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Abstract—Adaptive Mixed Criticality (AMC) scheduling has
previously been shown to be the most effective fixed priority
approach for scheduling mixed criticality systems, while the idea
of final non-preemptive regions has been shown to improve the
schedulability of systems with a single criticality level. In this
paper, we combine AMC with the concept of non-preemptive
regions by making the final part of each task’s execution at each
criticality level non-preemptive. We derive schedulability analysis
for this approach, and provide an effective algorithm for choosing
each task’s priority and the durations of its non-preemptive
regions. Evaluations illustrate the benefits of this approach in
terms of increased schedulability.

I. INTRODUCTION

The formal study of mixed criticality systems (MCSs) is a
relatively new undertaking, starting with the paper by Vestal
(of Honeywell Aerospace) in 2007 [31]. Since then a standard
model has emerged (see for example [6], [5], [18], [27], [20]).
For dual (HI- and LO-) criticality systems executing on a
uniprocessor and using priority based scheduling, this standard
model has the following properties:
• A mixed criticality system is defined to execute in either

of two modes: a HI-criticality mode or a LO-criticality
mode.

• Each task is characterised by its criticality (HI or LO), the
minimum inter-arrival time of its jobs (period denoted by
T ), deadline (relative to the release of each job, denoted
by D) and worst-case execution time (one per criticality
level), denoted by C(HI) and C(LO). A key aspect of
the standard model is that C(HI) ≥ C(LO).

• The system starts in the LO-criticality mode, and remains
in that mode as long as all jobs execute within their LO-
criticality computation times (C(LO)).

• If any job executes for its C(LO) execution time without
completing then the system immediately moves to the HI-
criticality mode.

• As the system moves to the HI-criticality mode all
LO-criticality tasks are abandoned, and no further LO-
criticality jobs are executed.

• The system remains in the HI-criticality mode.
• Tasks are assumed to be independent of each other (they

do not share any resource other than the processor).
This abstract behavioural model has been very useful in
allowing key properties of mixed criticality systems to be

derived, but it has been necessary to extend the model to
allow for more realistic characteristics such as allowing some
LO-criticality work to execute in the HI-criticality mode and
for the LO-criticality mode itself to be reinstated [5], [30],
[29], [23], [14]. Work has also focused on criticality-aware
resource control protocols that allow resource sharing between
tasks [13], [32], [25].

In terms of scheduling, there have been a number of
schemes proposed. Most are based on either fixed priority or
EDF scheduling. In this paper, we focus on the former.

With fixed priority scheduling, most approaches use Auds-
ley’s algorithm [1] for priority assignment. We briefly outline
the published schemes for dual criticality systems:

• Criticality Monotonic Priority Ordering (CrMPO) – all
HI-criticality tasks have priorities that are higher than
those of all LO-criticality tasks; within a criticality band,
deadline monotonic priority ordering is used.

• Static Mixed Criticality (SMC-NO) – this is the original
scheme proposed by Vestal [31] in which the analysis of
HI-criticality tasks uses C(HI) values for all tasks, but
the analysis of LO-criticality tasks uses C(LO) values;
there is no runtime monitoring.

• Static Mixed Criticality (SMC) [3] – runtime enforcement
ensures that LO-criticality tasks never execute for more
than C(LO), this can then be exploited in the analysis.

• Adaptive Mixed Criticality (AMC) [5] – this approach
fully utilises the property of the implementation model
that no LO-criticality task is released after a HI-criticality
task has executed for its C(LO) computation time with-
out signalling completion; this is the approach built upon
in this paper and is reviewed in more detail in Section
III.

• Period Transformation (PT) [28], [31], [19] – the periods
of HI-criticality tasks are transformed (reduced) so that
the optimal priority order is also a criticality monotonic
priority order (i.e. CrMPO).

• Two Priority (TwoP) – After the mode change the prior-
ities of the HI-criticality tasks are modified to enhance
schedulability [4].

Of the above, AMC appears to have the best performance once
overheads are taken into account [5], [19]. It has formed the
basis of a number of further studies into scheduling mixed



criticality systems [32], [33], [13].
For standard fixed priority scheduling of normal (single

criticality) task sets preemptive, non-preemptive and deferred
preemption dispatching behaviours have been studied. With
fully preemptive scheduling, a task switch occurs immediately
there is a release of a task with higher priority than the cur-
rently executing task. With fully non-preemptive scheduling,
the higher priority task will only run when the lower priority
task completes (or delays in some other way). With deferred
preemption (or cooperative scheduling) [12] preemption is
only allowed at specified times or points in the task’s execu-
tion. The released high priority task must wait until the next
preemption point before it can preempt. The preemption times
are usually controlled by the RTOS.

A form of deferred preemption, in which a task has a
final non-preemptive region (FNPR), was explored by Davis
and Bertogna [15] in 2012. They showed that this approach
dominates both fully preemptive and fully non-preemptive
scheduling. They derived a means of optimally determining
both the length of the final non-preemptive regions and the
priorities of the tasks. This work is reviewed in Section III.

In this paper we combine the AMC scheme [5] for mixed
criticality scheduling with dispatching based on deferred
preemption with final non-preemptive regions [15]. The
integration of the two approaches takes a particular form
that improves schedulability for both LO-criticality and HI-
criticality tasks in the LO-criticality mode, and HI-criticality
tasks in the HI-criticality mode. The new scheme, AMC-NPR
(AMC with non-preemptive regions), is shown to dominate
AMC, and to significantly outperform existing schemes based
on fixed priorities for a wide range of system parameters.

A. Illustrative Example

We now give a simple motivational example to illustrate the
AMC-NPR protocol.

Consider the two task system depicted in the following
table. Each task’s deadline is equal to its period. As the
overall utilisation of this task set (C1(LO)/T1 +C2(HI)/T2
= 2/4+14/20) is greater than 1 then no simple scheme, such
as CrMPO, SMC, SMC-NO or PT, can schedule the system. A
scheme is required that drops work when the HI-criticality task
needs more than 7 time units of computation. As there is only
one HI-criticality task, nothing can be gained from changing
its priority after the criticality mode change therefore the TwoP
scheme has no advantage over AMC.

τi L Ci(LO) Ci(HI) Di = Ti
τ1 LO 2 - 4
τ2 HI 7 14 20

Considering the AMC scheme, its behaviour is shown in
Figure 1. In the worst case, task τ2 requires 15 time units
before it has executed for its C(LO) computation time of 7.
If it then signals a mode change because it has not completed,
it will run for a further 7 time units, completing at time 22
which is after its deadline at time 20. A worst-case response
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Fig. 1. Execution under AMC
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Fig. 2. Execution under AMC-NPR

time of 22 is short, but it is not short enough to meet the task’s
deadline.

Under the AMC-NPR scheme introduced in this paper, task
τ2 can be given a non-preemptive region at the end of its
LO-criticality computation. Its dispatching is defined to be
(5, 2̄, 7); that is, 5 time units of preemptive execution followed
by a region of 2 time units which are non-preemptive, followed
by a further 7 time units of preemptive execution. We will later
show that this final block of HI-criticality execution can also
benefit from having its own final non-preemptive region, but
that is not needed in this example.

The use of deferred preemption introduces blocking even
when tasks are independent. In our example a non-preemptive
region of 2 time units in task in τ2 can lead to blocking of τ1
of at most 2 time units. As this task has a computation time
of 2 and a deadline of 4 it can tolerate this blocking. Figure 2
shows the worst-case behaviour of task τ2 under AMC-NPR.
It executes for 5 time units by time 11, and then enters its final
non-preemptive region (in LO-criticality mode) and executes
for a further 2 time units. If it completes then both tasks would
continue unabated; however, if this job of τ2 is not complete
after 7 time units of execution, then it will induce a mode
change and run for a further 7 time units, completing at time
20, and thereby meeting its deadline.

B. Organisation

The remainder of the paper is organised as follows. The
system model is outlined in Section II, with related work
discussed in Section III. The AMC-NPR scheduling policy
is defined and analysed in Section IV. An outline of how it
can be extended to deal with multiple criticality levels is given
in Section V. Section VI provides an empirical evaluation of
the performance of the AMC-NPR scheme. Finally, Section



VII concludes with a summary of the main contributions of
the paper.

II. SYSTEM MODEL

A system is defined as a finite set of N sporadic tasks which
execute on a single processor. We assume a discrete time
model in which all task parameters are given as integers. Each
task, τi, is defined by its period (or minimum arrival interval),
deadline, worst-case execution time, and level of criticality
(defined by the system engineer responsible for the entire
system): (Ti, Di, Ci, Li). These parameters are however not
independent, in particular the worst-case execution time, Ci, is
assumed to be derived by a process dictated by the criticality
level. The higher the criticality level, the more conservative the
verification process and hence the greater will be the value of
Ci. We restrict ourselves to constrained deadline systems in
which D ≤ T for all tasks. At run-time a job (single invocation
of a task) will have fixed values of T , D and C. Its actual
computation time is however unknown at the time it is released
for execution.

In an MCS further information is needed in order to under-
take schedulability analysis. In general a task is now defined
by: (T , D, ~C, L), where ~C is a vector of values – one per crit-
icality level, with the constraint L1 > L2⇒ C(L1) ≥ C(L2)
for any two criticality levels L1 and L2.

During different runs, any given system will, in general,
exhibit different behaviours. We define the criticality level of
a behaviour to be the lowest criticality level L such that no
job executed for more than its C(L) value.

From the perspective of static verification, the correctness
criterion for an algorithm used to scheduling mixed-criticality
task systems is as follows: for each criticality level L, all
jobs of all tasks with criticality ≥ L must complete by their
deadlines in any criticality-L behaviour.

For a dual criticality system, with criticality levels LO and
HI (with LO < HI) the correctness criterion implies that all
jobs must meet their deadlines at criticality level LO, and all
HI-criticality jobs must meet their deadlines at criticality level
HI. At run-time the system may move from level LO to level
HI. This is referred to as a criticality mode change, with the
system said to move from the LO-criticality mode to the HI-
criticality mode.

A system starts in the LO-criticality mode. If it moves to
the HI-criticality mode then it may subsequently return to the
LO-criticality mode. This transition can, however, only occur
if all newly released LO-criticality jobs can be guaranteed.
This issue, of reimposing the pre-conditions on the system for
LO-criticality behaviour, is essentially orthogonal to the topics
addressed in this paper, and is therefore not considered further
here (it is discussed in [3], [21], [22], [30], [29], [23], [14]).

In general, one scheduling algorithm is said to dominate
another if it can schedule all of the task sets that the other
can schedule. It is said to strictly dominate if it can schedule
some additional task sets that the other algorithm cannot.

III. RELATED WORK

In this section we first review the analysis for AMC. We
then give an overview of the analysis for deferred preemption.
Both analyses have their origins in standard Response Time
Analysis (RTA) for fixed priority preemptive scheduling [24],
[2]. With RTA one first computes the worst-case response time
Ri for each task τi and then compares this value with the task’s
deadline Di (i.e. test for Ri ≤ Di for all tasks τi). For sporadic
tasks with constrained deadlines, the worst-case response time
is obtained as follows:

Ri = Ci +
∑

τj∈hp(i)

⌈
Ri
Tj

⌉
Cj (1)

where hp(i) denotes the set of tasks with priority higher than
that of task τi. This equation can be solved using standard
techniques for solving recurrence relations (i.e. fixed point
iteration). We note that convergence may be speeded up using
the techniques described in [17].

A. AMC Analysis

In the paper that introduced AMC [5], two forms of
analysis were provided. Here we use the simpler form (AMC
Method 1 or AMC-rtb) as it has been shown to give a good
approximation to the more complex approach which becomes
computationally expensive for higher numbers of criticality
levels [19].

The analysis for AMC first computes the worst-case re-
sponse times for each task τi in the LO-criticality mode
(denoted by Ri(LO)). This is accomplished by solving the
following response-time equation for each task:

Ri(LO) = Ci(LO) +
∑

j∈hp(i)

⌈
Ri(LO)

Tj

⌉
Cj(LO) (2)

During the criticality change we are only concerned with HI-
criticality tasks, so for these tasks:

Ri(HI) = Ci(HI) +
∑

τj∈hpH(i)

⌈
Ri(HI)

Tj

⌉
Cj(HI) +

∑
τk∈hpL(i)

⌈
Ri(HI)

Tk

⌉
Ck(LO) (3)

where hpH(i) is the set of HI-criticality tasks with priorities
higher than that of task τi and hpL(i) is the set of LO-
criticality tasks with priorities higher than that of task τi. So
hp(i) is the union of hpH(i) and hpL(i). Note Ri(HI) is
only defined for HI-criticality tasks.

Equation (3) is conservative for AMC as it does not take
into account the fact that LO-criticality tasks cannot execute
for the entire busy period of a HI-criticality task in the HI-
criticality mode. A change to the HI-criticality mode must
occur by Ri(LO) if task τi has not yet completed, and hence
(3) can be modified as follows:

Ri(HI) = Ci(HI) +
∑

τj∈hpH(i)

⌈
Ri(HI)

Tj

⌉
Cj(HI) +



∑
τk∈hpL(i)

⌈
Ri(LO)

Tk

⌉
Ck(LO) (4)

which caps the interference from LO-criticality tasks since
Ri(HI) cannot be smaller than Ri(LO).

Finally we note that if, for any HI-criticality task, Ri(HI) ≤
Di during the transition to the HI-criticality mode then this
task will remain schedulable once the HI-critically mode
is fully established, and there is no interference from LO-
criticality tasks.

B. Deferred Preemption

Allowing tasks to have a final non-preemptive region
(FNPR) improves schedulability by balancing two factors:
• Less interference for low priority tasks
• Increased blocking for high priority tasks

There is less interference as the release of a higher priority
job during the final non-preemptive region will not lead to
preemption and an extended response time, as it would with
fully preemptive scheduling. Most high priority tasks can cope
with some blocking, so as long as they are not rendered
unschedulable then this blocking time can be used to allow
regions of non-preemption in lower priority tasks.

In 2012, Davis and Bertogna [15] provided analysis for tasks
with FNPRs, and introduced an optimal algorithm for assign-
ing both task priorities and FNPR lengths. (Their algorithm is
optimal in the sense that it is guaranteed to find a combination
of FNPR lengths and priorities that leads to a schedulable
system if such a combination exists). First, we summarise the
parameter assignment algorithm. This consists of three steps
(and follows the framework of Audsley’s algorithm [1]):

1) Starting at the lowest priority level, identify the set of
tasks that can be made schedulable at this priority level
and note the size of the minimum FNPR that each task
requires in order to be schedulable, assuming that all
other unassigned tasks are given higher priorities.

2) Choose the task that can be made schedulable with the
shortest FNPR and assign it to this priority level.

3) Move to the next highest priority level.
If at any priority level no task can be made schedulable via a
FNPR then the task set is unschedulable. By always choosing
the minimum FNPR the blocking impact on high priority tasks
is minimised. If schedulable tasks can be found at each priority
level with a FNPR of length one, then that equates to a fully
preemptive system, since preemption cannot take place within
a single processor clock cycle.

To find the minimum FNPR length a binary search is
performed using the scheduling equations (given below). If
a task is schedulable with a FNPR equal to one time unit then
that is the minimum. If a task cannot be scheduled with a
FNPR equal to its full computation time C then that task is
not a candidate for this particular priority level. A minimum
value in the range 1 to C is found for all other tasks.

With preemptive scheduling, the first job released at the
critical instance has the longest response time. Hence (1)
can be used to compute the worst-case response time. The

introduction of a FNPR complicates the analysis somewhat
as this is no longer the case. The non-preemptive region can
push high priority work into the next invocation of the task,
which can result in this second job having a longer response
time. Similarly the second job can impact on the third job
and so on. We note that this effect can occur even when all
of the tasks have constrained deadlines as shown in [16]. In
general, all jobs in the busy-period at the task’s priority level
need to be checked to see which gives the largest response
time. The analysis used by Davis and Bertogna [15] follows
the approach introduced by Bril [10], [11].

The length of the FNPR for task τi is denoted by Fi. The
worst-case start time Rsi,0 for the first job of τi to begin its final
non-preemptive region is given by (5). Note the use of floor
plus one rather than ceiling in this equation. This is to cater for
higher priority tasks that are released at the same point in time
that τi has completed execution of Ci − Fi. These tasks need
to interfere as τi has not yet started its final region; however,
once it has started its FNPR, then it cannot be preempted and
instead can induce a blocking effect on higher priority tasks
of at most Fi − 1. By convention this ‘first’ job is given the
index 0 – so we are computing the worst-case start time of
the final non-preemptive region of the 0th job of task τi:

Rsi,0 = Bi + (Ci − Fi) +
∑

τj∈hp(i)

(

⌊
Rsi,0
Tj

⌋
+ 1)Cj (5)

where the blocking term Bi is given by:

Bi = max
τk∈lp(i)

(Fk − 1) (6)

where lp(i) is the set of tasks with priorities lower than that
of task τi.

Once Rsi,0 has been computed via fixed point iteration, the
worst-case response time can be found: Ri,0 = Rsi,0 +Fi. If a
value of Rsi,0 > Di − Fi is computed then iteration stops and
the task is deemed unschedulable (for this value of Fi).

Subsequent jobs of τi can be analysed by generalising (5).
For the gth job:

Rsi,g = Bi + (g+1)Ci−Fi +
∑

τj∈hp(i)

(

⌊
Rsi,g
Tj

⌋
+ 1)Cj (7)

with
Ri,g = Rsi,1 + Fi − gTi (8)

The overall worst-case response time, Ri, is the maximum
of the response times Ri,g for all of the jobs in the longest
priority level-i busy period:

Ri = max
g=0...Gi−1

(Ri,g) (9)

The number of jobs to check, Gi, is obtained from the length
of the priority level-i busy period, which can be obtained by
solving (10), and using this value in (11).

Vi = Bi +
∑

τj∈hep(i)

⌈
Vi
Tj

⌉
Cj (10)



where hep(i) is the set of tasks with priorities higher than or
equal to that of task τi.

Gi =

⌈
Vi
Ti

⌉
(11)

Hence g takes the values 0, 1, . . . , Gi − 1.

IV. AMC-NPR

For a dual criticality system we can improve schedula-
bility (for AMC) by allowing a FNPR at each criticality
level. So for all tasks, C(LO) is split into a region of
length C(LO) − F (LO) which may execute preemptively
or be split into non-preemptive regions of length no greater
than F (LO), and a final non-preemptive region of length
F (LO). For HI-criticality tasks; execution between C(LO)
and C(HI) is similarly divided into a region of length
C(HI)−C(LO)−F (HI) which may execute preemptively or
be split into non-preemptive regions of length no greater than
F (HI), and a final non-preemptive region of length F (HI).
Note if C(HI) = C(LO) then there is a single FNPR. In
this paper we fix F (HI) such that F (HI) = F (LO) if
C(HI) − C(LO) ≥ F (LO) or C(HI) = C(LO), with
F (HI) = C(HI) − C(LO) otherwise. Hence if F (LO) ≥
C(HI) − C(LO) > 0 then there are two adjacent non-
preemptive regions of length F (LO) and F (HI) respectively,
with preemption permitted at the boundary between them. The
switch to non-preemptive execution is assumed to be managed
by the RTOS as part of its execution time monitoring and
control functions.

The introduction of F (LO) can significantly improve the
schedulability of the LO-criticality mode which is the normal
mode of the system [15]. Moreover, for a schedulable system
it can allow the execution time budgets based on C(LO) to
be increased thereby reducing the likelihood of the system
switching to the HI-criticality mode. This is done by applying
sensitivity analysis [26], [9] to the C(LO) values of HI-
criticality tasks, increasing them until the system is only just
schedulable.

A. AMC-NPR scheduling policy

The AMC-NPR scheduling policy is essentially the same as
AMC, but with deferred preemption:
• The system starts in the LO-criticality mode, and remains

in that mode as long as all jobs execute within their LO-
criticality computation times (C(LO)).

• All LO-criticality tasks are constrained by run-time mon-
itoring and enforcement to never execute for more than
their C(LO) values.

• If any HI-criticality job executes for its C(LO) execution
time without completing then the system immediately
moves to the HI-criticality mode.

• As the system moves to the HI-criticality mode all LO-
criticality tasks that have not started executing are aban-
doned. LO-criticality jobs that have started are allowed
to complete, although they are no longer guaranteed to

meet their deadlines. No further LO-criticality jobs are
executed.

• The system remains in the HI-criticality mode until an
idle tick is encountered, at that time a return to the LO-
criticality mode can be undertaken.

The final step is not fundamental to AMC-NPR, any safe
protocol for changing back to the LO mode is acceptable.

B. Schedulability Analysis for AMC-NPR

In this section, we provide sufficient schedulability analysis
for AMC-NPR. We initially assume that priorities have been
assigned and F (LO) values are given. In the following subsec-
tion we show how to optimise the choice of these parameters.

To determine worst-case response times for the LO-
criticality mode we replace the AMC equation (i.e. (2)) with
the framework given by the series of equations (5) to (11).
Hence, for the LO-criticality mode, (7) becomes:

Rsi,g(LO) = Bi(LO) + (g + 1)Ci(LO)− Fi(LO) +∑
τj∈hp(i)

(

⌊
Rsi,g(LO)

Tj

⌋
+ 1) Cj(LO) (12)

where Bi(LO) is given by:

Bi(LO) = max
τj∈lp(i)

(Fj(LO)− 1) (13)

Equations (8) and (9) become:

Ri(LO) = max
g=0...Gi(LO)−1

(Rsi,g(LO) + Fi(LO)− gTi)
(14)

with the value of Gi(LO) found by computing the longest
possible priority level-i busy period using C(LO) values in
(10) and (11).

Once all the Ri(LO) values have been computed, and
schedulability proven for the LO-criticality mode, it is then
necessary to check the HI-criticality mode and the transition
to the HI-criticality mode.

Recall that a task can have a number of non-preemptive
regions provided than none of them are longer than F (LO).
Only one such region in any lower priority task can actually
cause blocking for task τi. In the HI-criticality mode, tasks
need to be able to deal with blocking of duration F (LO) from
any lower priority task. It is therefore possible for a task to
also have a FNPR for its HI-criticality execution of a length
F (HI) that is no greater than F (LO) without any increase in
blocking or any reduction in schedulability.

To compute the worst case start time Rsi (HI) of the FNPR
Fi(HI) of HI-criticality task τi in the HI-criticality mode,
we need to consider a number of different scenarios. Each
scenario corresponds to one of the g = 0 . . . Gi(LO)− 1 jobs
of task τi that can execute during the longest priority level-i
LO-criticality busy period. Since any of these jobs could have
the worst-case LO-criticality response time, it follows that we
must examine each of them, and the subsequent evolution
of the busy period, to determine the worst-case HI-criticality
response time of task τi. We now use g to indicate both the
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Fig. 3. LO-criticality busy period and HI-criticality Scenario g.

scenario and the index of the job of task τi in the LO-criticality
busy period. Figure 3 illustrates both the LO-criticality busy
period and one corresponding HI-criticality busy period, that
is scenario g.

There are Gi(LO) HI-criticality scenarios we need to con-
sider. For each of these scenarios g = 0 . . . Gi(LO) − 1, we
assume that job g of task τi and all subsequent jobs of that task
execute for Ci(HI), while any prior jobs of task τi execute
for Ci(LO). Note this behaviour precludes LO-criticality jobs
of other tasks being released after the worst-case start time
(Rsi,g(LO)) of the non preemptive region that ends the LO-
criticality execution of job g. Similar to the analysis of AMC,
we pessimistically assume that all jobs of higher priority,
HI-criticality tasks in the busy period may execute for their
C(HI) computation times. (This assumption greatly simplifies
the analysis, but makes it sufficient rather than exact). Since
the HI-criticality execution of each job of task τi ends with
a FNPR (Fi(HI)), then this may have a push-through effect
causing the next job of the task to have a longer response time.
Hence to determine the worst-case HI-criticality response time
for each scenario we must determine the response time of job
g and also the response times of all subsequent jobs of task τi
to the end of the new busy period (which may well be longer
than the LO-criticality one, as illustrated in Figure 3).

The length of the longest priority level-i busy period
Ggi (HI) corresponding to scenario g is obtained as follow:

Vi,g = Bi + gCi(LO) + max(0,

⌈
Vi,g
Ti

⌉
− g)Ci(HI) +

∑
τj∈hpH(i)

⌈
Vi,g
Tj

⌉
Cj(HI) +

∑
τk∈hpL(i)

⌈
Rsi,g(LO)

Tk

⌉
Ck(LO)

and

Ggi (HI) =

⌈
Vi,g
Ti

⌉
(15)

For each scenario g, we must compute the response time of
each job from job g to the last job in the busy period. We use
the index p for this purpose (p = g . . . Ggi (HI)− 1), with the

worst-case start time of the HI-criticality FNPR of job p in
scenario g given by Rsi,p,g(HI):

Rsi,g,p(HI) = Bi+gCi(LO)+(p+1−g)Ci(HI)−Fi(HI) +∑
τj∈hpH(i)

(

⌊
Rsi,g,p(HI)

Tj

⌋
+ 1) Cj(HI) +

∑
τk∈hpL(i)

⌈
Rsi,g(LO)

Tk

⌉
Ck(LO) (16)

with Bi = Bi(LO) since F (HI) ≤ F (LO).
Finally, we determine the worst-case HI-criticality response

time of task τi across all jobs and all scenarios:

Ri,g,p(HI) = Rsi,g,p(HI) + Fi(HI)− pTi

Ri(HI) = max
g=0...Gi(LO)−1

{
max

p=g...Gg
i
(HI)−1

(Ri,g,p(HI))

}
C. Priority and FNPR length assignment

In the previous subsection, we presented analysis for the
AMC-NPR scheduling policy, assuming that priorities and
FNPR lengths were given. In this section, we show how
priorities and FNPR lengths can be assigned using the greedy
FNR-PA algorithm introduced by Davis and Bertogna [15].

Recall that in our model, the final non-preemptive regions
of LO- and HI-criticality execution of a task (i.e. F (LO)
and F (HI)) are dependent, with F (HI) fully determined by
F (LO), such that F (HI) = F (LO) if C(HI) − C(LO) ≥
F (LO) or C(HI) = C(LO), otherwise F (HI) = C(HI)−
C(LO). This ensures that the HI-criticality blocking never
exceeds the LO-criticality blocking, and thus allows the HI-
criticality FNPRs to be added with impunity, since there is no
penalty in terms of schedulability. Subject to the restriction
that F (HI) ≤ F (LO), then by utilising the greedy FNR-PA
algorithm of Davis and Bertogna [15], we can obtain a weakly
optimal assignment of F (LO) (and hence F (HI)) as well as
task priorities. By weakly optimal, we mean that the algorithm
is guaranteed to find a set of parameters that make the system
schedulable according to the sufficient schedulability analysis
(given in the previous subsection) whenever such a set of
parameters exists with F (HI) ≤ F (LO).

Starting with a full set of N unassigned tasks (both LO- and
HI-criticality); for each of the N priority levels, starting at the
lowest, the modified FNR-PA algorithm proceeds as follows:

1) For each unassigned task, use a binary search to deter-
mine the minimum F (if one exists) between the values 1
and C(HI) such that the task is schedulable (according
to the sufficient test given in the previous section) with
F (LO) set to the minimum of C(LO) and F ; and, if
it is a HI-criticality task, F (HI) set to the minimum of
C(HI) − C(LO) and F (LO) (or simply set to F (LO)
if C(LO) = C(HI).

2) If no such task exists, declare the task set unschedulable.
3) Of the schedulable tasks found in the first step, choose the

one with the smallest F and assign it to this priority level;



if there is more than one task with the same minimal F ,
chose a LO- over a HI-criticality task; otherwise break
ties arbitrarily.

With the restriction that F (HI) ≤ F (LO), proof that the
modified FNR-PA algorithm achieves weakly optimal priority
and FNPR length assignment with respect to the sufficient
schedulability analysis for AMC-NPR can be proven via the
method given in [15]. In particular, since F (LO) and F (HI)
are tied together in our model and F (LO) ≥ F (HI), we need
only consider the set of F (LO) values. (Each F (HI) value
is determined directly from the corresponding F (LO) and
crucially only impacts the schedulability of the specific task
it applies to; it does not add anything beyond the contribution
of F (LO) to the blocking of higher priority tasks).

To prove optimality, one may observe that:

(i) Corollaries 2 to 5 from [15] apply to the analysis of
AMC-NPR, substituting “AMC-NPR” for ” “FPDS” and
“F (LO)” for “F (k)” in the text.

(ii) The proof of Theorem 2 in [15] holds with the set
of F (LO) values substituted for the set of final non-
preemptive regions, and where necessary, noting that
the interference due to the computation time of a task
exceeds its final non-preemptive region length, since
C(LO) ≥ F (LO).

In general, tasks could potentially have separate, indepen-
dent values for F (LO) and F (HI), with the possibility that
F (LO) < F (HI). In this case, additional analysis would be
required to account for the fact that tasks could be blocked
for longer during HI-criticality only operation. In this general
case, it is unlikely that a greedy algorithm based on Audsley’s
approach could be used to determine an optimal parameter
assignment. This is because of the trade off between F (LO)
and F (HI). Consider assigning a task at a given priority level
(it may be the only task that is schedulable at that priority),
the task could be assigned a small value of F (LO), but need a
large value of F (HI) >> F (LO) to be schedulable in the HI-
criticality mode. Alternatively, with a larger value of F (LO) it
could require a much smaller F (HI) value. It is not possible
to know which option is best without knowing the relative
priority order of the unassigned (higher priority) tasks, since
it may be that a LO-criticality task cannot tolerate a large
F (LO) or a HI-criticality task cannot tolerate a large F (HI).
This would seem to exclude a greedy bottom-up approach to
finding an optimal solution.

Despite the simple restriction of our model (F (HI) ≤
F (LO)), AMC-NPR strictly dominates AMC, as is evident
from the modified FNR-PA algorithm. If a task set was
schedulable with AMC then at each priority level there would
be a task that is schedulable in both modes with F = 1 (and
hence is schedulable with AMC-NPR). The example in Section
I-A shows that there are task sets that are schedulable with
AMC-NPR that are not schedulable with AMC. Hence AMC-
NPR strictly dominates AMC. Further, the AMC-NPR policy
is in practice significantly more effective than AMC as shown
in Section VI.

C(L1) C(L2) C(L3) C(L4)

 

Fig. 4. Multiple Criticality Levels with AMC-NPR

V. MULTIPLE CRITICALITY LEVELS

In this section, we sketch how the AMC-NPR scheme
for two criticality levels extends and scales to an increased
number of levels. Many standards have up to five levels, and
it is therefore necessary for any proposed scheme to permit
extension to at least this number.

For M criticality levels, each task with criticality level L (L
ranges from L1 to LM ) has up to L computations times and
each of these blocks of execution may have a FNPR. Figure
4 illustrates the code of a task with each interval of execution
(C(L1) to C(L4)) having a final non-preemptive region of the
same duration.

The analysis is easily extended to 4 or more levels as is
the parameter assignment method. The analysis for extending
AMC is given by Fleming and Burns [19]. The basic equations
are first solved to find R(L1) for all tasks. This is used to
compute R(L2) for all but L1 tasks. Each level is addressed
in this way until eventually R(L4) is computed for the highest
criticality tasks. At each step the interference from higher
priority, but lower criticality tasks is capped. So for task τi
from L4, the interval over which L1 tasks can interfere is
capped at Ri(L1), for L2 tasks the cap is Ri(L2) and for L3
tasks the cap is Ri(L3). Applying this approach to AMC-NPR,
the basic equations are replaced by the framework defined by
equations (12) to (16), with multiple levels of busy periods
examined.

The parameter allocation algorithm is a straightforward
generalisation of the FNR-PA algorithm described previously.
For a task to be assigned a specific priority level it must,
with the help of deferred preemption, be schedulable at each
criticality level up to and including its own criticality level.
Again we attempt to have the same sized FNPR for each
criticality level, but it cannot be larger than the available
computation time. The algorithm is therefore:

1) For each unassigned task, compute a minimum F (if one
exists) between the values 1 and C(Lm) such that the
task is schedulable with F (L1) set to the minimum of
C(L1) and F ; and for each criticality level (Li) from L2
up to the level of the task, F (Li) is set to the minimum
of C(Li)− C(Li− 1) and F .

2) If no such task exists, declare the task set unschedulable.
3) Of the schedulable tasks found in the first step, choose the

one with the smallest F and assign it to this priority level;
if there is more than one task with the same minimum
F , break ties arbitrarily.



VI. EMPIRICAL EVALUATIONS

In this section, we present an empirical investigation, ex-
amining the effectiveness of our analysis techniques and the
AMC-NPR scheme itself. We report on a set of experiments
undertaken for two criticality levels. These are sufficient to
provide a clear evaluation. For high numbers of criticality
levels the parameter space grows considerably and it becomes
harder to provide a comprehensive study.

A. Task set parameter generation

The task set parameters used in our experiments were
randomly generated as follows:
• Task utilisations (Ui = Ci/Ti) were generated using the

UUnifast algorithm [8], giving an unbiased distribution
of utilisation values.

• Task periods were generated according to a log-uniform
distribution. By default, the range of task periods was one
order of magnitude r = 1.

• Task deadlines were set equal to their periods.
• The LO-criticality execution time of each task was set

based on the utilisation and period: Ci(LO) = Ui/Ti.
• The HI-criticality execution time of each task was a fixed

multiplier of the LO-criticality execution time, Ci(HI) =
CF · Ci(LO) (e.g., CF = 2.0).

• The probability that a generated task was a HI-criticality
task was given by the parameter CP (e.g. CP = 0.5).

B. Schedulability tests investigated

We investigated the performance of the following techniques
and associated schedulability tests.
• AMC-NPR: the scheme introduced in this paper.
• AMC-rtb: published in [5] and described in Section III-A.
• SMC: the approach published in [3].
• SMC-NO: the SMC scheme without run-time monitoring

(i.e. the approach published by Vestal [31]).
• CrMPO: Criticality Monotonic Priority Ordering. Task

priorities were ordered first according to criticality (HI-
criticality first) and then according to deadline (shortest
deadline first). Response time analysis was then used
to determine if the task set was schedulable with HI-
criticality tasks assumed to execute for C(HI) and LO-
criticality tasks for C(LO).

In addition, in the Figures we include two further lines:
• Valid: Task sets pass this ‘test’ if the sum of their LO-

criticality utilisation and the sum of their HI-criticality
utilisation are both no greater than one.

• UB-NPR: A composite upper bound on any fixed priority
deferred preemption mixed-criticality scheduling tech-
nique. Task sets pass this ‘test’ if they are independently
schedulable in each of the LO-criticality and HI-criticality
modes according to the optimal priority and FNPR as-
signment algorithm given by Davis and Bertogna [15];
but no check on the mode change is made. Note that
UB-NPR is a necessary schedulability condition for any
valid fixed priority scheduling algorithm with or without

non-preemptive regions. It is included to illustrate the
effectiveness, or otherwise, of the other schemes.

With non-mixed criticality systems there is no need to
consider validity as there is a clear utilisation upper bound
of 1; however, with mixed criticality

∑
(C(LO)/T ) for LO-

criticality tasks +
∑

(C(HI)/T ) for HI-criticality tasks can
be greater than 1 for schedulable systems [19], hence to
correctly interpret the results presented it is necessary to know
what proportion of the considered task sets could possibly be
schedulable. We do this by checking that

∑
(C(LO)/T ) ≤ 1

for all tasks and
∑

(C(HI)/T ) ≤ 1 for all HI-criticality
tasks. For extreme parameter values (see the results below)
schedulability drops towards zero, but so does the number of
valid task sets. It becomes increasingly difficult to generate
task sets at these extremes and so rather than scale the
results (e.g. to give the percentage of valid task sets that are
schedulable) it is more informative to show explicitly on the
figures the proportion of generated task sets that are valid.

The conclusion from these considerations is that a task set
will only be considered in the experimental evaluation if it is
feasible in the LO-criticality mode, i.e.

∑
(C(LO)/T ) ≤ 1 for

all tasks. This is a necessary but not sufficient requirement for
the task set to be deemed valid. Also because the LO-criticality
utilisation bound is unambiguous we present all results, in the
figures, using LO-criticality utilisation on the x-axis.

The dominance relationships between the algorithms and
tests implies that in all figures there is a strict ordering to
the lines; from best to worst: Valid, UB-NPR, AMC-NPR,
AMC-rtb, SMC, SMC-NO and finally CrMPO. The role of
the experiments is to examine the relative performance of the
different schemes.

C. Experiments

In our experiments, the task set LO-criticality utilisation was
varied from 0.025 to 0.975. For each utilisation value, 1000
task sets were generated and the schedulability of those task
sets determined for the different schemes. (Note, the graphs
are best viewed online in colour).

Figure 5 plots the percentage of task sets generated that
were deemed schedulable for a system of 20 tasks, with on
average 50% of those tasks having HI criticality (CP = 0.5)
and each task having a HI-criticality execution time that is 2.0
times its LO-criticality execution time (CF = 2.0).

We observe that AMC-NPR has a much improved perfor-
mance over the original AMC method (AMC-rtb).

In the following figures we show the weighted schedulabil-
ity measure Wy(p) [7] for schedulability test y as a function
of parameter p. For each value of p, this measure combines
results for the task sets τ generated for all of a set of equally
spaced utilization levels (0.025 to 0.975 in steps of 0.025).

Let Sy(τ, p) be the binary result (1 or 0) of schedulability
test y for a task set τ with parameter value p:

Wy(p) = (
∑
∀τ

u(τ) · Sy(τ, p))/
∑
∀τ

u(τ) (17)

where u(τ) is the utilization of task set τ .
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Fig. 5. Percentage of Schedulable Tasksets

The weighted schedulability measure reduces what would
otherwise be a 3-dimensional plot to 2 dimensions [7]. Weight-
ing the results by task set utilization reflects the higher value
placed on being able to schedule higher utilization tasksets.

Figure 6 varies the criticality factor, Figure 7 varies the
percentage of tasks with HI criticality, Figure 8 varies the size
of the task set and Figure 9 varies the range of task periods.
A number of points are illustrated by these figures:
• CrMPO preforms very badly as the priority ordering it

uses is far from optimal.
• Figure 5 shows the differences between AMC-rtb, SMC

and SMC-NO (as previously shown by Baruah et al. [5])
and clearly shows the further improvement that AMC-
NPR delivers.

• All the weighted schedulability figures show that AMC-
NPR out performs AMC over a wide range of parameters.
The only exception is when the ratio of task periods is
high, AMC-NPR then approaches the behaviour of AMC
(as shown in Figure 9). This is due to short period high
priority tasks being unable to cope with even small non-
preemptive regions in the long period lower priority tasks.

• When the Criticality Factor is close to 1, or the percentage
of HI-criticality tasks is either very high or very low then
the system behaves similarly to a single criticality system.
In these situations Figures 6 and 7 show the inherent
advantage of deferred preemption.

• Figures 6 and 7 also show that as the number and/or size
of the HI-criticality tasks increases it is hard to generate
valid task sets with high LO-criticality utilisation. For
example, when the percentage of HI-criticality tasks is
95% only 30% of the generated task sets were valid. (The
remainder had a HI-criticality utilisation that exceeded 1).

VII. CONCLUSIONS

In this paper we presented an extension to the AMC
scheduling policy for mixed criticality systems executing on
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Fig. 6. Varying the Criticality Factor
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Fig. 7. Varying the Number of HI-criticality Tasks
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Fig. 8. Varying the Size of the Task set
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Fig. 9. Varying the Range of Task Periods

a single processor. The extension, which we denote as AMC-
NPR, allows tasks to have non-preemptive regions positioned
at the ends of the estimated execution times for each criticality
level, with this deferred preemption behaviour controlled by
the RTOS.

The main contribution of the paper is the introduction of the
AMC-NPR scheme and its schedulability analysis. In addition,
we were also able to provide an effective means of deriving
the lengths of the non-preemptive regions, along with the task
priorities. In theory, AMC-NPR strictly dominates AMC, pre-
viously the best performing scheme based on fixed priorities.
Our evaluations show that in practice, the performance of
AMC-NPR is significantly better than that of AMC for a wide
range of parameter settings.
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