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Abstract

Many constraint satisfaction and optimisation problems can be solved
effectively by encoding them as instances of the Boolean Satisfiabil-
ity problem (SAT). However, even the simplest types of constraints
have many encodings in the literature with widely varying perfor-
mance, and the problem of selecting suitable encodings for a given
problem instance is not trivial. We explore the problem of selecting
encodings for pseudo-Boolean and linear constraints using a super-
vised machine learning approach. We show that it is possible to
select encodings effectively using a standard set of features for con-
straint problems; however we obtain better performance with a new
set of features specifically designed for the pseudo-Boolean and linear
constraints. In fact, we achieve good results when selecting encod-
ings for unseen problem classes. Our results compare favourably to
AutoFolio when using the same feature set. We discuss the relative
importance of instance features to the task of selecting the best encod-
ings, and compare several variations of the machine learning method.

Keywords: constraint programming, SAT encodings, machine learning,
global constraints, pseudo-Boolean constraints, linear constraints
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1 Introduction

Many constraint satisfaction and optimisation problems can be solved effec-
tively by encoding them as instances of the Boolean Satisfiability problem
(SAT). Modern SAT solvers are remarkably effective even with large for-
mulas, and have proven to be competitive with (and often faster than) CP
solvers (including those with conflict learning). However, even the simplest
types of constraints have many encodings in the literature with widely varying
performance, and the problem of predicting suitable encodings is not trivial.

We explore the problem of selecting encodings for constraints of the form∑n
i=1 qiei ⋄ k where ⋄ ∈ {<,≤,=, ̸=,≥, >}, q1 . . . qn are integer coefficients, k is

an integer constant and ei are decision variables or simple expressions contain-
ing a single decision variable (such as negation). We separate these constraints
into two classes: pseudo-Boolean (PB) when all ei are Boolean; and linear inte-
ger (LI) when there exists an integer expression ei. We treat these two classes
separately, selecting one encoding for each class when encoding an instance.

We select from a set of state-of-the-art encodings, including all eight encod-
ings of Bofill et al [1–3] which are extensions of the Generalized Totalizer [4],
Binary Decision Diagram [5], Global Polynomial Watchdog [6], Local Poly-
nomial Watchdog [6], Sequential Weight Counter [7], and n-Level Modulo
Totalizer [8]. All eight of these encodings are for pseudo-Boolean constraints
combined with at-most-one (AMO) sets of terms (where at most one of the
corresponding ei Boolean expressions are true in a solution). The AMO sets
come from an integer variable or are detected automatically [9] as described
in Section 2.1. We also use an encoding named Tree which is described in this
paper.

The context for this work is Savile Row [10], a constraint modelling tool
that takes the modelling language Essence Prime and can produce output
for various types of solver, including CP, SAT, and recently SMT [11]. When
encoding a constraint to SAT, two different approaches may be taken depend-
ing on the type of constraint. Some constraint types are decomposed into
simpler constraints prior to encoding (e.g. allDifferent is decomposed into a set
of at-most-one constraints, stating that each relevant domain value appears
at most once). Other constraint types are encoded to SAT directly, in which
case Savile Row will apply the encoding chosen on the command-line (or the
default if no choice is made).

We use a supervised machine learning approach, trained with a corpus of
614 instances from 49 problem classes (constraint models). We show that it
is possible to select encodings effectively, approaching the performance of the
virtual best encoding (i.e. the best possible choice for each instance), using
an existing set of features for constraint problem instances. Also we obtain
better performance by adding a new set of features specifically designed for
the pseudo-Boolean and linear integer constraints, especially when selecting
encodings for unseen problem classes.

We study two versions of the encoding selection problem: split-by-instance
and split-by-class. In the first, the set of all instances is split into training and
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test sets with no reference to the problem classes (in common with earlier work
[12, 13]). For any given test instance, the model may have been trained on other
instances of the same class. In split-by-class, each test instance belongs to a
problem class that was not seen in training. We would argue that split-by-class
is a realistic and useful version of the encoding selection problem because it is
desirable for constraint modelling tools to be robust for new problem classes.
Even when the encoding and solver settings will be hand-optimised for an
important new problem class, a good initial configuration is likely to be useful.

1.1 Contributions

In summary, our contributions are as follows:

• We address the problem of selecting SAT encodings for instances of unseen
problem classes, which we argue is a realistic version of the encoding selection
problem. To our knowledge, all previous approaches (such as [12, 13]) train
and test their machine learning models on instances drawn from the same
set of problem classes.

• We describe a machine learning approach that produces very good results,
and that performs much better than the mature, self-tuning algorithm
selection tool AutoFolio [14].

• We present a new set of features for pseudo-Boolean and linear integer con-
straints, and show improved overall performance and robustness when using
them.

• We evaluate our machine learning method thoroughly, and present an
analysis of feature importance.

• We describe Savile Row’s Tree encoding in detail, expanding on the
summary given in [15].

Note

This paper extends the earlier conference paper [15] in several ways. First, the
set of encodings has been extended from 5 to 9, and now includes all 8 from
a very recent work on encoding pseudo-Boolean constraints [3]. Secondly, we
give a more precise and complete background regarding the SAT encodings,
including a full description of the Tree encoding that is only summarised else-
where. Finally, we have substantially extended the analysis and discussion of
experimental results.

1.2 Preliminaries

A constraint satisfaction problem (CSP) is defined as a set of variables X, a
function that maps each variable to its domain,D : X → 2Z where each domain
is a finite set, and a set of constraints C. A constraint c ∈ C is a relation
over a subset of the variables X. The scope of a constraint c, named scope(c),
is the set of variables that c constrains. A constraint optimisation problem
(COP) also minimises or maximises the value of one variable. A solution is an
assignment to all variables that satisfies all constraints c ∈ C.
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Boolean Satisfiability (SAT) is a subset of CSP with only Boolean variables
and only constraints (clauses) of the form (l1 ∨ · · · ∨ lk) where each li is a
literal xj or ¬xj . A SAT encoding of a CSP variable x is a set of SAT variables
and set of clauses with exactly one solution for each value in D(x). A SAT
encoding of a constraint c is a set of clauses and additional Boolean variables
A, where the clauses contain only literals of A and of the encodings of variables
in scope(c). An encoding of c has at least one solution corresponding to each
solution of c. Also, an encoding of c has no solutions corresponding to a non-
solution of c. Literals of A may only appear within the encoding of c. A more
sophisticated definition of constraint encoding would allow variables in A to
be shared among multiple constraint encodings, however none of the encodings
used in this paper share additional variables.

Generalised arc consistency (GAC) for a constraint cmeans that for a given
partial assignment, all values are removed from the domain of each variable in
scope(c) if they cannot appear in any extended assignment satisfying c. A SAT
encoding of c has the property GAC iff unit propagation of the SAT encoding
of c results in the following correspondence: for each variable xi ∈ scope(c),
the set of remaining solutions of the encoding of xi corresponds to the set of
values in D(xi) after GAC has been enforced on c.

A SAT encoding of c has the Consistency Checker (CC) property [3] iff unit
propagation of the SAT encoding of c will derive false when the SAT partial
assignment corresponds to a CSP partial assignment that cannot be extended
to a full assignment that satisfies c.

2 Learning to Choose SAT Encodings

First we describe the palette of encodings for PB and LI constraints, then our
approach to selecting encodings using instance features and machine learning.

2.1 SAT Encodings

Recall that we are considering constraints of the following form where q1 . . . qn
are integer coefficients, k is an integer constant and ei are decision variables
or simple expressions containing one variable.

n∑
i=1

qiei ⋄ k where ⋄ ∈ {<,≤,=, ̸=,≥, >}

An expression ei may be: an integer or Boolean variable xi; a negated Boolean
variable ¬xi; or a comparison (xi#ki) where # ∈ {<,≤,=, ̸=,≥, >}, xi is an
integer variable or Boolean literal, and ki is a constant. We refer to the set of
values that ei can take as D(ei), extending the notation D(xi). We distinguish
between top-level constraints that must be satisfied in all solutions, and nested
constraints that are contained in a logic operator such as ∨ or →.

Initial normalisation steps are applied to all constraints of this form, regard-
less of the choice of encoding. All < constraints are converted to ≤, and >
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constraints to ≥ by adjusting k. If the coefficients q have a greatest com-
mon divisor (GCD) greater than 1 then all coefficients are divided by the
GCD. When the comparator is ≤ then k ← ⌊k/GCD⌋, and when the compara-
tor is ≥ then k ← ⌈k/GCD⌉. When ⋄ ∈ {=, ̸=}, k ← k/GCD unless k/GCD
is non-integer in which case the constraint is evaluated to true or false as
appropriate.

If the comparator ⋄ is ̸= then a new auxiliary variable a is created whose
domain is the set of all values the sum may take. A new top-level LI equality
constraint is introduced, as follows.

n∑
i=1

qiei − a = 0

The original constraint is replaced with a ̸= k, and if it is top-level then k will
be removed from the domain of a.

Any constraints that are not top-level (i.e. are nested in another expression
such as a disjunction) are always encoded with the Tree encoding in Sav-
ile Row, described in Section 2.1.3. For top-level constraints, we have nine
encodings available and each can be applied to either PB or LI constraints,
producing 81 configurations.

2.1.1 SAT Encoding Preliminaries

First we describe the encoding of CSP variables in Savile Row. Boolean
variables and integer variables that have two values are encoded with a single
SAT variable. For other integer variables, Savile Row generates the direct [16]
or order [17] encoding (or both) as required to encode the constraints on
that variable. We provide these details for completeness and without claiming
novelty.

The direct encoding of a variable x has one SAT variable representing
each value in D(x). It provides a SAT literal, or a constant true or false, for
a proposition (x = a) or (x ̸= a) for any integer a, with the literal denoted
Jx = aK or Jx ̸= aK. We use the 2-product encoding [18] to ensure x is assigned
at most one (AMO) value, and a single clause to ensure x is assigned at least
one (ALO) value.

The order encoding of x introduces one SAT variable for each of the
following propositions.

(x ≤ v) ∀v ∈ (D(x) \ {max(D(x))})

The order encoding provides a SAT literal (or constant true or
false) for a proposition (x ≤ a) or its negation (x > a) for any
integer a, with the literal denoted Jx ≤ aK or Jx > aK. For each
pair of values {v1, v2} ⊆ (D(x) \ {max(D(x))}) where v1 < v2 and
∄v′ ∈ D(x) : v1 < v′ < v2, a clause is generated to ensure coherence of the
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encoding:
Jx ≤ v1K→ Jx ≤ v2K

When the direct and order encodings are both required they are channelled
together with the following set of clauses. The AMO constraint of the direct
encoding is omitted in this case.

Jx ≤ vK ∧ Jx > v − 1K→ Jx = vK,
Jx = vK→ Jx ≤ vK, Jx = vK→ Jx > v − 1K ∀v ∈ D(x)

There are two equivalences that can be used to slightly improve the direct-order
encoding: Jx ≤ aK↔ Jx = aK for minimum value a, and Jx > b− 1K↔ Jx = bK
for maximum value b. By using these two equivalences we can remove two SAT
variables so 2|D(x)| − 3 variables are generated.

2.1.2 PB(AMO) Encodings

Savile Row implements nine SAT encodings for linear and pseudo-Boolean
constraints. Eight of these are encodings of PB(AMO) constraints [1–3], which
are pseudo-Boolean constraints with non-intersecting at-most-one (AMO)
groups of terms (where at most one of the corresponding ei expressions
are true in any solution). Encodings of PB(AMO) constraints can be sub-
stantially smaller and more efficient to solve than the corresponding PB
constraints [1–3, 9].

For the eight PB(AMO) encodings the constraints must be placed in a
normal form where all coefficients are positive, only ≤ is allowed, and each ei
must be a Boolean expression. The first normalisation step is to decompose
equality into two inequalities ≤ and ≥. Second, any ≥ constraints are converted
to ≤ by negating all qi coefficients and k. At this stage, all constraints are in
≤ form.

Non-trivial integer terms qiei (where ei is not Boolean and D(ei) ̸= {0, 1})
are dealt with as follows. If qi < 0 then qi ← −qi and ei ← −ei. The integer
variable contained in ei is required to have a direct SAT encoding. Finally, qiei
is replaced with an AMO group of |D(ei)| − 1 terms representing each value of
qiei except the smallest (which is cancelled out by adjusting k). For example,
if qi = 2 and ei has values {1, 2, 3} then k ← k − 2 and qiei would be replaced
with the following AMO group of two terms.

2(ei = 2) + 4(ei = 3)

At this point all terms qiei in the constraint must be Boolean or have
domain D(ei) = {0, 1}. If qi < 0, the term is replaced with −qi(ei = 0) or
−qi(¬ei) (as appropriate for the type of ei) and k ← k − qi. Otherwise, the
term is replaced with qi(ei = 1) or remains unchanged (as appropriate for the
type).

Automatic AMO detection [9] (which applies constraint propagation to find
AMO groups among the Boolean terms of the original constraint) is enabled
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in our experiments. Automatic AMO detection has been shown to substan-
tially improve solving time in some cases [9]. It partitions the Boolean terms
of the constraint into AMO groups, and (as described above) each integer
term becomes an AMO group also. Finally, we exactly follow the PB(AMO)
normalisation rules of Bofill et al [3] prior to encoding.

The PB(AMO) encodings are as follows:

MDD The Multi-valued Decision Diagram encoding [1] (a generalisation of
the BDD encoding for PB constraints [5]) uses an MDD to encode the
PB(AMO) constraint. Each layer of the MDD corresponds to one AMO
group. BDDs and MDDs are a popular choice for encoding sums to SAT
since they can compress equivalent states in each layer.

GGPW The Generalized Global Polynomial Watchdog encoding [2] (gener-
alising GPW [6]) is based on bit arithmetic and is polynomial in size. It
has the CC property but not GAC.

GLPW The Generalized Local Polynomial Watchdog encoding [3] (general-
ising LPW [6]) is similar to GGPW but has the GAC property. However,
while being polynomial in size, it is often too large to be practical.

GGT The Generalized Generalized Totalizer [2] encodes the PB(AMO) con-
straint with a binary tree, where the leaves represent the AMO groups
and each internal node represents the sum of all leaves beneath it. GGT
extends the Generalized Totalizer [4]. The binary tree is constructed using
the minRatio heuristic [3] that aims to minimise the numbers of values of
internal nodes.

GGTd is identical to GGT except that a balanced binary tree is used.
RGGT The Reduced Generalized Generalized Totalizer [3] attempts to

improve on GGT by compressing equivalent states at its internal nodes.
The minRatio heuristic is used to construct the tree.

GSWC The Generalized Sequential Weight Counter [2] (based on the Sequen-
tial Weight Counter [7]) encodes the sum of each prefix sub-sequence of the
AMO groups.

GMTO The Generalized n-Level Modulo Totalizer [3] (based on the n-Level
Modulo Totalizer [8]) is an extension of the Generalized Totalizer that
represents values of the internal nodes in a mixed-radix base. GMTO can
be substantially more compact than other PB(AMO) encodings.

The MDD, GLPW, GGT, GGTd, RGGT, and GSWC encodings all have
the GAC property (described in section 1.2). Where the original constraint
c contains no integer terms and the comparator of the original constraint is
neither = nor ̸= then these six encodings will enforce GAC on c. GGPW has
the CC property. Where the original constraint c contains no integer terms
and the comparator of the original constraint is not = or ̸= then GGPW will
have the CC property for c.
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2.1.3 Tree Encoding

The Tree encoding is related to the Generalized Totalizer (GT) [4] encoding of
PB constraints. However, Tree is able to natively encode equalities (in addition
to inequalities), and it natively supports integer variables and negative coeffi-
cients. Tree does not support arbitrary AMO groups of terms (i.e. it is not a
PB(AMO) encoding) so it does not benefit from automatic AMO detection [9].

Given a constraint c :
∑n

i=1 qiei ⋄ k where ⋄ ∈ {≤,=,≥}, the first step is
to normalise each term to have a lower bound of 0. Each term qiei is shifted
such that its smallest value becomes 0, and k is adjusted accordingly. Shifting
a term qiei is implemented with a linear view that introduces no SAT variables
or clauses when c is encoded.

The encoding process has two main stages. In the first stage, a tree is con-
structed from c, with each term (integer or Boolean) represented by a leaf.
The tree is binary with the exception of the root node which may have three
children. Each internal non-root node has a corresponding auxiliary integer
variable that represents the sum of its two child nodes. A constraint is gener-
ated to connect each internal non-root node to its two children. The process
to construct the tree maintains a set S of terms, initially containing all terms
in the original sum. While S contains more than three terms, two terms wiyi
and wjyj are removed from S and replaced with one new term a, where a is a
new auxiliary variable. A constraint wiyi + wjyj − a ⋄ 0 is generated. Finally
S contains at most three terms and the last constraint is generated:

∑
S ⋄ k.

For each new variable a (introduced for the sum of wiyi and wjyj), the
domain of a is the set of values obtainable by adding any value of wiyi to
any value of wjyj . If ⋄ ∈ {≤,=}, values greater than k are removed from the
domain of a. The shape of the tree and domain sizes of the internal variables
are determined by the choice of terms to remove from S at each step. Tree uses
a simple heuristic that chooses a term with the smallest number of possible
values, breaking ties in favour of the smallest range from minimum to maxi-
mum value. The aim of the heuristic is to minimise the number of values of
the auxiliary variables. To complete the first stage, if ⋄ is = then each equality
constraint is broken down into one ≤ and one ≥ constraint.

As an example, consider the following constraint (where each variable xi

is Boolean):

20x1 + 30x2 + 20x3 + 40x4 + 10x5 + 20x6 + x7 ≤ 55 (1)

The tree generated for this constraint is shown in Figure 1. In this case
the terms all have two possible values and the heuristic generates a balanced
tree. Four auxiliary variables are generated as shown in Figure 1, and five
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≤ 55

a0 ∈ {0 . . . 1, 10 . . . 11}

x7 10x5

a3 ∈ {0, 20, 40}

40x4 a1 ∈ {0, 20, 40}

20x1 20x6

a2 ∈ {0, 20, 30, 50}

20x3 30x2

Fig. 1 The tree generated for the Tree encoding of 20x1 + 30x2 + 20x3 + 40x4 + 10x5 +
20x6 + x7 ≤ 55

constraints are generated as follows.

x7 + 10x5 − a0 ≤ 0

20x1 + 20x6 − a1 ≤ 0

20x3 + 30x2 − a2 ≤ 0

40x4 + a1 − a3 ≤ 0

a0 + a2 + a3 ≤ 55

The second stage is to encode the variables and constraints to SAT. The order
encoding is required for integer leaf nodes and is used for all ai variables on
the internal nodes. Constraints are encoded using an improved version of the
original order encoding of Tamura et al [19]. The original order encoding builds
a set of clauses from the intervals {min(D(qiei))− 1 . . .max(D(qiei))} (for
all i). Tamura, Banbara, and Soh [20] presented an improved order encoding
that uses the sets D(qiei) and is more compact than the original version. The
version presented here also uses the sets D(qiei), and by taking the entire set
into account it avoids generating redundant clauses compared to the original
version. First, terms are sorted by increasing number of possible values. For a
constraint of arity r, the set of clauses is as follows:

∧
⟨b1...br⟩∈B

∨
i


Jei ≤ (bi/qi)− 1K when (qi > 0 ∧ i < r)

Jei > (bi/qi)K when (qi < 0 ∧ i < r)

Jei ≤ ⌊bi/qi⌋K when (qi > 0 ∧ i = r)

Jei > ⌈bi/qi⌉ − 1K when (qi < 0 ∧ i = r)


where the set of tuples B is defined as follows.

B =

{
⟨b1 . . . br⟩ | ∀r−1

i=1 bi ∈ D(qiei) ∧ br = k −
r−1∑
i=1

bi

}
For example, we encode the first constraint as follows (where false literals

and one trivially true clause have been removed).

Jx7 ≤ 0K ∨ Ja0 > 0K
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Jx5 ≤ 0K ∨ Ja0 > 1K
Jx7 ≤ 0K ∨ Jx5 ≤ 0K ∨ Ja0 > 10K

The original order encoding [19] would generate two additional (redundant)
clauses, as follows.

Jx5 ≤ 0K ∨ Ja0 > 0K
Jx7 ≤ 0K ∨ Jx5 ≤ 0K ∨ Ja0 > 1K

When applied to a PB ≤ constraint, Tree is similar to GT in most respects.
The main difference occurs at the root node, which for Tree has 3 children
and no auxiliary SAT variables, while for GT the root node has 2 children and
an auxiliary SAT variable for each possible value of the sum that lies between
0 and k + 1. On the example constraint, Tree generates 10 SAT variables
(in addition to the original x1 . . . x7) and 30 clauses. GT with the minRatio
heuristic generates 20 SAT variables and 36 clauses, while GT with a balanced
binary tree produces 21 SAT variables and 54 clauses.

When applied to an equality constraint, Tree generates one set of auxiliary
variables at each internal (non-root) node and these are used to encode both ≤
and≥ parts of the constraint. In contrast, when using any PB(AMO) encoding,
the constraint is decomposed into two inequalities which are then encoded
entirely separately. As a result Tree can be more compact in terms of SAT
variables. Replacing ≤ with = in Equation (1), the Tree encoding introduces
10 variables and 53 clauses, whereas GT with minRatio generates 48 variables
and 82 clauses.

Tree has the GAC property when the comparator of the original constraint
is neither = nor ̸=.

2.1.4 Discussion

The set of 9 encodings is diverse but not exhaustive. Ab́ıo et al proposed a
BDD-based encoding for linear constraints [21], however it has been directly
related to the MDD encoding [22]. In addition to MDD-based encodings, Ab́ıo
et al propose two further encodings for linear constraints [23]: one based on
sorting networks (SN), which is related to the GPW encoding, and another
log-based encoding BDD-Dec. Other log encodings such as the one used by
Picat-SAT [24] may also be more effective in some cases.

For our experiments we use an extended version of Savile Row 1.9.1 [25].
All constraints other than PB and LI use the default encoding as described in
the Savile Row manual.

2.2 Instance Features

Our task of selecting the best SAT encodings relies on extracting features of
constraint problems in order to predict a performant encoding configuration.
We initially use existing generic CSP instance features, and then go on to
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define features which relate directly to the PB and LI constraints in a given
CSP instance. The resulting featuresets are described below.

f2f We use the fzn2feat tool [26] to extract 95 static instance features relat-
ing to the number and types of variables and their domains, the types and
sizes of constraints and features of the objective in optimisation problems.
The full list of features can be found at https://github.com/CP-Unibo/
mzn2feat; some features were not applicable, e.g. there are no float vari-
ables in Essence Prime and Savile Row does not produce all the same
annotations. The fzn2feat tool requires FlatZinc models as input – we
generate these using Savile Row’s standard FlatZinc back-end.

f2fsr We also re-implement the f2f features as closely as possible within
Savile Row, applied to the model directly before encoding to SAT.

lipb We introduce a new set of 45 features describing the PB constraints in a
problem instance. We also extract these for LI constraints, giving 90 new
features in total. These features are listed in Table 1.

combi We combine the f2fsr and lipb features.

Table 1 New features for pseudo-Boolean and linear integer constraints. For each aspect of
a constraint listed in the left column, we calculate the aggregates in the right column. In the
aggregation functions, IQR means inter-quartile range, skew refers to the non-parametric
skew and ent is Shannon’s entropy. The identifier for each aspect is given in brackets.

Aspect of constraint Aggregate

Number of (PB or LI) constraints (count) none
Number of terms (n) min, max, mean, median, IQR, skew,

ent, sum
Sum of coefficients (wsum) sum, skew, IQR
Minimum coefficient (q0) min, mean
Maximum coefficient (q4) max, median, mean
Median coefficient (q2) median, skew, ent
IQR of coefficients (iqr) median, skew
Coefficients’ quartile skew (skew) mean, min, max, ent
Distinct coefficient values (sep) mean, max
Ratio of distinct coeff. values to num. of coeffs. (sepr) mean, max
Number of At-Most-One groups (AMOGs) (amogs) mean
Mean size of AMO group (asize mn) mean
Mean AMOG size ÷ number of terms (asize r2n) mean
Mean maximum coeff. size in AMOGs (amaxw mn) mean
Skew of maximum coeff. in AMOGs (amaxw skew) mean, ent
Upper limit (k) (k) mean, median, max, IQR, ent, skew
k × number of AMOGs (k amo prod) mean, IQR, ent

The rationale behind the lipb features listed in Table 1 is to represent
the distribution and partitioning of coefficients within LI and PB constraints.
For example, by inspecting averages, quartiles and measures of skew, we can
distinguish between PBs with terms mostly similar in weight and ones where
one or two coefficients dominate. Additionally, because most encodings we
use make use of AMO groups, our features also consider the characteristics
of the AMO groups in a constraint. Of course we lose the individual detail
when we aggregate over all constraints in the instance, but by using a variety

https://github.com/CP-Unibo/mzn2feat
https://github.com/CP-Unibo/mzn2feat
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of aggregation functions we hope to represent both the characteristics of the
individual constraints and how they are distributed within the instance as a
whole.

2.3 Problem Corpus

We begin with the 65 constraint models with a total of 757 instances from
a recent paper [11] in order to work with a wide variety of problem classes.
An added advantage is that the models are written in Essence Prime, Savile
Row’s input language. Unfortunately this collection has a very skewed distri-
bution of instances per problem class, ranging from just 1 to 100. We mitigate
this in two ways: firstly, we limit the number of instances per class to 50 by
taking a random sample where more instances are available; secondly, we add
instances to existing classes where it is easy, such as when instance parameters
are just a few integers. We also add two problem classes from recent XCSP3
competitions [27]: the Balanced Academic Curriculum Problem (BACP) and
the Hamiltonian Cycle Problem (HCP). Some of the problems are filtered out
during the data cleaning phase; we give details of this process and the resulting
corpus in Section 3.1.2 and Table 2.

2.4 Training

We evaluated several classifier models from the scikit-learn library [28],
including decision trees and forests of extremely randomised trees, as well as
the XGBoost classifier [29]. We also investigated training various regressors to
predict runtime. We found that a random forest classifier performs best for our
purposes. The scikit-learn implementation is based on Breiman’s random
forests [30], but uses an average of predicted probabilities from its decision
trees rather than a simple vote.

We follow the method of Probst et al. [31] who investigated hyperparameter
tuning for random forests and concluded that the number of estimators should
be set sufficiently high (we use 200) and that it is worth tuning the number
of features, maximum tree depth, and sample size. We use randomised search
with 50 iterations and 5-fold cross-validation to tune the hyperparameters.
We experimented with more tuning iterations but it did not lead to improved
prediction quality.

If a classifier makes a poor prediction, the consequences vary. It is possible
that the chosen encodings lead to a running time which is very close to that
of the ideal choice; the opposite is also true and misclassification can be very
expensive. To address this issue, we follow a similar approach to the pairwise
classification used in AutoFolio [14]: we train a random forest model for each
of the possible pairs of encoding configurations. When making predictions,
each model chooses between its two candidates. The configuration with most
votes is chosen; if two or more configurations have equal votes, we select the
one which produced the shortest total running time over the training set. This
approach effectively creates a predicted ranking of configurations from the
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Fig. 2 The virtual best PAR10 run-time on our whole corpus for a range of portfolio sizes,
as a multiple of the overall virtual best; the resulting portfolios (of li pb configurations) are
shown for sizes 1 to 6.

features and often leads to better prediction performance than using a single
random forest classifier.

To facilitate the pairwise training and prediction approach, we reduce our
selection of encoding combinations from 81 (9 PB encodings × 9 LI encodings)
to a portfolio of 6, thus needing to train just 15 models (rather than 3240 if we
had used all 81 choices). We seek to retain performance complementarity as
described in [32] from a much reduced portfolio size. The portfolio is built from
the timings in the training set using a greedy approach as follows. We begin
with a single encoding configuration in the portfolio and then successively add
the remaining configuration which would lower the virtual best PAR10 time
by the biggest margin (PAR10 is defined in Section 3.1.2). We do this until we
have a portfolio of 6. We repeat the process using each of the 81 configurations
as the starting element and finally select the best-performing portfolio from
these 81. Figure 2 shows that this portfolio reduction has a small impact on
the virtual best performance across our corpus – the virtual best time for a
portfolio of size 6 is within 16% of the time achievable with all configurations.

In addition to the pairwise voting scheme, we implement two further
customisations when training the classifiers:

Sample Weights Firstly we aim to give more importance to instances
which are harder (with a longer virtual best runtime) and where the encod-
ing choice makes a bigger difference. Each instance is given a positive
integer weight w according to the formula

w = ⌊log10 (10 + tV B ×
tVW

tV B
)⌋

where tV B and tVW are the very best and very worst runtimes respectively
for the instance.
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Custom Loss Secondly, we provide a custom loss function for the cross-
validation used during hyperparameter tuning. The custom loss function
simply returns the difference in time between the runtime of the chosen
encoding configuration and the virtual best for that instance.

To conduct a more complete comparison we also implement two additional
alternative setups.

Single Classifier We try using a single random forest classifier with the same
portfolio of 6 configurations (combining PB and LI encodings). In terms
of hyperparameter tuning, we try it both with a generous allowance of 15
times the iterations allocated to each classifier in the pairwise setup, and
with a more restricted budget of 60 iterations.

Separate LI/PB Choice Secondly we modify the pairwise setup to make
a separate prediction for LI and PB constraints, choosing a portfolio of 6
encodings for each encoding type. This approach has its difficulties because
when labelling the dataset with the best encoding for one type of con-
straint, the encoding of the other constraint type must be chosen somehow.
We address this by setting the other constraint type to the single best
for the training set. This setup is more expensive in terms of training
time, effectively repeating the entire process for each constraint type under
consideration, rather than taking advantage of a complementary portfolio
across two (or more) encodings.

3 Empirical Investigation

3.1 Method

We provide an overview of our experimental process in Figure 3. Briefly, the
method consists of:

• Running Savile Row with different encoding choices in order to collect
runtime information and to extract features.

• Cleaning the resulting dataset.
• Carrying out 50 split, train, predict cycles with each of our machine learning
setups, using the same train/test splits in order to allow fair comparison
across the setups.

• Using the predicted encoding choices to identify the resulting runtimes.
• Aggregating the “predicted” runtimes and calculating reference times for
comparison.

The experimental design is described in more detail below.

3.1.1 Solving Problem Instances and Extracting Features

We run Savile Row on each instance in the corpus with each of the 81
encoding configurations. The CNF clause limit is set to 5 million and the
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Fig. 3 An overview of the steps involved in our experimental investigation. The white boxes
with solid borders represent data; the grey boxes represent processes.

Savile Row time-out to 1 hour. We switch on automatic detection of At-
Most-One constraints [9]. We choose Kissat as our SAT solver as it formed
the basis of the top three performers in the 2021 SAT competition [33]. We
use the latest release available at the time, sc2021-sweep [34], with default
settings and separate time limit of 1 hour. The experiment is run on the Viking
research cluster with Intel Xeon 6138 20-core 2.0 GHz processors; we set the
memory limit for each job to 8 GB. We carry out 5 runs (with distinct random
seeds) for each configuration to average out stochastic behaviour of the solver.

To extract the features we run each problem instance once with the Savile
Row feature extractor and once to generate standard FlatZinc (using the
-flatzinc flag) followed by fzn2feat [26]. We record the time taken to extract
the features.

3.1.2 Cleaning the Dataset

We calculate the median runtime over 5 runs for each instance and encoding
configuration. We mark a result as timed out if the total runtime (Savile Row
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Table 2 Number of instances (#), mean number of PB constraints (PBs) and mean
number of LI constraints (LIs) per instance for each problem class in the eventual corpus.

Problem Class # PBs LIs Problem Class # PBs LIs

killerSudoku2 50 1811.2 129.9 carSequencing 49 435.7 0.0
knights 44 170.5 336.9 langford 39 146.2 0.0
opd 36 21.9 76.2 knapsack 28 1.0 1.0
sonet2 24 10.0 1.0 immigration 23 0.0 1.0
bibd-implied 22 410.6 0.0 efpa 21 162.8 0.0
handball7 20 705.0 1206.0 mrcpsp-pb 20 90.0 45.7
n queens 20 1593.0 0.0 bibd 19 338.7 0.0
briansBrain 16 0.0 1.0 life 16 0.0 438.9
molnars 16 0.0 4.0 n queens2 16 309.0 0.0
bpmp 14 14.0 0.0 blackHole 11 202.2 0.0
pegSolitaireTable 8 59.9 0.0 pegSolitaireState 8 59.9 0.0
pegSolitaireAction 8 59.9 0.0 magicSquare 7 136.0 36.0
peaceArmyQueens1 7 0.0 1008.0 peaceArmyQueens3 6 0.0 4.0
quasiGrp5Idem 6 586.7 0.0 golomb 6 59.2 38.7
quasiGrp7 6 410.7 0.0 quasiGrp6 6 410.7 0.0
quasiGrp4NonIdem 4 1067.5 208.0 quasiGrp3NonIdem 4 1067.5 208.0
quasiGrp5NonIdem 4 389.0 0.0 quasiGrp4Idem 4 416.0 208.0
bacp 4 0.0 25.0 quasiGrp3Idem 4 458.0 208.0
waterBucket 4 0.0 46.0 discreteTomography 2 240.0 0.0
solitaire battleship 2 72.0 16.0 plotting 1 1.0 28.0
nurse 1 27.0 42.0 grocery 1 0.0 2.0
farm puzzle1 1 0.0 2.0 diet 1 0.0 6.0
sokoban 1 0.0 24.0 sonet 1 3.0 1.0
contrived 1 0.0 4.0 sportsScheduling 1 166.0 64.0
tickTackToe 1 6.0 14.0

+ Kissat) exceeds 1 hour. To decide what penalty to apply to runs which time
out, we consider all instances for whom every configuration finishes within
the allocated time. The mean worst/best ratio is 13.06 and the median ratio
is 4.91. When we consider only those problem instances which are not solved
with any encoding configuration in less than 1 minute, then the worst/best
mean ratio is 9.18 so we believe it fair to penalise a time-out by a factor of 10.
We therefore choose to use PAR10, i.e. assigning 10 hours to any result which
takes longer than our 1 hour time-out limit. This is the same penalty applied
in other related literature [12–14] which addresses the problem of selecting
SAT encodings for CSPs.

Having applied PAR10, we filter the corpus as follows. We drop instances if
they contain no PB or LI constraints. We also exclude any instances which end
up requiring no SAT solving – Savile Row can sometimes solve a problem
in pre-processing through its automatic re-formulation and domain filtering.
Finally we exclude instances for which all configurations time out. At this
point, 614 instances of 49 problem classes remain in the corpus; Table 2 shows
the number of instances for each problem class and the mean number of PB
and LI constraints per instance.

3.1.3 Splitting the Corpus, Training and Predicting

For each of our classifier setups and our four featuresets, we run a split, train,
predict cycle 50 times. We use seeds 1 to 50 to co-ordinate the splits so that
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we compare the prediction power of the different feature sets and setups using
the same training and test sets.

For each cycle, we aim for an 80:20 train to test split using two approaches.
The split-by-instance approach simply selects instances at random with uni-
form probability – with this approach, instances of any given problem class are
usually found in both the training and test sets. The split-by-class approach
also splits problems randomly but ensures that all instances of a problem class
end up either in the training or the test set, meaning that predictions are being
made on unseen problem classes. This second method can lead to the test set
being slightly larger than 20%.

Prior to training the classifiers, the portfolio of available configurations is
built based on the runtimes of the training set. Then the training instances are
labelled for each pairwise classifier with the configuration that has the shorter
runtime. For each pairwise classifier, we search the hyperparameter space and
fit the model to the training set. Finally, we make predictions using the test
set ready for evaluation.

3.1.4 Evaluating the Performance of Predicted Encodings

To evaluate the impact of using the learnt encoding choices, we calculate two
benchmarks commonly used in algorithm selection [32]: the Virtual Best (VB)
time is the total time taken to solve the instances in a test set if we always
made the best possible choice from all 81 configurations; and the Single Best
(SB) time is the total time taken to solve the instances in a test set when using
the single configuration that minimises the total solving time on the training
set. In addition we refer to: the time taken using Savile Row’s default (Def)
configuration, which is the Tree encoding for both PB and LI constraints,
and finally the Virtual Worst (VW) time to indicate the overall variation in
performance of the encoding configurations in the portfolio.

3.2 Results and Discussion

In Table 3 we report the total PAR10 runtime across all 50 test sets for the
predicted encoding configurations from each of the six classifier setups, four
feature sets and two splitting methods. The predicted runtimes include the
time taken to extract the features.1 For ease of comparison, we report the
runtime as a multiple of the virtual best time. For example, a figure of 2.00
in Table 3 means that the predictions across the 50 test sets led to a total
runtime which was twice as long as the runtime achieved if we always chose
the best available configuration. We remind the reader that the two splitting
strategies (by class vs. by instance) yield different test sets for the 50 seeds,
as explained in Section 3.1.3.

1For features extracted directly from Savile Row (f2fsr, lipb, combi), the feature extraction
time added a median of 9% (mean 21%) to the overall running time. The features extracted via
fzn2feat added 66% (median), 72% (mean).
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Table 3 Total PAR10 times over the 50 test sets as a multiple of the virtual best
configuration time. The best time for each combination of setup, features and splitting
method is shown in bold. The predicted runtimes include feature extraction time. In the
setup details, Co/Sep shows whether LI and PB encodings were selected separately or as a
combined choice; SW means sample weighting is used; CL indicates custom loss used in
cross-validation; Tuning refers to the number of cycles of hyperparameter tuning, or the
time budget in the case of AutoFolio.

Split-by-Instance Reference Times

Virtual Best Single Best Default Virtual Worst

1.00 13.87 17.84 123.70

Split-by-Instance Predicted Times

Setup Details Relative Times by Featureset

Selector Co/Sep SW CL Tuning f2f f2fsr lipb combi

Pairwise Voting co - - 50× 15 7.99 5.63 5.87 5.86
Pairwise Voting co ✓ - 50× 15 6.33 5.36 5.10 4.99
Pairwise Voting co - ✓ 50× 15 6.01 4.74 4.57 4.75
Pairwise Voting co ✓ ✓ 50× 15 5.40 4.69 4.43 4.57

Single Classifier co ✓ ✓ 750 3.91 3.70 3.77 3.81
Single Classifier co ✓ ✓ 60 3.95 3.70 3.98 3.83
Single Classifier co - - 750 10.34 9.64 9.11 8.90

Pairwise Voting sep ✓ ✓ 50× 15× 2 6.53 6.67 5.60 5.81

AutoFolio co n/a n/a 1 hour 22.19 24.18 20.63 21.02
AutoFolio co n/a n/a 2 hours 26.71 27.59 22.63 22.19
AutoFolio co n/a n/a 4 hours 22.76 25.40 22.45 23.47

Split-by-Class Reference Times

Virtual Best Single Best Default Virtual Worst

1.00 25.40 17.15 160.96

Split-by-Class Predicted Times

Setup Details Relative Times by Featureset

Selector Co/Sep SW CL Tuning f2f f2fsr lipb combi

Pairwise Voting co - - 50× 15 15.07 15.01 14.17 12.55
Pairwise Voting co ✓ - 50× 15 16.80 14.90 13.21 12.77
Pairwise Voting co - ✓ 50× 15 16.42 15.30 14.97 11.16
Pairwise Voting co ✓ ✓ 50× 15 15.69 15.19 11.00 11.84

Single Classifier co ✓ ✓ 750 20.59 19.15 13.17 14.53
Single Classifier co ✓ ✓ 60 22.01 19.49 13.67 13.52
Single Classifier co - - 750 19.72 19.93 15.18 16.50

Pairwise Voting sep ✓ ✓ 50× 15× 2 16.91 14.10 12.02 12.71

AutoFolio co n/a n/a 1 hour 24.28 27.31 24.21 26.79
AutoFolio co n/a n/a 2 hours 26.90 31.85 25.26 25.84
AutoFolio co n/a n/a 4 hours 24.88 25.36 23.66 30.22
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Fig. 4 Prediction performance using different featuresets against reference times. We show
mean runtime (left) and number of timeouts (right) per test set across the 50 cycles, when
using our preferred setup (pairwise combined, sample weights, custom loss). Outliers are
indicated with crosses and represent values more that 1.5× IQR outside the quartiles.

3.2.1 On Performance and Features

We found that the machine learning predictors work well, clearly outperform-
ing the SB and Def configurations. These performance improvements can be
achieved with predictions based on the generic CSP feature sets f2f and f2fsr,
but are even better when using the new specialised features (lipb) for the
majority of ML setups we implement and especially so when predicting encod-
ings for unseen problem classes. Sometimes the best results are obtained by
the combined featureset combi, again more often for unseen problem classes.

We argue that the split-by-class approach is both a more difficult challenge
and closer to a real-world deployment, where a new instance to solve may
belong to an unseen problem class. However, both approaches are realistic,
so we choose the Pairwise-Voting Combined-Encoding Classifier with Sample
Weighting and Custom Loss as our preferred setup for the rest of this paper
because it is the best in the split-by-class task and performs competitively in
the split-by-instance setting.

In a recent survey, Kerschke et al. state that “State-of-the-art per-instance
algorithm selectors for combinatorial problems have demonstrated to close
between 25% and 96% of the VBS-SBS gap” [32]. In these terms, our preferred
setup using lipb features closes 59% of the VB-SB gap for unseen classes and
73% for seen classes.

Because the distribution of runtimes in the split-by-class trials is skewed,
we use a non-parametric statistical test to report on the significance of the
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Fig. 5 The number of problem instances individually solved within a given time for the
reference selectors and our preferred predictor using different feature sets. The figures on the
left show the full performance profile; on the right we zoom in to see how many instances
are solved by the selectors as we approach our timeout limit of 1 hour.
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Fig. 6 Distributions of prediction accuracy across the 50 split, train, predict cycles using
our preferred setup.
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improvement achieved by using our classifier. We apply the Wilcoxon Signed-
Rank test for paired samples on the mean times from the SB selector choices
and our preferred selector using the lipb features. We obtain a p value of
6.5× 10−5 (well below even a 1% significance level) and an effect size of −0.62
using the rank-biserial correlation method which would usually be interpreted
as a medium to large effect.

Figure 4 summarises the performance for our preferred setup, showing the
distribution of mean predicted PAR10 times per test set. The mean values are
marked with diamonds and correspond to the numbers reported in Table 3,
albeit not scaled. We note that when splitting by instance, the performance
across test sets is fairly symmetrical, with very similar means and medians for
all selectors. However, when it comes to splitting by class, the distributions
show positive skew – this likely comes from test sets where there are many
instances from an unseen problem class for which the classifier struggles to
make the best choices.

We present an additional visualisation of selector performance in Figure 5,
showing the number of instances solved as time is increased. With both split-
ting strategies we observe that the featuresets emerge in the order lipb, combi,
f2fsr, f2f with the lipb-predicted encodings enabling the largest number of
instances to be solved within the timeout. When splitting by instance, the four
featuresets follow a very similar trajectory; however when splitting by class a
clear advantage is shown for the specialised featuresets. The single best (SB)
performs very differently in the two settings. When splitting by class, there are
occasions when SB (derived from the training set) performs considerably worse
than the Tree Tree default configuration, leading to the default configuration
outperforming SB.

All featuresets lead to similar performance in the split-by-instance setting.
However, when predicting for unseen problem classes, the mean runtimes are
clearly better when using the specialised featuresets. This is also reflected in
the number of timeouts, where the lipb featureset gives the most robust pre-
dictions. It is interesting that when splitting by class the generic featureset
f2f leads to a low median runtime and low median number of timeouts but
is strongly outperformed by the specialised lipb features in terms of means,
suggesting that the specialised features help to avoid more costly misclassifi-
cations; i.e. the generic features help to “win” on easier problems, but don’t
do so well on harder ones.

A further insight is provided by Figure 6 which shows the accuracy of pre-
dictions across the 50 training and test sets – in this figure we see how often the
pairwise classifier ends up making exactly the “right” decision. In the split-by-
instance scenario the prediction accuracy is fairly consistent across feature sets;
however, for unseen classes we observe something unexpected. The f2f features
lead to the most accurate predictions, but, as discussed above, the overall per-
formance in terms of the resulting runtimes is considerably worse. This means
that the specialised features enable the pairwise classifier to produce a safer
prediction, so that even when the prediction made is not the absolute best
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encoding choice, the selected encoding provides performance closer to the best
on average.

3.2.2 On Encoding Choices

In Figure 7 we show the frequency with which different encoding configura-
tions are predicted. Recall that although we use a portfolio of 6 encodings,
the portfolio is generated from the training set; consequently the portfolios
are different across the 50 sets. The VB column shows a smooth distribution
of ideal encoding choices from the full range of encodings available. In both
splitting scenarios we observe five configurations preferred by the classifiers:
RGGT Tree, GGPW GGPW, Tree MDD, GGPW GGTd and GGT MDD.
Additionally, in the split-by-class task GGPW Tree is also used very often. The
GGPW encoding for LI constraints features heavily in these choices and can
therefore be considered a very good single choice in many settings; remember
that when illustrating the building of a portfolio using the whole corpus, the
single-choice winning configuration in Figure 2 was GGPW Tree. In the distri-
bution of predictions made, there is more variety in the PB encoding selected,
with five different choices featuring in the six top configurations mentioned.

Predictions can only be made from the portfolio determined at training
time, so in each of the 50 cycles the classifier has to choose between 6 encod-
ing configurations, and therefore it follows that not all configurations feature
in the predictions; in contrast the virtual best can include even edge cases
where a configuration wins only once. Of all the encoding distributions in the
split-by-class task, it appears that the predictions made using the lipb features
are closest to the VB in the sense of having the most even spread amongst
the configuration predictions it produces. This is not immediately clear from
Figure 7. However, when a χ2 test is carried out with the frequencies of con-
figuration predictions from each featureset against the VB, the test statistics
point to lipb having the most similar spread of choices – the divergence mea-
sures are 27017 for lipb, 29827 for f2fsr, 30277 for f2f, and 30321 for combi. We
suggest that using the specialised features allows our machine learning setup
to remain safe (i.e. not choose encodings which lead to very bad performance)
while taking enough “risks” to leverage the complementarity of the portfolios
by spreading out the prediction choices more.

3.3 Comparison with AutoFolio

To further assess the value of our approach, we compare with AutoFolio [14],
a sophisticated algorithm selection approach which automatically configures
algorithm selectors and “can be applied out-of-the-box to previously unseen
algorithm selection scenarios.” We use the latest version of AutoFolio (the
2020-03-12 commit which adds a CSV API to the 2.1.2 release) with its default
settings. We use the algorithm selection component of AutoFolio to make a
single prediction per instance, turning on the hyperparameter tuning option;
we do not use its pre-solving schedule generation.
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Fig. 7 Frequency of each configuration (li pb) selected across the 50 test sets when using
each feature set with our preferred setup. We also show the virtual best (VB) configuration
distribution for comparison. The colour indicates the LI encoding and the fill pattern shows
the PB encoding. Only the top 12 most used configs (of 81 in total) are shown in the legend.

To compare as fairly as possible, we train AutoFolio on exactly the same
training data, and test on the same test sets as our method. Our system
takes less than 5 minutes to train using 8 cores on the cluster, so we allow
AutoFolio 1 hour on one core to tune and train. We also run it with a more
generous budget of 2 hours and 4 hours to see if its performance improves.
The runtime performance based on AutoFolio’s predictions is included in
our main table of results (Table 3), in the final three rows of each main section.

Our system’s predictions lead to better runtimes than AutoFolio’s. Aut-
oFolio is designed to be a good general algorithm selection and configuration
system able to make good predictions when choosing between different solvers.
It is likely that AutoFolio’s sophisticated decision-making is better suited
to problems that run much longer or to algorithms for which the likelihood
of timeouts or non-termination is more of an issue. It is interesting to note
that AutoFolio performs better with the lipb features than the generic
instance features. Allowing AutoFoliomore time for tuning leads to marginal
improvement with some feature sets, but in some cases actually results in worse
performance, for example with split-by-instance and the combi features.
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3.4 Feature Importance

We investigate the relative importance of instance features by comput-
ing the permutation feature importance. Breiman [30] calculates “variable
importance” in random forests by recording the percentage increase in mis-
classification when each variable (feature) has its values randomly permuted
compared to when all features are used. Permuting the values means that
the distribution is preserved but the feature effectively becomes noise. This
method is applied at prediction time to the test set, unlike the Gini (entropy)
feature importance measure which is calculated during training. We imple-
ment this analysis but record the mean increase in PAR10 time when each
feature is permuted, effectively giving us the extra runtime cost when the fea-
ture is lost. Each feature is randomly permuted 5 times and the mean time
increase recorded. The distribution of feature importance thus calculated is
shown in Figure 8. We report on the lipb features and on the combi feature
set which additionally contains the generic features from f2fsr. We only show
the top 20 features ordered by mean importance.

We can see in Figure 8 that for both feature sets the median feature impor-
tance in the majority of cases is close to zero, but the mean importance varies
considerably. This suggests that there are no features which are dominant on
their own – most of the time a missing feature incurs no loss of prediction per-
formance. Indeed sometimes removing a feature can improve performance, as
shown by some negative costs in most box plots. However, the means of the
distributions show that there are cases where each of the top features shown
is able to prevent a costly wrong choice. The full extent of the variation of the
mean feature importance is shown in Figure 9.

In the top 20 combi features we find a roughly equal mix of generic features
and features specific to PB/LI constraints (the names of these features have
prefixes pb and li ), when it comes to predicting for known problem classes
(i.e. split by instance). This is in keeping with the similar performance of the
f2fsr and libp featuresets as shown previously in Table 3. We suspect that
when splitting by instance the system is, to a large extent, recognising problem
classes rather than picking out traits of PB/LI constraints.

When we predict for unseen problem classes, the proportion of PB/LI to
generic features in the top 20 rises to 14:6, supporting the hypothesis that
making choices about which encodings to choose for certain constraint types
is better served by using features relating to those constraints in the problem
instance.

Let us consider the importance of features related to PBs as distinct to LIs.
Considering the split-by-instance case in Figure 8 we note that most of the top
features relate to LIs (17 to 3); this is almost entirely reversed when splitting
by class (16 to 4 in favour of PB features). If the classifiers are just recognising
problem classes in the split-by-instance case (hence predicting an encoding
which has worked well for other instances in that class), then the LI features
are just as suitable as the PB features. In fact we saw that the generic features
performed competitively in this setting. However, when it comes to predicting
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Fig. 8 Permutation feature importance: increase in PAR10 time over 50 split, train, predict
cycles when each feature’s data is permuted. We show the top 20 features according to mean
importance. We omit outliers, which are defined as being beyond 1.5 × IQR away from the
box. The mean importance over the 50 cycles is shown by a diamond. Features beginning
li or pb refer to our LI/PB features as listed in Table 1; the other feature names refer to
the generic instance features from the combi feature set.

for unseen problem classes, we know that the LI/PB related features are more
discriminating as shown in the performance results (Table 3). We have also
seen that there is more variation in the best PB encoding than the best LI
encoding (with GGPW often winning for LI) and therefore the PB-related
features are more prominent in this harder setting.

As a final discussion point relating to feature importance, we look in more
detail at the top 20 features from the lipb featureset when used on unseen
problem classes. We have commented already on the disparity between the



Springer Nature 2021 LATEX template

26 Learning to Select SAT Encodings

0 25 50 75 100 125 150 175
Rank

6000

4000

2000

0

2000

4000

6000

8000

Im
po

rta
nc

e
Featureset
combi
lipb

Split
class
instance

Fig. 9 The mean permutation feature importance across the 50 cycles for every feature in
the lipb and combi featuresets, from most to least important.

Table 4 The 20 most important features in our lipb feature set by their mean and median
permutation feature importance (PFI). Features which appear in both top-20 lists are
highlighted in bold. These PFI values were obtained in the split-by-class task and are
averaged over the 50 split, train, predict cycles.

Top 20 by Mean Top 20 by Median

PFI (seconds) PFI (seconds)

Feature Mean Median Feature Mean Median

pb amogs mn 8899.11 2.15 pb n sum 6573.40 114.78
pb count 8190.50 3.33 pb k max 5412.10 68.36
pb n iqr 7889.19 0.69 pb amogs size mn mn 4661.48 30.20
pb n sum 6573.40 114.78 pb k amogs prod ent 1435.01 19.70
pb k max 5412.10 68.36 pb wsum sum 591.30 11.05
pb k amogs prod mn 5048.18 -0.36 li skew ent 2118.24 4.61
pb amogs size mn mn 4661.48 30.20 pb n min 323.83 3.66
pb wsum iqr 4462.16 -0.29 li sepr max -1823.14 3.43
li amogs mn 4313.62 1.70 pb count 8190.50 3.33
pb n ent 3048.54 3.01 pb n ent 3048.54 3.01
pb skew mn 2950.82 0.00 li n med -164.57 2.22
pb n max 2703.56 -0.21 pb amogs mn 8899.11 2.15
pb q4 mn 2390.52 -0.05 li amogs size mn mn 1168.76 2.11
pb k med 2337.28 -0.27 pb k amogs prod iqr 226.67 1.76
pb skew ent 2237.81 0.84 li amogs mn 4313.62 1.70
pb k skew 2192.99 -1.11 li skew mn 1213.57 1.13
li skew ent 2118.24 4.61 pb k ent 516.36 1.07
li sep mn 2055.11 0.05 li count 422.29 0.87
li k med 1748.99 0.26 pb skew ent 2237.81 0.84
pb k mn 1513.33 0.04 pb n iqr 7889.19 0.69

mean and median of the permutation feature importance. In Table 4 we list
the top 20 features by mean and by median. A positive median value tells us
that a feature is more often than not valuable in making good predictions.
The mean indicates the overall contribution in a different way, i.e. how much
time is lost on average per prediction batch across the 50 cycles. The features
highlighted in bold type appear in both top-20 lists and so can help to explain
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what kinds of features are most helpful. We note that these mostly pertain to
size, e.g. pb n sum is the total number of terms across all PBs, pb k max is the
highest upper bound k, pb amogs size mn mn is the mean of the mean size of
the AMO groups in PBs, pb count is the number of PB constraints.

There are limitations to how much we can read into the permutation feature
importance (PFI), in particular because of two factors: PFI considers features
in isolation and we have quite a large number of features. A feature α may
be discriminating but could be masked by another feature β with which it is
highly correlated, so when we permute α’s values, there may not be a great
loss in prediction performance while the information from β remains. Thus
we could wrongly conclude that α is not very valuable. We have also shown
that the features in libp and f2fsr can give comparable prediction performance
(especially when splitting by instance) even though they consider different
aspects of a CSP.

It is very difficult to draw strong conclusions about which features are the
most significant. Many algorithms exist to aid feature selection before applying
machine learning methods. Although further work in reducing the featuresets
could be of value, we have shown that better predictions are achievable when
using only the constraint-specific features in the split-by-class setting.

3.5 Analysis of the Configuration Space

We end our account of the empirical investigation with a brief analysis of the
configuration space in which we are making encoding choices. We have argued
already that the task of selecting suitable SAT encodings is not just a simple
classification task. We hope the observations in this section shed some light on
important considerations when selecting encodings for a set of problems.

In Table 5 we list the 20 best performing encoding configurations across the
entire cleaned corpus2 using two different criteria. Firstly, according to how
often an encoding configuration is the best available; secondly, calculating the
proportion of the total VB runtime allocated to a configuration. For instance,
we see that Tree Tree is the clear winner in the former league table, with more
than twice as many wins as the next entry (73 vs. 31). However, the instances
on which it wins have a mean runtime of 46 seconds. We can calculate its
contribution to the VB as roughly 73× 46 ≈ 3400s, approximate because the
mean is rounded. On the other hand, RGGT Tree wins fewer times but the
relevant instances are almost three times harder with a mean runtime of 127
seconds, making a contribution to the VB of approximately 31× 127 ≈ 3900s.

Figure 10 shows the performance profile of the encoding configurations
which appear in both top 20 lists, and highlighted in bold in Table 5. As
before, we see that GGPW is a great choice for LI constraints, appearing in 4
of the top 8 combined performers, whereas there is greater variety in the PB
encodings in the best configurations. Figure 10 also demonstrates that these

2Here we are considering each problem instance in the corpus once, not sampling repeat-
edly. Recall also that the cleaned corpus only contains instances for which at least one encoding
configuration terminates before the timeout, so the PAR10 penalty does not apply here.
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Table 5 Summary of the 20 best encoding configurations across the problem corpus by
two different criteria. Left : the encodings which are best most frequently, showing the
number of “wins” and the mean runtime for the instances on which it wins; the mean is
rounded to the nearest second. Right : the encodings whose allocated instances in the virtual
best selection have the highest total runtimes, and their contribution as a percentage of the
total VB runtime. Encodings appearing in both top 20 lists are highlighted in bold type.

Most Frequent Winners Biggest Contributions to VB

Encodings (LI PB) Wins Mean Time Encodings (LI PB) % of VB

Tree Tree 73 46 GGPW GGPW 23.2
RGGT Tree 31 127 RGGT Tree 5.7
GGPW GGPW 26 611 GPW Tree 5.4
MDD Tree 26 30 GGPW GGT 5.3
GPW Tree 25 148 GGT MDD 5.0
GGTd Tree 24 28 Tree Tree 5.0
GLPW Tree 21 7 Tree MDD 4.3
GGT Tree 21 29 GGPW RGGT 3.3
GSWC Tree 19 17 GSWC GGT 2.8
Tree MDD 19 153 GGPW GMTO 2.7
GGPW MDD 18 16 GLPW MDD 2.6
Tree RGGT 15 21 GSWC GSWC 2.6
GMTO MDD 14 57 GLPW GGTd 2.3
Tree GPW 13 77 GGT RGGT 1.6
Tree GGTd 11 76 GSWC GGPW 1.6
GGPW GGTd 11 76 MDD GGTd 1.6
Tree GSWC 11 43 GGT GGPW 1.5
GGPW RGGT 10 223 GGTd GSWC 1.5
GGPW GGT 10 362 Tree GPW 1.5
RGGT GGPW 10 7 MDD GMTO 1.4
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Fig. 10 Performance profile of selected encodings on the entire corpus, showing how many
problems can be individually solved within a given time, up to the timeout of 1 hour. The
LI encoding is represented by the line colours and the PB encoding by the marker shape.
We show the encoding configurations which appear in the top 20 both in terms of their
contribution to VB and the number of times they are the best (see Table 5).
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“top” encoding choices are excellent all-rounders – the top 2 are each able
to solve over 600 of the 614 instances in the cleaned corpus (in which every
instance is solvable within the timeout by at least one encoding configuration
from the full set of 81).

In terms of prediction accuracy, choosing Tree Tree most often makes sense,
and indeed this is the default encoding provided by Savile Row. This is
an excellent choice if the task is to solve very many problems, each of which
are individually relatively easy, i.e. would solve in under a minute on our
hardware. If, instead, the task is to solve “harder” problems, then, at least
according to our corpus of problems, GGPW is a good choice for both LI
and PB constraints. Recall that all encodings except Tree take advantage of
AMO groups to reduce the size of the SAT encoding – another important
consideration when selecting an encoding.

4 Related Work

In recent work, new or improved SAT encodings of linear constraints [23] and
pseudo-Boolean constraints (combined with AMO constraints) [2, 3] have been
devised and their performance compared on several benchmark problems. The
scaling properties of encodings are studied, and it is suggested that smaller
encodings should be used when coefficients or values of integer variables are
large. However, to the best of our knowledge the problem of selecting an
encoding (particularly for a previously-unseen problem class) has not been sys-
tematically addressed for LI or PB constraints. We use the full set of encodings
from one recent paper [3] combined with automatic AMO detection [9].

MeSAT [13] and Proteus [12] both select SAT encodings using machine
learning. MeSAT has two encodings of LI constraints: the order encoding [19];
and an encoding based on enumeration of allowed tuples of values (which uses
a direct encoding of the CSP variables). It is not clear whether high-arity sums
are broken up before encoding. MeSAT selects from three configurations using
a k-nearest neighbour classifier using 70 CSP instance features. They report
high accuracy (within 4% of the virtual best configuration), however the single
best configuration is only 18% slower than the virtual best. Proteus makes a
sequence of decisions: whether to use CSP or SAT; the SAT encoding; and
the SAT solver to use. The portfolio contains three SAT encodings: direct,
support, and a hybrid direct-order, however the encoding of LI constraints is
not specified [12]. Proteus generates each candidate SAT encoding and extracts
features of the SAT formula to inform its selection – scaling this approach
would be difficult when several constraint types are involved, each with many
encoding choices. Results show that the choice of encoding (combined with the
choice of SAT solver) is important and that machine learning methods can be
effective in their context.

Soh et al [35] have proposed a hybrid encoding of CSP to SAT in which
each variable may have the log or order encoding (but not both). A hand-
crafted heuristic is used to automatically select one of the two encodings for
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each variable. A new encoding is defined for linear inequalities that contain a
mix of log and order encoded integer variables. The hybrid encoding is shown
to outperform both log and order encodings, demonstrating the potential of
selecting encodings for individual variables or constraints rather than for an
instance. Log encodings have been shown to give good performance, with the
Picat-SAT solver [24] placing highly in recent CP challenges – Picat-SAT uses
a log encoding for integer variables. Our set of encodings includes two that
use log arithmetic internally (GGPW and GMTO), however none employ a
log encoding of integer variables. Appendix A contains a brief comparison to
Picat-SAT using selected instances with large domains from our benchmark
set.

5 Conclusions and Future Work

We have shown that it is possible to close much of the performance gap
between the single best and virtual best SAT encodings by using machine
learning to select encoding configurations based on instance features. We have
studied the problem of selecting encodings for instances of previously-unseen
classes, a problem that is more challenging and arguably more realistic than
the usual setting where training and test instances are drawn from the same
set of problem classes. General instance features such as those provided by
fzn2feat [26] perform well; however the introduction of features specific to
linear integer and pseudo-Boolean constraints has enabled us to improve the
quality of predictions.

We describe a machine learning method that performs well, and investi-
gate several variations of it. We presented a thorough experimental analysis
of the method. Our comparison with AutoFolio shows that our method is
much more effective on the specific task in hand than the competition-winning
algorithm selector with its more generalised capabilities.

We calculate feature importance values and discuss the relative importance
of features from different featuresets as well as within the specialised lipb fea-
tureset. We find that in these specialised features, the features of PB encodings
made more difference than those of LI encodings, partly because the GGPW
encoding was a frequent best choice for LI, whereas the best PB encoding
varied more.

We intend to build on these results by considering other constraint types
for which multiple SAT encodings exist. It may also be beneficial to expand
the problem corpus to have a more even distribution of problem instances per
class and to broaden the range of constraint models represented.
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Appendix A On Log Encodings

Logarithmic encodings have been shown to be competitive for encoding linear
constraints to SAT, in particular faring well when large domains are involved
[24]. Two of the encodings considered here (GGPW and GMTO) use some
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form of log encoding internally, however the domains of decision variables are
not log encoded.

We carried out a small informal experiment to investigate the potential ben-
efits of using a log encoding for both variables and constraints, as implemented
in Picat-SAT [24] in Picat 3.5. We chose two problem classes with potentially
large integer domains and solved them using Picat-SAT, both by writing the
model in the Picat language and by exporting a FlatZinc file from Savile Row.
The experiment was run on a PC laptop with a i5-1135G7 2.40GHz processor
and 16GB RAM. The results are shown in Table A1. Details of models and
instances can be found in the experimental repository.

The Grocery problem contains large integer domains with both sum and
product constraints, and the log encoding clearly performs much better in
this case. For Knapsack, the GGPW and Tree encodings are competitive and
perform better except on the 30-large instance where all item weights and
values have been artificially scaled up by a factor of 10 for this experiment.
In summary, log encoding of domains would seem to be a valuable additional
encoding choice to consider in future work.

Table A1 Total runtime in seconds for six problem instances using different solvers and
SAT encodings: Picat uses the model description in the Picat language with the sat

module, Fzn-Pi uses Savile Row to produce a FlatZinc file which is solved using the
fzn picat sat program, GGPW-GGPW uses Savile Row with Kissat and encodes both
linear and PB constraints using the GGPW encoding, GGPW-Tree uses Savile Row with
Kissat and encodes linear constraints with GGPW and PB constraints using the default
Tree encoding. Note that in the grocery problem there are no PB constraints, so the choice
of PB encoding is irrelevant and we show only GGPW-GGPW. |D|max indicates the
largest domain size in each instance.

Problem |D|max Total runtime (seconds)

Picat Fzn-Pi GGPW-GGPW GGPW-Tree

grocery, target-644 1380001 0.42 0.04 3.87 —
grocery, target-675 6270665 0.09 0.24 30.99 —
grocery, target-713 5562469 0.30 0.05 18.30 —
knapsack, 30-large 1189 16.17 19.30 73.33 49.38
knapsack, 59-items 1457 13.99 14.37 7.82 9.31
knapsack, 81-items 2497 84.75 93.69 72.75 52.31
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