
Priority Assignment for Global Fixed Priority Pre-emptive Scheduling in
Multiprocessor Real-Time Systems

Robert I. Davis and Alan Burns

Real-Time Systems Research Group, Department of Computer Science,
University of York, YO10 5DD, York (UK)

rob.davis@cs.york.ac.uk, alan.burns@cs.york.ac.uk

Abstract
This paper addresses the problem of priority

assignment in multiprocessor real-time systems using
global fixed task-priority pre-emptive scheduling.

In this paper, we prove that Audsley’s Optimal Priority
Assignment (OPA) algorithm, originally devised for
uniprocessor scheduling, is applicable to the
multiprocessor case, provided that three conditions hold
with respect to the schedulability tests used.

Our empirical investigations show that the
combination of optimal priority assignment policy and a
simple compatible schedulability test is highly effective, in
terms of the number of tasksets deemed to be schedulable.

We also examine the performance of heuristic priority
assignment policies such as Deadline Monotonic, and an
extension of the TkC priority assignment policy called
DkC that can be used with any schedulability test. Here we
find that Deadline Monotonic priority assignment has
relatively poor performance in the multiprocessor case,
while DkC priority assignment is highly effective.

1. Introduction
Today real-time embedded systems are found in many

diverse application areas including; automotive
electronics, avionics, space systems, telecommunications,
and consumer electronics. In all of these areas, there is
rapid technological progress. Companies building
embedded real-time systems are driven by a profit motive.
To succeed, they aim to meet the needs and desires of their
customers by providing systems that are more capable,
more flexible, and more effective than their competition,
and by bringing these systems to market earlier. This
desire for technological progress has resulted in a rapid
increase in both software complexity and processing
demands. To address these demands for increased
processor performance, silicon vendors no longer
concentrate on increasing processor clock speeds, as this
approach has lead to problems with high power
consumption and the need for excessive heat dissipation.
Instead, there is now an increasing trend towards using
multiprocessor platforms for high-end real-time
applications.

Approaches to multiprocessor real-time scheduling,
can be categorised into two broad classes: partitioned and
global. Partitioned approaches allocate each task to a
single processor, dividing the multiprocessor scheduling
problem into one of task allocation (bin-packing) followed

by uniprocessor scheduling. In contrast, global approaches
allow tasks to migrate from one processor to another at
run-time. Real-time scheduling algorithms can be
categorised into three classes based on when priorities can
change: fixed task-priority (all invocations, or jobs, of a
task have the same priority), fixed-job priority and
dynamic-priority.

In this paper, we focus on priority assignment policies
for global fixed task-priority pre-emptive scheduling,
which for brevity we refer to as global FP scheduling.
1.1. Related work

In the context of uniprocessor fixed priority
scheduling, there are three fundamental results regarding
priority assignment. In 1972, Serlin [32] and Liu and
Layland [30] showed that Rate Monotonic priority
ordering (RMPO) is optimal for independent synchronous
periodic tasks (that share a common release time), that
have implicit deadlines (equal to their periods). In 1982,
Leung and Whitehead [31] showed that Deadline
Monotonic priority ordering (DMPO) is optimal for
independent synchronous tasks with constrained deadlines
(less than or equal to their periods). In 1991, Audsley [6],
[7] devised an optimal priority assignment (OPA)
algorithm that solved the problem of priority assignment
for asynchronous tasksets, and for tasks with arbitrary
deadlines (which may be greater than their periods).

In the context of multiprocessor global FP scheduling,
work on priority assignment has focussed on
circumventing the so called “Dhall effect”. In 1978, Dhall
and Liu [25] showed that under global FP scheduling with
RMPO, a set of periodic tasks with implicit deadlines and
total utilisation just greater than 1 can be unschedulable on
m processors. For this problem to occur at least one task
must have a high utilisation. In 2000, Andersson and
Jonsson [2] designed the TkC priority assignment policy to
circumvent the Dhall effect. TkC assigns priorities based
on a task’s period (iT) minus k times its worst-case
execution time (iC), where k is a real value computed on
the basis of the number of processors. Via an empirical
investigation, Andersson and Jonsson showed that TkC is
an effective priority assignment policy for periodic
tasksets with implicit deadlines.

In 2001, Anderson et al. [3] gave a utilisation bound
for global FP scheduling of periodic tasksets with implicit
deadlines using the RM-US{ς } priority assignment
policy. RM-US{ς } gives the highest priority to tasks with

mailto:rob.davis@cs.york.ac.uk�
mailto:alan.burns@cs.york.ac.uk�

utilisation greater than a threshold ς . In 2003, Andersson
and Jonsson [4] showed that the maximum utilisation
bound for global FP scheduling of such tasksets is

mm 41.0)12(≈− , when priorities are defined as a scale
invariant function of worst-case execution times and
periods. In 2005, Bertogna [15] extended the work of
Andersson et al. [3] to sporadic tasksets with constrained
deadlines forming the DM-DS{ς } priority assignment
policy. DM-DS{ς } gives the highest priority to at most

1−m tasks with densities greater than the threshold ς ,
and otherwise uses DMPO. Bertogna [15] provided a
density-based schedulability test for DM-DS{ς }. In 2008,
Andersson [5] proposed a form of Slack Monotonic
priority assignment called SM-US{ς } Using a threshold
of)53/(2 + , SM-US{ς } has a utilisation bound of

mm 382.0)53/(2 ≈+ for sporadic tasksets with implicit-
deadlines.

More sophisticated schedulability tests for global FP
scheduling of sporadic tasksets with constrained and
arbitrary deadlines have been developed using analysis of
response times and processor load. In 2000, Andersson
and Jonsson [1] gave a simple response time upper bound
applicable to tasksets with constrained-deadlines. In 2001,
Baker [8] developed a fundamental schedulability test
strategy, based on considering the minimum amount of
interference in a given interval that is necessary to cause a
deadline to be missed, and then taking the contra-positive
of this to form a sufficient schedulability test. This basic
strategy underpins an extensive thread of subsequent
research into schedulability tests for global EDF [11], [17],
[14], [13], and global FP scheduling [12], [18], [9], [27].

Baker’s work was subsequently built upon by Bertogna
et al. [15] in 2005, and Bertogna and Cirinei [18] in 2009.
They developed sufficient schedulability tests for: (i) any
work conserving algorithm, (ii) global EDF, and (iii)
global FP, based on bounding the maximum workload in a
given interval. This basic approach was extended to form
an iterative schedulability test using the computed slack
for each task to limit the amount of carry-in interference
and hence to calculate a new value for the slack. In 2007,
Bertogna and Cirinei [16] adapted this approach to
iteratively compute an upper bound on the response time
of each task, using the upper bound response times of
other tasks to limit the amount of interference considered.

Global multiprocessor scheduling is intrinsically a
much more difficult problem than uniprocessor scheduling
due to the simple fact that a task can only use one
processor at a time, even when several are free [29]. This
restriction manifests itself as the critical instant effect [28],
where simultaneous release of tasks does not necessarily
lead to worst-case response times. As a result, to the best
of our knowledge, no exact tests are currently known for
global FP scheduling of sporadic tasksets. Exact tests are
only known for the strictly periodic case [20], [21].

1.2. Intuition and motivation
The research described in this paper is motivated by

the need to close the large gap that currently exists
between the best known approaches to multiprocessor real-
time scheduling for sporadic tasksets with constrained
deadlines and what may be possible as indicated by
feasibility / infeasibility tests. We hypothesise that a key
factor in closing this gap is priority assignment. The
intuition behind our work is the idea that for fixed priority
scheduling, finding an appropriate priority ordering is as
important as using an effective schedulability test.

In the simulation chapter of his thesis, Bertogna [17]
showed that for sporadic tasksets with constrained
deadlines, the response time test [16] for global FP
scheduling – using DMPO, outperformed all other tests
known at the time, including those for global FP, global
EDF, and EDZL [10]; a minimally dynamic global
scheduling algorithm that dominates global EDF. While
DMPO is known to be an optimal priority assignment
policy for the equivalent uniprocessor case [31], this
optimality does not extend to multiprocessors.

In this paper, we prove that Audsley’s Optimal Priority
Assignment (OPA) algorithm [6], [7], originally devised
for uniprocessor scheduling, is applicable to the
multiprocessor case provided that the schedulability test
used meets three simple conditions. These conditions
allow us to classify schedulability tests for global FP
scheduling into two categories: OPA-compatible and
OPA-incompatible. We show via an empirical
investigation that optimal priority assignment combined
with a simple OPA-compatible schedulability test can be
significantly more effective in terms of the number of
tasksets deemed schedulable, than using a state-of-the-art,
OPA-incompatible schedulability test with DMPO.
Further, we build on the work of Andersson and Jonsson
[2], developing heuristic priority assignment policies: D-
CMPO and DkC that are applicable to any schedulability
test. Our empirical studies show that DkC significantly
outperforms DMPO, giving close to optimal results.
1.3. Organisation

The remainder of the paper is organised as follows:
Section 2 describes the terminology, notation and system
model used. Section 3 recapitulates existing sufficient tests
for global FP scheduling. Section 4 discusses both optimal
and heuristic approaches to priority assignment. Section 5
outlines an unbiased method of taskset generation based
on techniques developed for the uniprocessor case. Section
6 presents an empirical investigation into the effectiveness
of priority assignment policies and sufficient
schedulability tests. Finally, Section 7 concludes with a
summary and suggestions for future research.

2. System model, terminology and notation
In this paper, we are interested in global FP scheduling

of an application on a homogeneous multiprocessor system

comprising m identical processors. The application or
taskset is assumed to comprise a static set of n tasks
(nττ ...1), where each task iτ is assigned a unique priority
i, from 1 to n (where n is the lowest priority).

We are interested in two task models, referred to as
periodic and sporadic. In both models, tasks give rise to a
potentially infinite sequence of jobs. In the periodic task
model, the jobs of a task arrive strictly periodically,
separated by a fixed time interval. In the sporadic task
model, each job of a task may arrive at any time once a
minimum inter-arrival time has elapsed since the arrival of
the previous job of the same task.

Each task iτ is characterised by: its relative deadline
iD , worst-case execution time iC , and minimum inter-

arrival time or period iT . The utilisation iU of each task
is given by ii TC / . A task’s worst-case response time iR
is defined as the longest time from the task arriving to it
completing execution.

It is assumed unless otherwise stated that all tasks have
constrained deadlines (ii TD ≤). The tasks are assumed to
be independent and so cannot be blocked from executing
by another task other than due to contention for the
processors. Further, it is assumed that once a task starts to
execute it will not voluntarily suspend itself.

Intra-task parallelism is not permitted; hence, at any
given time, each job may execute on at most one
processor. As a result of pre-emption and subsequent
resumption, a job may migrate from one processor to
another. The cost of pre-emption, migration, and the run-
time operation of the scheduler is assumed to be either
negligible, or subsumed into the worst-case execution time
of each task.
2.1. Feasibility, schedulability and optimality

A taskset is referred to as feasible if there exists a
scheduling algorithm that can schedule the taskset without
any deadlines being missed. Further, we refer to a taskset
as being global FP feasible if there exists a priority
ordering under which the taskset is schedulable using
global FP scheduling.

In systems using global FP scheduling, it is useful to
separate the two concepts of priority assignment and
schedulability testing. The priority assignment problem is
one of determining the relative priority ordering of a set of
tasks. Given a taskset with some priority ordering, then the
schedulability testing problem involves determining if the
taskset is schedulable with that priority ordering. Clearly
the two concepts are closely related. For a given taskset,
there may be many priority orderings that are
unschedulable, and just a few that are schedulable.

A schedulability test S can be classified as follows.
Test S is said to be sufficient if all of the tasksets / priority
ordering combinations that it deems schedulable are in fact
schedulable. Similarly, test S is said to be necessary if all
of the tasksets / priority ordering combinations that it
deems unschedulable are in fact unschedulable. Finally,

test S is referred to as exact if it is both sufficient and
necessary.

The concept of an optimal priority assignment policy
can be defined with respect to a schedulability test S:
Definition 1: Optimal priority assignment policy: A
priority assignment policy P is referred to as optimal with
respect to a schedulability test S and a given task model, if
and only if the following holds: P is optimal if there are no
tasksets that are compliant with the task model that are
deemed schedulable by test S using another priority
assignment policy, that are not also deemed schedulable by
test S using policy P.

We note that the above definition is applicable to both
sufficient schedulability tests and exact schedulability
tests.

An optimal priority assignment policy for an exact
schedulability test facilitates classification of all global FP
feasible tasksets compliant with a particular task model.
For example, for periodic tasksets, Cucu and Goossens
[20], [21] showed that exact schedulability can be
determined by simulating the schedule over an interval
related to the hyperperiod1 of the taskset. For this exact
test the only known optimal priority assignment policy
involves checking all n! possible priority orderings [22].
Combining the two, it is theoretically possible, but
computational intractable, to determine if any given
periodic taskset is global FP feasible.

Using an optimal priority assignment policy for a
sufficient test S we cannot classify all global FP feasible
tasksets, due to the sufficiency of the test. However,
optimal performance is still provided with respect to the
limitations of the test itself. For example, the set Y of all
tasksets that are deemed schedulable by a sufficient test S
using its optimal priority assignment policy is a superset of
the set Z of all tasksets that are deemed schedulable by test
S using any other priority assignment policy. Further due
to the sufficiency of the test, Y is a strict subset of the set G
containing all global FP feasible tasksets (ZYG ⊇⊃).

3. Recapitulation of schedulability tests
In this section, we outline two sufficient schedulability

tests for global fixed priority scheduling of sporadic
tasksets developed by Bertogna et al [18], and Bertogna
and Cirinei [16]. Both of these tests are based on the
fundamental strategy derived by Baker [8], the outline of
which is as follows:
1. Consider an interval referred to as the problem

window, at the end of which a deadline is missed, for
example the interval of length kD from the arrival to
the deadline of some job of task kτ .

2. Establish a condition necessary for the job to miss its
deadline, for example, all m processors executing

1 The hyperperiod of a taskset is the least common multiple of the task
periods.

other tasks for more than kk CD − during the interval.
3. Derive an upper bound UBI on the maximum

interference in the interval due to other tasks.
4. Form a necessary unschedulability test; i.e. an

inequality between UBI and the amount of execution
necessary for a deadline miss, then negate this
inequality to form a sufficient schedulability test.

In [18], Bertogna et al. derived a sufficient
schedulability test using the above approach, by
considering the maximum amount of interference that
could occur in the problem window due to each higher
priority task. This maximum interference occurs when the
first job of the higher priority task in the problem window
starts executing at the start of the problem window, and
completes at its deadline, with all subsequent jobs
executing as early as possible – see Figure 1.

Figure 1

Bertogna et al. [18] showed that)(LW D
i is an upper

bound on the workload of task iτ in an interval of length
L:

))(,min()()(iiiiiii
D

i TLNCDLCCLNLW −−++= (1)
where)(LNi is the maximum number of jobs of task iτ
that contribute all of their execution time in the interval.

⎥
⎦

⎥
⎢
⎣

⎢ −+
=

i

ii
i T

CDL
LN)((2)

If task kτ is schedulable, then an upper bound on the
interference due to a higher priority task iτ in an interval
of length kD is given by:

)1),(min()(+−= kkk
D

ik
D
i CDDWDI (3)

Note, the ‘+1’ term in Equation (3) is a result of the
approach to time representation2 used in [18].

A sufficient schedulability test for each task kτ is then
given by the following inequality:

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
+≥ ∑

∈∀)(
)(1

khpi
k

D
ikk DI

m
CD (4)

where hp(k) refers to the set of tasks with priorities higher
than k. Note we have re-written Equation (4) in a different
form from that presented in [18] for ease of comparison
with the schedulability test given in [16].
 Bertogna and Cirinei [16] extended the method
described above to iteratively compute an upper bound
response time UB

kR for each task, using the upper bound

2 Time is represented by non-negative integer values, with each time
value t viewed as representing the whole of the interval [t, t+1). This
enables mathematical induction on clock ticks and avoids confusion with
respect to end points of execution.

response times of higher priority tasks to limit the amount
of interference considered. This extended approach applies
the same logic as [18], while recognising that the latest
time that a task can execute is when it completes with its
worst-case response time rather than at its deadline.

Below, we give the schedulability test for this method.
Note we have simplified the equations given by Bertogna
and Cirinei [16] to remove the slack terms and use upper
bound response times directly. This is possible for global
FP scheduling as the response times computed are
unaffected by lower priority tasks3.

Taking upper bound response times into account, an
upper bound)(LW R

i on the workload of task iτ in an
interval of length L is given by:

))(,min()()(i
R
ii

UB
iii

R
i

R
i TLNCRLCCLNLW −−++= (5)

Where)(LN R
i is given by:

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ −+
=

i

i
UB

R
i T

CRL
LN i)((6)

If task kτ is schedulable, then an upper bound on the
interference due to a higher priority task iτ in an interval
of length UB

kR is given by:
)1),(min()(+−= k

UB
k

UB
k

R
i

UB
ki CRRWRI (7)

An upper bound on the response time of each task kτ
can then be found via the following fixed point iteration
(Theorem 7 in [16]).

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
+← ∑

∈∀)(
)(1

khpi

UB
kik

UB
k RI

m
CR (8)

Iteration starts with k
UB
k CR = , and continues until the

value of UB
kR converges or until k

UB
k DR > , in which case

task kτ is unschedulable.
For convenience, in the rest of this paper, we refer to

the sufficient schedulability test based on deadline
analysis, given by Equation (4), as the “DA test”, and that
based on response time analysis, given by Equation (8), as
the “RTA test”.

4. Priority assignment
In 2000, Andersson and Jonsson [1] made the

following observation about periodic tasksets:
“For fixed priority pre-emptive global multiprocessor

scheduling, there exist task sets for which the response
time of a task depends not only on iT and iC of its higher-
priority tasks, but also on the relative priority ordering of
those tasks”.

Andersson and Jonsson concluded that even if an exact
schedulability test were known4, then it would not be
possible to use Audsley’s OPA algorithm [6], [7] to
determine the optimal priority ordering. While this is
undoubtedly true, we believe that it has also lead to a

3 Bertogna and Cirinei [16] also investigated global EDF scheduling and
the slack terms are necessary in that case.
4 Note, such a test is now known, see [20], [21].

common misconception that the OPA algorithm cannot be
applied to schedulability tests for global FP scheduling.

In this section, we explore the problem of optimal
priority assignment for global FP scheduling. First we
provide an overview of Audsley’s OPA algorithm, [6], [7]
derived for uniprocessor systems.
4.1. Optimal priority assignment

The pseudo code for the OPA algorithm, using some
schedulability test S is given below.

Optimal Priority Assignment Algorithm
for each priority level k, lowest first
{

for each unassigned task τ
{
 if τ is schedulable at priority k

 according to schedulability test S
 {
 assign τ to priority k
 break (continue outer loop)
 }
}
 return unschedulable

}
return schedulable

For n tasks, the algorithm performs at most n(n+1)/2
schedulability tests and is guaranteed to find a priority
assignment that is schedulable according to schedulability
test S, if one exists. This is a significant improvement over
inspecting all n! possible orderings. Note that the OPA
algorithm does not specify the order in which tasks should
be tried at each priority level.

Let S be some schedulability test for global FP
scheduling which complies with the following conditions:
Condition 1: The schedulability of a task kτ may,
according to test S, be dependent on the set of higher
priority tasks, but not on the relative priority ordering of
those tasks.
Condition 2: The schedulability of a task kτ may,
according to test S, be dependent on the set of lower
priority tasks, but not on the relative priority ordering of
those tasks.
Condition 3: When the priorities of any two tasks of
adjacent priority are swapped, the task being assigned the
higher priority cannot become unschedulable according to
test S, if it was previously schedulable at the lower
priority. (As a corollary, the task being assigned the lower
priority cannot become schedulable according to test S, if
it was previously unschedulable at the higher priority).
We now prove the following theorem about the
applicability of the OPA algorithm to global FP
scheduling.
Theorem 1: The Optimal Priority Assignment (OPA)
algorithm is an optimal priority assignment policy (see
Definition 1) for any global FP schedulability test S
compliant with Conditions 1-3.
Proof: We assume for contradiction that there exists a
taskset X that is schedulable according to test S with

priority ordering Q , and further that the OPA algorithm is
unable to generate a schedulable priority ordering for
taskset X.

In the proof, we will show that when applied to taskset
X, each iteration k of the OPA algorithm, from priority
level n down to 1, is able to find a task that is schedulable
according to test S. Thus the OPA algorithm is able to find
a priority ordering P for taskset X that is schedulable
according to test S. This contradicts the assumption and
hence proves the theorem.

For the purposes of the proof, we refer to priority
ordering Q as nQ . Over the n iterations, we will
transform nQ into 1−nQ … 0Q , where 0Q is equivalent to
P, the priority ordering generated by the OPA algorithm.
The transformation will be such that after each iteration k,
(from n to 1), the transformed priority ordering 1−kQ
remains schedulable according to test S, and the tasks at
priority levels k and below are the same in 1−kQ and P.

We now introduce a concise notation to aid in the
discussion of tasks and groups of tasks within a priority
ordering:
o)(iQk is the task at priority level i in priority ordering

kQ .
o),(kQihep is the set of tasks with priority higher than

or equal to i in priority ordering kQ .
o),(kQihp is the set of tasks with priority strictly

higher than i in priority ordering kQ .
o),(kQilep is the set of tasks with priority lower than

or equal to i in priority ordering kQ .
o),(kQilp is the set of tasks with priority strictly lower

than i in priority ordering kQ .
In the proof that follows, we use k to represent both

the iteration of the OPA algorithm, i.e. the priority level
examined, and also the index for the transformed priority
ordering.

Proof by iterating over values of k from n to 1: At the
start of each iteration k, all tasks in priority ordering kQ
are known to be schedulable according to test S.

As the tasks with lower priority than k are the same in
both kQ and P (),(kQklp =),(Pklp), then it follows that

),(kQkhep =),(Pkhep . Given Condition 1 and the fact
that kQ is a schedulable priority ordering according to test
S, on iteration k the OPA algorithm is guaranteed to find a
task in the set of unassigned tasks (i.e.),(Pkhep =

),(kQkhep) that is schedulable at priority k according to
test S. We note that one such task is)(kQk . The task
chosen by the OPA algorithm is designated)(kP .

There are two cases that need to be considered:
1.)(kP is the same as)(kQk , in which case no

transformation is necessary to form priority ordering
1−kQ (kk QQ =−1) and hence 1−kQ is trivially a

schedulable priority ordering.
2. The OPA algorithm chose a different schedulable

task; in other words)(kP is the task at some higher
priority level i in kQ , i.e.)(iQk . In this case, we
transform kQ into 1−kQ by moving task)(iQk down

in priority from priority level i to priority level k and
the tasks in kQ at priority levels i+1 to k up one
priority level, as illustrated in Figure 2.

Comparing the tasks in priority order 1−kQ with their
counterparts in kQ . There are effectively four groups of
tasks to consider:
1.),(1−kQihp : These tasks are assigned the same

priorities in both kQ and 1−kQ , given Condition 2, all
of these tasks remain schedulable.

2.),(),(11 −− ∩ kk QilepQkhp : These tasks retain the
same partial order but are shifted up one priority level
in 1−kQ . This shift in priority can be affected by
repeatedly swapping the priorities of task)(kP and
the task immediately below it in the priority order,
until task)(kP reaches priority k. Hence, given
Condition 3, all the tasks increasing in priority, i.e.
those in the set),(),(11 −− ∩ kk QilepQkhp , remain
schedulable.

3. Task)()()(1 kPiQkQ kk ==− : The tasks of lower
priority than k are the same in both kQ and P, hence

),(),(kQkhepPkhep = . The OPA algorithm selected
task)(kP from the set of tasks),(kQkhep on the
basis that it is schedulable at priority k with the set of
tasks)}({),(iQQkhep kk − =),(1−kQkhp at higher
priorities. Given Condition 1, task)()(1 kPkQk =− is
schedulable at priority k, irrespective of the priority
order of the tasks in),(1−kQkhp and therefore it
remains schedulable in priority order 1−kQ .

4.),(1−kQklp : These tasks are assigned the same
priorities in both kQ and 1−kQ . Given Condition 1
and the fact that),(),(1 kk QkhepQkhep =− , all of the
tasks in),(1−kQklp remain schedulable according to
test S.

The above analysis shows that every task in 1−kQ remains
schedulable according to test S. A total of n iterations of
the above process (for k = n down to 1) correspond to
iteration of the OPA algorithm over all n priority levels.
On each iteration the OPA algorithm is able to identify a
task that is schedulable according to test S and therefore
generate a priority ordering P that is schedulable according
to test S □

Figure 2

The proof of Theorem 1 shows that Conditions 1-3 are
sufficient for schedulability test S to be OPA-compatible.
We now show that each of these conditions is also

necessary.
Theorem 2: Conditions 1-3 are all necessary conditions
for the OPA algorithm to correctly identify a priority
ordering that is deemed schedulable by schedulability test
S if such an ordering exists.
Proof: Necessity of Condition 1: The OPA algorithm does
not specify the priority ordering of unassigned tasks;
therefore when determining the schedulability of a task A
at priority k, the schedulability test S is effectively free to
choose any arbitrary priority ordering for the unassigned
(higher priority) tasks. Let us assume that with the
arbitrary priority ordering chosen for the unassigned tasks,
task A is deemed schedulable at priority k, and it therefore
assigned to that priority level. If Condition 1 does not
hold, then a different priority ordering later established by
the OPA algorithm for the higher priority tasks can result
in task A becoming unschedulable at priority k according
to test S. In this case, the priority ordering found by the
OPA algorithm is erroneous; it is not in fact schedulable
according to test S.

Necessity of Condition 2: If Condition 2 does not hold
then the schedulability of a task according to test S is
dependent on the priority order of lower priority tasks. In
this case, the OPA algorithm could place tasks at priorities
lower than k in an order that results in no task being
schedulable at priority level k. Yet, if the lower priority
tasks were placed in a different priority order, then a task
could be found that was schedulable at priority k according
to test S. In this case, the OPA-algorithm fails to find a
priority ordering that is schedulable according to test S
when such a priority ordering exists.

Necessity of Condition 3: If Condition 3 does not
hold, then two tasks A and B may both be schedulable
according to test S when assigned the lowest priority;
however task B may be unschedulable when assigned the
next highest priority. Let us assume that the OPA
algorithm arbitrarily chooses to assign task A to the lowest
priority. In this case, no tasks are found that are
schedulable at the next highest priority. Thus the OPA-
algorithm fails to find a priority ordering that is
schedulable according to test S, even though one exists;
with task B at the lowest priority □

Condition 2 holds for all of the schedulability tests
considered in this paper. These tests deal with pre-emptive
scheduling of independent tasks, hence the schedulability
of higher priority tasks is independent of lower priority
tasks. We note that Condition 2 is important when
considering non-pre-emptive scheduling and task models
which permit access to mutually exclusive shared
resources.

We note that Theorem 1 depends on emergent
properties of the schedulability test, and not on the specific
properties of the underlying task model. It is therefore
applicable to both periodic and sporadic task models.
Conditions 1-3 enable us to classify global FP

schedulability tests as either OPA-compatible or OPA-
incompatible.
Theorem 3: Any exact schedulability test for periodic
tasksets is OPA-incompatible.
Proof: It suffices to show that Condition 1 does not hold
for any exact test. Consider the following synchronous
periodic taskset with four tasks, two copies of task A = {1,
2, 3} and two copies of task B = {2, 4, 4}, executing on a
two processor system. (The parameters are the task’s
worst-case execution time, deadline, and period
respectively). Task B is schedulable at the lowest priority,
with the other tasks in priority order A, A, B, but not
schedulable when they are in priority order A, B, A or B, A,
A. This can be seen by examining the schedule over the
hyperperiod. In effect, both the exact schedulability and
the exact response time of task B at the lowest priority
level are dependent on the relative priority ordering of the
higher priority tasks. As all exact schedulability tests must
by definition provide an identical classification of all
tasksets / priority ordering combinations as schedulable or
unschedulable it follows that all exact schedulability tests
for periodic tasksets are OPA-incompatible □
Theorem 4: The RTA test [16] for global FP scheduling
of sporadic tasksets (Equation (8)) is OPA-incompatible.
Proof: It suffices to show that Condition 1 does not hold
for the RTA test. The workload)(LW R

i (Equation (5))
used to determine schedulability via the RTA test depends
on the response times of higher priority tasks, which in
turn depend on the relative priority ordering of those tasks.
This can be seen by considering the following example
comprising four tasks: two copies of task A = {10, 20, 20},
task B = {10, 20, 100}, and task C = {20, 55, 55},
executing on a two processor system. With priority order
A, A, B, C the taskset is deemed schedulable by the RTA
test with upper bounds on task response times of 10, 10,
20, and 55 respectively. However, if the priority order is
instead A, B, A, C, then the copy of task A at priority 3 has
an increased upper bound response time of 20 (it was 10 at
priority 2). This increases its workload and interference on
task C which is then deemed unschedulable □
Theorem 5: The response time test of Andersson and
Jonsson [1] (Equation (9) below) for global FP scheduling
of sporadic tasksets is OPA-compatible:

∑
∈∀

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+←

)(

1

khpi
ii

i

ub
k

k
ub
k CC

T
R

m
CR (9)

Proof: It suffices to show that Conditions 1-3 hold.
 Inspection of Equation (9) shows that the upper bound
response time ub

kR computed for task kτ depends on the
set of higher priority tasks, but not on their relative priority
ordering, hence Condition 1 holds.

ub
kR (Equation (9)) has no dependency on the set of

tasks with lower priority than k, hence Condition 2 holds.
Consider two tasks A and B initially at priorities k and

k+1 respectively. The upper bound response time of task B
cannot increase when it is shifted up one priority level to
priority k, as the only change in the response time
computation (Equation (9)) is the removal of task A from
the set of tasks that have higher priority than task B, hence
Condition 3 holds □
Theorem 6: The DA test [18] (Equation (4)) for global FP
scheduling of sporadic tasksets is OPA-compatible:
Proof: Follows the same logic as the proof of Theorem 5,
with the upper bound response time given by the right
hand side of Equation (4) rather than Equation (9) □
4.2. Heuristic priority assignment

In this section, we investigate heuristic priority
assignment policies.

In his thesis [17], Bertogna evaluates the effectiveness
of a number of different schedulability tests. Bertogna’s
experiments show that using DMPO the RTA test
outperforms all other then known schedulability tests for
constrained deadline sporadic tasksets, including those for
EDF and EDZL. Despite this, and the optimality of DMPO
in the equivalent uniprocessor case, we are sceptical about
the effectiveness of DMPO in the multiprocessor case.

The intuition for an alternative priority assignment
policy can be obtained by re-arranging Equation (4):

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
≥− ∑

∈∀)(
)(1

khpi
k

D
ikk DI

m
CD (10)

For large m, the term on the right hand side grows
relatively slowly with each additional higher priority task.
This suggests that ii CD − monotonic priority ordering
(D-CMPO) might be a useful heuristic.

Andersson and Jonsson [2] investigated a similar
priority ordering, called TkC, for implicit deadline
tasksets. TkC assigns priorities based on the value of

ii kCT − , where k is a real value computed on the basis of
the number of processors, as follows:

m
mmmk

2
1651 2 +−+−

= (11)

Extending this approach to tasksets with constrained
deadlines, we form the DkC priority assignment policy
which orders tasks according to the value of ii kCD − ,
where k is again computed according to Equation (11).

The performance of the three heuristic priority
assignment policies: DMPO, D-CMPO, and DkC is
examined empirically in Section 6.

We also developed heuristic priority assignment
algorithms based on the DM-DS{ς } [15] and SM-US{ς }
[5] priority assignment policies. These algorithms,
although more complex, were found to be no more
effective than the DkC policy. Details of the algorithms
and their performance can be found in [24].

It is interesting to note that D-CMPO and DkC have
some similarities with recent work on dynamic priority
scheduling: The LEDLm algorithm proposed by Easwaran

et al. [26] in 2008, partially schedules jobs on the basis of
longest remaining execution time first. This has the effect
of maximising the potential for concurrency by retaining a
large number of incomplete jobs with short remaining
execution times; the idea being that such jobs are easier to
schedule than a smaller number of jobs with longer
remaining execution times. D-CMPO and DkC incorporate
an element of this effect, as by comparison with DMPO,
they assign higher priorities to tasks with longer execution
times.

5. Taskset generation
Empirical investigations into the effectiveness of

priority assignment policies and schedulability tests
require a means of generating tasksets. A taskset
generation algorithm should be unbiased [19], and ideally,
it should allow tasksets to be generated that comply with a
specified parameter setting. That way the dependency of
priority assignment policy / schedulability test
effectiveness on each taskset parameter can be examined
by varying that parameter, while holding all other
parameters constant, avoiding any confounding effects.

A (naïve) unbiased method of generating tasksets of
cardinality n and target utilisation (Ut) is as follows.
1. Select n task utilisation values iU at random from a

uniform distribution over the range [0,1].
2. Discard the taskset if the total utilisation U is not

within some small percentage of Ut, and generate a
new taskset by returning to step 1.

We note that this naive approach is not viable in practice
due to the number of tasksets that need to be discarded.
The UUnifast algorithm of Bini and Buttazzo [19] (pseudo
code given below), was devised to give the same unbiased
distribution. Note, pow(x, y) raises x to the power y, and
rand() returns a random number in the range [0,1] from a
uniform distribution.

UUnifast(n,Ut)
{
 SumU = Ut;
 for (i = 1 to n-1)
 {

 nextSumU = SumU * pow(rand(), 1/(n-i));
 U[i] = SumU – nextSumU;
 sumU = nextSumU;

 }
 U[n] = SumU;
}

To the best of our knowledge, UUnifast has not
previously been used in the context of multiprocessors, as
the basic algorithm cannot generate tasksets with total
utilisation 1>U without the possibility that some tasks
will have utilisation 1>iU . Instead, researchers have used
an approach to taskset generation based on generating an
initial taskset of cardinality m+1 at random and then
repeatedly adding tasks to it to generate further tasksets
until the total utilisation exceeds the available processing
resource [17], [18], [16], [10]. This approach has the
disadvantage that it effectively combines two variables,

utilisation and taskset cardinality, and does not necessarily
result in an unbiased distribution of tasksets.

In the remainder of this section, we show how the
UUnifast algorithm can be adapted to generate the tasksets
needed to study multiprocessor systems. Inspection of the
UUnifast algorithm shows that it is scale invariant. We can
therefore use it to generate tasksets with U > 1 as follows:
o The UUnifast method, with parameters n, and Ut

(which may be > 1), is used to generate task utilisation
values in the range [0, Ut].

o If a task utilisation value iU is generated that is > 1,
then the values produced so far, that is 1U to iU , are
discarded. If the total number of discarded partial
tasksets exceeds some limit, then the algorithm exits
and reports that it has failed, otherwise it re-starts
generating utilisation values at 1U .

o Once a sequence of n valid utilisation values are
generated, the algorithm completes, reporting success.

We refer to the above algorithm as UUnifast-Discard.
Theorem 7: The tasksets produced by UUnifast-Discard
are unbiased, i.e. uniformly distributed [19], with task
utilisations in the range [0, min(Ut,1)] which sum to Ut.
Proof: We prove the theorem via a geometric argument.
Each taskset can be represented by a point on an n-1
dimensional plane in n-dimensional space, where the co-
ordinates of the point are the utilisation values of each task
in the taskset i.e. (nUUUU ...,, 321). A uniform distribution
of tasksets is required over the valid region of the plane.

UUnifast produces tasksets that are uniformly
distributed over a finite convex region Z of the n-1
dimensional plane defined by ∑ =UtUi , UtUi ≤ and

0≥iU . (See Figure 9 in [19] for a graphical illustration).
For UUnifast-Discard, there are two cases to consider:

Case 1: 1≤Ut : No tasksets are discarded; hence the
distribution of tasksets remains uniform and unbiased.
Case 2: 1>Ut : Let Y be the convex finite region of the n-1
dimensional plane defined by ∑ =UtUi , 1≤iU and

0≥iU . Note that Y is a subset of Z and so the distribution
of tasksets produced by UUnifast over the region Y is also
uniform and unbiased. Now, all tasksets generated with
any 1>iU are discarded by UUnifast-Discard. This
corresponds to removal of all of those tasksets that are in
region Z but not in region Y. Further, none of the tasksets
in region Y are discarded, hence the distribution of tasksets
over region Y remains uniform and unbiased □

An unbiased distribution of tasksets is exactly what is
required to study the effectiveness of multiprocessor
schedulability tests. Unfortunately, there is a drawback to
the UUnifast-Discard approach. As the target utilisation
requested increases towards n/2, then the number of valid
tasksets (with all 1≤iU) becomes a vanishingly small
proportion of those generated. While this is clearly a
limitation in theory, in practice, we contend that many
commercial real-time systems using multiprocessors will
have significantly more tasks than processors. In any case,

we can simply set a pragmatic discard limit for UUnifast-
Discard and investigate as much of the problem space as
possible within this limit.

Figure 3 shows the maximum taskset utilisation that
UUnifast-Discard is able to generate, using a discard limit
of 1000, plotted against taskset cardinality. For example,
UUnifast-Discard can be used to generate tasksets with a
target utilisation of up to 8, (suitable for investigation of 8
processor systems) provided that the taskset cardinality
exceeds 14. Lower utilisation levels of 7.5 and 6.7 are
possible with 12 and 10 tasks respectively. (Note that the
behaviour of the UUnifast-Discard algorithm is
independent of the number of processors).

0

5

10

15

20

25

0 10 20 30 40 50

Number of tasks

To
ta

l u
til

is
at

io
n

Max target
utilisation

Figure 3

As we will see in the next section, the scope of this
taskset generation method is sufficient to examine the
effectiveness of schedulability tests over a wide range of
interesting parameter values.

6. Empirical investigation
In this section, we present the results of an empirical

investigation, examining the effectiveness of different
priority assignment policies when used in conjunction with
two sufficient schedulability tests: the “DA test” (Equation
(4)), which is OPA-compatible, and the “RTA test”
(Equation (8)), which is OPA-incompatible. The priority
assignment policies studied are DMPO, D-CMPO, DkC
and the OPA algorithm (DA test only).
6.1. Parameter generation

The task parameters used in our experiments were
randomly generated as follows:
o Task utilisations were generated using the UUnifast-

Discard algorithm, using a discard limit of 1000.
o Task periods were generated according to a log-

uniform distribution5 with a factor of 1000 difference
between the minimum and maximum possible task
period. This represents a spread of task periods from
1ms to 1000ms, as found in most hard real-time
applications. The log-uniform distribution was used as

5 The log-uniform distribution of a variable x is such that ln (x) has a
uniform distribution.

it generates an equal number of tasks in each time
band (e.g. 1-10ms, 10-100ms etc.), thus providing
reasonable correspondence with real systems.

o Task execution times were set based on the utilisation
and period selected: iii TUC = .

o Task deadlines were assigned according to a uniform
random distribution, in the range],[ii TC .

In each experiment, the taskset utilisation (x-axis value)
was varied from 0.025 to 0.975 times the number of
processors in steps of 0.025. For each utilisation value,
1000 valid tasksets were generated and the schedulability
of those tasksets determined using various combinations of
priority assignment policy and schedulability test. The
graphs plot the percentage of tasksets generated that were
deemed schedulable in each case.
6.2. Experiment 1 (Priority assignment)

In this experiment we investigated the impact of each
of the priority assignment policies on the percentage of
tasksets deemed schedulable by the two schedulability
tests. Figures 4 to 7 show this data for 2, 4, 8, and 16
processors respectively.

From the graphs, we can see that the priority
assignment policy used has a significant impact on overall
performance, and that the more processors there are, the
larger this impact becomes. There are 4 solid lines on each
graph depicting the performance of the DA test for DMPO
(lowest performance), D-CMPO, DkC, and OPA (highest
performance / optimal with respect to this schedulability
test). Note the lines on the graphs appear in the order given
in the legend.

In the 16 processor case (Figure 7), using DMPO,
approx. 50% of the tasksets are unschedulable according to
the DA test at a utilisation level of 4.4 (= 0.28m); however,
using the OPA algorithm, approx. 50% of the tasksets are
schedulable according to the same test at a utilisation level
of 9.4 (= 0.59m). Hence, in this case, optimal priority
assignment effectively enables 114% better utilisation of
the processing resource than DMPO. D-CMPO is more
effective than DMPO, and the DkC priority assignment
policy is notably almost as effective as optimal priority
assignment. Note, the performance of DkC and D-CMPO
are identical in the 2 processor case (Figure 4) as k = 1 in
Equation (11). Comparison between the four figures shows
that the difference between OPA and DMPO becomes
larger as the number of processors increases.

It is clear from the graphs that the difference in
performance between the DA test (solid lines) and the
RTA test (dashed lines) is less significant than the
difference between the best and the worst priority
assignment policies.

0%

20%

40%

60%

80%

100%

120%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e
DA (OPA)
RTA (DKC)
DA (DKC)
 RTA (DCMPO)
DA (DCMPO)
RTA (DMPO)
DA (DMPO)

Figure 4: (2 processors, 10 tasks)

0%

20%

40%

60%

80%

100%

120%

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9
Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

DA (OPA)
RTA (DKC)
DA (DKC)
 RTA (DCMPO)
DA (DCMPO)
RTA (DMPO)
DA (DMPO)

Figure 5: (4 processors, 20 tasks)

0%

20%

40%

60%

80%

100%

120%

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8
Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

DA (OPA)
RTA (DKC)
DA (DKC)
 RTA (DCMPO)
DA (DCMPO)
RTA (DMPO)
DA (DMPO)

Figure 6: (8 processors, 40 tasks)

0%

20%

40%

60%

80%

100%

120%

0.4 1.2 2.0 2.8 3.6 4.4 5.2 6.0 6.8 7.6 8.4 9.2 10
.0

10
.8

11
.6

12
.4

13
.2

14
.0

14
.8

15
.6

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

DA (OPA)
RTA (DKC)
DA (DKC)
 RTA (DCMPO)
DA (DCMPO)
RTA (DMPO)
DA (DMPO)

Figure 7: (16 processors, 80 tasks)

The data shown in Figures 4 to 7 is for systems with 5

times as many tasks as processors. We repeated these
experiments for smaller (2) and larger (20) numbers of
tasks per processor. In each case, although the data points
changed, the relationships between the effectiveness of the
different methods and the conclusions that can be drawn
from them remained essentially the same.
6.3. Experiment 2 (Number of tasks)

In this experiment we investigated the effect of
varying the number of tasks. Figure 8 shows the
percentage of tasksets that were schedulable on an 8
processor system, for taskset cardinalities of 9, 10, 12, 16,
24, and 40, using the DA test with optimal priority
assignment (solid lines). Data for the RTA test with DkC
priority assignment was almost identical (not shown on the
graph). Figure 9 shows similar data for tasksets of
cardinality 40, 80, 120, 160, and 200.

There are some data points missing from the right hand
side of Figure 8. This is because the UUnifast-Discard
algorithm, was unable to generate tasksets with cardinality
9 and utilisation greater than 6.6 (or cardinality 10 and
utilisation greater than 6.8) using a discard limit of 1000;
however, despite this the trends are still clearly visible.

In Figure 8, the percentage of schedulable tasksets
decreases as the number of tasks is increased from 9
towards 40, with all other parameters held constant. It
would appear from this data alone that tasksets with a
larger number of tasks are more difficult to schedule.
Figure 9 shows what happens as we continue to increase
the number of tasks from 40 to 200 (25 times the number
of processors). Now as the number of tasks increases, the
tasksets appear to become easier to schedule. This
behaviour can be explained as a combination of two
effects: With a small number of tasks, tasksets are
relatively easy to schedule as the impact of each high
utilisation, high interference task is limited to effectively
occupying one processor (see Equations (3) and (7)). In
the extreme, any valid taskset with m tasks or less is
trivially schedulable on an m processor system. As taskset
cardinality increases from m to 2m we therefore expect
fewer tasksets to be schedulable at any given utilisation.
At the other extreme, with increasing taskset cardinality
(mn >>), the average density kk DC / of each task kτ
becomes small. This means that the amount of pessimism
in the schedulability tests, due to the assumption that when

kτ executes all other processors are idle is reduced.
Hence, as n increases beyond 10m so the number of

schedulable tasksets increases.
The fact that on an m processor system, any valid set of

m tasks is schedulable, illustrates the incomparability of
global FP scheduling on m processors of speed 1, with
respect to fixed priority pre-emptive scheduling on a
similar uniprocessor of speed m. The m-speed
uniprocessor can trivially schedule a single task of
utilisation greater than one, whereas the m processors
cannot. Similarly, the m processors can schedule any set of
m tasks with co-prime periods and individual task
utilisations equal to 1, whereas the m-speed uniprocessor
cannot.

0%

20%

40%

60%

80%

100%

120%

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

DA (OPA) 9
DA (OPA) 10
DA (OPA) 12
DA (OPA) 16

DA (OPA) 24
DA (OPA) 40

Figure 8: (taskset cardinality from 9 to 40)

0%

20%

40%

60%

80%

100%

120%

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

DA (OPA) 200

DA (OPA) 160

DA (OPA) 120

DA (OPA) 80

DA (OPA) 40

Figure 9: (taskset cardinality from 40 to 200)

7. Summary and conclusions
The motivation for our work was the desire to improve

upon the current state-of-the-art in terms of practical
techniques that enable the efficient use of processing
capacity in hard real-time systems based on
multiprocessors.

In this paper we addressed the problem of priority
assignment for global FP scheduling of constrained-

deadline sporadic tasksets. We were drawn to this area of
research by the recent work of Bertogna et al. [18] which
showed that the best schedulability tests available for
global FP scheduling using Deadline Monotonic Priority
Ordering (DMPO) outperform the best tests then known
for both global EDF and EDZL.

The intuition behind our work was the idea that in
fixed priority scheduling, finding an appropriate priority
assignment is as important as using an effective
schedulability test. While DMPO is an optimal priority
assignment policy for uniprocessors, this result is known
not to transfer to the multiprocessor case. Indeed, our
results show that DMPO cannot even be considered a good
heuristic for multiprocessors.

The key contributions of this paper are as follows:
o The observation that although Audsley’s Optimal

Priority Assignment algorithm [6], [7] cannot be
applied to any exact schedulability test for global FP
scheduling of periodic tasksets, this does not
necessarily preclude its use with sufficient
schedulability tests.

o Proof that Audsley’s OPA algorithm is the optimal
priority assignment policy with respect to any global
FP schedulability test for periodic or sporadic tasksets
that complies with three simple conditions.

o Classification of schedulability tests for global FP
scheduling as either OPA-compatible or OPA-
incompatible based on these conditions. The deadline-
based sufficient test (“DA test”) of Bertogna et al.
[18], and the response time test of Andersson and
Jonsson [1] for sporadic tasksets are OPA-compatible,
while any exact test for periodic tasksets, and the
response time test (“RTA test”) of Bertogna and
Cirinei [16] for sporadic tasksets are OPA-
incompatible.

o Extension of the TkC [2] priority assignment policy to
constrained deadline tasksets forming the DkC
priority assignment policy. This heuristic policy can
be used in conjunction with any schedulability test.

o Adaptation of the UUnifast algorithm to the
multiprocessor case, forming the UUnifast-Discard
algorithm. UUnifast-Discard generates tasksets with
specific parameter settings, facilitating an empirical
study of schedulability test effectiveness without the
problem of confounding variables.

o An empirical study showing that by using the OPA
algorithm rather than DMPO, the DA test can
schedule significantly more tasksets. Our study also
showed that the DkC priority assignment policy is
almost as effective as optimal priority assignment
when applied in conjunction with the DA test, and
similarly highly effective when applied with the RTA
test.

Our studies showed that the improvements that an
appropriate choice of priority assignment brings are very
large when viewed in terms of the proportion of processing

capacity that can be usefully deployed. For example, in the
16 processor case, the utilisation level at which 50% of the
tasksets were schedulable increased from 0.28m or 0.29m
(for the DA test or RTA test with DMPO) to 0.58m or
0.59m (for the RTA test with DkC priority assignment, or
the DA test with optimal priority assignment). This
represents an effective increase in the usable processing
resource of 100% or more. This level of improvement is of
great value to engineers designing and implementing hard
real-time systems based on multiprocessor platforms, as it
enables more effective use to be made of processing
resources while still ensuring that deadlines are met. We
conclude that priority assignment is an important factor in
determining the schedulability of tasksets under global
fixed priority pre-emptive scheduling.

The OPA algorithm requires a polynomial number of
schedulability tests (n(n+1)/2) to solve the problem of
optimal priority assignment for any OPA-compatible
global FP schedulability test. To the best of our
knowledge, the complexity of optimal priority assignment
for exact schedulability tests for periodic tasksets under
global FP scheduling remains an open problem. For
sporadic tasksets, no exact test is known and the
complexity of optimal priority assignment is also an open
problem.

In future, we intend to explore the use of the optimal
priority assignment algorithm, and heuristic priority
assignment policies, such as DkC, in conjunction with
other schedulability tests for global FP scheduling. Other
interesting areas of possible future work include the
extension of optimal priority assignment techniques to
uniform processors.
7.1. Acknowledgements

The authors would like to thank Enrico Bini and Paul
Emberson for their contributions to the discussions about
the applicability of the UUnifast algorithm to the
multiprocessor case, and also Yang Chang for his
insightful review of an early draft. This work was funded
in part by the EU Jeopard and EU eMuCo projects.

References
[1] B. Andersson, J. Jonsson, “Some insights on fixed-priority pre-
emptive non-partitioned multiprocessor scheduling”. In Proc. RTSS –
Work-in-Progress Session, Nov. 2000.
[2] B. Andersson, J. Jonsson, “Fixed-priority preemptive multiprocessor
scheduling: to partition or not to partition”, In Proc. RTCSA, Dec. 2000.
[3] B. Andersson, S. Baruah, J. Jonsson, “Static-priority scheduling on
multiprocessors”. In Proc. RTSS, pp. 193–202, 2001.
[4] B. Andersson, J. Jonsson, "The Utilization Bounds of Partitioned
and Pfair Static-Priority Scheduling on Multiprocessors are 50%," In
Proc. ECRTS, pp. 33-40, 2003.
[5] B. Andersson, “Global static-priority preemptive multiprocessor
scheduling with utilization bound 38%.” In Proc. International
Conference on Principles of Distributed Systems, pp. 73-88, 2008.
[6] N.C. Audsley, "Optimal priority assignment and feasibility of static
priority tasks with arbitrary start times", Technical Report YCS 164,
Dept. Computer Science, University of York, UK, Dec. 1991.
[7] N.C. Audsley, “On priority assignment in fixed priority scheduling”,
Information Processing Letters, 79(1): 39-44, May 2001.

[8] T.P. Baker. “Multiprocessor EDF and deadline monotonic
schedulability analysis”. In Proc. RTSS, pp. 120–129, 2003.
[9] T.P. Baker. “An analysis of fixed-priority scheduling on a
multiprocessor”. Real Time Systems, 32(1-2), 49-71, 2006.
[10] T.P. Baker, M. Cirinei, M. Bertogna, “EDZL scheduling analysis”.
Real-Time Systems. 40(3) : 264-289, Dec. 2008
[11] T.P. Baker, S.K. Baruah. “Sustainable multiprocessor scheduling of
sporadic task systems”. In Proc. ECRTS, pp. 141-150, 2009.
[12] S.K. Baruah, N. Fisher. “Global Fixed-Priority Scheduling of
Arbitrary-Deadline Sporadic ...” In Proc. of the 9th Int’l Conference on
Distributed Computing and Networking, pp. 215-226, Jan 2008.
[13] S.K. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller,
“Implementation of a speedup-optimal global EDF schedulability test”,
In Proc. ECRTS, pp. 259-268, 2009.
[14] S.K. Baruah, T.P. Baker, “An analysis of global EDF schedulability
for arbitrary sporadic task systems. Real-Time Systems ECRTS special
issue, 43(1): 3-24, Sept. 2009.
[15] M. Bertogna, M. Cirinei, G. Lipari, “New schedulability tests for
real-time task sets scheduled by deadline monotonic on multiprocessors”.
In Proc. 9th International Conf. on Principles of Distributed Systems, pp.
306-321, Dec. 2005.
[16] M. Bertogna, M. Cirinei, “Response Time Analysis for global
scheduled symmetric multiprocessor platforms”. In Proc. RTSS, pp. 149-
158, 2007.
[17] M. Bertogna, “Real-Time Scheduling for Multiprocessor
Platforms”. PhD Thesis, Scuola Superiore Sant’Anna, Pisa, 2007.
[18] M. Bertogna, M. Cirinei, G. Lipari. “Schedulability analysis of
global scheduling algorithms on multiprocessor platforms”. IEEE
Transactions on parallel and distributed systems, 20(4): 553-566. April
2009.
[19] E. Bini and G.C. Buttazzo. “Measuring the Performance of
Schedulability tests”. Real-Time Systems, 30(1–2):129–154, May 2005.
[20] L. Cucu, J. Goossens, "Feasibility Intervals for Fixed-Priority Real-
Time Scheduling on Uniform Multiprocessors", In Proc. 11th IEEE
International Conference on Emerging Technologies and Factory
Automation, (ETFA'06), Sept. 2006.
[21] L. Cucu, J. Goossens, "Feasibility Intervals for Multiprocessor
Fixed-Priority Scheduling of Arbitrary Deadline Periodic Systems ", In
Proc. DATE, pp. 1635-1640, April 2007.
[22] L. Cucu, "Optimal priority assignment for periodic tasks on
unrelated processors", In Proc. ECRTS WiP session. June 2008.
[23] R.I. Davis, A. Burns. “Robust Priority Assignment for Fixed
Priority Real-Time Systems”. In Proc. RTSS, pp. 3-14, Dec. 2007.
[24] R.I. Davis, A. Burns, “Priority Assignment for Global Fixed Priority
Pre-emptive Scheduling in Multiprocessor Real-Time Systems”.
University of York, Dept. of Computer Science Technical Report YCS-
2009-440, May 2009.
[25] S.K. Dhall, C.L. Liu, “On a Real-Time Scheduling Problem”,
Operations Research, vol. 26, No. 1, pp. 127-140, 1978.
[26] A. Easwaran, I. Shin, I. Lee, “Toward Optimal Mutiprocessor
Scheduling for Arbitrary Deadline …”. In Proc. RTSS WiP pp. 1-4, 2008.
[27] N. Fisher, S.K. Baruah. “Global Static-Priority Scheduling of
Sporadic Task Systems on Multiprocessor Platforms.” In Proc. IASTED
International Conference on Parallel and Distributed Computing and
Systems. Nov. 2006.
[28] S. Lauzac, R. Melhem, and D. Mosse. “Comparison of global and
partitioning schemes for scheduling rate monotonic tasks on a
multiprocessor”. In Proc. of the EuroMicro Workshop on Real-Time
Systems, pp. 188–195, June 1998.
[29] C.L. Liu, “Scheduling algorithms for multiprocessors in a hard real-
time …”. JPL Space Programs Summary, vol. 37-60, pp. 28-31, 1969.
[30] C.L. Liu, J.W. Layland, "Scheduling algorithms …", Journal of the
ACM, 20(1): 46-61, Jan. 1973.
[31] J. Y.-T. Leung and J. Whitehead, "On the complexity of fixed-
priority scheduling of periodic real-time tasks," Performance Evaluation,
2(4): 237-250, Dec. 1982.
[32] O. Serlin, “Scheduling of time critical processes”. In proceedings
AFIPS Spring Computing Conference, pp 925-932, 1972.

http://www.cs.unc.edu/~baruah/Papers/2009-bakerBaruah-ECRTS.pdf�
http://www.cs.unc.edu/~baruah/Papers/2009-bakerBaruah-ECRTS.pdf�

