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Efficient Exact Schedulability Tests for Fixed 
Priority Real-Time Systems 

Robert Davis, Attila Zabos, and Alan Burns, Senior Member, IEEE

Abstract— Efficient exact schedulability tests are required both for on-line admission of applications to dynamic systems and 
as an integral part of design tools for complex distributed real-time systems. This paper addresses performance issues with 
exact Response Time Analysis (RTA) for fixed priority pre-emptive systems. Initial values are introduced that improve the 
efficiency of the standard RTA algorithm (i) when exact response times are required, and (ii) when only exact schedulability 
need be determined. The paper also explores modifications to the standard RTA algorithm, including; the use of a response time 
upper bound to determine when exact analysis is needed, incremental computation aimed at faster convergence, and checking 
tasks in reverse priority order to identify unschedulable tasksets early. The various initial values and algorithm implementations 
are compared by means of experiments on a PC recording the number of iterations required, and execution time measurements 
on a real-time embedded microprocessor. Recommendations are provided for engineers tasked with the problem of 
implementing exact schedulability tests, as part of on-line acceptance tests and spare capacity allocation algorithms, or as part 
of off-line system design tools. 

Index Terms— Multiprocessing / multiprogramming / multitasking, Real-time systems and embedded systems, Scheduling. 
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1 INTRODUCTION
IXED priority pre-emptive scheduling is widely used 
in real-time embedded systems, and is supported by 

the majority of commercial real-time operating systems.  
In the context of fixed priority pre-emptive systems, 

schedulability analysis is used to determine if a set of 
tasks can be guaranteed to always meet their deadlines at 
run-time. 

A schedulability test is referred to as sufficient if all 
tasksets deemed to be schedulable by the test are in fact 
schedulable. Similarly, a schedulability test is referred to 
as necessary if all tasksets deemed to be unschedulable by 
the test are in fact unschedulable. Schedulability tests that 
are both sufficient and necessary are referred to as exact. 

In this paper, we are concerned with exact schedulabil-
ity tests for fixed priority pre-emptive systems. Although 
these tests are known to be pseudo-polynomial in com-
plexity [5], [6], [11], the scale of many commercial systems 
is such that exact tests can be used. 

Efficient, exact schedulability tests are required for, 1) 
admission of applications to dynamic systems at run-
time, 2) design of complex real-time systems, where 
schedulability analysis forms part of some higher level 
process of system optimisation. Reducing the execution 
times of exact schedulability tests is an important consid-
eration in these practical applications. 

We can classify the requirements for exact schedulabil-
ity tests as follows: Boolean schedulability tests: only a Boo-
lean answer, either schedulable or not schedulable is re-
quired. Response time tests: in the case of a schedulable 
system, the exact worst-case response time of each task is 
required. 

For on-line admission tests, a Boolean schedulability 
test is often sufficient; however, for use off-line, as part of 
a system design tool, response time tests are typically 
required. For example, in a distributed system based on 
Controller Area Network (CAN), the response times of 
tasks that read sensor data and then output information 
on CAN affect the release jitter of messages sent on the 
bus [25]. Knowing exact worst-case response times for the 
tasks makes possible accurate analysis of message worst-
case response times, and hence derivation of exact end-to-
end response times from input event to output response. 

1.1 Motivation 
The motivation for this research comes from the Frescor 
project [23]. The Frescor scheduling framework supports 
the execution of multiple applications on a single proces-
sor. Each application is executed within its associated 
periodic server which has a capacity, period, and dead-
line. The servers run under a fixed priority pre-emptive 
scheduler. Determining server schedulability is an analo-
gous problem to computing the schedulability of a set of 
periodic/sporadic tasks. 

Applications can be added to a Frescor system at run-
time. Before a new application can be added, the admis-
sion test needs to check that all the existing servers re-
main schedulable, and that the additional server support-
ing the new application is also schedulable. Once an ap-
plication has been admitted to the system, the scheduling 
framework must determine the amount of spare capacity 
to allocate to each of those applications requesting addi-
tional capacity. The spare capacity allocation algorithm 
makes multiple calls to a schedulability test to determine 
the feasibility of the system with respect to different allo-
cations of spare capacity. 
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To achieve the best possible performance in terms of 
the applications that can be admitted, and the spare ca-
pacity that can be allocated, it is therefore desirable to use 
an exact schedulability test. As the schedulability test 
must be carried out on-line, and completed before a new 
application can start, it is important that the schedulabil-
ity test is as efficient as possible. This desire to provide an 
efficient and effective schedulability test for use in the 
Frescor scheduling framework motivates our research. 

As the research presented in this paper is applicable to 
the widely used fixed priority pre-emptive tasking model, 
in the remainder of the paper, we will use the term task to 
mean the schedulable entity of interest, which in the case 
of Frescor may, in fact, be a server or virtual resource. 

1.2 Related research 
Research into schedulability tests for fixed priority pre-
emptive systems effectively began in 1967, when Fineberg 
and Serlin [1] considered priority assignment for two 
tasks. They noted that if the task with the shorter period 
is assigned the higher priority, then the least upper bound 
on the schedulable utilisation is )12(2 −  or 82.8%. This 
result was generalised by both Serlin [2] in 1972 and Liu 
and Layland [3] in 1973, both of whom showed that for 
synchronous tasks (that share a common release time), that 
comply with a restrictive system model, and that have 
deadlines equal to their periods , then rate mono-
tonic

)( ii TD =
1 priority ordering (RMPO) is optimal. Liu and Lay-

land [3] provided the following sufficient schedulability 
test for tasks compliant with their model, and with priori-
ties assigned according to RMPO: 

∑
=

−≤
ni

n
i nU

..1

/1 )12(  (1) 

Where iii  is the utilisation of task iTCU /= τ , i is an 
upper bound on the execution time of 

C
iτ , and n is the 

number of tasks. 
In 1982, Leung and Whitehead showed that deadline 

monotonic2 priority ordering (DMPO) [4] is optimal for 
tasks with deadlines less than or equal to their periods 

. Exact response time tests were introduced by 
Joseph and Pandya [5] in 1986, and Audsley et al. [11] in 
1993. An exact Boolean schedulability test was introduced 
by Lehoczky et al. [6] in 1989. Both forms of exact test 
have been extended to cater for cases where tasks access 
mutually exclusive shared resources according to mecha-
nisms such as the Stack Resource Policy [9] and the Prior-
ity Ceiling Protocol (PCP) [7]. Further work on schedula-
bility tests for fixed priority systems has lifted many of 
the earlier restrictions, providing exact tests for tasks with 
offset release times [10], arbitrary deadlines ( ii ) [8], 
[12], and non-pre-emptive sections [21]; these extensions 
are however beyond the scope of this paper.  

)( ii TD ≤

TD >

Improvements to the performance of exact response 
time tests effectively began with Audsley [22] in 1993, 
who provided an initial value, for use in the recurrence 
relation used to compute task worst-case response times, 

that was based on the response time of the next higher 
priority task. 

1 RMPO assigns priorities in order of task periods, such that the task 
with shortest period is given the highest priority. 

2 DMPO assigns priorities in order of task deadlines, such that the task 
with the shortest deadline is given the highest priority. 

In 1998 Sjodin and Hansson [13] extended Audsley�s 
work, by accounting for blocking factors in the initial 
value calculation. They also introduced a closed form 
lower bound on the response time that could be used as 
an effective initial value. Sjodin and Hansson showed that 
these initial values lead to fewer iterations of the recur-
rence relation and quantified the improvements in algo-
rithm performance. 

In 2003, Bril et al. [14] considered online response time 
calculations using similar initial values to those intro-
duced by Audsley, and Sjodin and Hansson. 

The initial values used by Audsley [22], Sjodin and 
Hansson [13], and Bril et al. [14] are all lower bounds on 
the worst-case response time, thus exact worst-case re-
sponse times can be found starting from these values. 

In 2007, Lu et al. [17] introduced two new �deadline 
dependent� initial values, which can be used to deter-
mine exact schedulability, but cannot in general be used 
to find exact worst-case response times. Lu et al. showed 
that significant efficiency gains are possible using these 
new initial values combined with previous ones. 

Previous research by Lu et al. in 2006 [16] sought to 
improve the performance of response time analysis by 
partitioning higher priority tasks into two sets. Interfer-
ence from one set of tasks was then treated as consuming 
execution time according to their utilisation, leaving a 
fraction of the processor available for computation due to 
the remaining tasks. This approach reduced the number 
of iterations of the algorithm required for convergence; 
however, this came at the expense of requiring the use of 
floating point types. On most hardware platforms, the use 
of floating point is considerably slower than integer 
arithmetic, even when floating point hardware is avail-
able. For example, on the PowerPC (MPC555) microproc-
essor, code for the standard response time test is ap-
proximately 2.5 times slower using floating point rather 
than integer types. This difference in efficiency effectively 
negates the apparent speed ups reported in [16]. 

Related work by Bini and Buttazzo introduced the Hy-
perplanes Exact Test (HET) [19] in 2004. The Hyperplanes 
Exact Test provides a means of improving the efficiency 
of the exact schedulability test formulated by Lehoczky et 
al. in [6], via a reduction in the number of points in time 
at which the workload needs to be evaluated. Recent re-
search by the authors [28], reproduced in the appendix, 
shows that contrary to the findings in [19], the Hyper-
planes Exact Test is not in general as computationally 
efficient as the exact Response Time Analysis tests dis-
cussed in this paper. 

The research presented in this paper builds upon the 
work of Sjodin and Hansson [13], and Bril et al. [14]. It 
takes the concept of task partitioning introduced by Lu et 
al. [16] and uses it to form a new series of initial values 
that can be used in exact response time tests. The research 
also builds upon the work of Lu et al. [17] providing two 
improved initial values for use in exact Boolean sched-
ulability tests. 
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1.3 Organisation 
Section 2 gives the system model, terminology and nota-
tion used in the rest of the paper, along with a recapitula-
tion of the standard Response Time Analysis (RTA) recur-
rence relation. Section 3 introduces a new series of initial 
values, the largest of which can be used to compute exact 
worst-case response times. Section 4 presents two im-
proved initial values that can be used in Boolean sched-
ulability tests. Section 5 discusses improvements to the 
schedulability test algorithm, including an incremental 
approach, the use of a response time upper bound ensur-
ing that exact schedulability computation is only per-
formed when necessary, and reversing the order in which 
task schedulability is checked with the aim of identifying 
unschedulable tasks more quickly. Section 6 outlines an 
empirical investigation into schedulability test efficiency. 
This is complemented by Section 7 which provides execu-
tion time measurements from an implementation of the 
tests on an embedded microprocessor. Section 8 gives our 
recommendations to engineers tasked with implementing 
exact schedulability tests. Finally, Section 9 concludes 
with a summary of the main contributions of this paper, 
and an outline of areas for future research. 

2 SYSTEM MODEL AND BASIC ANALYSIS

2.1 Terminology and notation 
In this paper, we are interested in providing efficient, ex-
act schedulability tests for applications executing under a 
fixed priority pre-emptive scheduler on a single proces-
sor. The application is assumed to comprise a static set of 
n tasks ( nττ ..1 ), each assigned a unique priority i, from 1 
to n (where n is the lowest priority). 

We use the notation hp(i) and lp(i) to mean the set of 
tasks with priorities higher than i, and the set of tasks 
with priorities lower than i respectively. Similarly, we use 
the notation hep(i) and lep(i) to mean the set of tasks with 
priorities higher than or equal to i, and lower than or 
equal to i respectively. 

Application tasks may arrive either periodically at fixed 
intervals of time, or sporadically after some minimum in-
ter-arrival time has elapsed. Each task iτ , is characterised 
by: its relative deadline i , worst-case execution time i , 
minimum inter-arrival time or period i , and release jitter

i , defined as the maximum time between the task arriv-
ing and it being released (ready to execute). It is assumed 
that once a task starts to execute it will never voluntarily 
suspend itself. 

D C
T

J

Tasks may access shared resources in mutual exclusion 
according to the Stack Resource Policy (SRP) [9]. A task at 
priority i may be blocked by lower priority tasks, as a 
result of the operation of the SRP, for at most , referred 
to as the blocking time. 

iB

A task�s worst-case response time i , is the longest time 
from the task becoming ready to execute to it completing 
execution. A task is referred to as schedulable if its worst-
case response time is less than or equal to its deadline less 
release jitter ( iii ). A system is referred to as 
schedulable if all its tasks are schedulable. 

R

JDR −≤

We assume that task deadlines are less than or equal to 
their periods ii TD ≤ , and without loss of generality that 
task priorities are in deadline minus jitter monotonic3 (D-
JMPO) priority order [20]. 

2.2 Busy periods and idle instants 
The concept of a busy period, introduced by Lehoczky in 
[8], is fundamental in analysing worst-case response 
times. The following concepts are used in the analysis 
presented in this paper. 

A priority level-i idle instant is defined as a time instant t 
at which there are no tasks of priority i or higher awaiting 
execution that became ready to execute strictly before 
time t. 

A priority level-i busy period is defined as follows: 
1. It starts at a priority level-i idle instant st , when a 

task of priority i or higher becomes ready to exe-
cute. 

2. It is a contiguous interval of time during which 
any task of priority lower than i is unable to start 
executing. 

3. It ends at the first priority level-i idle instant et , 
following st . 

A critical instant [3], for task iτ , is defined as a time at 
which task iτ  becomes ready to execute, and is then sub-
ject to the maximum possible delay, i.e. its worst-case 
response time, before completing execution. For tasks 
complying with the system model outlined above, a criti-
cal instant occurs when task iτ  becomes ready to execute 
simultaneously with all tasks of higher priority, and sub-
sequent invocations of these higher priority tasks become 
ready as soon as possible. Further, immediately before 
task iτ  is released, a lower priority tasks locks a resource 
with a ceiling priority of i or higher, resulting in the 
maximum blocking time i . For this system model, the 
worst-case response time of task i

B
τ  is equivalent to the 

length of the longest priority level-i busy period. 

2.3 Basic response time analysis 
Response time analysis [5], [11], [12] calculates the length 
of the longest priority level-i busy period and hence the 
worst-case response time of task iτ , using the following 
equation. 

j
ihpj j

ji
iii C

T
JR

CBR ∑
∈∀ ⎥

⎥
⎥

⎤

⎢
⎢
⎢

⎡ +
++=

)(
 (2) 

Note that the worst-case response time i  appears on 
both the left and right hand side of Equation (2). As the 
right hand side is a monotonically non-decreasing func-
tion of i , the equation can be solved using the following 
recurrence relation: 

R

R

j
ihpj j

j
n

i
ii

n
i C

T
Jr

CBr ∑
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⎥
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⎢
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Iteration starts with an initial value , typically 
iii , and ends when either  in which 

case the worst-case response time , is given by  or 

0
ir n
ir=CBr +=0 n

ir
+1

iR 1+n
ir

3 D-JMPO assigns priorities in order of deadline minus jitter, such that the 
task with the smallest value of Di-Ji is given the highest priority.
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when  in which case the task is unschedul-
able. 

ii
n

i JDr −>+1

R
R

A

In general, Equation (2) may have a number of differ-
ent solutions, the smallest of which corresponds to the 
worst-case response time i . The recurrence relation is 
guaranteed to converge provided that the taskset utilisa-
tion is <1. It is guaranteed to converge on the smallest 
solution i , if and only if the initial value  is less than 
or equal to i , thus any initial value i  will suffice to 
determine the exact value of i . Further, for any two ini-
tial values 

R

0
ir

R≤
R

r  and Br where i , then the 
number of iterations , of the recurrence relation re-
quired to converge on the solution i  from  initial value 

Br≤Ar

R

R≤
AN

Ar  is at least as great as the number of iterations , 
required when starting from initial value 

BN
Br . Stated oth-

erwise, the largest possible initial value i  will result in 
the least number of iterations and hence the fastest possi-
ble convergence. 

R≤

2.4 Performance metrics 
A number of different metrics could be used to explore 
the performance of the recurrence relation: 

1. Number of iterations of the recurrence relation re-
quired for convergence. 

2. Total number of ceiling operations required for con-
vergence. 

3. Execution time of a specific implementation on a 
particular microprocessor. 

In their experiments, Sjodin and Hansson [13], and Lu 
et al. [17] used the number of iterations of the recurrence 
relation as a performance metric. By contrast, Bril et al. 
[14] used the number of ceiling operations. We argue that 
the latter is a better metric, as each iteration requires a 
variable number of ceiling operations dependent on the 
priority of the task. Thus using iterations as a measure 
could potential skew the results, if for example, a particu-
lar approach required less iterations for high priority 
tasks, but more for those of low priority. 

In our empirical investigations, in Section 6, we use the 
number of ceiling operations as a performance metric, 
and as a simple proxy for the later execution time meas-
urements made in Section 7. 

3 INITIAL VALUES FOR EXACT RESPONSE TIME 
TESTS

In this section, we consider initial values for exact re-
sponse time tests. 

3.1 Previous work 
In 1993, in chapter 4 of his thesis [22], Audsley showed 
that, for systems of independent tasks, with task sched-
ulability tested in priority order,  is an effective 
initial value. 

ii CR +−1

In 1998, Sjodin and Hansson [13] extended this lower 
bound on  to account for blocking: iR

iii BBR +−= −− 11 i
LB
i CR +  (4) 
By approximating the ceiling function in the recur-

rence relation by a division operation, Sjodin and Hans-
son [13] also introduced the following closed form lower 

bound: 

∑

∑

∈∀

∈∀

−

++

=

)(

)(

1
ihpj

j

ihpj
jjii

LB
i U

UJCB
R  (5) 

In [14], Bril et al. derived essentially the same lower 
bounds for a simple scheduling model, assuming no jitter 
or blocking: 

ii
LB
i CRR += −1  (6) 

∑
∈∀

−
=

)(
1

ihpj
j

iLB
i U

CR  (7) 

We note that using the initial values given by Equa-
tions (4) and (6) requires that task response times are de-
termined in priority order, highest priority first. 

3.2 New initial values 
We now introduce a series of new initial values, the 
maximum of which can be used to provide a later starting 
point, reducing the number of iterations required by the 
recurrence relation. 

For each priority level i, there are i initial values in the 
series. To form each new initial value, identified by the 
index k (k=1�i), we partition the set of tasks of higher 
than or equal priority to i, i.e. hep(i), into two sets: hp(k)
and )()( ihepklep ∩ . 

Following the approach of Lu et al. in [16], we consider 
the tasks in hp(k) as taking a proportion of the available 
processing time kα  where: 

∑
∈∀

=
)(khpj

jk Uα  (8) 

Thus only a fraction of the processing time kα−1

(RI

 re-
mains available to accommodate the remaining task load. 
Given that 1 , the contribution of each task in 
hep(i) to the total task load in i  is at least 1−ij , 
where  is the worst-case interference due to task 

 occurring during the response time of task 

−≥ ii RR

)1−i

R )
(j RI

)(ihpj ∈τ
1−iτ . 

j
j

ji
ij C

T
JR

RI
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡ +
= −

−
1

1)(  (9) 

We note that as the response time of task iτ  is only 
computed if task 1−iτ  is schedulable, . 111 iii

Using this information, we compose a series of i lower 
bounds on  corresponding to each priority k from 1 to i. 

)( −−− RI = C

iR

∑

∑∑

∈∀

∈∀∩∈∀
−

−

+++

=

)(

)()()(
1

1

)(
)(

khpj
j

khpj
jj

ihpklepj
ijii

LB
i U

UJRICB
kR  (10) 

The largest such bound is given by: 
))((max

..1
kRR LB

iik

LB
i

=∀
=  (11) 

We note that this set of lower bounds has as its first 
and last members, the two initial values proposed in [13] 
and [14]; and hence subsumes and dominates the bounds 
given by Equations (4) to (7). 
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For k = 1: 

∑
∈∀

−++=
)(

1)()1(
ihpj

ijii
LB
i RICBR

∑
∈∀

−− +++=
)(

11 )(
ihepj

ijiii RICCB

11 −− −++= iiii BRCB  (12) 
which is equivalent to Equations (4) and (6). 
For k = i: 

∑

∑

∈∀

∈∀

−

++

=

)(

)(

1
)(

ihpj
j

ihpj
jjii

LB
i U

UJCB
iR  (13) 

which is equivalent to Equations (5) and (7). 
We observe that the new initial value given by Equa-

tion (11) is not optimal, as larger values are possible, up 
to , which still result in an exact response time test. iR

3.3 Examples 
We now show using a simple example that the lower 
bound calculated via Equation (11) can be greater than 
the lower bounds computed via Equations (4) to (7). The 
example is based on the task parameters given in Table 1
below. The overall utilisation of this taskset is 92.5%. The 
tasks are assumed to be independent, and have zero re-
lease jitter. Note, the final column in the table, headed U*, 
is the cumulative utilisation for all higher priority tasks. 

TABLE 1: TASK PARAMETERS

Priority C D T U U* 
1 5 10 10 0.5 0 
2 25 100 100 0.25 0.5 
3 25 200 200 0.125 0.75 
4 30 1000 1200 0.025 0.875 
5 30 1200 1200 0.025 0.9 

Our example considers the lower bounds (initial val-
ues) for the calculation of 5 . Assuming that response 
times are calculated in priority order, we have the follow-
ing information available from the calculation of : 

, comprising , , 
, and . 

R

(1 RI
4 =C

R

4R
1003604 =R

)( 43 =RI

LB

180)4 =
30

)(5 kLB

)( 42 =RI
50 )( =RI 44

The series of lower bounds  are therefore: 
390()0( 43215 +++= IIIIR

4205.0/)()1( =+++= CIIIRLB
1/)5 =+ C

54325
44025.0/)()2( =++= CIIRLB

5435
480125.0/)()3( =+= CIR LB

545
3001.0/)4( == CR LB

55
The largest such bound, , is 480. This is a 

significant improvement on the previous bounds of 390 
and 300 given by Sjodin and Hansson [13], and Bril et al. 
[14]. In this example, , which takes 7 iterations to 
calculate starting with an initial value of 480, or 10 itera-
tions starting with an initial value of 390. 

)3(5
LBR

5705 =R

4 INITIAL VALUES FOR EXACT BOOLEAN 
SCHEDULABILITY TESTS

In this section, we consider initial values for exact Boo-
lean schedulability tests. 

4.1 Previous work 
In 2007, Lu et al. [17] introduced two �deadline depend-
ent� initial values  and 1−  that can be used 
as a starting point for the recurrence relation. Unlike all of 
the initial values discussed in Section 3, these initial val-
ues are not necessarily lower bounds on i  and so do not 
guarantee that the recurrence relation will converge on 
the first solution (i.e. the exact worst-case response time). 
However, in their analysis Lu et al. showed that using 
these initial values the recurrence relation is guaranteed 
to converge on some upper bound , such that 

i , if i

2/iD − ii DD

R

UB
iR

UB
ii DRR ≤≤ τ  is in fact schedulable. Hence these 

initial values can be used to implement an exact Boolean 
schedulability test, but not an exact response time test. 

4.2 New initial values 
We now build upon the work of Lu et al. [17], extending 
their initial values so that they are applicable to the more 
general case of systems with blocking and release jitter. 
We then derive improved initial values that dominate 
those introduced by Lu et al. 
Theorem 1. The initial value  guar-

antees that the recurrence relation will converge on a solu-
tion , where  if 

)()( 11 −− −−− iiii JDJD

ii
UB
i JD −≤ i

UB
iR i RR ≤ τ  is in fact 

schedulable. 
Proof. We assume that task schedulability is determined 

in priority order and therefore that 1−iτ  is schedulable. 
As 1−iτ  is schedulable, there must be at least one prior-
ity level i-1 idle instant in any interval of length  or 
greater (such as

1−iR
11 −− − ii JD ). 

To prove the theorem, there are two cases to consider: 
1. iτ  is schedulable with 

)()( 11 −− −−−≥ iiii DJD
()(

iR J . In this case, the ini-
tial value )11 −− −−− iiii J  is less than the 
first solution to the recurrence relation, and so the 
equation is guaranteed to converge on iR . 

DJD

2. iτ  is schedulable with 
)()( 11 −− −−−< iiii DJDiR J . In this case, as iτ  has 

completed execution by )11 −−()( −−− DJ iiii J , 
only tasks in the set hp(i) are able to execute after 
this point. As the longest priority level-(i-1) busy 
period is known to be of length 111 −−−

D

−≤ DR iii J , 
a further idle instant must occur by 

111 ) −−−() +( −−− iiiii RJDJ

iR≤

D

iR

ii JD −≤ . The re-
currence relation is therefore guaranteed to con-
verge on some value UB

iR , where 
ii

UB JD −≤ 

We now improve on the initial value given by Theorem 1. 
Theorem 2. The initial value , where  is 

an upper bound on the response time of 
UB
iii RJD 1)( −−−

−i

UB
iR 1−

1τ , and 1−iτ  is 
known to be schedulable, so 111 −−− ii , guaran-
tees that the recurrence relation will converge on a solution 

, where  if 

)( −≤UB
i DR

ii JD − i

J

UB
iR UB

ii RR ≤≤ τ  is in fact schedul-
able. 

Proof. Follows directly from the proof of Theorem 1 
As these methods do not guarantee to find exact response 
times, we use an upper bound  in Theorem 2. If an 
exact response time is known for 

UB
iR 1−

1−iτ , then this provides 
the best possible upper bound. 
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Assuming that task schedulability is determined in 
priority order, then an appropriate value for  is 
found as a result of computing the schedulability of 1−i

UB
iR 1−
τ ; 

hence, no additional computation is needed to determine 
the upper bounds, their computation naturally forms part 
of the overall schedulability test. 
Theorem 3. The starting value 2/)( ii JD −  guarantees that 

the recurrence relation will converge on a solution , 
where  if 

UB
iR

ii i
UB
ii JDRR −≤≤ τ  is in fact schedulable. 

Proof. There are two cases to consider: 
1. iτ  is schedulable with 2/) . In this 

case, the initial value 2/)( ii J
( iii JDR −≥

D −  is less than the 
first solution of the recurrence relation, and so 
the equation is guaranteed to converge on R . i

2. iτ  is schedulable with 2/)iii J(DR −< . In this 
case, as iτ  has completed execution by 

2/)ii J− , only tasks in the set hp(i) are able to 
execute after this point. As the longest priority 
level-(i-1) busy period is known to be of length 

2/)1 iiii J− , a further idle instant 
must occur by ii JD − . The recurrence relation is 
therefore guaranteed to converge on some value 

UB
iR , where ii

UB JD −≤ 

(D

R − (D

R

R ≤≤

ii R≤

We now improve on the initial value given by Theorem 3. 
Theorem 4. The initial value 2/)( iiii BCJD ++−  guaran-

tees that the recurrence relation will converge on a solution 
, where  if UB

iR ii JD − i
UB
ii RR ≤≤ τ  is in fact schedul-

able. 
Proof. There are again two cases to consider: 

1. iτ  is schedulable with 2/) . 
In this case, the initial value 2/)
is less than the first solution to the recurrence rela-
tion, and so the equation is guaranteed to con-
verge on R

( iiiii BCJDR ++−≥
( iiii BCJD ++−

i
2. iτ  is schedulable with 2/)iiiii B( CJDR ++−< . 

In this case, the interference due to higher priority 
tasks in iR  is at most 2/)( iiii BCJD −−− , the 
additional time being accounted for by blocking 

iB  and the execution time iC  of task iτ  itself. 
Hence the longest possible priority level-(i-1) busy 
period comprising only execution of tasks in the 
set hp(i) is of length 2/)( iiii BCJD −−− . This 
means that there must exist a priority level-i idle 
instant in the interval between 

2/)ii B+  and  
2/)iiii ii JD

(D
(+

iJ−
BJD −−

i C+
C−

2/)( iiii BCJD ++−
−= . The recurrence 

relation is therefore guaranteed to converge on 
some value UB

iR , where ii
UB ii JDRR −≤≤

We note that as the initial values given by Theorems 1 
to 4 may be larger than the exact worst-case response time 

i , these initial values cannot be used to calculate exact 
worst-case response times, only to provide exact Boolean 
schedulability tests. 

R

Using the initial values given by Theorems 1 to 4, the 
next value generated by the recurrence relation may, in 
some cases, be smaller than the initial value. If so, itera-
tion can be terminated immediately, as the task is then 
known to be schedulable, with the value computed on the 
1st iteration providing an upper bound on the worst-

case response time. 

UB
iR

We observe that the initial value given by Theorem 4 
can be considered optimal in the sense that the initial 
value is tight; any increase in this value could in the gen-
eral case result in the schedulability test ceasing to be ex-
act. The initial value given by Theorem 2, is similarly op-
timal provided that i ; however, larger, more 
pessimistic values of make the bound given by Theo-
rem 2 less precise. 

UB
i RR =

UB
iR

4.3 Example 
In this section, we use the simple example taskset 
described in Table 2 to illustrate the operation of the 
initial values given by Theorems 2 and 4. 

Here we use the maximum of the two initial values: (i) 
 and (ii) UB

iii RJD 1)( −−− 2/)( iiii BCJD ++−  as a starting 
point for the recurrence relation. These values are shown 
in Table 2, along with the computed upper bound  
on the worst-case response time of each task. These upper 
bounds were calculated in priority order. Note that the 
exact worst-case response times are not calculated by this 
method; however, they are shown for comparison pur-
poses in the final column of the table. 

UB
iR

TABLE 2: INITIAL VALUES AND UPPER BOUND

Initial values 
Pri C D T (i) (ii) UB

iR i
5 
R

1 5 10 10 - - 5 
2 100 800 800 795 450 500 200 
3 200 1000 1000 500 600 600 600 

We note that the large initial value of 795 for 2τ  re-
sulted in the recurrence relation terminating on its first 
iteration, giving an upper bound of 500. In the case 
of 3

UBR2
τ , the initial value of 600 also enabled task schedula-

bility to be determined in a single iteration, compared to 5 
iterations using the initial values given in [17]. 

5 SCHEDULABILITY TEST EFFICIENCY
In this section, we outline three other methods of improv-
ing the efficiency of exact schedulability tests based on 
Response Time Analysis, aside from using appropriate 
initial values: 

1. Using a sufficient schedulability test to quickly de-
termine, on a task-by-task basis, if an exact sched-
ulability calculation is required. This approach is 
only applicable to Boolean schedulability tests 
where exact response times are not required.  

2. Alternative implementations of the recurrence re-
lation. This approach is applicable to both Boolean 
schedulability tests and response time tests. 

3. Checking task schedulability in reverse priority 
order. This approach aims to identify unschedul-
able tasks early, reducing the amount of computa-
tion required when a taskset is unschedulable. 
This approach is applicable to both exact Boolean 
schedulability tests and exact response time tests. 

5.1 Sufficent schedulability test 
The use of a suitable sufficient schedulability test on a 
task-by-task basis can in theory improve the efficiency of 
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an exact Boolean schedulability test. If a task is schedul-
able according to the sufficient test, then exact schedula-
bility does not need to be calculated, short circuiting a 
significant amount of computation. Note this approach is 
not appropriate if exact response times are required. 

A number of simple sufficient schedulable tests have 
appeared in the literature. These include the Utilisation 
Bound [3], the Hyperbolic Bound [26], the Utilisation 
RBound [27], and the response time upper bound [18]. 
The complexity of applying these tests to n tasks is O(n) � 
if applied at each priority level, O(n), O(nlogn), and O(n) 
respectively. 

In [18], Bini and Baruah introduced the response time 
upper bound, and compared its performance to that of 
the Utilisation Bound, the Hyperbolic Bound, and the 
Utilisation RBound. They showed that the performance of 
the response time upper bound was superior to the other 
sufficient tests for n>10 and also when the task period 
dispersion, given by  was greater than 2. )/(max 1−iii TT

As we are interested in improving the performance of 
an exact Boolean schedulability test in those cases where 
it can require a large number of iterations, (typically large 
n and a wide range of task periods), then we use the re-
sponse time upper bound, introduced by Bini and Baruah 
and reproduced in Equation (14) below, as our sufficient 
schedulability test of choice. 

∑

∑

∈∀

∈∀

−

−+

=

)(

)(

1

)1(

ihpj
j

ihpj
jji

ub
i U

UCC
R (14) 

It is interesting to note that, although using Equation 
(14) alone as a sufficient schedulability test results in poor 
performance for tasksets with high utilisation, there are 
still a significant number of individual tasks that are 
schedulable according to Equation (14), even if the taskset 
as a whole is not.  
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Fig. 1: Percentage of tasks and tasksets that were deemed to be 
schedulable by the response time upper bound, Equation (14). 

This is illustrated by Fig. 1 which shows the percentage 
of tasksets, all of which are schedulable according to an 
exact test, that are deemed schedulable using a sufficient 
test based on Equation (14). Whilst performance of the 
sufficient test rapidly tails off above 80% utilisation, the 
number of individual tasks deemed schedulable remains 

high (over 85% at 97.5% utilisation). Note this data is 
based on averages over 10,000 tasksets for each utilisation 
level, with each taskset comprising 24 tasks and having a 
range of task periods spanning 4 orders of magnitude. See 
Section 6 for further details of the tasksets used. 

5.2 Algorithm implementations 
A standard implementation of the recurrence relation 
given by Equation (3) is shown in Fig. 2 below. This C 
code fragment computes the response time of the task at 
priority i. 

We note that in the standard implementation, although 
the computed response time may effectively increase each 
time line 7 is executed, these increases are not reflected in 
the value of the variable rprev passed to the ceiling()
function until the next iteration of the while loop. With 
this in mind, the number of iterations of the for loop 
needed for convergence can be reduced by the alternative 
implementation shown in Fig. 3. 

1   rprev = 0; 
2   r = initial_value(); 
3   while((r > rprev) && (r <= tasks[i].D)) { 
4     rprev = r; 
5     r = tasks[i].C; 
6     for(j = 0; j < i; j++) { 
7       r+=ceiling(rprev,tasks[j].T)*tasks[j].C; 
8     } 
9   } 

Fig. 2: Standard implementation of the RTA algorithm. 

The alternative implementation (Fig. 3) records in the 
variable inter[j], the amount of interference due to 
task j, that has already been accounted for in the response 
time of task i. This facilitates incremental increases to r on 
each iteration of the second for loop (lines 10-14). 

1   rprev = initial_value(); 
2   r = tasks[i].C; 
3   for(j = 0; j < i; j++) { 
4     inter[j] = ceiling(rprev,tasks[j].T) 
5     * tasks[j].C; 
6     r += inter[j]; 
7   } 
8   while((r > rprev) && (r <= tasks[i].D)) { 
9     rprev = r; 
10    for(j = 0; j < i; j++) { 
11      tmp = ceiling(r,tasks[j].T)* tasks[j].C; 
12      r += (tmp - inter[j]); 
13      inter[j] = tmp; 
14    } 
15  } 

Fig. 3: Incremental implementation of the RTA algorithm. 

Note, in both implementations, it is assumed that the 
tasks are in priority order. Blocking factors and jitter 
terms are omitted for the sake of simplicity; however 
these can easily be included in either method. 

5.3 Order in which tasks are examined 
It can be argued that when a schedulability test is used as 
an online acceptance test, it does not matter how long the 
schedulability test takes to determine the schedulability 
of unschedulable tasksets. The schedulability test can al-
ways be suspended if it is taking too long, and the taskset 
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deemed unschedulable (which is correct). What does mat-
ter is how long the test takes to determine the schedula-
bility of schedulable tasksets. In this case suspending com-
putation before an answer is available would mean 
wrongly classifying the taskset as unschedulable. As the 
schedulability of all tasks needs to be checked before a 
taskset can be shown to be schedulable, the amount of 
computation required by the schedulability test for sched-
ulable tasksets is effectively independent of the order in 
which the tasks are examined. The initial value calcula-
tions may however require a particular ordering. 

An alternative use of exact schedulability tests is as 
part of a design time tool, or online spare capacity alloca-
tion algorithm. In these cases, a binary search may be 
used to determine the maximum/minimum values of i
and i  that can be supported for each task or server. In 
this case, it is reasonable to expect approximately 50%, of 
the parameter sets put forward for testing to be unsched-
ulable. Further, it is important to determine both sched-
ulability and unschedulability efficiently, so that the 
higher level algorithm can make rapid progress towards 
its goal. In this case, checking schedulability in reverse 
priority order may be more effective. This is because 
lower priority tasks are more likely to be unschedulable 
than those of higher priority. Once a single task has been 
shown to be unschedulable then further computation can 
be abandoned, as the taskset as a whole is unschedulable. 

C
T

Checking task schedulability in reverse priority order 
is only possible using some of the initial values discussed. 
The initial values given by Equations (5) and (7), and 
Theorems 1, 3 and 4, do not depend on the order in which 
task schedulability is checked, and so may be used when 
schedulability is determined in reverse priority order. By 
contrast, the initial values given by Equations (4), (6), and 
(11), and Theorem 2 rely on knowing the response time, 
or an upper bound on the response time, of the next high-
est priority task. These initial values cannot be used when 
task schedulability is checked in reverse priority order. 

As a simple example of the effectiveness of testing task 
schedulability in reverse priority order, consider the task-
set described in Table 1, but with modified deadlines 

 and , so that task 54004 =D 5505 =D τ  is unschedul-
able. Using the default initial value, determining that the 
taskset is unschedulable takes 48 ceiling operations in 
reverse priority order, compared with 107 ceiling opera-
tions in forward priority order. 

6 EMPIRICAL INVESTIGATION
In this section, we describe an empirical investigation into 
the effectiveness of using the initial values introduced in 
Sections 3 and 4, and the sufficient test, algorithm imple-
mentations, and task orderings discussed in Section 5. 

For ease of reference, Table 3 provides a summary of 
the initial values and algorithm options used in our ex-
periments. In the remainder of this section and in Section 
7, we refer to the initial values and algorithm options 
used by these numbers, thus #1 refers to the standard 
algorithm implementation given in Fig. 2, using the de-
fault initial value , whilst #9 refers to using a sufficient 

test based on Equation (14) to determine when exact 
analysis is required, and then an exact test using the stan-
dard algorithm implementation, with the initial value 
given by the maximum of Equation (7), Theorem 2 and 
Theorem 4. The rationale for combining these three val-
ues is that larger initial values are more effective. As none 
of the three values dominates the others, taking the 
maximum provides the largest initial value that can be 
computed with low overhead, and without needing to 
know the exact response time of the next highest priority 
task. 

iC

TABLE 3: RTA OPTIONS: INITIAL VALUES AND ALGORITHMS

Initial Value Algorithm 
#1 Default (Ci) 
#2 Equation (7) 
#3 Equation (6) 
#4 Max of Eqs. (6) and (7) 
#5 Equation (11) 
#6 Theorem 1 
#7 Theorem 2 
#8 Theorem 4 

Standard algorithm 
(see Fig. 2). 

#9 Max of Equation (7) and 
Theorems 2 and 4 

Sufficient test then 
standard algorithm. 

#10 Default (Ci) 
#11 Equation (11) 

Incremental algo-
rithm (see Fig. 3). 

The experiments described in this section were per-
formed on a PC, enabling results to be obtained for large 
numbers of randomly generated tasksets. In Section 7, we 
complement this data with execution time measurements 
recorded on an embedded microprocessor. 

The task parameters used in our experiments were 
randomly generated as follows: Of the n tasks in each 
taskset, n/M tasks were assigned to each of the M order of 
magnitude ranges used (e.g. 1000-10000, 10000-100000, 
100000-1000000, 1000000-10000000 etc). Task periods were 
then determined according to a uniform random distribu-
tion, from the assigned range. This was done both to rep-
licate the type of period distributions found in commer-
cial real-time systems (by varying M from 2 to 6), and also 
to enable an investigation into how the efficiency of re-
sponse time analysis depends on the overall range of task 
periods. In all cases, task deadlines were set equal to their 
periods, and blocking and jitter were set equal to zero4. 

For each utilisation level studied, the UUniFast algo-
rithm [15] was used to determine individual task utilisa-
tions i , and hence task execution times, iiiU TUC = , 
given the previously selected task periods. 100,000 task-
sets were generated in all, 10,000 for each utilisation level. 

We used the number of ceiling operations as a per-
formance metric to compare the different approaches and 
as a simple proxy for schedulability test execution time. 

The results of Experiments 1-3 below record the num-
ber of ceiling operations required to determine the sched-
ulability of schedulable tasksets. This avoids skewing the 
data, due to the significant numbers of unschedulable 

4 Increased values of blocking and release jitter only decrease the inter-
val between the initial values (e.g. Equations (5) & (10), Theorem 4 etc.) 
and the termination condition ri≥Di-Ji, and hence tend to reduce the num-
ber of iterations required for convergence compared to an equivalent task 
parameter set with blocking and release jitter equal to zero. 
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tasksets that occur at high levels of utilisation. Experi-
ment 4 examines this effect and shows how the time taken 
to determine the schedulability of unschedulable tasksets 
depends strongly on the order in which tasks are checked. 

6.1 Experiment 1 
This experiment investigated the efficiency of exact 
schedulability tests used to determine the feasibility of 
tasksets comprising 24 tasks with periods spanning 4 or-
ders of magnitude, and overall utilisations varying from 
75% to 97.5%. 
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Fig. 4: Average number of “ceiling operations” required by exact 
response time tests v. taskset utilisation. Data is for the standard 
RTA algorithm, and the initial values from Section 3. 
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Fig. 5: Frequency distribution of the number of “ceiling operations” 
required by exact response time tests using the initial values from 
Section 3. Data is for 10,000 tasksets with 95% utilisation. 

Fig. 4 shows that the most efficient initial values to use 
are #5, given by Equation (11), and #4, given by the 
maximum of Equations (6) and (7). In fact, when initial 
value #5 is used, the schedulability test itself requires 
significantly fewer ceiling operations; however, once the 
additional n(n-1)/2 ceiling operations involved in com-
puting the initial value itself are taken into account (as it 
has been done in Fig. 4), performance is reduced to a 
similar level to that obtained using initial value #4. 

Fig. 5 illustrates the frequency distribution of the num-
ber of ceiling operations required by the schedulability 

test for each of the 10,000 tasksets with 95% utilisation. 
Fig. 5 shows that using initial values #4 and #5 result in, 
lower maximums, narrower frequency distributions, and 
smaller averages than using the default initial value #1. 

Fig. 6 is similar to Fig. 4; however, it shows the average 
number of ceiling operations required using the initial 
values described in Section 4. Fig. 6 shows that using the 
two new initial values #7 and #8 given by Theorems 2 
and 4 results in significantly improved performance. For 
utilisation levels from 75-85%, the algorithm requires just 
1 or 2 iterations of the while loop on average. This is 
because in many cases, the value computed on the 1st it-
eration is less than the initial value resulting in an imme-
diate exit. 
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Fig. 6: Average number of “ceiling operations” required by exact 
Boolean schedulability tests v. taskset utilisation. Data is for the 
standard RTA algorithm, and the initial values from Section 4. 
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Fig. 7: Frequency distribution of the number of “ceiling operations” 
required by exact Boolean schedulability tests using the initial values 
from Section 4. Data is for 10,000 tasksets with 95% utilisation. 

Fig. 6 shows that using the response time upper bound 
combined with the initial values from Theorems 2 and 4 
(method #9) results in excellent performance. Using this 
approach, it is very rare that the exact schedulability 
computation is required for utilisation levels below about 
85%. (Recall that Fig. 1 shows that on average, at 97.5% 
utilisation, only 12% of the tasks require an exact sched-
ulability computation). 
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Fig. 7 illustrates the frequency distribution of the num-
ber of ceiling operations required by the schedulability 
test for each of the 10,000 tasksets with 95% utilisation. 
This graph shows that method #9, results in a signifi-
cantly lower maximum number of ceiling operations, nar-
rower distribution, and smaller average than the default 
initial value #1. We note that 194 tasksets were schedul-
able using the sufficient test alone. This accounts for the 
initial peak in line #9. 

Fig. 8 compares the standard and incremental algo-
rithm implementations described in Section 5.2 for the 
default initial value i  and for the initial value given by 
Equation (11). This graph shows that the alternative, in-
cremental implementation converges significantly faster 
(see lines #10 and #11 on the graph compared with #1 
and #5 respectively); however, there is more computation 
on each inner loop iteration of the incremental implemen-
tation. We return to this point in Section 7. 
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Fig. 8: Comparison between the standard and incremental imple-
mentations of the RTA algorithm. 

6.2 Experiment 2 
This experiment was similar to Experiment 1, only in-
stead of varying the utilisation of the tasksets, overall 
utilisation was fixed at 95%, and the range of task periods 
was varied from 2 to 6 orders of magnitude. 

Fig. 9 illustrates that for all of the initial values dis-
cussed in Section 3 (that can be used to compute exact 
response times), the average number of ceiling operations 
required increases approximately linearly with the num-
ber of orders of magnitude spanning task periods. We 
note that the increase is slower for the new initial value 
#5 given by Equation (11). The extra cost of determining 
this initial value results in lower performance for smaller 
ranges of task periods (<4 orders of magnitude), but is 
justified for larger ranges of task periods (>4 orders of 
magnitude) where it provides better performance than 
initial value #4. 

Fig. 10 illustrates that for the initial values discussed in 
Section 4 (that can be used to compute exact schedulabil-
ity but not exact response times, i.e. #6, #7 and #8); the 
average number of ceiling operations required remains 
approximately constant, irrespective of the range of tasks 

periods. This is an interesting result as it shows that these 
initial values are particularly useful in reducing the exe-
cution time of the schedulability test in just those cases 
where the task parameters (range of task periods and 
computation time values) tend to increase the number of 
iterations required. 
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Fig. 9: Average number of “ceiling operations” required by exact 
response time tests v. the number of orders of magnitude range of 
task periods, for tasksets with 95% utilisation. Data is for the stan-
dard RTA algorithm, and the initial values from Section 3. 
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Fig. 10: Average number of “ceiling operations” required by exact 
Boolean schedulability tests v. the number of orders of magnitude 
range of task periods, for tasksets with 95% utilisation. Data is for the 
standard RTA algorithm, and the initial values from Section 4. 

Using the response time upper bound combined with 
the new initial values given by Theorems 2 and 4 (method 
#9) is highly effective. In particular, the upper bound be-
comes more accurate as the range of task periods in-
creases, resulting in a decrease in the number of times 
that an exact schedulability computation is required, and 
consequently a decrease in the average number of ceiling 
operations required. 

6.3 Experiment 3 
In this experiment, we varied the number of tasks from 8 
to 256, with the range of task periods fixed at 4 orders of 
magnitude, and the taskset utilisation fixed at 95%. We 
found that the average number of ceiling operations in-
creases roughly as the square of the number of tasks. 

Fig. 11 shows how the average number of ceiling op-
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erations required for each of the initial values given in 
Section 3 relates to the average number of ceiling opera-
tions required when starting with the default initial value. 
We note that as the number of tasks increases, the utilisa-
tion and thus execution time of the individual tasks be-
comes smaller. This tends to make initial value #3 more 
accurate and initial value #2 less accurate. Initial value #5 
performs progressively better for a larger number of 
tasks. This is because for large n, typically at least one of 
the n potential initial values generated by Equation (11) is 
a close approximation to the exact response time. 

0%

20%

40%

60%

80%

100%

120%

8 16 32 64 128 256
Number of Tasks 

%
 C

ei
lin

g 
O

pe
ra

tio
ns

#1 Default
#2 Equation (7)
#3 Equation (6)
#4 Max of Eq. (6) & (7)
#5 Equation (11)

Fig. 11: Performance of exact response time tests relative to the 
default approach v. taskset cardinality, for tasksets with 95% utilisa-
tion. Data is for the standard RTA algorithm and the initial values 
from Section 3. 
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Fig. 12: Performance of exact Boolean schedulability tests relative to 
the default approach v. taskset cardinality, for tasksets with 95% 
utilisation. Data is for the standard RTA algorithm and the initial val-
ues from Section 4. 

Fig. 12 shows how the average number of ceiling op-
erations required for each of the initial values given in 
Section 4 relates to the average number of ceiling opera-
tions required when starting with the default initial value. 
We note that as the number of tasks increases, the differ-
ences between the deadlines of two tasks with adjacent 
priorities becomes progressively smaller. Thus initial 
value #6 based on deadline difference performs poorly 
with an increasing number of tasks. By contrast, the fact 
that individual task execution times tend to decrease with 

an increasing number of tasks (for the same overall utili-
sation and period distribution) means that the other ini-
tial values work progressively better for larger numbers 
of tasks. Again, method #9 is highly effective, reducing 
the number of ceiling operations required to approx. 20% 
of those required by the default approach. 

6.4 Experiment 4 
In this experiment, we examined the hypothesis that 
checking tasks in reverse priority order helps identify 
unschedulable tasks early and thus decreases the average 
number of ceiling operations required by the schedulabil-
ity test to identify unschedulable tasksets. 

This experiment used the same tasksets as Experiment 
1. Recall that these tasksets comprised 24 tasks with peri-
ods spanning 4 orders of magnitude, for total taskset 
utilisations varying from 75% to 97.5%. 
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Fig. 13: Average number of “ceiling operations” required by exact 
response time tests v. taskset utilisation. Data is for the standard 
RTA algorithm (forward and reverse priority order) using the default 
initial value. 

Fig. 13 shows the average number of ceiling opera-
tions required to determine schedulability and exact re-
sponse times using the default initial value, for (a) sched-
ulable tasksets only, (b) all tasksets, schedulable and un-
schedulable, (c) all tasksets � checking schedulability in 
reverse priority order, (d) unschedulable tasksets only, 
and (e) unschedulable tasksets only � checking schedula-
bility in reverse priority order. 

It is clear from the graph that for the tasksets studied; 
checking schedulability in reverse priority order identi-
fied unschedulable tasksets more efficiently, reducing the 
average number of ceiling operations required. 

Out of the 10,000 tasksets at each utilisation level, the 
percentage that were unschedulable was zero up to 85% 
utilisation, then 0.01%, 0.2%, 3.3%, 26.5% and 77.4% at 
utilisation levels of 87.5%, 90%, 92.5%, 95%, and 97.5% 
respectively. This is why Fig. 13 shows data for unsched-
ulable tasksets only from 90% utilisation upwards. Partly, 
this is because the tasks all had deadlines equal to their 
periods (D = T). For systems with D < T, unschedulability 
is to be expected at lower utilisation levels. 

It is clear from Fig. 13 that at very high utilisation lev-
els (>95%), where there is a high probability that a taskset 
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will be unschedulable, it is worthwhile checking task 
schedulability in reverse priority order. This is however 
only possible for those initial values that are not depend-
ent on knowing the response time of the next highest pri-
ority task i.e. initial values based on Equation (7) and 
Theorems 1 and 4. Checking tasks in reverse priority or-
der enables the schedulability test to terminate early 
when a low priority task is found to be unschedulable. At 
lower utilisation levels; however, it is appropriate to use 
other more effective initial values. 

6.5 Experiment 5 
Using the default initial value, a pathological set of 

task parameters (i.e. high priority tasks with very short 
periods and close to 100% utilisation, combined with low 
priority tasks with very long periods/deadlines) can lead 
to the schedulability test requiring a very large number of 
ceiling operations. The initial value given by Equation (7) 
is however highly effective in these cases, producing a 
value close to the exact worst-case response time, hence 
methods #4, #5 and #9 do not result in a large number of 
ceiling operations in these cases. 

To obtain an indication of the maximum number of 
ceiling operations that could reasonably be required by 
schedulability tests applied in a practical application of 
this work, we performed the following experiment. We 
generated 1,000,000 tasksets, each comprising 24 tasks 
with 99% overall utilisation, and task periods spanning 6 
orders of magnitude. The maximum number of ceiling 
operations required by methods #4, #5 and #9 were 
11959, 9926, and 7860 respectively. Whilst it is possible to 
exceed these values with carefully crafted examples, we 
conclude that it is unlikely that such tasksets will arise 
frequently in real systems. 

7 EXECUTION TIME ANALYSIS
In the previous section, we evaluated the efficiency of the 
exact RTA schedulability test using various initial values, 
by counting the number of ceiling operations required for 
convergence. In this section, we look in more detail at the 
execution time of the algorithms, by running them on an 
embedded microprocessor. 

Our test environment comprised a 32-bit PowerPC 
(MPC555) development board, clocked at 40 MHz (20 
MHz timer/counter clock), with 4 Mbytes of external 
SDRAM. Execution time information was obtained via 
the RapiTime worst-case execution time analysis toolset 
[24]. RapiTime was used to automatically instrument the 
code, capture timing traces, and produce a report of func-
tion execution times. The schedulability test algorithms 
were coded in C, and compiled using the GNU C com-
piler, using optimisation level 2 (option �O2). 

Using the embedded environment, it was only possible 
to carry out a limited number of experiments. We there-
fore confined our investigation to 3 specific tasksets, with 
utilisations of 75%, 85% and 95% respectively. The task-
sets selected comprised 24 tasks, with periods distributed 
across a range spanning 4 orders of magnitude. These 
tasksets were worst-case, in the sense that of all 10,000 

tasksets generated for each utilisation level, the ones se-
lected required the largest number of ceiling operations to 
determine schedulability, starting with the default initial 
value. In this case, the numbers of ceiling operations re-
quired were 2956, 3959, and 6324 respectively. 

For the taskset with 95% utilisation, Table 4 records: 
the number of ceiling operations required, the execution 
time in clock cycles to determine each initial value, the 
execution time of the schedulability test (not including 
calculation of the initial value), the overall execution time 
of the schedulability test, and finally the percentage exe-
cution time with respect to the default approach. 

Note that in the last row of the table, the data should 
be interpreted as follows: the response time upper bound 
(sufficient test) was computed for all 24 tasks, this took 
3051 clock cycles in total (including looping over the 
tasks), as the 22 highest priority tasks were shown to be 
schedulable by this sufficient test, initial values were only 
computed for the two lowest priority tasks, this took 615 
clock cycles. Finally, exact analysis of these two tasks took 
722 ceiling operations, corresponding to 18516 clock 
cycles. The overall execution time of the schedulability 
test was therefore 22182 clock cycles, some 13.5% of the 
time for the default approach. 

TABLE 4: EXECUTION TIME MEASUREMENTS

# Counter Clock Cycles 

Initial Value 
Ceil. 
Ops. 

Initial 
value 

Sched. 
test Total % 

#1 Default  6324 1371 163186 164557 100.0 
#2 Equation (7) 5724 4390 147751 152141 92.5 
#3 Equation (6) 3867 1688 100086 101774 61.9 
#4 Max Eqs. (6) & 
(7) 3611 5179 93541 98720 60.0 
#5 Equation (11) 3094 24548 80275 104823 63.7 
#6 Theorem 1 4357 1688 112494 114182 69.4 
#7 Theorem 2 1609 1688 41962 43650 26.5 
#8 Theorem 4 1573 1587 41010 42597 25.9 
#9 Max of Eq. (7), 
Theorems 2 and 4 722 

3051 
+ 615 18516 22182 13.5 

The data in Table 4 shows for the initial values dis-
cussed in Section 3 (i.e. #1 to #5), the schedulability test 
itself is faster using initial value #5; however, when the 
overheads of computing this initial value are included, its 
performance is slightly worse than that achieved by using 
initial value #4. 

The data in Table 4 also shows that the new deadline 
dependent initial values #7 and #8 given by Theorems 2 
and 4 represent a significant reduction in execution time 
compared with previous approaches. Combining these in 
method #9 reduces the overall execution time of the 
schedulability test by a factor of 7.5 with respect to the 
default approach. 

We also recorded a set of execution time measure-
ments for the incremental schedulability test implementa-
tion described in Fig. 3 in Section 5.2. For the 95% utilisa-
tion taskset, we found that the number of inner loop itera-
tions was reduced to between 68% and 81% of the num-
ber required by the standard implementation, dependent 
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on the initial value used. Despite this, the overall execu-
tion time was between 104% and 121% of the times re-
corded for the standard implementation. On this particu-
lar microprocessor, the extra overheads in the inner loop 
outweighed the reduction in the number of loop itera-
tions. The execution time for one inner loop iteration was 
26 clock cycles for the standard implementation and 39 
clock cycles for the incremental approach. We note that 
this finding is representative only of the specific micro-
processor/compiler combination used. We expect that for 
some microprocessor/compiler combinations the incre-
mental approach could be more efficient. 

8 RECOMMENDATIONS
In this section, we provide recommendations to engineers 
tasked with the problem of implementing exact schedula-
bility tests as the basis of an online acceptance test, as part 
of an online spare capacity allocation algorithm or, as part 
of an offline design-time tool. 

The most important consideration when choosing how 
best to implement an exact schedulability test is whether 
exact response times are required, or if a simple Boolean 
(schedulable/unschedulable) result will suffice. 
Recommendation 1: If exact response times are not re-
quired, then we recommend the use of an appropriate 
sufficient test, such as the response time upper bound 
given by Equation (14), to determine whether to perform 
exact schedulability analysis on a task-by-task basis. 
Rationale: Our experiments showed that even for tasksets 
with a very high utilisation, a significant number of indi-
vidual tasks were schedulable according to the response 
time upper bound [18], and thus exact schedulability 
analysis for these tasks was unnecessary. Using this suffi-
cient test to determine when exact analysis was required 
resulted in a significant improvement in efficiency. 
Recommendation 2: If exact response times are not re-
quired, then we recommend using an initial value corre-
sponding to the maximum of the values given by Equa-
tion (7) and Theorems 2 and 4, as a starting point for the 
recurrence relation (Equation (2)). 
Rationale: Whilst this initial value does not guarantee 
that the recurrence relation will determine the exact 
worst-case response time, it does result in an exact sched-
ulability test. Further, the number of operations required 
for convergence was found to be significantly lower using 
this initial value than using others that lead to exact re-
sponse times. 
Recommendation 3: If exact response times are required, 
then we suggest using the initial value given by Equation 
(11), or alternatively the initial value given by the maxi-
mum of Equations (6) and (7)5. 
Rationale: Whilst the overheads of computing the initial 
value given by Equation (11) mean that it can typically be 
expected to provide broadly similar overall performance 
to that achieved starting with the maximum of Equations 
(6) and (7), in the circumstances where the recurrence 
relation tends to require a large number of ceiling opera-

tions for convergence (.i.e. large numbers of tasks, and/or 
a wide spread of task periods), then this initial value re-
sults in superior performance. 

5 We note that in systems with non-zero blocking and/or jitter, Equa-
tions (4) and (5) should be used in preference to Equations (6) and (7). 

Recommendation 4: If the schedulability test is used as 
an online admission test, then we recommend checking 
task schedulability in priority order. 
Rationale: When an exact schedulability test is used as an 
online admission test, then what is important is how long 
it takes to determine that a schedulable taskset is in fact 
schedulable. The time taken to determine that an un-
schedulable taskset is in fact unschedulable is of little 
consequence, for the reasons discussed in section 5.3. 
Checking task schedulability in priority order enables the 
most effective initial values to be used. 
Recommendation 5: If the schedulability test is used as 
part of an online spare capacity allocation algorithm, or as 
part of a design-time tool, then we recommend consider-
ing checking task schedulability in reverse priority order. 
Rationale: In these cases, a significant proportion (per-
haps 50%) of the task parameter sets considered are likely 
to represent unschedulable tasksets. Here efficiency can 
be improved by recognizing unschedulable tasksets as 
soon as possible. This is best done by starting at the low-
est priority. We note; however, that checking task sched-
ulability in reverse priority order effectively precludes the 
use of certain initial values, in particular, those given by 
Theorem 2, and Equations (4), (6) and (11). 
Recommendation 6: Although the alternative, incre-
mental implementation of the recurrence relation given in 
Fig. 3 could possibly be more efficient for some com-
piler/microprocessor combinations, we recommend us-
ing the standard implementation given in Fig. 2. 
Rationale: The standard implementation is easier to code, 
takes up less code space, and is likely to be faster on more 
advanced processors due to the fact that it does not need 
to write to memory on each iteration of the inner loop. 

We note that the analysis presented in this paper re-
quires that task periods and computation times are 
bounded. If this is not the case, then the methods pre-
sented can equally well be used as part of a system sensi-
tivity analysis that determines the extent to which task 
execution times can increase before the system becomes 
unschedulable. In cases where other aspects of the system 
are not well known, for example the amount of interfer-
ence from interrupts, then the analysis presented in this 
paper could be used to improve the efficiency of a robust 
priority assignment method [29]. 

9 SUMMARY AND CONCLUSIONS
In this paper, we examined how the efficiency of sched-
ulability tests based on the Response Time Analysis re-
currence relation can be improved via: 

1. The use of appropriate initial values. 
2. Using a sufficient test to determine when exact 

schedulability calculations are required. 
3. Using an incremental algorithm implementation. 
4. Examining task schedulability in reverse priority 

order. 
We demonstrated the effectiveness of these approaches 
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via empirical investigations on both a PC and on a real-
time embedded micro-processor; a PowerPC MPC555. 
We then used these results to make a series of recom-
mendations to engineers tasked with implementing exact 
schedulability tests as part of on-line admission tests, on-
line spare capacity allocation algorithms, and off-line, 
design-time optimization tools. 

9.1 Contribution 
The main contributions of this paper are as follows: 

1. Introducing a new family of initial values that can, 
in some cases, be used to improve schedulability 
test performance, when it is necessary to calculate 
the exact response time of each task. 

2. Deriving improvements to the �deadline depend-
ent� initial values introduced in [17], that are effec-
tive in increasing algorithm performance when an 
exact schedulability test is required, but upper 
bounds on response times will suffice (i.e. when 
exact response times are not required). 

3. Extending the initial values introduced in [17] to 
account for blocking factors and release jitter. Re-
moving these limitations makes it possible, for the 
first time, to use these initial values in the analysis 
of real-world systems. 

4. Illustrating the efficiency improvements made 
possible by using the response time upper bound 
from [18], to determine, on a task-by-task basis, if 
an exact schedulability calculation is required. 

9.2 Conclusion and future work 
The research presented in this paper shows that our ap-
proach of using the response time upper bound to deter-
mine when to compute exact schedulability, and new ini-
tial values as an advanced starting point significantly re-
duces the execution time of exact schedulability tests 
based on Response Time Analysis. We intend to imple-
ment an on-line schedulability test, and spare capacity 
allocation algorithm based on this research, as part of the 
Frescor scheduling framework [23]. 
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APPENDIX: COMPARISON WITH HYPERPLANES 
EXACT TEST

In this appendix, we make some basic comparisons be-
tween the Response Time Analysis (RTA) methods de-
scribed in this paper and the Hyperplanes Exact Test 
(HET) described in [19]. 

Hyperplanes Exact Test 
In [6], Lehoczky et al. showed that for tasks that com-

ply with the Liu and Layland [3] system model, exact 
schedulability of a task iτ  can be determined by inspect-
ing the workload at all points i , corresponding to the 
releases of higher priority tasks between 0 and . 
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In essence, the Hyperplanes Exact Test works by re-
ducing the number of points in i  that need to be 
checked. In [19], Bini and Buttazzo showed that the only 
points that need to be checked, to determine the sched-
ulability of a task i

S

τ  with , are those in the set 
, where the set of points  is recursively de-
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The interested reader is referred to [19] for further de-
tails of the Hyperplanes Exact Test, including a worked 
example of its operation. 

Performance of RTA and HET schedulability tests 
In [19], Bini and Buttazzo provided evidence showing 

that the Hyperplanes Exact Test outperforms Response 
Time Analysis based schedulability tests, starting with the 
default initial value or the initial values given by Sjodin 
and Hansson [13] � see figures 6 and 7 in [19] for further 
details. We were therefore initially surprised to observe 
how poorly the HET algorithm performed on our ran-
domly generated tasksets. For 10,000 tasksets, each com-
prising 24 tasks with an overall utilisation of 95%, and a 
range of task periods spanning 4 orders of magnitude, the 
HET algorithm required on average 23,365 ceiling opera-
tions, compared with 3,253 ceiling operations for the RTA 
algorithm, assuming the default initial value. Further in-
vestigation, as to why these results differ so widely from 
those reported in [19], revealed that the HET algorithm is 
extremely sensitive to the distribution of task periods; 
something that is not immediately apparent from the re-
sults presented in [19]. 

In the experiments reported in [19], task periods were 
chosen from the range [1, 1,000,000] according to a uni-
form distribution, and the results averaged across 108

tasksets. This effectively meant that only tasksets with 1 
order of magnitude range of task periods were properly 
represented in the data. This can be seen by noting that 
the probability of choosing a task period of less than 
10,000 from the range [1, 1,000,000] is 1% when a uniform 
distribution is used, similarly, the probability of choosing 
a task period of less than 1000 is just 0.1%. 

TABLE 5: HET V. RTA ALGORITHMS, NUMBER OF CEILING OP-
ERATIONS

Orders of magnitude spanning task periods 
Algorithm 1 2 3 4 5 6 
RTA 1247 1652 2050 2462 2847 3297 
HET 380 1326 5642 23014 81636 197642 
HET/RTA 0.3 0.8 2.75 9.35 28.7 60.0 

Table 5 shows how the average number of ceiling op-
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erations required by both the HET algorithm and the RTA 
algorithm (starting with the default initial value), varied 
with the number of orders of magnitude spanning task 
periods, for 10,000 tasksets, each comprising 24 tasks with 
an overall utilisation of 85%. Here 24/M task periods 
were chosen according to a uniform distribution from 
each of the M order of magnitude ranges used (i.e. 1000-
10000, 10000-100000, 100000-1000000 etc). Note, we used 
85% utilisation tasksets, as at higher utilisations too few 
tasksets were generated that were schedulable with 1 or-
der of magnitude range of task periods. 

For tasksets with a range of task periods amounting to 
1 order of magnitude, the HET algorithm performs well, 
outperforming the default RTA approach, at least in 
terms of the average number of ceiling operations re-
quired. This confirms the results published in [19]. How-
ever, the execution requirements of the HET algorithm 
grow exponentially with an increasing range of task peri-
ods, so that for the sample tasksets with periods spanning 
6 orders of magnitude, the number of ceiling operations 
required by the HET algorithm is on average 60 times that 
of the RTA approach. This behaviour, with respect to the 
range of task periods, is inherent in the HET algorithm, 
which in the worst-case can require schedulability to be 
checked for 2n points to determine the schedulability of 
task nτ . 
Uint32 WorkLoad(Int32 i, Uint32 b) 
{ 
  Uint32 f,c, branch0, branch1; 

  if(i<0) return 0; 
  if(b <= gLastPhi[i])  return gLastWL[i]; 
  f = b / tasks[i].T; 
  c = ceiling(b, tasks[i].T); 
  branch0 = b-(f*(tasks[i].T-tasks[i].C))  
 + WorkLoad(i-1,f*tasks[i].T); 
  branch1 = (c * tasks[i].C)+ WorkLoad(i-1,b); 
  gLastPhi[i] = b; 
  gLastWL[i] = min(branch0,branch1); 
  return gLastWL[i];  
} 

Fig. 14: Workload Function of the HET algorithm (implemented using 
32-bit unsigned (Uint32) and 32-bit signed (Int32) integer types).  

We note that Table 5 actually overstates the perform-
ance of the HET algorithm. In the HET algorithm, each 
�ceiling operation� corresponds to a call6 of the recursive 
WorkLoad() function given in Fig. 14 (see [19] for further 
details of this function, which is the core component of 
the HET algorithm). The code for the WorkLoad() func-
tion is more complex and takes longer to execute than the 
code associated with the inner loop of the RTA algorithm, 
line 7 in Fig. 2 (also counted as a �ceiling operation�). 

To examine the actual execution time of the HET algo-
rithm, we implemented it in C, compiled it using the 
GNU C compiler (using the �O2 option), and ran it on the 
MPC555 microprocessor (also used for the execution time 
measurements reported in Section 7). To obtain the best 
possible performance from the HET algorithm, we made 
some simple improvements to the algorithm as presented 

in [19]; avoiding the use of floating point arithmetic, and 
instead using 32-bit integers for task parameters and 
computed values. The basic code for the Workload func-
tion is given in Fig. 15. Note that the ceiling() and 
min() functions were implemented as Macros, so as to 
avoid function call overheads. We subsequently also re-
moved the short circuit returns from the original imple-
mentation, instead coding the algorithm so that the final 
�leaf� calls to the Workload() function were not required. 
This reduced the overall number of calls to the Work-
load() function by just over a factor of 2, significantly re-
ducing the overall execution time. 

Execution time measurements were taken using the 
RapiTime worst-case execution time analysis toolset [24].  

Applied to the same 95% utilisation taskset referred to 
in Section 7, the HET algorithm required 19181 ceiling 
operations to determine that the taskset was schedulable, 
corresponding to 3,196,748 clock cycles, some 19 times 
longer than the RTA algorithm using the default initial 
value, and some 144 times longer than the most efficient 
approach (#9) reported in Section 7. 

The average time for each �ceiling operation� in the 
HET algorithm, (effectively corresponding to a call to the 
Workload() function) was 167 clock cycles (down from 
228 clock cycles with the short circuit returns present); by 
comparison, the RTA algorithm required on average just 
26 clock cycles for each iteration of its inner loop (i.e. 26 
clock cycles per �ceiling operation�). From this data, we 
infer that the apparent performance advantage of the 
HET algorithm for small ranges of task periods is illu-
sionary. Correcting the figures from Table 5 to account for 
the differences in execution times for each iteration of the 
two algorithms, results in the data in Table 6 and Fig. 15. 

TABLE 6: HET V. RTA  ALGORITHMS, EXECUTION TIME IN 
COUNTER CLOCK CYCLES X 1000 

Orders of magnitude spanning task periods 
Algorithm 1 2 3 4 5 6 
RTA 32.4 43.0 53.3 64.0 74.0 85.7 
HET 63.1 221.5 942 3843 13633 33006 
HET/RTA 1.95 5.2 17.7 60 184 385 

The final row in Table 6 records the factor by which 
the execution time of the HET algorithm exceeds that of 
the RTA algorithm. We infer from this data, that in prac-
tice, the RTA algorithm generally outperforms the HET 
algorithm, and by some significant margin in the case of 
tasksets with a broad spread of task periods. 

6 Note, we only counted calls that did not exit via the short circuit returns 
at the start of the Workload() function as “ceiling operations”. 



16 IEEE TRANSACTIONS ON COMPUTERS,  MANUSCRIPT ID 

1

10

100

1000

10000

100000

1 2 3 4 5 6
Period: Orders of Magnitude

Ex
ec

ut
io

n 
Ti

m
e 

(C
lo

ck
 C

yc
le

s 
x 

10
00

)

HET

RTA

Fig. 15: Average execution time required by the HET and RTA exact 
schedulability tests v. number of orders of magnitude range of task 
periods, for tasksets with 85% utilisation. Note both x- and y-axes 
are logarithmic scales. 

It is still possible that the HET algorithm may outper-
form the RTA algorithm for some tasksets comprising 
small numbers of tasks (so the number of scheduling 
points inspected by the HET algorithm is small), and with 
a small range of task periods. However, we argue that 
improving upon the RTA algorithm under these condi-
tions is of little practical value as the RTA test has a suffi-
ciently short execution time in this domain (low number 
of tasks, small spread of task periods) anyway.
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