
A Framework for Generating Informative
Benchmark Instances
Nguyen Dang #

School of Computer Science, University of St Andrews, United Kingdom

Özgür Akgün #

School of Computer Science, University of St Andrews, United Kingdom

Joan Espasa #

School of Computer Science, University of St Andrews, United Kingdom

Ian Miguel #

School of Computer Science, University of St Andrews, United Kingdom

Peter Nightingale #

Department of Computer Science, University of York, United Kingdom

Abstract
Benchmarking is an important tool for assessing the relative performance of alternative solving

approaches. However, the utility of benchmarking is limited by the quantity and quality of the
available problem instances. Modern constraint programming languages typically allow the specifica-
tion of a class-level model that is parameterised over instance data. This separation presents an
opportunity for automated approaches to generate instance data that define instances that are graded
(solvable at a certain difficulty level for a solver) or can discriminate between two solving approaches.
In this paper, we introduce a framework that combines these two properties to generate a large
number of benchmark instances, purposely generated for effective and informative benchmarking.
We use five problems that were used in the MiniZinc competition to demonstrate the usage of
our framework. In addition to producing a ranking among solvers, our framework gives a broader
understanding of the behaviour of each solver for the whole instance space; for example by finding
subsets of instances where the solver performance significantly varies from its average performance.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming

Keywords and phrases Instance generation, Benchmarking, Constraint Programming

Digital Object Identifier 10.4230/LIPIcs.CP.2022.26

Supplementary Material Code: https://github.com/stacs-cp/AutoIG

Funding Nguyen Dang: is a Leverhulme Early Career Fellow
Ian Miguel: supported by EPSRC EP/V027182/1

Acknowledgements This work uses the Cirrus UK National Tier-2 HPC Service at EPCC (http:
//www.cirrus.ac.uk) funded by the University of Edinburgh and EPSRC (EP/P020267/1).

1 Introduction

A practitioner faced with solving a new problem has a difficult choice among many solving
algorithms, whose performance on the new problem is unknown and is likely to be variable.
One approach is to draw instances from the problem to benchmark the various solvers under
consideration, i.e. an empirical study of relative performance. This approach is favoured for
computationally challenging tasks since the performance behaviour of a non-trivial algorithm
is difficult to predict and is unlikely to be susceptible to a purely theoretical analysis [10].
As Beiranvand et al. [11] argue, care must be taken to select an instance set with a variety of
difficulty for benchmarking in order to obtain the best insight into solver performance.

© Nguyen Dang, Özgür Akgün, Joan Espasa, Ian Miguel, Peter Nightingale;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 26; pp. 26:1–26:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nttd@st-andrews.ac.uk
 https://orcid.org/0000-0002-2693-6953
mailto:ozgur.akgun@st-andrews.ac.uk
https://orcid.org/0000-0001-9519-938X
mailto:jea20@st-andrews.ac.uk
https://orcid.org/0000-0002-9021-3047
mailto:ijm@st-andrews.ac.uk
 https://orcid.org/0000-0002-6930-2686
mailto:peter.nightingale@york.ac.uk
 https://orcid.org/0000-0002-5052-8634
https://doi.org/10.4230/LIPIcs.CP.2022.26
https://github.com/stacs-cp/AutoIG
http://www.cirrus.ac.uk
http://www.cirrus.ac.uk
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 A Framework for Generating Informative Benchmark Instances

Problem
specification

Instance
generator

model

OR Tools
graded

instances

Picat-SAT
graded

instances

Chuffed
graded

instances

Combined
graded

instances

Intermediate
results

Discriminating
results

Graded
instance

generation

Evaluating all
solvers

Discriminating
instance

generation

Yuck graded
instances

Figure 1 Flowchart of the whole AutoIG application process

Constraint programming (CP) approaches particularly benefit from empirical analysis,
since modern tool chains like MiniZinc [34] and savilerow [35] support targeting multiple
solvers from a solver-independent constraint model. These may be entirely different paradigms,
such as SAT [13], SMT [9] or indeed CP, and so can vary in performance significantly.

The need for empirical benchmarking is further supported by competitions run by several
research communities, like the MiniZinc challenge [44] in the CP community, the SAT
competition [18] and the AI planning competition [47]. Solver developers enter a competition
by providing a default configuration of their solver. Each solver supports a common interface
for specifying their input and output. The competition is then run on a set of problem
instances and the solvers are ranked with respect to their comparative performance.

In the main solver competition for CP, the MiniZinc challenge, each solver is given two
inputs: a solver-independent problem-level model and instance data written in a separate
data file. Then MiniZinc is used to instantiate and translate the solver-independent model
into input suitable for each solver. The main result of the challenge is a ranking of solvers.
More detailed results pertaining to the ranking of solvers per problem class are also published.

The selection of problem instances to be used in a competition is extremely important to
avoid conclusions that are unintentionally biased towards the chosen instances. Competitions
somewhat mitigate this problem by inviting solver authors to submit benchmark instances.
This is a promising sociotechnical attempt at alleviating the problem of bias, but it is
laborious and does not provide a comprehensive solution.

Benchmarking is not only useful for finding an overall ranking among options, but also
for finding subsets of instances where the performance of a solver is significantly different
from the performance of the same solver overall. For example, solver A might perform better
for most instances of a problem class in comparison with B, yet perform very poorly for a
particular subset of the instances. Information like this can be extremely valuable to solver
developers. A traditional competition that works by running all solvers on a fixed set of
instances can occasionally detect such cases even though it does not actively look for them.

For an informative benchmark we need a sufficient quantity of high quality instances
and the ability to dynamically explore subsets of the instance space to detect performance
discrimination. In this work we present AutoIG, a constraint-based instance generation
framework, that supports automatically generating graded instances (i.e., solvable at a certain
difficulty level for a given solver), and finding discriminating instances (i.e. easy for one
solver and difficult for another solver). In combination, these two methods can be used to
generate a large number of high-quality instances. Furthermore, they can be used to find
interesting subsets of the instance space as opposed to leaving their discovery to chance.

Figure 1 gives a flowchart for an end-to-end application of AutoIG, whose instance
generation process is explained in Section 3. Without loss of generality, the flowchart lists the

N. Dang, Ö. Akgün, J. Espasa, I. Miguel, P. Nightingale 26:3

four solvers used for the evaluation of AutoIG in this paper. Section 4 explains the choice
of these solvers and the five problem classes we use. Both stages of AutoIG can be applied
to other solvers and solver configurations. The AutoIG process has two main inputs: a
problem specification (in the form of a MiniZinc model in this paper) and a problem specific
instance generator. The instance generator is parameterised to allow AutoIG to generate a
variety of instances. There are two main places where we can extract results from AutoIG,
evaluating all solvers on the combined set of graded instances (marked intermediate results in
the flowchart, see Section 6) and evaluating the results of discriminating instances (marked
discriminating results in the flowchart, see Section 7). AutoIG source code and all data and
models used in this paper are available at https://github.com/stacs-cp/AutoIG.

The main contributions of this paper include:
1. A novel constraint-based framework for generating informative benchmark instances

which combines two approaches (graded and discriminating instance generation) that
were previously used in isolation [4, 3].

2. Support for MiniZinc and hand-written instance generators. The new system accepts a
user-defined generator as a constraint model, thus allowing problem-specific knowledge to
be injected into the instance generation process.

3. Support for the evaluation of local search solvers in addition to systematic solvers. The
instance evaluation also considers both solution quality and running time.

4. An extensive evaluation on five problems from the MiniZinc challenge, showing that we
can gain new interesting insights that complement the competition’s results.

2 Related Work

A series of papers uses evolutionary algorithms and applies instance space analysis methods to
problems in machine learning (classification [32], regression [33], clustering [17]) and in com-
binatorial optimisation (personnel scheduling [24], bin packing [27], course timetabling [16]).
They use evolutionary algorithms to generate problem instances [43, 42], whereas we take a
constraint-based approach. Part of their work is analysing existing instances in benchmark
suites and visualising the hardness distribution of instances for particular problems; our
framework can be fruitfully combined with their detailed analysis and visualisation methods.

Instance generators have been applied to hard problems in Operations Research as well.
For example, NSPLib [48] provides an instance generator and large sets of nurse rostering
instances. Their instance generator characterizes an instance through various complexity
indicators, including problem sizes, preference distribution measures, coverage distribution
measures, and time related constraints. They implement a dedicated procedure for generating
instances with properties corresponding to the values of specific indicators as parameters.
For the knapsack problem, [37] uses instance generators to identify the regions of the instance
space that contain difficult instances. For the traveling thieves problem, [14] uses instance
generators that discriminate between more than two options simultaneously.

In communities such as SAT, there have been various works [41, 21] that try to address
the generation of instances with desired properties. The SAT competition [19] organisers
partly crowdsource the creation of the evaluation set. They require participants to send 20
new instances each, guaranteeing that the competition is run on instances mostly unseen to
the solver developers prior to the competition. In addition, a set of previously used instances
is manually and carefully selected, using various criteria such as hardness and variety.

The problem of generating a good set of benchmark instances is also studied in the AI
planning community [45]. SMAC [23], a tool for optimizing algorithm parameters, is paired

CP 2022

https://github.com/stacs-cp/AutoIG

26:4 A Framework for Generating Informative Benchmark Instances

Figure 2 An illustration of irace’s tuning process.

with hand-coded programs to generate many sets of instances that smoothly scale in difficulty.
Afterwards, a subset of the generated sets is selected, according to various criteria such as
difficulty and fairness. This results in a set of instances that better reflect the differences
between planners when compared to the instances used in the competition.

A related field of study is algorithm configuration/selection, including portfolio-based
approaches (SATZilla [49, 50], CPHydra [36], sunny-CP [8, 28]). For these purposes it is
important to have a sufficient number of instances with a variety of difficulties that can
discriminate between the options [39].

3 Constraint-based Automated Instance Generation

Following the approaches in [4] and [3], our instance generation system AutoIG makes use
of the essence constraint modelling pipeline [1] and the automated algorithm configurator
irace [29]. The system receives as input a problem description model, a parameterised
instance generator written as a constraint model (referred to as the generator model), the
solver(s) for which we want to generate graded or discriminating instances, and the types of
instances we are interested in (SAT or UNSAT or both). The role of the essence pipeline is
to express the generator model and to create candidate instances by solving instances of the
generator model (referred to as generator instances), while the role of irace is to search in
the parameter space of the generator model, or in other words, to sample in the generator
instance space, to find configurations that can give us candidate instances with the desired
properties. In this section, we first describe the search procedure of irace (Section 3.1). We
then explain how irace and constraint modelling are combined in the instance generation
process of AutoIG (Section 3.2). Finally, we discuss in detail how each candidate instance
is evaluated during AutoIG search using gradedness or discriminating criteria (Section 3.3).

3.1 irace’s Tuning Process
irace [29] is a general-purpose automated algorithm configuration tool for finding the best
configurations of a parameterised algorithm. One of its key ideas is racing [30]: using
statistical tests to eliminate poor configurations early, avoiding wasting computational budget
on less promising areas of the configuration space. irace leverages this idea with an iterated
procedure where each iteration is a race among several configurations. Figure 2 illustrates
irace’s tuning process. At the first iteration, a number of random configurations are
generated, and a race started by evaluating all configurations on a subset of a given instance
set, on a number of random seeds if the algorithm studied is stochastic, or a combination
of both. A statistical test is applied to identify and eliminate the worst configurations.

N. Dang, Ö. Akgün, J. Espasa, I. Miguel, P. Nightingale 26:5

Listing 1 A fragment of an example for racp problem
1 % --- Fragment of MiniZinc model (succ: the immediate successors of tasks) --
2 array [int(1..n_tasks)] of set of int(1..n_tasks): succ;
3 % --- Fragment of generator model, in Essence ---
4 given n_tasks_t : int(1..60) given s_density : int(1..5)
5 find succ: matrix indexed by [int(1..n_tasks_t)] of set of int(2..n_tasks_t)
6 such that sum([|succ[t]| | t : int(1..n_tasks_t)])/n_tasks_t = s_density
7 % --- Fragment of an example generator instance, in Essence ---
8 letting n_tasks_t = 6 letting s_density = 2
9 % --- Fragment of an example candidate instance, in MiniZinc ---

10 succ = [{2, 4, 5, 6}, {3, 4, 5}, {4, 5, 6}, {6}, {6}, {}];

Evaluation proceeds with the remaining configurations and a statistical test is conducted
again. This is repeated until only a few good configurations remain or when the budget for
the current race has been used. The race is then finished and the surviving configurations
are used to update a sampling model. In the next iteration, new configurations are generated
based on the updated sampling model and a new race is started. Tuning terminates when a
given number of evaluations is exhausted, and the best configuration(s) recorded are returned.

3.2 AutoIG’s Instance Generation Process

We give an example of the instance generation process in Listing 1, based on racp (see
Section 4 for details). Fragments of a problem description model, a generator model, a
generator instance, and a candidate instance are shown. In this example, a parameter (succ)
of the problem description model (line 2) is written as a decision variable in the generator
model (line 5). The creation of succ is controlled by tunable integer parameters of the
generator model: n_tasks_t (equivalent to n_tasks in the original problem description);
and s_density. Given an instance of the generator model sampled by irace (line 8), a
candidate instance (line 10) can be created by solving the generator instance.

AutoIG utilises irace for searching in the configuration space of the generator model.
The instance generation process starts with irace creating a number of random generator
configurations (a configuration is an instance of the generator model, or in short, a generator
instance). Each configuration is then evaluated using the procedure described in Algorithm 1
and a penalty is given back to irace for the statistical test. The tuning of irace then
proceeds as normal, interleaving using constraint solving to generate new instances and to
evaluate them, and using feedback from the evaluation process to eliminate non-promising
configurations and to update the sampling model.

During each configuration evaluation, the generator instance G is first solved via the
essence pipeline (line 3 of Algorithm 1), whose solving procedure includes two translation
steps by the automated constraint modelling tool conjure [6, 5] and by savilerow followed
by a call to the constraint solver minion [20]. If G is unsatisfiable or if it is too large to
go through the pipeline, a very large penalty is returned so that irace will remove the
configuration from the current race immediately (line 5). If G is not solved by minion within
the current evaluation, a penalty of 1 is returned. Otherwise, the new candidate instance I

is added to the solution history of G to ensure that in the subsequent evaluations of this
configuration, the same instance will not be generated again. Solution history is implemented
via adding a negative constraint table into the minion input of G, and this table is constantly
updated every time G is evaluated during the tuning. Finally, the candidate instance I is
evaluated using one of the two instance evaluation procedures described in Algorithm 2 (for

CP 2022

26:6 A Framework for Generating Informative Benchmark Instances

Algorithm 1 An evaluation of a generator configuration

1: Input: generator model M , generator instance G, solution history HG

2: Output: penalty p

3: r ← solve(M, G, HG) ▷ solve the generator instance G using the essence pipeline
4: if r is either UNSAT or timeout on savilerow then
5: return +∞ ▷ return a very large penalty, irace will discard G immediately
6: if r is timeout on minion then
7: return 1
8: I ← the instance generated by r

9: Add I into HG

10: p← Evaluate I using either GRADED or DISCRIMINATING procedure
11: return p

Algorithm 2 An evaluation of an instance using gradedness criteria

1: Input: problem specification P , instance I, solver S, minimum solving time tmin,
maximum solving time tmax, instance types T (that we are interested in)

2: Output: penalty p

3: procedure Graded(P, I, S, tmin, tmax, T)
4: r ← solve(P, I, S, tmax) ▷ solve I using S with time limit tmax, save results to r

5: if solving_time(r) < tmin or r is timeout then
6: return 0 ▷ I is either too easy or too difficult for S

7: if instance_type(r) ̸∈ T then
8: return 0 ▷ I is not the instance type we are interested in
9: return -1

graded instance generation) or Algorithm 3 (for discriminating instance generation), and
the corresponding penalty is returned to irace. Note that the default setting of irace uses
the Friedman test, a rank-based statistical test. This is also the setting used by AutoIG,
i.e., the magnitude of difference in the penalty values between evaluations is not taken into
account, only the rankings between them matter.

3.3 Evaluating Graded and Discriminating Instances
AutoIG’s instance generation process depends heavily on an effective way of evaluating the
quality of candidate instances. In this section, we describe the algorithms used for evaluating
whether each candidate instance is graded or for measuring their discriminating power. The
algorithms given in this section are invoked in line 10 of Algorithm 1.

To evaluate whether a candidate instance is graded, we employ Algorithm 2. This
algorithm has 6 inputs: a problem specification P of the problem under study, an instance I

and a solver S to be evaluated, the range of solving times (tmin and tmax) for the instance to
be considered graded for S (to avoid instances that are too easy or too hard to solve), and
the type of instances (T) that we are interested in (either satisfiable, unsatisfiable, or both).
The instance is first solved by S (line 4) (See Algorithm 2). Results of the solving (r) include
the status of the solving process (timeout/UNSAT/SAT), and the returned solution I (if
status is SAT). In our experiments S is called via the MiniZinc toolchain. For complete
solvers, we use the amount of time to solve the instance to completion (i.e., with a claim
of optimality for optimisation problems, or with a feasible solution returned for decision

N. Dang, Ö. Akgün, J. Espasa, I. Miguel, P. Nightingale 26:7

Algorithm 3 An evaluation of an instance using discriminating criteria

1: Input: problem specification P , instance I, favoured solver SF , base solver SB , minimum
solving time tmin (for B only), maximum solving time tmax, instance types T

2: Output: penalty p

3: procedure Discriminating(P, I, SF , SB , tmin, tmax, T)
4: rF ← solve(P, I, SF , tmax) ▷ solve I using SF with time limit tmax

5: rB ← solve(P, I, SB , tmax) ▷ solve I using SB with time limit tmax

6: if rF is timeout or instance_type(rF) ̸∈ T or solving_time(rB) < tmin then
7: return 0 ▷ I is either too difficult for SF , or not the right instance type, or too

easy for SB

8: scoreF , scoreB ← MiniZinc_Score(SF , SB , P, I)
9: if scoreF = 0 and scoreB = 0 then

10: return 0
11: return −scoreF /scoreB ▷ When scoreB = 0, returns large negative number.

problems or a claim of unsatisfiablity). For local search solvers such as Yuck, since a proof
of optimality cannot be achieved for optimisation problems, we use an external complete
solver (called the “oracle”) to solve the instance to optimality (with a much longer time limit
than tmax), and use that to measure the time until S first finds the optimal solution. If the
instance turns out to be too easy for S or if the solving process times out (line 5) or the
instance type is not interesting to the users (line 7), a penalty of 0 is given back to irace.
Otherwise, the instance is considered graded and a negative penalty of −1 is returned.

Algorithm 3 is used for evaluating the discriminating power of an instance between two
solvers. Each evaluation requires two input solvers: a favoured solver SF and a base solver
SB. We want to find instances that are easy to solve by SF , while being difficult for SB.
The idea is to measure the performance of both solvers on the same instance, and search for
instances that maximise the difference in performance. To avoid cases where the performance
difference may be due to time measurement sensitivity, we impose a minimum solving time
tmin on the base solver SB, i.e., the discriminating instances must be non-trivial to solve
by SB . Similar to the gradedness evaluation, AutoIG also allows focusing on a particular
instance type during the generation process.

The evaluation of the discriminating property starts by applying SF and SB on the
given instance (lines 4 and 5, Algorithm 3). If the instance does not satisfy our acceptance
conditions (incorrect type, too easy for the base solver SB or unsolvable by the favoured
solver SF (line 6)) a penalty of 0 is returned. Otherwise, we calculate the discriminating
power of the instance and use it as feedback to irace. The discriminating power is calculated
as the ratio between the performance of the favoured solver and the base solver, and the aim
of the tuning process is to maximise this ratio. To take into account both solving time and
solution quality when evaluating the performance of a solver, we use the complete scoring
approach of the MiniZinc competitions. After calculating the MiniZinc scores of both
solvers (line 8), the discriminating score is calculated as the MiniZinc score of SF divided by
the MiniZinc score of SB and the negation of that ratio is returned to irace (line 11). Note
that when both MiniZinc scores are equal to 0, the discriminating score is set to 0 (line 10).

The MiniZinc (complete) score for calculating the relative performance of two solvers
on an instance can be found on the competition website (https://www.minizinc.org/
challenge2021/rules2021.html#assessment). For completeness, in the rest of this
section we will describe this score calculation in detail.

CP 2022

https://www.minizinc.org/challenge2021/rules2021.html#assessment
https://www.minizinc.org/challenge2021/rules2021.html#assessment

26:8 A Framework for Generating Informative Benchmark Instances

Algorithm 4 Check whether one solver performs better than another in terms of solution quality

1: Input: solver A, solver B, problem model P , instance I

2: procedure IsBetter(A, B, P, I)
3: if P is a decision problem then
4: return solved(A, P, I) and not solved(B, P, I)
5: else
6: return (solved(A, P, I) and not solved(B, P, I)) or
7: (optimal(A, P, I) and not optimal(B, P, I)) or
8: (quality(A, P, I) is better than quality(B, P, I))

Algorithm 5 MiniZinc score calculation between two solvers.

1: Input: solver A, solver B, problem model P , instance I

2: procedure MiniZinc_Score(A, B, P, I)
3: if IsBetter(A, B, P, I) then
4: scoreA ← 1, scoreB ← 0
5: else if IsBetter(B, A, P, I) then
6: scoreA ← 0, scoreB ← 1
7: else if solved(A, B, P, I) then
8: scoreA ← time(B, P, I)/(time(A, P, I)+time(B, P, I))
9: scoreB ← 1− scoreA

10: else
11: scoreA ← scoreB ← 0
12: return scoreA and scoreB

Given a solver S, a problem model P and an instance I, the following information is
collected for the calculation: time(S, P, I) – the solving time of S on I; solved(S, P, I) –
whether a correct solution or a correct unsatisfiability result for I is returned by S; qual-
ity(S, P, I) – the best objective value obtained by S; and optimal(S, P, I) – whether a claim
of optimality is returned by S. Based on those information, the function IsBetter(A, B, P, I)
(Algorithm 4) determines whether solver A is clearly better than solver B in terms of solution
quality, for decision problems (line 4) and for optimisation problems (lines 6-8).

Finally, the MiniZinc complete score when comparing two solvers on an instance I is
calculated in Algorithm 5. The calculation starts with checking whether one of the two
solvers is better than the other in term of solution quality (lines 3-6). If that is not the case,
there are two possibilities. First, I is solved by both solvers, and for optimisation problems,
the same solution quality is achieved by both. In that case the normalised solving times
are used as the scores. Second, both solvers fail to solve I, and in that case a score of 0 is
returned for both. Note that this is slightly different from the scoring used in the MiniZinc
competitions, where the scores of 1 and 0 are given to A and B, respectively. This is because
the final competition ranking is based on the Borda counting system, where the score is
calculated for all pairs of solvers, including the same pair in the opposite order.

4 Case Studies

In this section we describe the five problems that are used to evaluate AutoIG, and also
the set of four solvers that are used in our experiments. The five problems being used in
this study are taken from the latest MiniZinc Challenges. They are chosen with the aim

N. Dang, Ö. Akgün, J. Espasa, I. Miguel, P. Nightingale 26:9

of covering a variety of different problem properties, including the existence of redundant
and symmetry breaking constraints, the usage of different global constraints, and a range of
problem domains. In this section, we give a brief overview of those problems and how their
instance generation problems are modelled.

Multi-Agent Collaborative Construction problem (macc) [26]: This is a planning
problem that involves constructing a building by placing blocks in a 3D map using multiple
identical agents. Ramps must be built to access the higher levels of the building. The
objective is to minimise the makespan (primary) and the total cost (secondary).

In addition to the basic parameters of a macc instance indicated in the problem specifica-
tion (i.e., the number of agents, the time horizon and the map sizes), the instance generation
process should include information about the building itself as this is likely to affect instance
difficulty. Therefore, two parameters and related constraints are added to the generator
model to represent the density of the building on the ground level and its average height.

Carpet Cutting problem (carpet-cutting): The Carpet Cutting Problem [40] is a
packing problem in which room and stair carpets composed of rectangular sections must be
packed onto a carpet roll of fixed width and whose length must be minimised. The problem
is complicated by the ability to rotate the carpets to aid in the packing process.

This problem requires substantial instance data, including the specification of the con-
stituent rectangles of each carpet, their dimensions, and the permitted carpet rotations.
There are several implicit constraints on this data that are not captured in the original
MiniZinc model and hence these must be injected into the instance generation process
through our generator specification. In particular, the rectangles that comprise a carpet
must not overlap and must form a contiguous shape, as well as have bounded sizes so as to
avoid trivially unsatisfiable instances.

Mario problem (mario): The Maximum Profit Subpath Problem is a routing problem
that requires us to find a path in a graph where the path endpoints are given. This path is
subject to two main constraints, where the sum of weights associated to arcs in the path is
restricted (fuel consumption), while the sum of weights associated to nodes in the path has
to be maximized (reward).

Regarding the instance generation process, in addition to the basic parameters, the amount
of reward per node is represented as a non-negative integer array, while the non-negative cost
for each arc is represented as a 2-dimensional matrix. There are a few implicit constraints
not represented in the MiniZinc model, where the initial and goal nodes are different and
have 0 reward, and the cost matrix is symmetric on the diagonal.

Resource Availability Cost Problem (racp): The Resource Availability Cost Prob-
lem [25] is a scheduling problem with activities that are non-interruptible and have a fixed
duration. The problem includes precedence constraints between pairs of activities i, j (that
require activity i to be completed before activity j begins), arranged in a directed acyclic
graph. There are a set of renewable resources, and each activity (when running) requires a
given amount of each resource. All activities must be completed by a given deadline. Each
resource has a cost per unit, and the objective is to minimise the peak costs of the resources.

The durations of activities, unit costs of resources, and resource demands of activities
are all matrices of integers without complex constraints. However, the precedence graph
(represented as a set of successors for each activity) has implicit constraints that are not
represented in the MiniZinc model. Firstly, it must be acyclic, and we achieve this by
mapping activities to numbered layers and allowing only edges from lower to higher-numbered
layers. Secondly, we ensure that each activity has at least one predecessor and at least one
successor (except the dummy first and last activities).

CP 2022

26:10 A Framework for Generating Informative Benchmark Instances

Discrete Lot Sizing problem (lot-sizing): The Discrete Lot Sizing and Scheduling
Problem [22, 46] (CSPLib 58) requires us to find a production schedule for a set of orders, each
with a due date within a planning horizon. There are various costs associated with production,
such as setup, changeover and stocking costs, the sum of which must be minimised.

This problem requires substantial instance data including the type and due date of each
order, and moreover a table of changeover costs between orders. There are a number of
implicit constraints on this data, including a dummy order type 0 which incurs 0 cost to
change to/from, and the fact that the changeover costs for the remaining order must obey the
triangle inequality. Again, these are not captured in the original MiniZinc model and hence
must be injected into the instance generation process through our generator specification.

We investigate the performance of four solvers, also taken from the MiniZinc challenges,
on the problems described above using our framework. They are chosen such that a variety
of solving techniques and different competition rankings are included. The solvers are:
OR-Tools [2] (version 9.2) – a systematic solver from Google that combines CP, SAT, and
linear programming techniques; Picat-SAT [51] – a SAT compiler for the multi-paradigm
programming language Picat which uses kissat [12] as the underlying SAT solver; Chuffed [15]
(version 0.10.4) – a clause learning CP solver which was not a participant of the challenges
but was used in the score calculation process to rank participating solvers; and Yuck [31]
(version 20210501) – a constraint-based local search solver.

OR-Tools has consistently won the last several competitions and Picat-SAT has received
multiple silver medals. Yuck is the winning solver in the Local Search category of the 2020
and 2021 competitions. However, its ranking was generally low when compared to OR-Tools
and Picat-SAT. In particular, based on the competition data, it was completely dominated
by OR-Tools on the five problems considered.

5 Experimental Setup

The first set of experiments are on generating graded instances. For each problem, we first
generate graded instances for each solver via an AutoIG experiment with a budget of 2, 000
runs. Note that a run is an evaluation of a generator configuration. The gradedness criteria
is defined as being solvable by the given solver with the time ranging from 10 seconds (to
avoid trivial instances) to 20 minutes (the time limit used by the MiniZinc Challenge).
Following the competition approach, MiniZinc translation time is included in the total time
measured. Since Yuck is a local search solver, we use OR-Tools (with a budget of 1 hour)
for checking whether a solution returned by Yuck is optimal. After all graded instances
are collected, we then randomly select 50 graded instances from each experiment to get a
combined benchmark instance set for each problem. Finally, we evaluate the performance of
all four solvers on the combined instance set.

The second set of experiments are on generating discriminating instances. Since OR-Tools
has consistently shown very strong performance on the competition data, the main aim of
these experiments is to see whether we can find instances where OR-Tools is performing
worse than the other two participating solvers being considered. We do this without loss of
generality: our discriminating instance generation procedure can be applied to any pair of
solvers. We compare two solvers (Picat-SAT and Yuck) against OR-Tools. For each solver
we conduct two separate AutoIG experiments, one where we search for instances that are
solved more quickly by OR-Tools and one for the opposite case. The same AutoIG budget
and memory limit as in graded experiments are used. To avoid instances where the difference
between the performance of two solvers is due to fluctuations in running time measurement,

N. Dang, Ö. Akgün, J. Espasa, I. Miguel, P. Nightingale 26:11

Figure 3 Number of graded instances generated.

a minimum requirement of 10 seconds is imposed on the solving time of the base solver, i.e.
instances that can be trivially solved by the base solver are discarded.

All experiments were performed on a computing node of a High Performance Computing
cluster. Each node is equipped with two 2.1 GHz, 18-core Intel Xeon processors and 256 GB
RAM. Each solver except Yuck is given a memory limit of 8GB via the runsolver tool [38].
For Yuck, the memory limit is controlled directly via the Java Runtime Environment (JRE).
For solving the generator models, time limits of 5 and 10 minutes are given to savilerow
and minion, respectively. In this work, we focus on the Free Track of the competitions.
Therefore, all solvers are called via the MiniZinc toolchain with a single core and with
the free search option being passed to the solver. Although AutoIG supports focusing on
generating either only SAT or only UNSAT instances, in this work we allow both types of
instances to be generated.

6 Results on graded instances

First we describe the sets of graded instances produced by AutoIG for the five problems
(Section 6.1) and discuss insights obtained from analysing the results. Then in Section 6.2
we combine the sets of graded instances for each problem, and re-evaluate the four solvers
using the combined sets of instances, showing substantially different relative performance in
some cases compared with the competition instances.

6.1 Graded instance generation
For each problem, Figure 3 shows the number of graded instances obtained per solver within
the given budget. While we can achieve more than a few hundred graded instances in most
cases, there are cases where we are only able to generate a small number of instances. For
example, with OR-Tools on carpet-cutting and mario, we generate only 4 and 1 graded
instances, respectively. In addition, the numbers are fairly small for Yuck on macc and
carpet-cutting. There is a large variation in the number of graded instances we are able
to generate for different problems and solvers (shown in Figure 3).

The differences in the number of graded instances returned by each experiment suggest
that the performance of the solvers varies significantly when solving instances drawn from
the same instance space. In order to better understand the performance distribution of
each solver we investigate the details of the search space of AutoIG. More specifically,
we check the status of each configuration evaluation run and measure their frequency, as
detailed in Figure 4. For OR-Tools on carpet-cutting and mario, only a small number
of graded instances are found, but this same outcome has entirely different causes. For
carpet-cutting, almost half of the runs are with unsolvable generator configurations, and
for the rest the candidate instances are mostly trivially proved unsatisfiable by OR-Tools.

CP 2022

26:12 A Framework for Generating Informative Benchmark Instances

Figure 4 Frequency of all run statuses, including generator-unsolved (generator instance
is UNSAT or unsolvable); graded (a graded instance is obtained); too-difficult (the candid-
ate instance is unsolvable by the considered solver within the time limit); too-easy-SAT and
too-easy-UNSAT (the candidate instance is too easy, i.e., solved within less than 10 seconds); and
others (the considered solver fails due to unexpected errors such as incorrect returned answers).

Figure 5 Solving time of graded instances generated for each pair of problems and solvers. Note
that the instances presented here are the graded instances found for each solver independently. The
performance of these solvers on the combined set of graded instances can be seen in Figure 6.

For mario, the majority of the runs produce instances that are trivially satisfiable. Once
we understand the underlying reason for the lack of graded instances, we can rectify each
of these shortcomings: for carpet-cutting, expert knowledge on the problem may be
added as constraints to the generator model to avoid trivially unsatisfiable instances, while
for mario, the current instance space may be too easy for OR-Tools and we may want to
increase the upper bounds of some of the generator parameters. On the other hand, the
situation is completely different for Yuck: the small number of graded instances obtained
for macc and carpet-cutting is largely due to the fact that the majority of instances
generated are too difficult to solve.

In addition to the run statuses, the distribution of solving time of graded instances also
gives us interesting insights into the performance of different solvers, as illustrated in Figure 5.
Notably, many graded instances for mario and racp are close to the lower bound of graded
instances; this is true for all solvers. Nevertheless, AutoIG is able to find challenging graded
instances, which can take several hundred seconds to solve, for all solvers on those two
problems (except for OR-Tools on mario). For carpet-cutting, OR-Tools and Chuffed
can solve most graded instances quickly, while Picat-SAT and Yuck take more time in general.
Finally, for macc and lot-sizing, the solving time distributions of all four solvers are more
well-spread, indicating a good diversity of difficulties among the generated graded instances.

Note that for the majority of graded instances generated, the MiniZinc flattening times
are generally marginal compared to the time taken to solve them. This indicates that the
more difficult graded instances are actually challenging for the solvers themselves, and can
be useful for solver developers to improve their solver performance.

N. Dang, Ö. Akgün, J. Espasa, I. Miguel, P. Nightingale 26:13

Figure 6 MiniZinc Borda (complete) scores of each solver on the MiniZinc Challenges instance
set (left) and on the combined graded instance set generated by AutoIG (right).

6.2 Comparison of Solver Performance on Graded Instances
We combine all graded instances to construct a diverse set of instances for each problem.
We then evaluate all four solvers on the combined set and rank them using the Borda
(complete) scoring method of the MiniZinc Challenge (https://www.minizinc.org/
challenge2021/rules2021.html). More specifically, for each problem, 50 graded
instances are uniformly sampled from the set of graded instances for each solver. In cases
where there are less than 50 graded instances available, we just take them all. For comparison,
we also evaluate those solvers on the instances used in the competition. There are 5-10
instances per problem, as some problems are re-used over two different competitions.

Figure 6 shows the scores on the competition instances (left) and on the combined graded
instances generated by AutoIG (right). There are similarities between results on the two
sets of instances. Performance of OR-Tools and Chuffed remain strong in most cases, followed
by Picat-SAT. For macc, carpet-cutting and mario, the overall rankings of the four
solvers on both groups are almost the same. However, results on the graded set do show
certain changes in relative performance of all solvers. For example, the scores of Yuck on
the graded instances are no longer zero for macc and carpet-cutting, and the score for
mario increases noticeably. This indicates that Yuck is actually not completely dominated
by all other solvers on those three problems as suggested by the competition data. For racp,
the ranking has changed significantly: OR-Tools swaps places with Chuffed, and Picat-SAT
swaps places with Yuck. For lot-sizing, Picat-SAT is no longer ranked higher than Chuffed.

Thanks to the solution checking process being integrated into each evaluation, we also
found a number of cases from the combined graded sets where incorrect answers are returned,
which can be of separate interest to the solver developers. There were 41 (out of 183) macc
instances and 90 (out of 154) carpet-cutting instances (from the subset of graded instances
generated for other solvers) where Yuck reports objective values of infeasible solutions.

Generating a larger number of graded instances for each solver and analysing them using
the presented methods gives more information in comparison to a typical competition’s result,
which would be a ranking of the solvers. In Section 7 we apply the discriminating instance
generation feature of AutoIG to gain even more insight into solver performance.

7 Results on Discriminating Instances

Results on MiniZinc competition data indicate that OR-Tools is a very strongly performing
solver on the 5 problems considered. It completely dominates Yuck, i.e., Yuck gets zero score
on all competition instances when compared directly to OR-Tools. OR-Tools also wins over
Picat-SAT on all instances of mario and racp, on 9 out of 10 instances of lot-sizing, and

CP 2022

https://www.minizinc.org/challenge2021/rules2021.html
https://www.minizinc.org/challenge2021/rules2021.html

26:14 A Framework for Generating Informative Benchmark Instances

Figure 7 Number of discriminating instances generated per favoured and base solver pair.

Figure 8 Distribution of scores (of the winning solver) on discriminating instances generated.

on 8 out of 10 instances of carpet-cutting. However, detailed results obtained from the
evaluation on graded instances suggest that this may not always be the case. For example,
there are 31 instances evaluated on racp where Picat-SAT performs better than OR-Tools,
and 58 macc instances where Yuck performs better. In this section, we use the discriminating
instance generation feature of AutoIG to get more insights into these cases.

Figure 7 shows the number of discriminating instances generated for the two pairs of
solvers. In the experiments on OR-Tools versus Yuck, AutoIG found 431 macc instances
and 110 racp instances where Yuck gets a better score than OR-Tools, which indicates
that Yuck is not completely dominated by OR-Tools on these two problems. On the other
hand, for carpet-cutting and mario, results suggest that Yuck may indeed be entirely
dominated by OR-Tools, as no instances were found in the experiments that favour Yuck.
Furthermore, for lot-sizing, only 3 discriminating instances favouring Yuck are found.
In the experiment on OR-Tools versus Picat-SAT, OR-Tools shows domination on both
carpet-cutting (only 2 instances where Picat-SAT is better than OR-Tools were found)
and mario (no instances favouring Picat-SAT was found). On the other three problems,
there are a good number of discriminating instances in both directions.

The number of discriminating instances tell us if winning instances for a solver can be
found, but it does not show the magnitude of the difference in performance. We can get
additional insights into comparative performance of the solvers by looking into the detailed
scores of the winning solver on discriminating instances for each experiment. As shown in
Figure 8, for macc, the median lines indicate that for all four cases, several discriminating
instances found have the highest “discriminating power”, i.e., the winning solver gets the
maximum score of 1 (the other solver, in turn, gets zero score). This type of instance is
probably the most interesting for understanding the shortcomings of a particular solver. For
carpet-cutting, on the only 2 discriminating instances where Picat-SAT has better score
than OR-Tools, the score distribution of the corresponding experiment (Picat-SAT>OR-
Tools) suggests that OR-Tools performance is not much worse. This suggests that OR-Tools
indeed dominates Picat-SAT on this problem. A similar conclusion can be reached for Yuck,

N. Dang, Ö. Akgün, J. Espasa, I. Miguel, P. Nightingale 26:15

i.e., it is clear that OR-Tools is really the dominating solver on carpet-cutting since the
magnitude of the performance difference is very small even for the instances where Yuck is
faster. Similarly, for mario, OR-Tools very clearly dominates in comparison to Picat-SAT
and Yuck, as indicated by the discriminating score distributions. This is in line with what
was observed in the previous section’s results on the same problem.

Interestingly, for racp, although the number of discriminating instances of Picat-
SAT>OR-Tools is larger than of Yuck>OR-Tools as shown in Figure 7, the magnitude
of the performance difference of instances found for Yuck is generally much higher. This
observation gives a new insight that has not been revealed in all previous experiments on
gradedness: even though the performance of Yuck is dominated by other solvers in general
(i.e., it is ranked lower) and it has a smaller number of discriminating instances favouring it,
the magnitude of the performance difference is very large for these instances. This means
there exists a subset of the racp instances where Yuck’s performance is much better than
OR-Tools, while this does not seem to be the case for Picat-SAT.

The insights provided by discriminating instances could be useful in constructing a robust
portfolio of solvers for a given problem. For example, on racp, Yuck is the weakest solver by
a wide margin on the graded instances (see Figure 6) and second-weakest on competition
instances. On the graded instances, Picat-SAT performs considerably better than Yuck.
However, the results with discriminating instances show that Yuck would be a good candidate
to add to a portfolio (alongside OR-Tools) whereas Picat-SAT may not be.

8 Conclusions and Future Work

Assessing the performance of solving methods via benchmark problems is fundamental to
CP research. However, its utility is limited by the availability of problem instances that are
of suitable difficulty, and diverse (not inadvertently favouring one solver over another). We
have shown that our system AutoIG can generate large numbers of informative benchmark
instances graded for difficulty for a single solver, or that can discriminate between two solvers
(favouring one or the other). The only manual part of the AutoIG process is to capture (in
a generator model) any implicit constraints on the instances data.

The essential task of benchmarking is to compare multiple solvers and rank them.
As illustrated in our experiments, AutoIG can be used to generate graded instances
for each solver independently, and these can then be combined into one set of instances,
providing confidence that the generation process does not favour one solver or class of
solvers. Furthermore, we have shown that automatically generated instances can provide
more detailed insights than just a ranking. Instances generated by AutoIG can reveal cases
where a solver is weak or even faulty, providing valuable information to solver developers.
Finally, discriminating instances can reveal parts of the instance space where a generally weak
solver performs well relative to others, and therefore could be useful as part of a portfolio.

There are various directions for future improvement. First, the diversity of instances
found during search can be taken into account to increase the quality of the final instance set.
This would require a definition of diversity, which could be based on problem-specific instance
features or on general constraint programming features such as the fzn2feat features [7].
Secondly, similar to the series of work on Instance Space Analysis (e.g. [32, 24, 16]), a detailed
visualisation of the instance space based on performance data collected from the tuning and
evaluation process of AutoIG would provide further insights into performance of the solvers
under study. Again, instance features would be needed for such analysis.

CP 2022

26:16 A Framework for Generating Informative Benchmark Instances

References
1 essence modelling pipeline:. https://constraintmodelling.org/.
2 Google OR-Tools, 2021. Available from https://github.com/google/or-tools.
3 Özgür Akgün, Nguyen Dang, Ian Miguel, András Z Salamon, Patrick Spracklen, and Chris-

topher Stone. Discriminating instance generation from abstract specifications: A case study
with CP and MIP. In International Conference on Integration of Constraint Programming,
Artificial Intelligence, and Operations Research, pages 41–51. Springer, 2020.

4 Özgür Akgün, Nguyen Dang, Ian Miguel, András Z Salamon, and Christopher Stone. Instance
generation via generator instances. In International Conference on Principles and Practice of
Constraint Programming, pages 3–19. Springer, 2019.

5 Ozgur Akgun, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Peter Nightingale. Breaking
conditional symmetry in automated constraint modelling with Conjure. In Proceedings of the
21st European Conference on Artificial Intelligence (ECAI), pages 3–8, 2014.

6 Ozgur Akgun, Ian Miguel, Christopher Jefferson, Alan M Frisch, and Brahim Hnich. Extensible
Automated Constraint Modelling. In Wolfram Burgard and Dan Roth, editors, AAAI 2011 -
Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2011, San
Francisco, California, USA, August 7-11, 2011. AAAI Press, 2011.

7 Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro. An enhanced features extractor
for a portfolio of constraint solvers. In Proceedings of the 29th annual ACM symposium on
applied computing, pages 1357–1359, 2014.

8 Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro. SUNNY-CP: a sequential CP
portfolio solver. In Proceedings of the 30th Annual ACM Symposium on Applied Computing,
pages 1861–1867, 2015.

9 Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. In Handbook of model checking,
pages 305–343. Springer, 2018.

10 Thomas Bartz-Beielstein, Carola Doerr, Daan van den Berg, Jakob Bossek, Sowmya
Chandrasekaran, Tome Eftimov, Andreas Fischbach, Pascal Kerschke, William La Cava,
Manuel Lopez-Ibanez, et al. Benchmarking in optimization: Best practice and open issues.
arXiv preprint arXiv:2007.03488, 2020.

11 Vahid Beiranvand, Warren Hare, and Yves Lucet. Best practices for comparing optimization
algorithms. Optimization and Engineering, 18(4):815–848, 2017.

12 Armin Biere, Mathias Fleury, and Maximilian Heisinger. CaDiCaL, Kissat, Paracooba entering
the SAT competition 2021. In T Balyo, N Froleyks, M Heule, M Iser, M Järvisalo, and
M Suda, editors, Proceedings of SAT Competition 2021: Solver and Benchmark Descriptions.
Department of Computer Science Report Series B, vol. B-2021-1, Department of Computer
Science, University of Helsinki, Helsinki, 2021.

13 Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of satisfiability, volume 185.
IOS press, 2009.

14 Jakob Bossek and Markus Wagner. Generating instances with performance differences for
more than just two algorithms. In Proceedings of the Genetic and Evolutionary Computation
Conference Companion, pages 1423–1432, 2021.

15 Geoffrey Chu, Peter J. Stuckey, Andreas Schutt, Thorsten Ehlers, Graeme Gange, and Kathryn
Francis. Chuffed, 2018. Available from https://github.com/chuffed/chuffed/.

16 Arnaud De Coster, Nysret Musliu, Andrea Schaerf, Johannes Schoisswohl, and Kate Smith-
Miles. Algorithm selection and instance space analysis for curriculum-based course timetabling.
Journal of Scheduling, pages 1–24, 2021.

17 Luiz Henrique dos Santos Fernandes, Ana Carolina Lorena, and Kate Smith-Miles. Towards
understanding clustering problems and algorithms: an instance space analysis. Algorithms,
14(3):95, 2021.

18 Nils Froleyks, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda. SAT competition
2020. Artificial Intelligence, 301:103572, 2021.

https://github.com/chuffed/chuffed/

N. Dang, Ö. Akgün, J. Espasa, I. Miguel, P. Nightingale 26:17

19 Nils Froleyks, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda. SAT competi-
tion 2020. Artificial Intelligence, 301:103572, 2021. doi:https://doi.org/10.1016/j.

artint.2021.103572.
20 Ian P. Gent, Christopher Jefferson, and Ian Miguel. Minion: A fast scalable constraint solver.

In Proceedings ECAI 2006, pages 98–102, 2006.
21 Jesús Giráldez-Cru and Jordi Levy. A modularity-based random SAT instances generator. In

Qiang Yang and Michael J. Wooldridge, editors, Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence, IJCAI, pages 1952–1958. AAAI Press, 2015. URL:
http://ijcai.org/Abstract/15/277.

22 Vinasétan Ratheil Houndji, Pierre Schaus, Laurence Wolsey, and Yves Deville. The stockingcost
constraint. In International conference on principles and practice of constraint programming,
pages 382–397. Springer, 2014.

23 Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based optim-
ization for general algorithm configuration. In Carlos A. Coello Coello, editor, Learn-
ing and Intelligent Optimization - 5th International Conference, LION 5, Rome, Italy,
volume 6683 of Lecture Notes in Computer Science, pages 507–523. Springer, 2011. doi:

10.1007/978-3-642-25566-3_40.
24 Lucas Kletzander, Nysret Musliu, and Kate Smith-Miles. Instance space analysis for a personnel

scheduling problem. Annals of Mathematics and Artificial Intelligence, 89(7):617–637, 2021.
25 Stefan Kreter, Andreas Schutt, Peter J Stuckey, and Jürgen Zimmermann. Mixed-integer

linear programming and constraint programming formulations for solving resource availability
cost problems. European Journal of Operational Research, 266(2):472–486, 2018.

26 Edward Lam, Peter J Stuckey, Sven Koenig, and TK Kumar. Exact approaches to the
multi-agent collective construction problem. In International Conference on Principles and
Practice of Constraint Programming, pages 743–758. Springer, 2020.

27 Kelvin Liu, Kate Smith-Miles, and Alysson Costa. Using Instance Space Analysis to Study the
Bin Packing Problem. PhD thesis, 2020.

28 Tong Liu, Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro. sunny-as2: Enhancing
SUNNY for algorithm selection. Journal of Artificial Intelligence Research, 72:329–376, 2021.

29 Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro Birattari, and
Thomas Stützle. The irace package: Iterated racing for automatic algorithm configuration.
Operations Research Perspectives, 3:43–58, 2016.

30 Oden Maron and Andrew W Moore. The racing algorithm: Model selection for lazy learners.
Artificial Intelligence Review, 11(1):193–225, 1997.

31 Michael Marte. Yuck, 2021. Available from https://github.com/informarte/yuck.
32 Mario A Muñoz, Laura Villanova, Davaatseren Baatar, and Kate Smith-Miles. Instance spaces

for machine learning classification. Machine Learning, 107(1):109–147, 2018.
33 Mario Andrés Muñoz, Tao Yan, Matheus R Leal, Kate Smith-Miles, Ana Carolina Lorena,

Gisele L Pappa, and Rômulo Madureira Rodrigues. An instance space analysis of regression
problems. ACM Transactions on Knowledge Discovery from Data (TKDD), 15(2):1–25, 2021.

34 Nicholas Nethercote, Peter J Stuckey, Ralph Becket, Sebastian Brand, Gregory J Duck,
and Guido Tack. Minizinc: Towards a standard CP modelling language. In International
Conference on Principles and Practice of Constraint Programming, pages 529–543. Springer,
2007.

35 Peter Nightingale, Özgür Akgün, Ian P Gent, Christopher Jefferson, Ian Miguel, and Patrick
Spracklen. Automatically improving constraint models in Savile Row. Artificial Intelligence,
251:35–61, 2017.

36 Eoin O’Mahony, Emmanuel Hebrard, Alan Holland, Conor Nugent, and Barry O’Sullivan.
Using case-based reasoning in an algorithm portfolio for constraint solving. In Irish conference
on artificial intelligence and cognitive science, pages 210–216, 2008.

37 David Pisinger. Where are the hard knapsack problems? Computers & Operations Research,
32(9):2271–2284, 2005.

CP 2022

https://doi.org/https://doi.org/10.1016/j.artint.2021.103572
https://doi.org/https://doi.org/10.1016/j.artint.2021.103572
http://ijcai.org/Abstract/15/277
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40

26:18 A Framework for Generating Informative Benchmark Instances

38 Olivier Roussel. Controlling a solver execution with the runsolver tool. Journal on Satisfiability,
Boolean Modeling and Computation, 7(4):139–144, 2011.

39 Marius Schneider and Holger H Hoos. Quantifying homogeneity of instance sets for algorithm
configuration. In International Conference on Learning and Intelligent Optimization, pages
190–204. Springer, 2012.

40 Andreas Schutt, Peter J Stuckey, and Andrew R Verden. Optimal carpet cutting. In
International Conference on Principles and Practice of Constraint Programming, pages 69–84.
Springer, 2011.

41 Bart Selman, David G. Mitchell, and Hector J. Levesque. Generating hard satisfiability prob-
lems. Artificial Intelligence, 81(1-2):17–29, 1996. doi:10.1016/0004-3702(95)00045-3.

42 Kate Smith-Miles, Jeffrey Christiansen, and Mario Andrés Muñoz. Revisiting where are the
hard knapsack problems? via instance space analysis. Computers & Operations Research,
128:105184, 2021.

43 Kate Smith-Miles and Jano van Hemert. Discovering the suitability of optimisation algorithms
by learning from evolved instances. Annals of Mathematics and Artificial Intelligence, 61(2):87–
104, 2011.

44 Peter J Stuckey, Ralph Becket, and Julien Fischer. Philosophy of the MiniZinc challenge.
Constraints, 15(3):307–316, 2010.

45 Alvaro Torralba, Jendrik Seipp, and Silvan Sievers. Automatic instance generation for
classical planning. In Proceedings of the International Conference on Automated Planning and
Scheduling, volume 31, pages 376–384, 2021.

46 Hafiz Ullah and Sultana Parveen. A literature review on inventory lot sizing problems. Global
Journal of Research In Engineering, 10(5), 2010.

47 Mauro Vallati, Lukás Chrpa, and Thomas Leo McCluskey. What you always wanted to
know about the deterministic part of the international planning competition (IPC) 2014
(but were too afraid to ask). Knowledge Engineering Review, 33:e3, 2018. doi:10.1017/

S0269888918000012.
48 Mario Vanhoucke and Broos Maenhout. On the characterization and generation of nurse

scheduling problem instances. European Journal of Operational Research, 196(2):457–467,
2009.

49 Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. SATzilla: portfolio-based
algorithm selection for sat. Journal of artificial intelligence research, 32:565–606, 2008.

50 Lin Xu, Frank Hutter, Jonathan Shen, Holger H Hoos, and Kevin Leyton-Brown. SATzilla2012:
Improved algorithm selection based on cost-sensitive classification models. Proceedings of SAT
Challenge, 2012, 2012.

51 Neng-Fa Zhou and Håkan Kjellerstrand. Optimizing SAT encodings for arithmetic constraints.
In International Conference on Principles and Practice of Constraint Programming, pages
671–686. Springer, 2017.

https://doi.org/10.1016/0004-3702(95)00045-3
https://doi.org/10.1017/S0269888918000012
https://doi.org/10.1017/S0269888918000012

	1 Introduction
	2 Related Work
	3 Constraint-based Automated Instance Generation
	3.1 irace's Tuning Process
	3.2 AutoIG's Instance Generation Process
	3.3 Evaluating Graded and Discriminating Instances

	4 Case Studies
	5 Experimental Setup
	6 Results on graded instances
	6.1 Graded instance generation
	6.2 Comparison of Solver Performance on Graded Instances

	7 Results on Discriminating Instances
	8 Conclusions and Future Work

