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L. INTRODUCTION

As a result of stringent requirements on size, weight, and power consumption (SWaP), as well as the need to provide
advanced new functionality through software, critical real-time embedded systems in the aerospace, space, and automotive
markets are beginning to make use of multicore processors for hard real-time applications. The deployment of hard real-time
applications on advanced multicore processors requires a number of challenges to be overcome. A wealth of research has been
done on scheduling and schedulability analysis for multicore platforms (see [7] for a survey); however, this work needs to be
underpinned by safe and tight estimates of the Worst-Case Execution Time (WCET) of component tasks. Considerable work
has been done on WCET analysis assuming non-pre-emptive execution on single processors (see [13] for a survey), and the
impact of Cache Related Pre-emption Delays (CRPD) has been taken into account for multitasking systems [1], [2], [11].
However, research into adapting WCET techniques to address the challenges of multicore processors, and specifically the use
of caches that are shared between two or more processors, is in its infancy.

Many multicore processors make use of a cache hierarchy with private L1 caches per core and an L2 cache shared between
cores. Sharing the L2 cache provides a significant performance boost over private L2 caches of the same total size, improving
average-case performance and energy efficiency; however, the inter-core cache interference makes the WCET analysis
problem extremely challenging. The problem is exacerbated by timing anomalies: The worst-case path for code executed in
isolation may no longer be the worst-case path when inter-core cache contention is accounted for — see Figure 2 in [14].

The simplest and, as far as we are aware, the only compositional solution available so far is to assume that all L2 accesses
are cache misses; however, as L2 latencies are typically high this is extremely pessimistic. Initial papers in this area [10], [14],
[15], and [16] provide analysis which has complex dependencies on the detailed execution behaviour of contending tasks on
other cores. However, details of the contending tasks may not necessarily be available for analysis, and even if they are, then
such cross dependencies go against requirements for composability, which are necessary for the efficient development and
integration of complex systems.

1L PROBABILISTIC APPROACH

One possible solution is to make use of randomisation techniques, in particular random cache replacement policies, which
make the probability of pathological cases vanishingly small. Static Probabilistic Timing Analysis (SPTA) has been developed
for single processor systems assuming both evict-on-access [4] and evict-on-miss policies [8], with analysis of probabilistic
CRPDs also given in [8]. Such approaches have the potential to provide an increase in the level of performance of hard real-
time systems that can be guaranteed with respect to an acceptable threshold for the timing failure rate [3], particularly as the
bounds provided degrade far less rapidly, with respect to incomplete information about the execution history, than the WCET
computed assuming deterministic cache replacement policies [12].

It is our conjecture that in the multicore case, with shared caches, random cache replacement policies have the potential
to break dependencies on execution history and specific inter-core cache contention, and so permit effective probabilistic
WCET analysis that supports timing composition. This is particularly important in the case of mixed-criticality systems
where the tasks running on other processors may be of lower criticality. Separation via a simple interface, independent of task
behaviour or misbehaviour, ensures that lower criticality tasks have a strictly bounded effect on higher criticality tasks of
interest through interactions via the shared cache. A similar argument applies to open systems, where non-real-time tasks
may be downloaded and run on a specific core. Here the complete set of tasks is not available at design time for analysis.

A. Single processor SPTA

We now recap on SPTA for single processor systems with an evict-on-miss random cache replacement policy for the
instruction cache and no data cache. With the evict-on-miss policy, whenever an instruction is requested and is not found in the
cache, then a randomly chosen cache line is evicted and the memory block containing the instruction is loaded into the evicted
location. We assume an N-way associative cache, and hence the probability of any cache line being evicted on a miss is 1/N.

For simplicity, we assume a single path program (extensions to multipath programs are given in [8]) comprising a fixed
sequence of instructions. We represent these instructions via the memory blocks they access, with a superscript indicating the
re-use distance k. (The re-use distance is the maximum number of evictions since the last access to the memory block
containing that instruction). For example, a, b, a', ¢, d, b>, >, d*, @’, e, b*, f, €%, g, a’, b*, h. For each instruction, the probability
of a cache hit is lower bounded by:

k
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Provided that £ < N, otherwise phit (k) =0, (details of this latter restriction are given in [8]). Given fixed costs for the cache-hit
latency (e.g. H = 1) and the cache miss latency (e.g. M = 10), then an upper bound pWCET distribution of a program can be
computed as the convolution (®) of the probability mass functions (PMFs) of each instruction. For example, given two
instructions with PMFs with cache hit probabilities of 0.8 and 0.7 respectively, we get a pWCET distribution for the ‘program’
that has a probability of the execution time being 2 on any given run of 0.56, a probability that it will be 11 of 0.38, and a
probability that there will be two cache misses and hence an execution time of 20 of 0.06.
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We note that for larger numbers of instructions, the probability of a large number of cache misses quickly becomes vanishingly
small, as illustrated by the graphs of 1-CDFs or exceedance functions shown in Figure 1 and Figure 2 below.

B. Open problem: Multicore SPTA with shared cache

In the multiprocessor case, we would like to develop SPTA that derives the probabilities of cache hits / misses and hence the
pWCET distribution for a sequence of instructions (i.e. a task) running on one core, given an instruction cache with an evict-
on-miss random replacement policy that is shared with one or more other cores which also execute tasks that can cause
evictions. (For clarity and simplicity in our initial investigation we consider only instruction cache and do not consider a
cache hierarchy). Clearly there is a mutual dependency between tasks; however, we aim to use simple interface models to
restrict the information required to analyse each task and hence support a compositional approach to system development.
For example:
)] A simple interface might state that the tasks running on each contending core can cause at most (t /M —| evictions in
a time interval of length #, where M is the cache miss latency. This interface description holds irrespective of the
details of the tasks and hence supports composition.

(i1) An upper bound may also be derived on the number of evictions caused in a time interval by all cores, reflecting the
limited bandwidth of the memory bus. Due to limited bandwidth, there can be at most |_t/b-| evictions in a time
interval of length #, where b is the time required to transfer one cache block.

(ii1) More complex analysis of the number of bus requests may be possible. Thus more complex interfaces might provide
sub-additive functions giving the maximum number of evictions that can possibly occur due to all cores as a
function of the length of the time interval. We note; however, that modelling the maximum number of bus requests
from tasks on other cores as done in [5], [6], while providing more precise analysis, goes against the requirements
for composition. Related work could look at how hardware might potentially police a maximum rate of evictions
due to tasks on a particular core.

To fully develop the theory in this area, a detailed model of the behaviour of the hardware is needed to correctly and
accurately model the worst-case number of evictions that can occur due to contention from other cores in a time interval of
length ¢, as well as to determine the maximum amount of time required for a sequence of instructions to execute on one core
given some number of cache misses.

A first attempt at solving our open problem integrates simple interface models of additional evictions into existing
SPTA.
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Figure 1: pWCET distributions (1-CDF) for FAC Figure 2: pWCET distributions (1-CDF) for FIBCALL

As an example, we model the contention from other cores as increasing the maximum number of evictions between
instructions and hence their re-use distances. With m cores, the re-use distance k of each instruction (assuming execution in
isolation) could potentially be increased by contention to (m —1)+ mk . Figure 1 and Figure 2 show the effect that this
increase in re-use distances has on the pWCET distributions for the FAC and FIBCALL programs from the Malardalen



benchmark suite [9]. PROG represents the program run in isolation, while the lines on the graphs for 2 Core, 3 Core, and 4
Core show the effect on the pWCET distribution due to contention from other cores. We observe that the increase in
execution time at a given probability (shown for 10”) though significant, is much less than would have to be assumed for a
deterministic system. In the deterministic case, with no knowledge of which cache blocks programs on other cores are using,
the only safe assumption is the ‘all misses’ scenario shown as the final line in the figures. (Note, the results are for an evict-
on-miss random cache replacement policy, a cache block size of 1 instruction, and a cache size of N=128 blocks).

The provision of WCETs and pWCETs form the basis for schedulability analysis. The context for the problem presented
is one of higher level task allocation and scheduling. Assuming, for example, partitioned scheduling, pWCETs are needed as
part of the schedulability analysis for each processor, and hence as part of the task allocation algorithm. These pWCETs
could potentially vary depending on the detailed task allocation, indicating the need for an integrated approach. However,
with simpler models fully supporting composition, then it would be sufficient to obtain pWCETSs that account for the
maximum impact of contention. Such pWCETs distributions would be independent of the task allocation and could be used
directly in a separate task allocation and schedulability analysis algorithm, i.e. without integration. Further, with the
development of a SPTA for shared caches, a comparison can be made to see if better pWCET estimates are obtained with a
shared cache or with partitioning of the cache to individual cores.
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