Autonomous Multi-Camera Monitoring Systems
Radu Calinescu, Adrian Bors

This project is about developing a new methodology for managing intelligent systems of distributed synchronous cameras. Multi-camera systems are increasingly used to identify emerging risks in large buildings and areas where many people walk and interact through successions of corridors and open spaces.1,2 Their applications range from monitoring patient well-being in hospitals to tracking antisocial behaviour in retail centres and detecting terrorist activity at airports. Systems of pan-zoom-tilt cameras used in such applications are very complex and notoriously tedious and error-prone to monitor and continually adjust by human security agents. We propose a PhD project that will develop a methodology to automate the evaluation of the activity of individuals and groups using complex autonomous multi-camera monitoring systems. The PhD candidate will develop:

1. Distributed algorithms for monitoring individual and group activities and event detection from multi-camera video sequences. This part of the project will extend existing algorithms for the identification of human activity3 from single-camera video sequences devised in a previous project led by AB. Multi-camera systems will enable better capabilities such as those provided by 3D modelling of group activities4 and the tracking of unfolding events through complex networks of cameras. Dynamic modelling on graphs will be used to model changing patterns in movement.

2. Model-driven engineering techniques for the dynamic reconfiguration of camera parameters such as pan-tilt angles and zooming, to improve the scene observation and to track complex events involving multiple individuals. Building on recent research led by RC,5,6 this project component will use runtime stochastic modelling and verification to continually assess the risk situation and adjust the camera configurations accordingly. This will allow multi-camera systems to follow unfolding events and to react to adverse changes such as a camera being damaged accidentally or maliciously.

3 K. Stephens, A. G. Bors, Observing human activities using movement modelling, AVSS:44_1-44_6, 2015.