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Abstract
Combinatorial optimisation has numerous practi-
cal applications, such as planning, logistics, or cir-
cuit design. Problems such as these can be solved
by approaches such as Boolean Satisfiability (SAT)
or Constraint Programming (CP). Solver perfor-
mance is affected significantly by the model cho-
sen to represent a given problem, which has led
to the study of model reformulation. One such
method is tabulation: rewriting the expression of
some of the model constraints in terms of a single
table constraint. Successfully applying this process
means identifying expressions amenable to trans-
formation, which has typically been done manu-
ally. Recent work introduced an automatic tab-
ulation using a set of hand-designed heuristics to
identify constraints to tabulate. However, the per-
formance of these heuristics varies across problem
classes and solvers. Recent work has shown learn-
ing techniques to be increasingly useful in the con-
text of automatic model reformulation. The goal
of this study is to understand whether it is possi-
ble to improve the performance of such heuristics,
by learning a model to predict whether or not to
activate them for a given instance. Experimental
results suggest that a random forest classifier is the
most robust choice, improving the performance of
four different SAT and CP solvers.

1 Introduction
Numerous practical applications, such as scheduling, rout-
ing, or planning, require us to make a combinatorial deci-
sion while respecting a set of constraints, and possibly op-
timising an objective function. Two of the most common
approaches to solving these problems are Boolean Satisfia-
bility (SAT) [Biere et al., 2009] and Constraint Programming
(CP) [Rossi et al., 2006]. To apply these solvers one first
needs to model a problem via a set of decision variables and a
set of constraints over those variables that capture valid com-
binations of decisions. The solver then interleaves a search
for a solution in the space of possible assignments with con-
straint propagation: deduction as to which values can be re-
moved from variables’ domains to reduce search.

There exist multiple solvers for each of these approaches,
such as CaDiCaL [Biere et al., 2020] and Kissat1 for SAT, and
Minion [Gent et al., 2006] and Chuffed2 for CP. Modelling
languages, such as Minizinc [Nethercote et al., 2007] and
Essence Prime [Nightingale, 2022], allow us to write solver-
independent models, which are then translated automatically
into the format required for the solver chosen.

SAT and CP solvers are sensitive to the model chosen,
which impacts solving performance significantly. This has
led to the study of model reformulation methods: approaches
such as Partial Evaluation [Lloyd and Shepherdson, 1991],
Common Sub-expression Elimination (CSE) [Cocke, 1970],
Flattening and Tabulation [Dekker et al., 2017; Akgün et al.,
2018; Akgün et al., 2022], are used to simplify the expres-
sions of the model or to rewrite them into ones for which a
stronger propagator exists. Some model reformulation meth-
ods have been automated, such as generating implied con-
straints [Rodriguez et al., 2013] that strengthen constraint
propagation without losing solutions. Another example is
tabulation, partially automated to generate a table from an an-
notated predicate in MiniZinc [Dekker et al., 2017], or from a
set of variables in IBM ILOG CPLEX Optimization Studio3.
Tabulation can significantly improve an input model because
it can increase the strength of solver inference, thus reducing
search. However, tabulation does have limitations: (1) its ef-
fectiveness depends on the scope and number of possible so-
lutions of the constraints; (2) the tables are time-consuming
to create manually and can lead to a less readable model.

Automated tabulation has been used to mitigate, or solve,
these problems. Akgün et al. [2018] automatically iden-
tify promising constraints to tabulate through a set of hand-
designed heuristics, creating the first entirely automatic tabu-
lation method, situated in the constraint modeling tool Savile
Row [Nightingale et al., 2017]. They extended their results to
new problem classes [Akgün et al., 2022], with a variable ef-
fect on solver performance: sometimes improving but some-
times hindering the solution process, either due to the over-
head introduced by tabulation or because the generated tables
are too large for the table propagator of the considered solver.
Machine Learning (ML) techniques have been shown to be

1https://github.com/arminbiere/kissat
2https://github.com/chuffed/chuffed
3https://www.ibm.com/products/ilog-cplex-optimization-studio



increasingly useful in the context of combinatorial decision
making and optimization. These approaches have, for exam-
ple, been used to automatically select the best SAT encoding
for a given model [Ulrich-Oltean et al., 2022]. Herein we
investigate the use of learning in automatic tabulation, by us-
ing a classifier to predict whether or not to use the tabulation
heuristics implemented in Savile Row [Akgün et al., 2018].

2 Background
Our focus in this paper is on one model reformulation tech-
nique, named automatic tabulation. We study whether we can
improve on its hand-crafted heuristics by adding a machine
learning model. First we give the necessary background on
tabulation, then give a brief overview of the machine learning
methods we use, and finally we explore related work.

2.1 Automatic Tabulation
Tabulation is the aggregation of a set of constraint expres-
sions into a single table constraint, with the aim of improving
the strength of propagation, the efficiency of propagation, or
both. A table constraint explicitly lists the allowed tuples of
values for the decision variables involved. Table constraints
have been intensively researched, they have efficient propa-
gators for CP solvers (e.g. Compact Table and its variations
[Demeulenaere et al., 2016]) and their encodings to SAT are
well understood. Tabulation has been performed by hand (for
example in the Black Hole patience [Gent et al., 2007] and
Steel Mill Slab Design [Gargani and Refalo, 2007] problems),
demonstrating its utility.

Fully automated tabulation has two steps: identifying can-
didate sets of constraints, then (for each candidate set) gen-
erating the replacement table constraint. The second step is
widely automated, for example by Dekker et al. [Dekker et
al., 2017], in IBM ILOG CPLEX Optimization Studio [IBM
Knowledge Center, 2022], and in ECLiPSe [Le Provost and
Wallace, 1992]. Savile Row automates both steps [Akgün
et al., 2018; Akgün et al., 2022] using a set of four hand-
crafted heuristics to identify promising candidate individual
constraints or constraint sets. Each heuristic is based on a
known reason for constraints to propagate poorly or otherwise
be inefficient when using a propagation-based CP solver. The
heuristics are summarised below (full details are given else-
where [Akgün et al., 2022]).

1. Identical Scopes identifies a set of constraints whose
scopes are identical;

2. Duplicate Variables identifies constraint expressions
which contain some variable more than once;

3. Large AST identifies constraints where the number of
nodes in its AST representation is greater than 5 times
the number of distinct decision variables in its scope;

4. Weak Propagation identifies constraints that are likely
to propagate weakly (in a conventional CP solver) and
that share at least one variable with a constraint that
propagates strongly.

The Weak Propagation heuristic relies on another heuristic
named GAC estimate which estimates (for any given con-
straint expression c) whether propagation of c will enforce

GAC in a conventional CP solver (defaulting to Minion when
behaviour differs between solvers). The four heuristics have
been extended to apply to nested constraints (i.e. constraints
nested inside operators such as ∨ or →) and numerical ex-
pressions, allowing for parts of a top-level constraint to be
tabulated when the entire top-level constraint would gener-
ate a prohibitively large table. Finally, automatic tabulation
has a procedure to convert any Boolean expression to a table
constraint, with built-in work limits and progress checks to
prevent generation of excessively large tables (whose propa-
gation is likely to be very inefficient) [Akgün et al., 2022].
Automatic tabulation has been shown to work well (in most
cases) for CP solvers on a variety of problem classes, but its
performance when encoding to SAT is less clear-cut. For both
solver classes, there is space to improve upon the accuracy of
the hand-crafted heuristics.

2.2 Machine Learning with Random Forests
Random forest [Breiman, 2001] is one of the most popular su-
pervised machine learning (ML) methods for several reasons:
it is straightforward to apply; it performs well on a diverse
set of supervised learning tasks; and it is suitable for both
classification and regression tasks. Our task is essentially
algorithm selection and random forest is known to perform
well in this context. For instance, it is the default classifier
used in the sophisticated automated algorithm selection tool
AutoFolio [Lindauer et al., 2015]. A random forest model
incorporates many decision trees, aggregating their output in
some way. When compared to a single decision tree, a ran-
dom forest is typically more robust to small changes in the
input. We use the implementation of random forest provided
by the library scikit-learn.4 This implementation is based on
Breiman [2001] except that the individual decision trees pre-
dict probabilities for each class and the aggregation step takes
an average of the probabilities. Finally the predicted class is
the one with the highest average probability.

2.3 Related Work
We focus here on applications of ML to constraint model
(re)formulation. ML has been successfully used to decide
both whether and how to encode constraint models into SAT.
Hurley et al. [2014] used instance features to make a series
of decisions: first whether to use a constraint solver or to en-
code to SAT, then to choose a combination of SAT encoding
scheme and SAT solver. MeSAT [Stojadinović and Marić,
2014] makes decisions about variable encodings as well as
some global linear constraints. It is trained on easy problem
instances in order to predict good SAT encodings for harder
instances. Ulrich-Oltean et al. [2022] predicted SAT encod-
ings for pseudo-Boolean and linear constraints using a super-
vised ML approach (with random forests). They evaluated
an existing set of features [Amadini et al., 2014] and a new
feature set directly related to pseudo-Boolean and linear con-
straints. Results show that it is possible to improve on the
single best SAT encoding and approach the virtual best, and
that the proposed feature set improves on the general instance
features for this task. Gent et al. [2010] applied decision trees

4https://scikit-learn.org/

https://scikit-learn.org/


to identify instances on which lazy learning (a conflict learn-
ing technique for finite-domain constraint solvers) is expected
to be beneficial. Results showed that such a simple classifier
is able to reach an accuracy of 99.7% and that the accuracy
is almost equal, 99.6%, when only the 3 most important fea-
tures, from 85, are used. This study, as in [Gent et al., 2010;
Ulrich-Oltean et al., 2022], uses a traditional ML model and
both general and specific features to improve model reformu-
lation when targeting both SAT and CP. In contrast, our study
uses the ML classifiers in combination with the hand-crafted
heuristics of [Akgün et al., 2018; Akgün et al., 2022] and we
improve the application of the heuristics.

3 Methodology
As observed in [Akgün et al., 2022], while automatic tabula-
tion may improve the runtime performance of a solver on one
instance, it may worsen it on another. Even if an instance ben-
efits from this method with a solver, changing the solver may
lead to inferior results on the same instance. It is non-trivial
to know whether activating the heuristics on an instance will
improve the solver performance. We here detail our method-
ology to predict this for a given instance-solver pair.

3.1 Overview
We approach this task as a binary classification problem by
relying on a simple and an ML-based classifier for each
solver, because the table propagator (or encoding) integrated
in the solver affects the performance. To train the classifiers,
we form a dataset starting from the problem classes and in-
stances used in [Akgün et al., 2022]. We expand the dataset
with further problem classes and instances so as to balance
the instances benefiting from tabulation with those not.

For an ML-based classifier, an instance should be associ-
ated with certain features which are able to describe its rele-
vant characteristics. We construct a set of features and ana-
lyze the time required to compute each, so as not to add sig-
nificant overhead to the model reformulation pipeline. We
solve each instance with multiple solvers by applying the
heuristics of [Akgün et al., 2018] or not, and record the run-
time results. We then create a separate labeled dataset for
each solver, by marking each instance with a label indicating
that the tabulation is useful or not. The simple and ML-based
classifiers are trained and tested on the labeled datasets.

To evaluate the generalization capabilities of the classifiers,
we compute the runtime saved by predicting to activate the
heuristics, with respect to always activating them. We be-
lieve that this metric is more relevant in our task (compared
to accuracy, precision, recall, or f1), because it varies across
instances, while other metrics do not take this into account.
Also, it allows us to compare our results with [Akgün et al.,
2018]. Later in Section 4, we will perform a feature selection
step for the ML-based classifier where we derive the most rel-
evant features for each solver and remove the less important
ones. The purpose is to achieve similar or improved runtime
savings while reducing the feature computation overhead.

We identify three different settings in which the classifiers
can be trained and tested on a dataset: (i) training and test-
ing on instances of a single problem class, referred to as per

problem class; (ii) combining all instances across all problem
classes into one large set and splitting it into training and test
sets, referred to as by instance; (iii) training on all instances of
all but one problem classes and testing on the latter, referred
to as leave one out. These are realistic settings suitable to dif-
ferent scenarios. For example, it could be the case that a new
instance to be solved belongs to a problem class that has been
dealt with many times, or only a small amount of instances
may be available for a given problem class, thus making it
necessary to use a bigger and diverse dataset. It could also be
that a completely new class of instances need to be solved.

In the next subsections, we describe our dataset, features
and the classifiers. The code and data are available in github.5

3.2 Dataset
We define a problem class as a constraint model parametrized
by an instance. As there can be multiple models of a given
problem, the dataset may contain multiple problem classes re-
ferring to the same problem. In our work, a constraint model
is expressed in Essence Prime [Nightingale, 2022]. We start
with an initial dataset of 40 problem classes used in [Akgün
et al., 2022]. This dataset contains many problem classes
for which automatic tabulation has been shown to be help-
ful when using the Minion and Chuffed solvers. To deal with
this imbalance, we first generate more instances for the prob-
lem classes where tabulation was not beneficial. We then add
to this dataset 18 new problem classes, taken mainly from
CSPLib6, that are not expected to benefit from tabulation ac-
cording to the expert knowledge.

• 2 classes for the Blocked Queens problem, a variant of
the n-Queens problem already considered by [Akgün et
al., 2022], which contains a set of blocked positions in
which a queen cannot be placed.

• 2 classes for the Plotting problem [Espasa et al., 2022],
which is about removing at least a certain number of
coloured blocks from a grid by sequentially shooting
blocks into the grid. The difficulty of the problem is re-
lated to the complex interactions in it, in fact the blocks
may be directly or indirectly affected by each move.

• one class for the Bombastic game in which an agent
needs to push a few crates to their target position, while
moving in a map composed of both normal and ice cells,
where the latter transform into dead cells, i.e. obstacles,
once walked over.

• 2 classes for Ramsey Numbers, where a Ramsey Num-
ber R(m, n) is the minimum number of vertices such that
all undirected simple graphs of order v, i.e. with v ver-
tices, contain a clique of order m or an independent set
of order n. Furthermore, R(m, n) is also the solution to
the party problem in which at least m guests know each
other or at least n don’t know each other.

• 3 classes for the Social Golfers problem, in which a
group of n = g ∗m golfers needs to play in a golf tour-
nament, with g groups of m players each, for w weeks.

5https://github.com/carlo98/ML AutoTab CMT
6http://www.csplib.org



Dataset # Problem classes # Instances % Hindered

[Akgün et al., 2022] 40 1410 38%
New Dataset 18 913 37%
Overall 58 2323 38%

Table 1: Composition of the dataset.

The goal is to determine the number of unique schedules
and creating them if they exist.

• 8 classes for Quasigroup, a problem in which the goal
is to find out whether there exists an n×nmultiplication
table of integers 1..n, where each element occurs exactly
once in each row and column and certain multiplication
axioms hold. The classes considered by us use from 3
to 7 axioms, with those from 3 to 5 further divided in 2
classes with idempotence and not.

We reserve 10 classes of [Akgün et al., 2022] for the test set,
due to their small number of instances. Nine of them refer
to the problems Send More Money, Tick Tack Toe, Tom’s
Problem, n-Queens, Diet, Farm puzzle and Grocery, for
which either the maximum number of instances has already
been reached or new instances will not add any new informa-
tion to the dataset. The last problem class in this category is
Magic Square which is about finding a n x n matrix contain-
ing all the numbers between 1 and n2, with each row, column
and main diagonal equal the same sum. To increase the num-
ber of instances of this class, it is necessary to increase n, but
we were not able to solve any instance with n ≥ 7. For an
initial verification of the dataset, we run all the instances us-
ing the Minion solver by applying the heuristics of [Akgün
et al., 2018] or not. This results in a dataset combining (i) the
original 40 problem classes with a total of 1410 instances, of
which 38% is hindered by tabulation; (ii) the new 18 classes
with a total of 913 instances, of which 37% is hindered by
tabulation. The final dataset, as shown in Table 1, is com-
posed of 58 problem classes, 2323 instances of which 38% is
hindered by tabulation.

3.3 Features
Our feature set contains the features implemented in Savile
Row by [Ulrich-Oltean et al., 2022], as they also perform
classification at an instance level with the aim of improving
the runtime of a given instance and achieve good results on
unseen problem classes. In particular, we consider only the
set f2fsr. In addition, we create four new sets of features, in-
spired by the heuristics of [Akgün et al., 2018]. The idea is to
provide to the classifier information regarding the likelihood
of an instance to have (or not) opportunities for tabulation.

• Overlap: one feature as the proportion of pairs of con-
straints in an instance with an overlap of at least 75%.

• Duplicate variables: 2 features as the mean and the
standard deviation of the number of duplicate variables
in the instance constraints.

• Large AST: 2 features as the mean and the standard de-
viation of the AST size of the instance constraints.

• Strong propagation: one feature, as the ratio of the in-
stance constraints with strong propagation.

Feature(s) Mean (ms) Std (ms)

[Ulrich-Oltean et al., 2022] 191.59 503.88
Overlap 3281.31 45454.61
Duplicate variables 5.29 20.54
Large AST 1.62 6.73
Strong propagation 3.55 13.94
Tightness 5553.45 36860.71

Table 2: The mean and the standard deviation of the time (in ms)
required to compute each set of features on out dataset instances.

The strong propagation refers to constraints that are known
to have a strong propagator (in a conventional CP solver).
While the large AST has the same name used by the heuris-
tics, here they represent just the tree size, rather than the com-
parison between the tree size and a hand-picked threshold, so
as to let the ML model to decide how to use the value. We
further add the following set of features to our set:

• tightness: 2 new features as mean and standard devia-
tion of a value between 0 and 1 that represents the pro-
portion of disallowed tuples in an instance.

The idea is that, a tight instance being difficult to solve is
likely to benefit from tabulation. Moreover, this feature has
been successfully used in [Gent et al., 2010] for algorithm
selection at an instance level using decision trees. To com-
pute it, a certain amount of tuples, starting from the variables’
domains need to be generated. We first considered generat-
ing 1000 tuples for each constraint, as was done in [Gent et
al., 2010], but soon discovered that the runtime overhead to
compute the feature for all the constraints of an instance is
significant and would risk undermining any possible gain by
an ML approach. We therefore experimented with several
smaller values and discovered that the tightness value is sim-
ilar in most cases. For significant time gains, we eventually
decided to generate 50 tuples per constraint. Table 2 reports
the mean and the st. deviation of the time (in ms) required to
compute the features on our instances. As expected, the tight-
ness and overlap are the features with higher computational
cost. We will refer to the newly introduced set of features as
hof (heuristic-oriented features).

3.4 Classifiers
Having constructed the dataset and the features, we proceed
to create a labeled dataset for each solver. We solve each
instance with a solver by applying the heuristics of [Akgün
et al., 2018] or not, and record the runtime results as the sum
of Savile Row (including tabulation, when applicable) and
solver time. We then mark each solver-instance pair with a
label y such that:

y =

{
1, if the heuristics lead to a time gain of at least λ
0, if the heuristics lead to a time loss of at least λ

(1)
where λ is a user-defined threshold. We discard all the other
instances. Given a setting, i.e. a training set and a test set,
the labeled datasets are used to train a simple classifier and
an ML-based classifier. The simple classifier per solver is
trained by summing, over all the instances in the training set,
the time saved when using the heuristics with respect to not



Setting Solver Gap
Per Problem Class Chuffed -135 %

Kissat -328 %
Kissat-MDD -578 %
Minion -476 %

By Instance Chuffed 53 %
Kissat 56 %
Kissat-MDD 24 %
Minion 48 %

Leave One Out Chuffed 60 %
Kissat 42 %
Kissat-MDD 1 %
Minion 18 %

Table 3: The gap values for each combination of setting and solver
with a random forest classifier. Each value can be at most 100% and
gets closer to 100% as the classifier’s performances get closer to that
of the virtual best classifier which always predicts the correct label.
A value ≤ 0% means that the performance is equal to or worse than
that of the single best classifier.

using them. If the sum is positive, during testing the classi-
fier activates the heuristics for all the instances, otherwise it
never does. We refer to this classifier as the single best clas-
sifier. For our ML-based classifier, we use random forest – its
advantages are described in Section 2.2. For training a classi-
fier for each solver, we define a custom scoring method for the
hyperparameter tuning phase which is detailed in Section 4.1.

4 Experimental Study
We have introduced our prediction task as a binary classifi-
cation problem, described the collection of instances and se-
lected the features as well as the classifiers. In this section we
give details of the training and testing phase before going on
to present the results and discuss the findings.

4.1 Experimental Design
We consider 3 solvers, one of which in two configurations:
Minion [Gent et al., 2006], Kissat and Chuffed. Minion is
a general-purpose constraint solver, Kissat is a solver which
has won recent SAT-solving competitions, and Chuffed is a
constraint solver with lazy clause generation. For the Kissat
backend Savile Row includes two table encodings, the default
encoding is based on [Bacchus, 2007] and the second encod-
ing is based on multi-valued decision diagrams.

We set the time gain threshold λ to 1 second, which led to 4
labeled datasets containing 75% of the instances of the origi-
nal dataset for Minion, 52% for Kissat and Kissat-MDD and
61% for Chuffed. We identified three separate settings for our
experiments in Section 3.1. We select an appropriate train-
test split ratio for each setting for our empirical evaluation:
for the per problem class and by instance settings we used
90% and 70% of the data for training, respectively. We use
a larger proportion of instances for training in the per prob-
lem class setting because some problem classes do not have
many instances (we include problem classes with at least 10
instances in this setting of which at least 2 are hindered and
2 helped by activating the heuristics). Lastly, in leave one
out we do not define a train-test split ratio, because all the
instances of the left-out problem class are used in the test set.

We run every instance with the tabulation heuristics switched
on and off, with 5 different random seeds so as to mitigate
random effects. Each run had a 10 GB memory limit and a
60 minutes time limit. We aggregate the results by computing
the mean solving time.

We use a random forest algorithm in all settings to solve
our classification problem. To select a subset of the features
that has substantial predictive power, we use the Sequen-
tialFeatureSelector algorithm of scikit-learn on the training
set by doing 5 cross-validations with 5 distinct random seeds.
We then train both random forest and decision tree classifiers
with the selected features. In the runtime of these ML-based
classifiers, we include the feature computation time, but ex-
clude the ML training time and inference time, because the
former is done once (in a few minutes), while the latter takes
a max. of 0.16s for our instances (i.e. well below λ = 1s).

To choose the best set of hyper-parameters and to weigh
the instances during training, a score function score =

yp·s
y·s

is used, where score is clipped between -1 and 1, yp is the
array of predicted values, s the time gains associated to each
instance and y the ground truth. The time gains are computed
as the difference between the time required to solve an in-
stance without tabulation and the time required to solve the
same instance with the heuristics.

When presenting the results, we exclude the outliers from
the boxplots, as otherwise it would be difficult to do compar-
isons due to the significant differences in solving time across
some problem classes.

4.2 Results
Figure 1 shows the time saved by the two classifiers, with re-
spect to always using the heuristics, for each solver in the 3
settings. The results obtained in the setting per problem class
show that both classifiers are able to save a significant amount
of time by switching on and off the heuristics with respect to
always using them, in fact for all solvers the mean is sig-
nificantly above 0. The single best classifier achieves better
results as can be seen by comparing the distributions or, less
evidently, from the means. This comparison is more visible in
Table 3, where the gap value obtained for each combination
of solver and setting is available.

The results reported in Table 3 for the per problem class
setting show that the random forest classifier performs con-
siderably worse than a single best classifier. This happens be-
cause the single best classifier predicts to activate the heuris-
tics based on the total time saved for the instances in the train-
ing set and because instances of the same problem class be-
have in similar ways. However, the gap values are percent-
ages and as can be seen in Figure 1, the differences between
the two classifiers are small. For this reason, we avoid investi-
gating the use of subsets of features in this setting. In the case
of by instance and leave one out it can be seen from both Ta-
ble 3 and Figure 1 that the random forest classifier performs
better than the single best classifier. These differences will be
further analyzed in Figure 2. Leave one out is the hardest set-
ting among all, because the classifier is tested on a problem
class which is new, while in the other two settings it is pos-
sible or certain that instances belonging to the same problem
class appear both in the training and in the test set.
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Figure 1: Mean total time saved for each problem class, with respect to always using the heuristics. The single best classifier and a random
forest classifier were used. The green triangles represent the mean of each boxplot, while the continuous black lines show its median.

The results show that for all solvers except Kissat-MDD,
the ML classifiers save a significant amount of time with re-
spect to the single best classifiers, in some cases closing a
large proportion of the gap between single best and virtual
best, i.e. leave one out with Chuffed and by instance with
Chuffed and Kissat. In the setting leave one out with Kissat-
MDD as solver the two classifiers perform approximately in
the same way, in fact the gap is 1%.

There are two situations in which the tabulation heuristics
and our classifiers agree, and two in which they disagree: (i)
the classifier predicts that the heuristics should be used and
they select at least one constraint for tabulation; (ii) the clas-
sifier switches off the heuristics and the heuristics would have
not selected any constraint for tabulation, if activated; (iii)
the classifier predicts that the heuristics could aid the solving
process, but the heuristics fail to do for all constraints; (iv)
the classifier decides that the heuristics should not be used,
but they would have selected at least a constraint to tabulate,
if activated. For each setting and solver, we also evaluate the
number of agreement and disagreement times, along with the
time gained by the classifier. Given that we obtain the best
results using Chuffed in the per problem class setting, we use
them as an example in Table 4. As it happens in the majority
of cases, the ML model is able to save a significant amount of
time by not activating the heuristics, thus avoiding hindering
the solving procedure.

By comparing the agreement’s time saved with the dis-
agreement’s, we find that the latter is always bigger and al-
ways positive (for instance, the minimum cumulative time
saving is 9,842 seconds in the setting per problem class with
Kissat-MDD, while the total time saving in this case is 10,712
seconds), while the former can also be negative, meaning that
the use of learning to activate the heuristics sometimes leads
to worse results with respect to always using the heuristics
(for instance, in the setting leave one out with Kissat-MDD
the disagreements lead to a time loss of 11,100 seconds, while
the total time savings is 102,624 seconds).

These results can be explained by looking at how this study
works: the classifiers predict whether or not to activate the
heuristics and, if the prediction is positive, the heuristics

RF classifier
Activate Not Activate

Heuristics Tabulate 175 (0 s) 285 (164,748 s)
Not Tabulate 54 (0 s) 76 (4 s)

Table 4: Number of instances and total time saved in seconds (in
parenthesis) with respect to always using the heuristics by the RF
classifier in different agreement and disagreement scenarios, when
using Chuffed in the setting per problem class.

would have run anyway, hence some time is lost by predic-
tion. Moreover, in the case of an ML-based classifier, time
is lost in feature computation. Instead, in case of a negative
result the classifier can potentially save time, by avoiding the
costly computation and failure of the heuristics for each in-
stance’s constraints. While in the disagreement case the clas-
sifier can avoid situations in which the heuristics would have
tabulated a few constraints and hindered the solving proce-
dure, instead of helping it. It could also happen that the clas-
sifier decides to switch on the heuristics and that these end
up failing in all constraints, but, from what can be seen in
the results shown, this happens rarely or with a small impact,
especially in the case of the random forest classifier, which
seems to be the most robust choice.

Subset of Features
We search for the most important features to select a subset
that has substantial predictive power, to understand whether
performance would benefit from the use of a simpler ML
model, and to improve model explainability. The employed
algorithm selects a different subset of features for each solver,
probably because the important characteristics of an instance
structure change between solvers. The features selected for
the solvers, 6 for Kissat and Chuffed, 7 for Minion and 15 for
Kissat-MDD, are in part [Ulrich-Oltean et al., 2022]’s fea-
tures and in part hof features. Minion and Kissat-MDD use
features from both sets, while for Kissat and Chuffed the hof
features do not seem as useful. Minion and Kissat-MDD use
strong propagation, large AST, overlap and the standard de-
viation of the number of duplicate variables.

We train random forest and decision tree classifiers using
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Figure 2: Mean total time saved for each problem class, with respect to the single best classifier, with each solver and different subsets of
features. We used a random forest (RF) classifier and a decision tree (DT) classifier.

only the selected features and find the best hyper-parameters
using a grid search over the maximum depth of the trees and,
in the case of random forests, over the number of decision
trees. Figure 2 shows the mean total time saved, for each
problem class, with respect to the single best classifier.

In the setting leave one out with a subset of the features, it
is possible to achieve significantly better results with Chuffed
and Kissat, while with Minion the results obtained are slightly
worse than those achieved with the entire set of features
and with Kissat-MDD the performances of the random for-
est classifier with a subset of features suffer from negative
outliers. Moreover, in leave one out with all the other solvers
using a decision tree classifier leads to similar or worse re-
sults than those of a random forest classifier, which is able
to consistently perform better than, or approximately at the
same level of, the single best classifier. This can be appreci-
ated by looking at the mean, i.e the green triangle, while the
median is always near 0. This is because many instances in
the dataset are easy to solve, while others require more time
and are not present in the figures shown above, due to the fact
that we have decided not to plot the outliers.

Instead, in the setting by instance the performances of the
random forest classifier with the subsets of features seem to
improve significantly compared to those obtained with the
complete set of features, even though with Kissat the distri-
bution is more centered towards 0.

5 Conclusions
We have shown that by using learning it is possible to improve
the performance of the heuristics implemented in Savile Row
by [Akgün et al., 2018]. In particular, an hybrid approach
which incorporates both ML, in the form of a random forest
classifier, and the heuristics of Savile Row is a robust choice
to improve, or avoid hindering, the performance of four dif-
ferent solvers in 3 settings, most notably when working on
new problem classes. Moreover, this study defines a new
set of features, mainly inspired by the automated tabulation
heuristics. The analysis of the features shows that it is possi-
ble to use just a small subset of them, including some of hof
features, to achieve comparable, or superior, results to those
obtained with the complete set of features.

There are two main avenues of future work. First, it could
be interesting to make use of the graph structure of constraint
models. GNNs have matured and allow to use our features
alongside the graph, thus letting the classifier access features
related to the problem/instance structure. Secondly, even
though we showed that an ML-based classifier predicting to
activate Savile Row’s heuristics is in part able to successfully
deal with cases in which tabulating a constraint leads to worse
performances, it is possible that the current hand-designed
heuristics miss some good tabulation opportunities. There-
fore it would be interesting to design a ML-based classifier to
directly predict candidate sets of constraints to tabulate.
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