Walk Theory

With Applications

P.-L. Giscard, S. Thwaite, D. Jaksch

Seminar

15th August 2014
Outline

1. Introduction
 - Why walks?
 - Strange Observations

2. Walk Theory: the Math
 - Prime structure
 - Posets of walks and ω-walks
 - Prime characterization of graphs

3. Case Study: Media-Industries
 - The network of media-industries
 - Verizon

4. Final Message
Why Walks?

Walk: a \textit{trajectory} on a graph

- Why walks?

Why Walks?

Walk: a *trajectory* on a graph

- Why walks?
 - Random walks, quantum random walks
 - Network analysis is often walk-based
 - Processes undergone by physical systems

Why Walks?

Walks are pervasive objects!

• Adjacency matrix $A^n =$ number of walks on graph
Why Walks?

Walks are pervasive objects!

- Adjacency matrix $A^n = \text{number of walks on graph}$
- Arbitrary matrix $M^n = \text{sum of walk weights}$

$$M = \begin{pmatrix} 1 & i \\ -3 & 5 \end{pmatrix}$$

Matrix power series are walk-series

Analytic matrix function $f(M) = \text{series of walk weights}$
Strange Observation 1

- Changing a square lattice

\[
\# W_{\bullet \rightarrow \bullet'}(\ell) \rightarrow \# W_{\bullet \rightarrow \bullet'}(2\ell)
\]
Strange Observation 1

- Changing a square lattice

\[
\# W_{\bullet \rightarrow \bullet'}(\ell) \quad \longrightarrow \quad \# W_{\bullet \rightarrow \bullet'}(2\ell)
\]

\[\leftarrow \text{Non-trivial for graphs: regularity is lost}\]
\[\leftarrow \text{Trivial transformation for walks}\]
Strange Observation 2

Which graphs are “similar”?

Which graphs are “similar”?

Graph 1

Graph 2

Graph 3

Graph 4
Strange Observation 2

Which graphs are “similar”?

Yet the walk sets \(\mathcal{W}_{\cdot \rightarrow \cdot} \) are \textit{isomorphic} (will come back to that)
Strange Observation 3

- Why is network analysis difficult?

Example: characterizing molecules

<table>
<thead>
<tr>
<th>Method</th>
<th>Dataset</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random walk kernel</td>
<td>Mutag(labelled)</td>
<td>90.0%</td>
</tr>
<tr>
<td>Backtrackless walk kernel</td>
<td>Mutag(labelled)</td>
<td>91.1%</td>
</tr>
<tr>
<td>Feature vector from Random walk</td>
<td>COIL(unlabeled)</td>
<td>94.4%</td>
</tr>
<tr>
<td>Feature vector from backtrackless random walk</td>
<td>COIL(unlabeled)</td>
<td>95.5%</td>
</tr>
<tr>
<td>Feature vector from Ihara coefficients</td>
<td>COIL(unlabeled)</td>
<td>94.4%</td>
</tr>
<tr>
<td>Shortest Path Kernel</td>
<td>COIL(unlabeled)</td>
<td>86.7%</td>
</tr>
<tr>
<td>Feature vector from Random walk</td>
<td>Mutag(unlabeled)</td>
<td>89.4%</td>
</tr>
<tr>
<td>Feature vector from backtrackless random walk</td>
<td>Mutag(unlabeled)</td>
<td>90.5%</td>
</tr>
<tr>
<td>Feature vector from Ihara coefficients</td>
<td>Mutag(unlabeled)</td>
<td>80.5%</td>
</tr>
</tbody>
</table>

Walk-based methods
Strange Observations

- Completely *dissimilar* graphs can have the *same* walk sets
- Even *fundamental* graph properties, *regularity*, may have little effect on walks
- Existence of *non-trivial* properties of walks *valid on all* multi-digraphs
- More strange objects to come (*walks without graphs!*)

Why should we care?
Danger

- The *danger* of misunderstanding walks

Which vertex is most central?
Danger

- The *danger* of misunderstanding walks

Which vertex is most central?

Both red vertices have the same centrality...
...worse, all *self-communicability* measures are identical
Elements of Walk Theory

1. Introduction
 - Why walks?
 - Strange Observations

2. Walk Theory: the Math
 - Prime structure
 - Posets of walks and ω-walks
 - Prime characterization of graphs

3. Case Study: Media-Industries
 - The network of media-industries
 - Verizon

4. Final Message
Prime Structure

Observation: walk = simple path & simple cycle

Walk w factors into 1 simple path and 2 simple cycles

$$w = \gamma_0 \circ \gamma_1 \circ \gamma_2$$

What can we say in general?
Theorem

Let \(\mathcal{G} \) be a graph and \(w \) a walk on \(\mathcal{G} \).
Then there exists a unique factorisation of \(w \) into \(\odot \)-products of prime walks, the simple paths and simple cycles on \(\mathcal{G} \).

Prime walks: \(\gamma \mid w \odot w' \Rightarrow \gamma \mid w \) or \(\gamma \mid w' \)

This holds on all multi-digraphs!

Walk factorization is efficient \(t \propto O(\ell_w) \)

\[
1232332121 = \left(121 \odot \left(232 \odot \left(232 \odot 33 \right) \right) \right) \odot 121
\]

Primes provide walk sets with a structure
Posets of Walks

Construct a prime-based representation of walks

- Sets of walks ordered by divisibility

\[w \preceq \odot w' \iff w \mid w' \]

Example: \(121 \mid 1221 = 121 \odot 22 \implies 121 \preceq \odot 1221 \)

- Poset of walks \(P_\alpha = (W_G; \alpha \alpha, \preceq \odot) \)

Set of walks from \(\alpha \) to \(\alpha \) on \(G \)
Posets of Walks

Construct a prime-based representation of walks

- Sets of walks ordered by divisibility

\[w \leq_{\circ} w' \iff w | w' \]

Example: \(121 | 1221 = 121 \circ 22 \implies 121 \leq_{\circ} 1221 \)

- Poset of walks \(P_{\alpha} = (W_G; \alpha \alpha, \leq_{\circ}) \)

Set of walks from \(\alpha \) to \(\alpha \) on \(G \)

\(P_{\alpha} \) is a complicated object: \(\infty \)-many walks

Difficult to find all divisors

Can we make things simpler?
Posets of ω-walks

Sets of distinct prime factors...

$$w = \gamma_0 \odot \gamma_1^3 \Rightarrow S_\omega(w) = \{\gamma_0, \gamma_1\}$$

...ordered by inclusion

$$S_\omega(w) \leq_\omega S_\omega(w') \iff S_\omega(w) \subseteq S_\omega(w')$$

Poset of ω-walks: $P_\omega = (S_\omega, \leq_\omega)$

An element of P_ω is a list of distinct cycles
Example: P_α^ω on the Square

Walking from • to itself
Which primes can be reached?

\rightarrow Set of accessible primes, walking from • to itself
Example: P_ω^α on the Square

Relations between the primes
Example: P^ω_α on the Square

Relations between the primes

Prime Tree T^ω
Example: P^ω_α on the Square

Primes provide walk sets with a *structure*

= P^ω
Posets of ω-walks

P^ω_α is simpler than P_α

- P^ω_α is a finite lattice, has a smallest and largest element
- P^ω_α is the uniquely determined by the prime tree T^ω_α

Theorem
Knowledge of P^ω_α or T^ω_α is equivalent to that of P_α.

- Number of walk posets on n primes:
 \[B_n \sim \left(\frac{.792}{\log n} n\right)^n \]
Strange Observation 4

- Number of walk posets on n primes:

 $$B_n \sim \left(\frac{.792 \, n}{\log n}\right)^n$$

- Most walk sets have no exact graph realization!
Strange Observation 4

- Number of walk posets on n primes:
 \[B_n \sim \left(\frac{.792 \, n}{\log n} \right)^n \]
Strange Observation 4

- Number of walk posets on \(n \) primes:
 \[B_n \sim \left(0.792 \frac{n}{\log n}\right)^n \]

- Number of walk posets on \(n \) primes with exact graph realization
 \[C_n \sim 4^n n^{-3/2} / \sqrt{\pi} \ll B_n \]

\(\subseteq P^\omega \)

No graph exists with exactly this walk poset

\(a, b, c, d \) primes

\(\leftarrow \) Most walk sets have no exact graph realization!
Isomorphic Walk Sets

Isomorphic walk sets on dissimilar graphs

Theorem

Let G_1 and G_2 be two multi-digraphs and α and α two vertices on G_1 and G_2, respectively. If $T_{G_1;\alpha}$ is isomorphic to $T_{G_2;a}$ then $(W_{G_1;\alpha \alpha}, \circ)$ is isomorphic to $(W_{G_2;aa}, \circ)$.

Length of prime ℓ_p is *unspecified*

$\rightarrow \infty$-many graph realizations
Prime Characterization of Graphs

Graphs determine walks... *do walks determine graphs?*

YES

Theorem

Let G be a connected multi-digraph.
Then G is *uniquely* determined, up to an *isomorphism*, by the primes it sustains.

\leftrightarrow Prime trees + length of primes + roots $=$ unique graph

↑ location of the 1$^{\text{st}}$ vertex
Elements of Walk Theory

1. Introduction
 - Why walks?
 - Strange Observations

2. Walk Theory: the Math
 - Prime structure
 - Posets of walks and ω-walks
 - Prime characterization of graphs

3. Case Study: Media-Industries
 - The network of media-industries
 - Verizon

4. Final Message
Network of Media-Industries

Industries linked by thick edges & feedback processes

Source: Media Industry Networks 2006, Laurie Lock Lee, Optimice
Network of Media-Industries

Prime trees

Universal and perfect representation of walk sets W_G
Network of Media-Industries

→ "Distance" between prime trees:
Verizon vs Yahoo

- Network analysis
 Centrality; Eigenvector centr.: Yahoo > Verizon
 Degree centr.; Closeness centr.: Yahoo > Verizon

- Distinct feedback processes
 Verizon 100 > Yahoo 55

- Trees of cycles: $1 \leq (\text{DFP} / \# \text{primes}) \leq \text{Comp. gr. of cycles}$
 Verizon 4.5 > Yahoo 2.9
Verizon vs Microsoft

- Network analysis
 Centrality; Eigenvector centr. : VeriZon > Microsoft
 Degree centr.; Closeness centr.: VeriZon > Microsoft

- Distinct feedback processes: VeriZon 100 ≳ Microsoft 95
- (DFP/ # primes): VeriZon 4.5 ≳ Microsoft 4.3
- Participation to feedbacks: VeriZon = Microsoft
Verizon vs Time Warner

- Network analysis
 Centrality; Eigenvector centr. : **VeriZon** > Time Warner

- Distinct feedback processes: **VeriZon** 100 > Time Warner 87
- (DFP/ # primes): **VeriZon** 4.5 > Time Warner 3.95
- Participation to feedbacks: **VeriZon** < Time Warner

\[\text{Time Warner participates more than Verizon?} \]
Return to equilibrium

Let's perturb Verizon and Time Warner...

Time Warner has more impact than Verizon!
Walk Theory

1. Introduction
 - Why walks?
 - Strange Observations

2. Walk Theory: the Math
 - Prime structure
 - Posets of walks and ω-walks
 - Prime characterization of graphs

3. Case Study: Media-Industries
 - The network of media-industries
 - Verizon

4. Final Message
Final Message

Are you interested in the processes that a system undergoes or the network that sustains them?

Main Message

Walks need to be treated by a separate theory of walks. It provides new graph-free tools to study them.

Results

- Graph-free representation of walks using primes
- Rigorous mathematical theory
- Enables perfect comparison of walk sets

Open problems

- There is much more to say about prime trees!
Thank You!

Work supported by: EPSRC Grant EP/K038311/1

I am looking for a postdoctoral position!