
considered in this paper. These tests deal with pre-emptive 
scheduling of independent tasks, hence the schedulability 
of higher priority tasks is independent of lower priority 
tasks. We note that Condition 2 is important when 
considering non-pre-emptive scheduling and task models 
which permit access to mutually exclusive shared 
resources. 

We note that Theorem 1 depends on emergent 
properties of the schedulability test, and not on the specific 
properties of the underlying task model. It is therefore 
applicable to both periodic and sporadic task models. 
Conditions 1-3 enable us to classify global FP 



schedulability tests as either OPA-compatible or OPA-
incompatible. 
Theorem 3: Any exact schedulability test for periodic 
tasksets is OPA-incompatible. 
Proof: It suffices to show that Condition 1 does not hold 
for any exact test. Consider the following synchronous 
periodic taskset with four tasks, two copies of task A = {1, 
2, 3} and two copies of task B = {2, 4, 4}, executing on a 
two processor system. (The parameters are the task’s 
worst-case execution time, deadline, and period 
respectively). Task B is schedulable at the lowest priority, 
with the other tasks in priority order A, A, B, but not 
schedulable when they are in priority order A, B, A or B, A, 
A. This can be seen by examining the schedule over the 
hyperperiod. In effect, both the exact schedulability and 
the exact response time of task B at the lowest priority 
level are dependent on the relative priority ordering of the 
higher priority tasks. As all exact schedulability tests must 
by definition provide an identical classification of all 
tasksets / priority ordering combinations as schedulable or 
unschedulable it follows that all exact schedulability tests 
for periodic tasksets are OPA-incompatible □ 
Theorem 4: The RTA test [16] for global FP scheduling 
of sporadic tasksets (Equation (8)) is OPA-incompatible. 
Proof: It suffices to show that Condition 1 does not hold 
for the RTA test. The workload )(LW R

i  (Equation (5)) 
used to determine schedulability via the RTA test depends 
on the response times of higher priority tasks, which in 
turn depend on the relative priority ordering of those tasks. 
This can be seen by considering the following example 
comprising four tasks: two copies of task A = {10, 20, 20}, 
task B = {10, 20, 100}, and task C = {20, 55, 55}, 
executing on a two processor system. With priority order 
A, A, B, C the taskset is deemed schedulable by the RTA 
test with upper bounds on task response times of 10, 10, 
20, and 55 respectively. However, if the priority order is 
instead A, B, A, C, then the copy of task A at priority 3 has 
an increased upper bound response time of 20 (it was 10 at 
priority 2). This increases its workload and interference on 
task C which is then deemed unschedulable □ 
Theorem 5: The response time test of Andersson and 
Jonsson [1] (Equation (9) below) for global FP scheduling 
of sporadic tasksets is OPA-compatible: 
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Proof: It suffices to show that Conditions 1-3 hold. 
 Inspection of Equation (9) shows that the upper bound 
response time ub

kR  computed for task kτ  depends on the 
set of higher priority tasks, but not on their relative priority 
ordering, hence Condition 1 holds. 

ub
kR  (Equation (9)) has no dependency on the set of 

tasks with lower priority than k, hence Condition 2 holds. 
Consider two tasks A and B initially at priorities k and 

k+1 respectively. The upper bound response time of task B 
cannot increase when it is shifted up one priority level to 
priority k, as the only change in the response time 
computation (Equation (9)) is the removal of task A from 
the set of tasks that have higher priority than task B, hence 
Condition 3 holds □ 
Theorem 6: The DA test [18] (Equation (4)) for global FP 
scheduling of sporadic tasksets is OPA-compatible: 
Proof: Follows the same logic as the proof of Theorem 5, 
with the upper bound response time given by the right 
hand side of Equation (4) rather than Equation (9) □ 
4.2. Heuristic priority assignment 

In this section, we investigate heuristic priority 
assignment policies. 

In his thesis [17], Bertogna evaluates the effectiveness 
of a number of different schedulability tests. Bertogna’s 
experiments show that using DMPO the RTA test 
outperforms all other then known schedulability tests for 
constrained deadline sporadic tasksets, including those for 
EDF and EDZL. Despite this, and the optimality of DMPO 
in the equivalent uniprocessor case, we are sceptical about 
the effectiveness of DMPO in the multiprocessor case.  

The intuition for an alternative priority assignment 
policy can be obtained by re-arranging Equation (4): 
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For large m, the term on the right hand side grows 
relatively slowly with each additional higher priority task. 
This suggests that ii CD −  monotonic priority ordering 
(D-CMPO) might be a useful heuristic. 

Andersson and Jonsson [2] investigated a similar 
priority ordering, called TkC, for implicit deadline 
tasksets. TkC assigns priorities based on the value of 

ii kCT − , where k is a real value computed on the basis of 
the number of processors, as follows: 

m
mmmk

2
1651 2 +−+−

=     (11) 

Extending this approach to tasksets with constrained 
deadlines, we form the DkC priority assignment policy 
which orders tasks according to the value of ii kCD − , 
where k is again computed according to Equation (11). 

The performance of the three heuristic priority 
assignment policies: DMPO, D-CMPO, and DkC is 
examined empirically in Section 6. 

We also developed heuristic priority assignment 
algorithms based on the DM-DS{ς } [15] and SM-US{ς } 
[5] priority assignment policies. These algorithms, 
although more complex, were found to be no more 
effective than the DkC policy. Details of the algorithms 
and their performance can be found in [24]. 

It is interesting to note that D-CMPO and DkC have 
some similarities with recent work on dynamic priority 
scheduling: The LEDLm algorithm proposed by Easwaran 



et al. [26] in 2008, partially schedules jobs on the basis of 
longest remaining execution time first. This has the effect 
of maximising the potential for concurrency by retaining a 
large number of incomplete jobs with short remaining 
execution times; the idea being that such jobs are easier to 
schedule than a smaller number of jobs with longer 
remaining execution times. D-CMPO and DkC incorporate 
an element of this effect, as by comparison with DMPO, 
they assign higher priorities to tasks with longer execution 
times. 

5. Taskset generation 
Empirical investigations into the effectiveness of 

priority assignment policies and schedulability tests 
require a means of generating tasksets. A taskset 
generation algorithm should be unbiased [19], and ideally, 
it should allow tasksets to be generated that comply with a 
specified parameter setting. That way the dependency of 
priority assignment policy / schedulability test 
effectiveness on each taskset parameter can be examined 
by varying that parameter, while holding all other 
parameters constant, avoiding any confounding effects. 

A (naïve) unbiased method of generating tasksets of 
cardinality n and target utilisation (Ut) is as follows.  
1. Select n task utilisation values iU  at random from a 

uniform distribution over the range [0,1]. 
2. Discard the taskset if the total utilisation U is not 

within some small percentage of Ut, and generate a 
new taskset by returning to step 1. 

We note that this naive approach is not viable in practice 
due to the number of tasksets that need to be discarded. 
The UUnifast algorithm of Bini and Buttazzo [19] (pseudo 
code given below), was devised to give the same unbiased 
distribution. Note, pow(x, y) raises x to the power y, and 
rand() returns a random number in the range [0,1] from a 
uniform distribution. 

UUnifast(n,Ut) 
{ 
  SumU = Ut; 
  for (i = 1 to n-1)  
  { 

  nextSumU = SumU * pow(rand(), 1/(n-i)); 
  U[i] = SumU – nextSumU; 
  sumU = nextSumU; 

  } 
  U[n] = SumU; 
} 

To the best of our knowledge, UUnifast has not 
previously been used in the context of multiprocessors, as 
the basic algorithm cannot generate tasksets with total 
utilisation 1>U  without the possibility that some tasks 
will have utilisation 1>iU . Instead, researchers have used 
an approach to taskset generation based on generating an 
initial taskset of cardinality m+1 at random and then 
repeatedly adding tasks to it to generate further tasksets 
until the total utilisation exceeds the available processing 
resource [17], [18], [16], [10]. This approach has the 
disadvantage that it effectively combines two variables, 

utilisation and taskset cardinality, and does not necessarily 
result in an unbiased distribution of tasksets. 

In the remainder of this section, we show how the 
UUnifast algorithm can be adapted to generate the tasksets 
needed to study multiprocessor systems. Inspection of the 
UUnifast algorithm shows that it is scale invariant. We can 
therefore use it to generate tasksets with U > 1 as follows: 
o The UUnifast method, with parameters n, and Ut 

(which may be > 1), is used to generate task utilisation 
values in the range [0, Ut]. 

o If a task utilisation value iU  is generated that is > 1, 
then the values produced so far, that is 1U  to iU , are 
discarded. If the total number of discarded partial 
tasksets exceeds some limit, then the algorithm exits 
and reports that it has failed, otherwise it re-starts 
generating utilisation values at 1U . 

o Once a sequence of n valid utilisation values are 
generated, the algorithm completes, reporting success. 

We refer to the above algorithm as UUnifast-Discard.  
Theorem 7: The tasksets produced by UUnifast-Discard 
are unbiased, i.e. uniformly distributed [19], with task 
utilisations in the range [0, min(Ut,1)] which sum to Ut. 
Proof: We prove the theorem via a geometric argument. 
Each taskset can be represented by a point on an n-1 
dimensional plane in n-dimensional space, where the co-
ordinates of the point are the utilisation values of each task 
in the taskset i.e. ( nUUUU ...,, 321 ). A uniform distribution 
of tasksets is required over the valid region of the plane. 

UUnifast produces tasksets that are uniformly 
distributed over a finite convex region Z of the n-1 
dimensional plane defined by ∑ =UtUi , UtUi ≤  and 

0≥iU . (See Figure 9 in [19] for a graphical illustration). 
For UUnifast-Discard, there are two cases to consider: 

Case 1: 1≤Ut : No tasksets are discarded; hence the 
distribution of tasksets remains uniform and unbiased. 
Case 2: 1>Ut : Let Y be the convex finite region of the n-1 
dimensional plane defined by ∑ =UtUi , 1≤iU  and 

0≥iU . Note that Y is a subset of Z and so the distribution 
of tasksets produced by UUnifast over the region Y is also 
uniform and unbiased. Now, all tasksets generated with 
any 1>iU  are discarded by UUnifast-Discard. This 
corresponds to removal of all of those tasksets that are in 
region Z but not in region Y. Further, none of the tasksets 
in region Y are discarded, hence the distribution of tasksets 
over region Y remains uniform and unbiased □ 

An unbiased distribution of tasksets is exactly what is 
required to study the effectiveness of multiprocessor 
schedulability tests. Unfortunately, there is a drawback to 
the UUnifast-Discard approach. As the target utilisation 
requested increases towards n/2, then the number of valid 
tasksets (with all 1≤iU ) becomes a vanishingly small 
proportion of those generated. While this is clearly a 
limitation in theory, in practice, we contend that many 
commercial real-time systems using multiprocessors will 
have significantly more tasks than processors. In any case, 



we can simply set a pragmatic discard limit for UUnifast-
Discard and investigate as much of the problem space as 
possible within this limit. 

Figure 3 shows the maximum taskset utilisation that 
UUnifast-Discard is able to generate, using a discard limit 
of 1000, plotted against taskset cardinality. For example, 
UUnifast-Discard can be used to generate tasksets with a 
target utilisation of up to 8, (suitable for investigation of 8 
processor systems) provided that the taskset cardinality 
exceeds 14. Lower utilisation levels of 7.5 and 6.7 are 
possible with 12 and 10 tasks respectively. (Note that the 
behaviour of the UUnifast-Discard algorithm is 
independent of the number of processors). 
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Figure 3 

As we will see in the next section, the scope of this 
taskset generation method is sufficient to examine the 
effectiveness of schedulability tests over a wide range of 
interesting parameter values. 

6. Empirical investigation 
In this section, we present the results of an empirical 

investigation, examining the effectiveness of different 
priority assignment policies when used in conjunction with 
two sufficient schedulability tests: the “DA test” (Equation 
(4)), which is OPA-compatible, and the “RTA test” 
(Equation (8)), which is OPA-incompatible. The priority 
assignment policies studied are DMPO, D-CMPO, DkC 
and the OPA algorithm (DA test only). 
6.1. Parameter generation 

The task parameters used in our experiments were 
randomly generated as follows: 
o Task utilisations were generated using the UUnifast-

Discard algorithm, using a discard limit of 1000. 
o Task periods were generated according to a log-

uniform distribution5 with a factor of 1000 difference 
between the minimum and maximum possible task 
period. This represents a spread of task periods from 
1ms to 1000ms, as found in most hard real-time 
applications. The log-uniform distribution was used as 

                                                 
5 The log-uniform distribution of a variable x is such that ln (x) has a 
uniform distribution. 

it generates an equal number of tasks in each time 
band (e.g. 1-10ms, 10-100ms etc.), thus providing 
reasonable correspondence with real systems. 

o Task execution times were set based on the utilisation 
and period selected: iii TUC = . 

o Task deadlines were assigned according to a uniform 
random distribution, in the range ],[ ii TC . 

In each experiment, the taskset utilisation (x-axis value) 
was varied from 0.025 to 0.975 times the number of 
processors in steps of 0.025. For each utilisation value, 
1000 valid tasksets were generated and the schedulability 
of those tasksets determined using various combinations of 
priority assignment policy and schedulability test. The 
graphs plot the percentage of tasksets generated that were 
deemed schedulable in each case. 
6.2. Experiment 1 (Priority assignment) 

In this experiment we investigated the impact of each 
of the priority assignment policies on the percentage of 
tasksets deemed schedulable by the two schedulability 
tests. Figures 4 to 7 show this data for 2, 4, 8, and 16 
processors respectively. 

From the graphs, we can see that the priority 
assignment policy used has a significant impact on overall 
performance, and that the more processors there are, the 
larger this impact becomes. There are 4 solid lines on each 
graph depicting the performance of the DA test for DMPO 
(lowest performance), D-CMPO, DkC, and OPA (highest 
performance / optimal with respect to this schedulability 
test). Note the lines on the graphs appear in the order given 
in the legend. 

In the 16 processor case (Figure 7), using DMPO, 
approx. 50% of the tasksets are unschedulable according to 
the DA test at a utilisation level of 4.4 (= 0.28m); however, 
using the OPA algorithm, approx. 50% of the tasksets are 
schedulable according to the same test at a utilisation level 
of 9.4 (= 0.59m). Hence, in this case, optimal priority 
assignment effectively enables 114% better utilisation of 
the processing resource than DMPO. D-CMPO is more 
effective than DMPO, and the DkC priority assignment 
policy is notably almost as effective as optimal priority 
assignment. Note, the performance of DkC and D-CMPO 
are identical in the 2 processor case (Figure 4) as k = 1 in 
Equation (11). Comparison between the four figures shows 
that the difference between OPA and DMPO becomes 
larger as the number of processors increases. 

It is clear from the graphs that the difference in 
performance between the DA test (solid lines) and the 
RTA test (dashed lines) is less significant than the 
difference between the best and the worst priority 
assignment policies. 
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Figure 4: (2 processors, 10 tasks) 
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Figure 5: (4 processors, 20 tasks) 
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Figure 6: (8 processors, 40 tasks) 

0%

20%

40%

60%

80%

100%

120%

0.4 1.2 2.0 2.8 3.6 4.4 5.2 6.0 6.8 7.6 8.4 9.2 10
.0

10
.8

11
.6

12
.4

13
.2

14
.0

14
.8

15
.6

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s 
sc

he
du

la
bl

e

DA (OPA)
RTA (DKC)
DA (DKC)
 RTA (DCMPO)
DA (DCMPO)
RTA (DMPO)
DA (DMPO)

 
Figure 7: (16 processors, 80 tasks) 

 
The data shown in Figures 4 to 7 is for systems with 5 

times as many tasks as processors. We repeated these 
experiments for smaller (2) and larger (20) numbers of 
tasks per processor. In each case, although the data points 
changed, the relationships between the effectiveness of the 
different methods and the conclusions that can be drawn 
from them remained essentially the same. 
6.3. Experiment 2 (Number of tasks) 

In this experiment we investigated the effect of 
varying the number of tasks. Figure 8 shows the 
percentage of tasksets that were schedulable on an 8 
processor system, for taskset cardinalities of 9, 10, 12, 16, 
24, and 40, using the DA test with optimal priority 
assignment (solid lines). Data for the RTA test with DkC 
priority assignment was almost identical (not shown on the 
graph). Figure 9 shows similar data for tasksets of 
cardinality 40, 80, 120, 160, and 200. 

There are some data points missing from the right hand 
side of Figure 8. This is because the UUnifast-Discard 
algorithm, was unable to generate tasksets with cardinality 
9 and utilisation greater than 6.6 (or cardinality 10 and 
utilisation greater than 6.8) using a discard limit of 1000; 
however, despite this the trends are still clearly visible. 

In Figure 8, the percentage of schedulable tasksets 
decreases as the number of tasks is increased from 9 
towards 40, with all other parameters held constant. It 
would appear from this data alone that tasksets with a 
larger number of tasks are more difficult to schedule. 
Figure 9 shows what happens as we continue to increase 
the number of tasks from 40 to 200 (25 times the number 
of processors). Now as the number of tasks increases, the 
tasksets appear to become easier to schedule. This 
behaviour can be explained as a combination of two 
effects: With a small number of tasks, tasksets are 
relatively easy to schedule as the impact of each high 
utilisation, high interference task is limited to effectively 
occupying one processor (see Equations (3) and (7)). In 
the extreme, any valid taskset with m tasks or less is 
trivially schedulable on an m processor system. As taskset 
cardinality increases from m to 2m we therefore expect 
fewer tasksets to be schedulable at any given utilisation. 
At the other extreme, with increasing taskset cardinality 
( mn >> ), the average density kk DC /  of each task kτ  
becomes small. This means that the amount of pessimism 
in the schedulability tests, due to the assumption that when 

kτ  executes all other processors are idle is reduced. 
Hence, as n increases beyond 10m so the number of 



schedulable tasksets increases. 
The fact that on an m processor system, any valid set of 

m tasks is schedulable, illustrates the incomparability of 
global FP scheduling on m processors of speed 1, with 
respect to fixed priority pre-emptive scheduling on a 
similar uniprocessor of speed m. The m-speed 
uniprocessor can trivially schedule a single task of 
utilisation greater than one, whereas the m processors 
cannot. Similarly, the m processors can schedule any set of 
m tasks with co-prime periods and individual task 
utilisations equal to 1, whereas the m-speed uniprocessor 
cannot. 
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Figure 8: (taskset cardinality from 9 to 40) 
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Figure 9: (taskset cardinality from 40 to 200) 

7. Summary and conclusions 
The motivation for our work was the desire to improve 

upon the current state-of-the-art in terms of practical 
techniques that enable the efficient use of processing 
capacity in hard real-time systems based on 
multiprocessors. 

In this paper we addressed the problem of priority 
assignment for global FP scheduling of constrained-

deadline sporadic tasksets. We were drawn to this area of 
research by the recent work of Bertogna et al. [18] which 
showed that the best schedulability tests available for 
global FP scheduling using Deadline Monotonic Priority 
Ordering (DMPO) outperform the best tests then known 
for both global EDF and EDZL. 

The intuition behind our work was the idea that in 
fixed priority scheduling, finding an appropriate priority 
assignment is as important as using an effective 
schedulability test. While DMPO is an optimal priority 
assignment policy for uniprocessors, this result is known 
not to transfer to the multiprocessor case. Indeed, our 
results show that DMPO cannot even be considered a good 
heuristic for multiprocessors. 

The key contributions of this paper are as follows: 
o The observation that although Audsley’s Optimal 

Priority Assignment algorithm [6], [7] cannot be 
applied to any exact schedulability test for global FP 
scheduling of periodic tasksets, this does not 
necessarily preclude its use with sufficient 
schedulability tests. 

o Proof that Audsley’s OPA algorithm is the optimal 
priority assignment policy with respect to any global 
FP schedulability test for periodic or sporadic tasksets 
that complies with three simple conditions. 

o Classification of schedulability tests for global FP 
scheduling as either OPA-compatible or OPA-
incompatible based on these conditions. The deadline-
based sufficient test (“DA test”) of Bertogna et al. 
[18], and the response time test of Andersson and 
Jonsson [1] for sporadic tasksets are OPA-compatible, 
while any exact test for periodic tasksets, and the 
response time test (“RTA test”) of Bertogna and 
Cirinei [16] for sporadic tasksets are OPA-
incompatible. 

o Extension of the TkC [2] priority assignment policy to 
constrained deadline tasksets forming the DkC 
priority assignment policy. This heuristic policy can 
be used in conjunction with any schedulability test. 

o Adaptation of the UUnifast algorithm to the 
multiprocessor case, forming the UUnifast-Discard 
algorithm. UUnifast-Discard generates tasksets with 
specific parameter settings, facilitating an empirical 
study of schedulability test effectiveness without the 
problem of confounding variables. 

o An empirical study showing that by using the OPA 
algorithm rather than DMPO, the DA test can 
schedule significantly more tasksets. Our study also 
showed that the DkC priority assignment policy is 
almost as effective as optimal priority assignment 
when applied in conjunction with the DA test, and 
similarly highly effective when applied with the RTA 
test. 

Our studies showed that the improvements that an 
appropriate choice of priority assignment brings are very 
large when viewed in terms of the proportion of processing 



capacity that can be usefully deployed. For example, in the 
16 processor case, the utilisation level at which 50% of the 
tasksets were schedulable increased from 0.28m or 0.29m 
(for the DA test or RTA test with DMPO) to 0.58m or 
0.59m (for the RTA test with DkC priority assignment, or 
the DA test with optimal priority assignment). This 
represents an effective increase in the usable processing 
resource of 100% or more. This level of improvement is of 
great value to engineers designing and implementing hard 
real-time systems based on multiprocessor platforms, as it 
enables more effective use to be made of processing 
resources while still ensuring that deadlines are met. We 
conclude that priority assignment is an important factor in 
determining the schedulability of tasksets under global 
fixed priority pre-emptive scheduling. 

The OPA algorithm requires a polynomial number of 
schedulability tests (n(n+1)/2) to solve the problem of 
optimal priority assignment for any OPA-compatible 
global FP schedulability test. To the best of our 
knowledge, the complexity of optimal priority assignment 
for exact schedulability tests for periodic tasksets under 
global FP scheduling remains an open problem. For 
sporadic tasksets, no exact test is known and the 
complexity of optimal priority assignment is also an open 
problem. 

In future, we intend to explore the use of the optimal 
priority assignment algorithm, and heuristic priority 
assignment policies, such as DkC, in conjunction with 
other schedulability tests for global FP scheduling. Other 
interesting areas of possible future work include the 
extension of optimal priority assignment techniques to 
uniform processors. 
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