
A modular theory of object orientation
in higher-order UTP

Frank Zeyda1, Thiago Santos2, Ana Cavalcanti1, and Augusto Sampaio3

frank.zeyda@york.ac.uk thiago.lvl.santos@gmail.com

1 University of York, Deramore Lane, York, YO10 5GH, UK
2 Banco Central do Brasil, Rua da Aurora, 1259, Santo Amaro,

Recife, PE, CEP 50040-090, Brazil
3 Universidade Federal de Pernambuco, Centro de Informática, Caixa Postal 7851,

Recife, PE, CEP 50732-970, Brazil

Abstract. Hoare and He’s Unifying Theories of Programming (UTP) is
a framework that facilitates the integration of relational theories. None
of the UTP theories of object orientation, however, supports recursion,
dynamic binding, and compositional method definitions all at the same
time. In addition, most of them are defined for a fixed language and do
not lend themselves easily for integration with other UTP theories. Here,
we present a novel theory of object orientation in the UTP that supports
all of the aforementioned features while permitting its integration with
other UTP theories. Our new theory also provides novel insights into how
higher-order programming can be used to reason about object-oriented
programs in a compositional manner. We exemplify its use by creating an
object-oriented variant of a refinement language for real-time systems.

Keywords: unification; semantics; models; integration; refinement

1 Introduction

The development of semantic theories is central to the creation of sound meth-
ods for program verification. While ongoing research has produced a mélange
of specialised theories and calculi for a wide array of languages, a challenge one
is currently faced with is unification: identification of commonalities in those
languages and transfer of results between them. The Unifying Theories of Pro-
gramming (UTP) [8] address this issue by providing a meta-theoretical frame-
work that sustains a unified notion of computation as predicates over relevant
observations. The UTP is not a programming language in itself; it rather defines
a mathematical infrastructure in which arbitrary modelling and programming
languages can be uniformly described and combined.

Semantic models for object-oriented languages have been an active area for
research. A seminal work is Abadi and Cardelli’s calculus of objects [1]. More
recently, Hoare and He’s Unifying Theories of Programming (UTP) [8] has been
applied in this domain [7,11,13,16] too. The use of UTP is attractive as it fosters
the integration of object-oriented theories with theories that address complemen-
tary paradigms. We have, for instance, UTP theories of process algebras [8,10],

hardware description languages [3], and timed calculi [11,15]. The UTP has na-
tive support for refinement and thus by default supports refinement-based veri-
fication techniques based on algebraic laws and refinement strategies.

A primary motivation for the use of UTP is that the existing theories of
object orientation are not adequate to model languages and technologies that
also require models for orthogonal aspects such as reactive behaviours, real-time
execution, or memory utilisation. Java, and UML and its variants, are examples
of such languages; their complex models require unification of various features
related to memory model, communication, synchronisation, time, and so on.

Whereas theory integration is a major concern, we also regard the following
four features as essential: language independence, recursion, dynamic dispatch of
calls, and compositional definitions. Language independence ensures that we can
use arbitrary theories to define the model of method behaviour. Compositionality
is crucial to formalise and reason about concepts in isolation, such as defining
and overriding individual methods. It turns out that none of the existing UTP
works [7,11,13,16] on object orientation can do justice to all four issues at once.

While higher-order programming (HOP) is used in some form in all of the
existing UTP works, designing a fully compositional theory that includes mutual
recursion, based on HOP in UTP, is particularly challenging. Mutually-recursive
methods in this context can only be specified through concurrent assignments of
all procedure variables for methods that take part in the recursion. Redefinition
of individual methods participating in a (mutual) recursion is thus not possible,
and this crucially destroys compositionality which requires, by definition, theory
constructs for (re)defining individual methods. Nevertheless, HOP has proved
itself very useful, even necessary, in theories of object orientation [14].

We note that handling recursion in non-UTP theories such as [2] can be more
straightforward, but simplicity is usually gained by assuming a fixed syntax. Our
agenda is different: we want to retain language independence and thus have to
take an entirely semantic view of programs, as prescribed by the UTP.

The contribution of this paper is a novel UTP theory of object orientation
that solves the four issues pointed out above and, at the same time, lends itself
for integration with other theories of programming. For this, we extend and
combine two existing works: our theory of object orientation in [13] and the
theory of methods in [20]. The result is a comprehensive and modular theory of
the object-oriented paradigm that is fully compositional in terms of declaring
classes, attributes and methods, supports mutual recursion, dynamic binding,
refinement, and makes no assumptions about the syntax and semantics of the
base language in which we write methods. We also illustrate how our theory can
be used to create new object-oriented languages, based on existing theories.

In Section 2, we review preliminary material. Section 3 details the problems
in the existing UTP work(s) on object orientation. In Section 4, we extend the
theory of methods in [20] to support parameters, and Section 5 presents our novel
theory of object orientation. In Section 6, we exemplify its use by creating an
object-oriented variant of a language for reactive real-time systems and, lastly,
in Section 7, we conclude and discuss related and future work.

2 Preliminaries

In this section, we discuss the UTP and its higher-order extension. Programs and
their specifications are characterised in the UTP by relations that determine the
observable behaviours of a computation. Relations are encoded by alphabetised
predicates: that is, predicates equipped with an alphabet of variables, obtained
by the operator α(), that determines the observable quantities of interest.

As an example, we consider the predicate D =̂ ok ∧ n > 0⇒ ok ′ ∧ n ′ = n−1
with alphabet {n,n ′, ok , ok ′}. Whereas n of type N is a program variable, ok
of type boolean is an auxiliary variable that captures termination. D encodes a
computation that, if started (ok) in a state where n > 0, terminates (ok ′) while
decrementing the value of n. Dashed variables are used to record immediate or
final observations, and undashed variables, initial observations. Predicates that
only refer to initial (undashed) variables are called conditions.

The construction used in the definition of D is called a design, here with
precondition n > 0 and postcondition n ′ = n− 1. The UTP introduces a special
notation P ` Q =df ok ∧ P ⇒ ok ′ ∧ Q for designs with P and Q as pre and
postcondition; thus D can be equally written as n > 0 ` n ′ = n + 1.

Signature Standard predicate calculus operators apply to alphabetised predi-
cates too. Disjunction is used to model nondeterminism, and relational compo-
sition to model sequential execution. Further operators for designs are II (skip),
which retains the values of all variables, and assignment (:=). These opera-
tors implicitly define the alphabet of the result. For skip and assignment, it can
also be explicitly given by a subscript, as in IIA and x :=A e.

The UTP conditional D1 / b . D2, defined by (b ∧ D1) ∨ (¬ b ∧ D2), is
written in infix form and corresponds to the more familiar if b then D1 else D2

construct. In a recursion µX • F (X), occurrences of X in F are recursive
calls. The semantics of recursion is defined by weakest fixed points in the un-
derlying refinement lattice. Refinement is universally defined by reverse impli-
cation: P v Q =df [P ⇐ Q], where [] denotes universal closure. The top and
bottom of the refinement lattice of a theory are denoted by > and ⊥.

Local variables are the object of the var x : T and end x constructs. Whereas
var x : T opens the scope of a new local variable x of type T , end x terminates
it. Their definitions are ∃ x : T • IIA and ∃ x ′ : T • IIA for some alphabet A,
where α(var x) =df A \ {x} and α(end x) =df A \ {x ′}. Both constructs are not
binders, but sequentially composed with a predicate that may use x .

Healthiness conditions Typically, not all predicates over a given alphabet
are considered valid models of computation. To delineate valid predicates, each
UTP theory defines a set of healthiness conditions. These are idempotent and
monotonic functions on predicates whose cumulative fixed points determine the
predicates of the theory. For instance, H1(P) = ok ⇒ P in the theory of designs
rules out predicates that constrain program variables before the program has
started. While monotonicity and continuity of the healthiness conditions ensure
that the predicates of a theory form a complete lattice, monotonicity of the
operators guarantees well-definedness of recursions (weakest fixed points).

A signature and healthiness conditions together define a UTP theory: that
is a set of predicates together with operators that define the semantics of lan-
guage constructs. Unification and clarity is achieved by engineering the predicate
model in such a way that common operators, such as nondeterminism, sequential
composition, conditional statements, refinement, and so on, have similar defini-
tions across theories. Theories are linked either by aggregating their healthiness
conditions, or relating their predicate models using Galois connections [8].

The difficult task in constructing UTP theories is to elicit the denotational
model and healthiness conditions. Once those are in place, we obtain many laws
for free due to the uniformity of operators. Moreover, proofs that only depend
on healthiness conditions naturally carry over to theory combinations. When
conducting refinements, which encompasses both transforming specifications into
software designs, and software designs further into executable code, all we need
to care for are the algebraic laws. Simplicity is gained by discarding the semantic
baggage at that point, being only a means to an end to prove the laws.

A theory of invariants Invariants are conditions that initially are assumed
to hold, and are preserved by all terminating behaviours. The theory of invari-
ants [4], in essence, ensures that violating an invariant is a situation from which
we cannot recover, similar to nontermination. For this, the theory introduces a
healthiness condition SIH(ψ) =̂ ISH(ψ) ◦OSH(ψ) for each state invariant ψ.
The functions ISH(ψ) and OSH(ψ) are defined as follows.

ISH(ψ)(D) =df D ∨ (ok ∧ ¬ D [ok \ false] ∧ ψ ⇒ ok ′ ∧ D [ok \ true]) and

OSH(ψ)(D) =df D ∧ (ok ∧ ¬ D [ok \ false] ∧ ψ ⇒ ψ′)

where ψ is a condition. Intuitively, ISH(ψ)(D) strengthens the precondition of
a design D for it to abort if we start in a state where the invariant ψ does
not hold, and OSH(ψ)(D) strengthens its postcondition in order to ensure that
the invariant is preserved. We note that the substitutions ¬ D [ok ′ \ false] and
D [ok ′ \ true] extract the original pre and postcondition of D [8].

It is possible to show that SIH(ψ)-healthy designs can be written in the
form P ∧ ψ ` Q ∧ ψ′. In [4], it is also shown that SIH(ψ) is idempotent and
monotonic, and closed with respect to the relevant theory operators.

Higher Order HO UTP, in addition, includes procedure values and variables.
For instance, p := {|val x , y : N; res z : N • y 6= 0 ` z := x div y |} assigns to p a
procedure that takes two value parameters, x and y , of type N, and one result
parameter, z , also of type N. A procedure p is called via p(a1, a2, . . .) where the
ai are the arguments passed to the call. For instance, a call p(6, 3, a) yields the
design predicate 3 6= 0 ` a := 6 div 3 (equivalent to a := 2).

In the definition of a procedure value, val is used to introduce a value parame-
ter, res to introduce a result parameter, and valres for a value-result parameter.
HO UTP gives a model to parametrised procedures through functional abstrac-
tion. For instance, p above is encoded by a function that takes two values of type
N and one variable (name) of type N. The alphabet of the predicate resulting
from the call in the above example depends on the argument provided for z . For

instance, α p(6, 3, a) = {a, a ′, ok , ok ′} whereas α p(6, 3, b) = {b, b′, ok , ok ′}.
In HO UTP, we also have a collection of laws to reason about higher-order

predicates, that is, predicates whose alphabets contain procedure variables. A
general law for a procedure call is the following. It is the manifestation of the
copy-rule, enabling us to replace a procedure variable by its body in a call.

Law 1. p := {|Q |} ; p(a) ≡ p := {|Q |} ; Q(a)

An important restriction of HO UTP is that recursion is prohibited. For instance,
we cannot define p := {| resn : N • (n := n − 1 ; p(n)) / n > 0 . II|}, with the
intention p(x) ≡ x := 0, since the procedure variable p that is assigned occurs
within the program value. This is to ensure that procedure types have finite
constructions, and in [20] we have presented a formal proof that this is sufficient
to ensure soundness of the HO UTP model in the context of using arbitrary
UTP theories for the bodies of procedure values.

Procedure variables can be used in theories of object orientation to record
methods [13]. This is a common approach that has the advantage of allowing us
to capture declarative concepts at a high level of abstraction. We next illustrate,
however, some essential challenges in adopting this approach.

3 The problem: syntax and compositionality

The challenges we address are presented here in the context of the UTP theory
of object orientation in [13], but they equally arise in any other treatment that
uses higher-order programming to encode method behaviours [7,11,16]. In [13],
we first extend the theory of designs by introducing additional observational
variables to capture class definitions and the subclass relation. The theory sig-
nature provides operations to declare classes, their attributes, and methods. For
instance, methC m =̂ (pds • body) is used to define a new method m with body
body and parameters pds in a class C , provided C has already been declared.

Procedure variables are used to record the behaviours of methods. That is,
for each new method, a procedure variable is introduced to record the program
that corresponds to the body of the method. Crucially, the same variable is also
used to record overridings of that method in subclasses. Multiple overridings
result in a cascade of tests that determines, at call time, which method body
has to be executed, testing against more concrete types first. In a class hierarchy
where C1 ≺ C2 ≺ C3 (≺ means ‘is extended by’), we may have the program

{|valres self ; pds • (b3 / self is C3 . (b2 / self is C2 . (b1 / self is C1 .⊥)))|}

as part of the definition of a procedure variable that records a method that is
first introduced in C1 and later overridden in C2 and C3. The parameter self
provides a reference to the object on which the method is called, and obj is C is
a test that determines whether an object obj is of a given class type C .

The above solves the problem of dynamic binding in a simple and elegant
manner, but the approach also has apparent ramifications. First, since the cas-
cade of tests has to be syntactically modified with each definition of an overriding

method, we essentially require the value of m to be encoded as syntax rather
than directly as a predicate. While [13] does not explore this in detail, there is
either way no sound justification that permits us to encode the procedure m as
a predicate; for instance, the seminal account [8] on the UTP requires it to be a
program (syntax) whose meaning is determined by a subtheory of designs.

A second problem is that, due to the restrictions on the types of higher-order
variables, we cannot define recursive methods in this way as this would result
in procedure variables that refer to themselves in their alphabets. Consider, for
instance, the following declaration of mutually-recursive methods m1 and m2.

methC m1 =̂ (resn : N • (n := n − 1 ; m2(n)) / n > 1 . II) ;
methC m2 =̂ (resn : N • (n := n − 1 ; m1(n)) / n > 1 . II)

(1)

whose behaviour is to set the value of n to zero by a call to either m1(n) or m2(n).
Such definitions are prohibited by the theory above because m1 includes a vari-
able m2 in its alphabet which, in turn, includes the variable m1. More precisely,
the circular inclusion of variables in the procedure body alphabets creates a circu-
lar dependency in the types of m1 and m2, which is prohibited in HO UTP as we
noted. A possible solution is to use a recursive predicate, but this forces us to de-
fine the methods in a single assignment m1,m2 := µX ,Y • 〈F (X ,Y),G(X ,Y)〉
for some F and G , and thus destroys compositionality of method definitions. For
instance, it is subsequently not possible to redefine or override one of the above
methods individually — any update to m1 or m2 has to be done ‘in bulk’ with
the recursion calculated anew. The loss of compositionality thus prevents us from
modular reasoning at the level of individual method overridings.

Despite the above problems, the use of procedure variables per se is a powerful
tool to pave the way for modular instantiation of one UTP theory with another.
The theory of methods in the next section tackles the identified problems.

4 A theory of parametrised methods

Our first theory is not a comprehensive theory of object orientation, but rather
addresses the particular problem of using higher-order variables to record method
behaviour. First, it establishes, via a constructive proof that a program model
exists, a sound basis for using predicates of arbitrary UTP theories to specify
procedure values. It is therefore possible to identify procedure values directly
with the predicates of any designated UTP theory for the method bodies. We
thereby eradicate any dependency on a fixed syntax and remain in the realm of
semantic models, adhering to the philosophy and approach of the UTP.

To address the problem of compositionality, the theory of methods uses the
notion of ranks. Intuitively, the rank determines the maximal nesting level of
program abstractions in a predicate. For instance, the predicates of rank 0 are
just the standard predicates; predicates of rank 1 include procedure variables
whose values are standard predicates; predicates of rank 2 moreover admit val-
ues being rank 1 predicates, and so on. Thus, x := 1 is a rank 0 predicate,
m1 := {|x := 1|} is a rank 1 predicate, and m2 := {|x := 1 ; callm1|} is a rank 2

predicate. Formally, the rank of a variable depends on its type: basic types like N,
B, P(N), and so on, have a rank 0, and for procedure types the rank is one more
than the maximum rank of the variables in the procedure’s alphabet. Predicate
ranks are determined by the maximum rank of its alphabet variables.

For theories of object-oriented programming, as we explain next, we only
need and admit rank 1 and rank 2 procedure variables. To emphasise the ranks
of variables, we use a single overbar for rank 1 variables and a double overbar for
rank 2 variables. Each method of an object-oriented program is now encoded by
two variables rather than one, with the same name but at different ranks. Where
methods are defined, we use rank 2 variables; where methods are called, we use
rank 1 variables, regardless of using recursion. The use of different variables for
defining and calling methods implies that call dependencies do not implicitly
constrain the ranks of method variables anymore. Furthermore, it paves the way
for a compositional treatment of recursive methods. Below, we recapture the
example (1) at the end of Section 3 in the context of the theory of methods.

m1 := (resn : N • (n := n − 1 ; m2(n)) / n > 1 . II) ;
m2 := (resn : N • (n := n − 1 ; m1(n)) / n > 1 . II)

(2)

Unlike (1), the above is a valid higher-order predicate since there are no recur-
sions in the types of m1 and m2 due to the procedure variables being at different
ranks in the recursive calls (they are indeed different variables).

A single healthiness condition in the theory of methods establishes a connec-
tion between rank 1 and rank 2 procedure variables. As they are different vari-
ables, there exists a priori no formal relationship between them. The healthiness
condition MH of the theory enforces a formal link: they have to be equivalent
if we quantify over standard (non-procedure) variables.

MH(P) = P ∧ (∀m m | {m,m} ⊆ αP • [callm ⇔ callm]0)

The []0 is a restricted universal closure that only quantifies over standard (non
higher-order) variables. The call construct abbreviates a method call without
parameters: that is, callm is just the same as m(). We next generalise the theory
of methods to cater for the use of parameters as employed in the example above.

Parametrised procedure types The type of a parameterless procedure in
higher-order UTP is, in essence, equated with the alphabet of the body predicate.
For parametrised procedures, this is insufficient because we also need to consider
the number and types of parameters in order to distinguish procedures with
different parametrisations by their types. A complication arises due to result
parameters: here, the alphabet of the predicate obtained via a procedure call
moreover depends on the variable(s) being passed as arguments to the call;
hence, we cannot assume a fixed predetermined alphabet in that case.

To overcome these issues, we recast the notion of procedure type in [8] as
specified in Fig. 1. We use two type constructors there: BaseType to construct
the type of a standard value, and ProcType to construct a procedure type.

Procedure types are encoded by a pair consisting of a sequence of parameter
types and an alphabet. Here, however, the alphabet only includes global variables

<type> ::= <base type> | <procedure type>

<procedure type> ::= ProcType(seq (<parameter type>), <alphabet>)

<parameter type> ::= ValArg(<type>) | ResArg(<type>)

<alphabet> ::= F (<variable> : <type>)

<base type> ::= BaseType(int) | BaseType(bool) | . . .

Fig. 1. Recast notion of procedure types that supports parameters.

of the procedure predicate. Alphabets are encoded by finite sets (F) of pairs
v : T that define a name v and a type T . Parameters can be either value
parameters (ValArg) or result parameters (ResArg). Both constructors take the
type of the parameter. By way of an example, {|val x : N; res y : N • y := x +z |}
is of type ProcType(〈ValArg(NatType),ResArg(NatType)〉, {z : NatType}) where
NatType abbreviates BaseType(nat).

Procedure ranks revisited To justify the sound use of parametrised proce-
dures, we require a notion of rank for the new model of procedure types outlined
above. Following the same approach as in [20], we can then perform an inductive
construction of a program model, which is sufficient to establish the consistency
of the morphisms {| . . . |} and p(args) for the construction and destruction of
parametrised procedure values. The rank is defined inductively as follows.

rank(BaseType(t)) = 0 and

rank(ProcType(〈v1 : t1, v2 : t2, . . . 〉, {w1 : t̃1,w2 : t̃2, . . . })) =

max {rank(t1), rank(t2), . . . , rank(t̃1), rank(t̃2), . . . }+ 1

As before, the rank of basic types is zero. For procedure types, it is one more
than the maximum of the ranks of the types of global variables used in the
procedure predicate and the types of parameters. We note that our notion of
type and rank entail procedures being passed as arguments, although the theory
of methods does not require this. The soundness of permitting it is an added
contribution of our work; it may be useful in other uses of higher-order UTP.

To establish consistency of the procedure model, we inductively construct a
program model for predicates up to a given rank n, denoted by Pred(n). Pred(0)
yields the standard predicates, which trivially have a model. Rank 1 predicates
are obtained by extending rank 0 predicates with additional predicates whose
alphabets include procedure variables whose bodies and arguments can range
over rank 0 predicates and values. In each step, the set of constructible predicates
monotonically increases, that is Pred(0) ⊂ Pred(1) ⊂

A complete model Pred of procedure values of any rank is obtained by taking
the limit of this chain: Pred =df

⋃
{n : N • Pred(n)}. Parametrised procedures

are then introduced as a new type that is isomorphic to Pred . A mechanisation
in Isabelle/HOL is available [19] that soundly introduces (parameterless) proce-
dures up to rank 2. We recall that, for the theory of methods, rank 2 predicates
are sufficient. The generality of the result may be useful elsewhere, though.

The soundness of the higher-order program model is indeed the primary
concern in generalising the theory of methods. Procedure values and calls are,
as in [8], modelled by functions and their application. Finally, we need to recast
the healthiness condition MH to cater for parametrised method variables.

MH(P) = P ∧ (∀m m | {m,m} ⊆ αP • [∀ args • m(args)⇔ m(args)]0)

The quantification ∀ args • . . . ranges over well-formed argument lists only,
namely those whose arguments are of the correct length and type.

Having generalised the theory of methods to deal with parameters, we next
combine it with the theory of object orientation in [13] to overcome the issue in
the latter (Section 3) with dependency on syntax and compositionality.

5 A modular theory of object orientation

Our integrated theory is an extension of the theory of designs, and, therefore,
includes the auxiliary boolean variables ok and ok ′ to record termination. Be-
sides, it also includes additional auxiliary variables to capture specific aspects of
object-oriented programs. These are listed below.

– cls of type P(CName) to record the names of classes used in the program;
– atts of type CName 7→ (AName 7→ Type) to record the class attributes;
– sc of type CName 7→ CName to record the subclass hierarchy;
– an open set {m1,m2, . . . } of procedure variables for method definitions; and
– an open set {m1,m2, . . . } of procedure variables for method calls.

Above, CName is the set of all class names, AName the set of all attribute
names, and Type is defined as CName ∪ prim where the elements in prim
represent primitive types, like integers or booleans. The functions atts and sc
are partial (7→) since they only consider classes that are currently declared,
namely those in cls. The function sc maps each class to its immediate su-
perclass; the subclass relation is obtained via its reflexive and transitive clo-
sure: Csub � Csuper =df (Csub ,Csuper) ∈ sc∗. There also exists a special class
Object ∈ CName that does not have a superclass.

Healthiness conditions The theory has seven healthiness conditions. They
are characterised by invariants that constrain the permissible values of cls, atts
and sc, as well as the procedure variables for methods. Table 1 summarises the
first six constraints, which are related to cls, atts and sc. Whereas the table
specifies the invariants themselves, the corresponding healthiness conditions are
obtained by application of SIH(. . .), as explained in Section 2.

The invariant OO1 requires Object always to be a valid class of the program.
OO2 and OO3 determine the shape of the subclass relation: it has to be a tree
with Object at its root. Attributes have to de defined for all classes (OO4),
they have to be unique (OO5), and their types, if they are not primitive, must
refer to classes that have already been declared (OO6).

Invariant ψ for SIH(ψ) Description

OO1 Object ∈ cls Object is always a class of the program.

OO2 dom sc = cls \Object Every class except Object has a superclass.

OO3 ∀C : dom sc • (C ,Object) ∈ sc+ Object is at the top of the class hierarchy.

OO4 dom atts = cls Attributes are defined for all classes.

OO5 ∀C1,C2 : dom atts | C1 6= C2 • Attribute names are unique across classes.
dom(atts(C1)) ∩ dom(atts(C2)) = ∅
OO6 ran(

⋃
ran atts) ⊆ prim ∪ cls Attributes have primitive or class types.

Table 1. Healthiness conditions for the theory of object orientation.

A further healthiness condition (OO7) not in Table 1 corresponds to MH in
the theory of parametrised methods. We recast it in terms of an invariant too.

OO7(P) = SIH(∀m m | {m,m} ⊆ αP • [∀ args • m(args)⇔ m(args)]0)(P)

Theory predicates hence have to maintain the fundamental correspondence be-
tween rank 1 and rank 2 method variables. Finally, we let OO denote the com-
position of all healthiness conditions: OO =df OO1 ◦OO2 ◦ . . . ◦OO7.

Operations We provide operations to declare classes, attributes and methods
in a compositional manner. We use classC extends B to declare a new class
C that extends a class B , attC x : T to declare a new attribute x of type T
in a class C , and methC m =̂ (pds • body) to define or override a method m
in a class C . To declare more than one class, attribute or method, we sequence
multiple applications of the aforementioned constructs. We focus here on the
definition of methods and refer to [12] for a complete account of our theory.

To define and override methods, we recast the respective constructs in [13]
in the context of the theory of methods. Below, pds are the arguments of the
method and body is the program for the method body.

methC m =̂ (pds • body) =df

letmp =̂ {|valres self ; pds • (body / self is C . ⊥oo) |} •

OO

varm ;(
C ∈ cls ∧
∀ t ∈ types(pds) • t ∈ prim ∪ cls

)
`
(
mp v m

′ ∧ w = w ′
)

where w = in α(methC m = (pds • body))

provided {m,m ′,m} ∩ α(methC m = (pds • body)) = {m,m ′}

A new procedure variable m is introduced to record the method. That variable
must not already be in the input alphabet of the predicate, although we assume
that the corresponding rank 1 variable m is included in it. The operation changes
the value of the rank 2 variable only, which holds the method definition. The
link to the respective rank 1 variable is established via application of OO().

The operation is specified by a design whose precondition requires that the
class C in which the method is defined has been declared, and that the types
of method parameters are either primitive or declared classes. The postcondi-
tion states that the new value of m refines4 mp while leaving other variables
unchanged. The procedure mp first includes an additional implicit parameter
self for self reference. It then wraps the method body into a conditional that
tests if the target object (self) is of the correct type. If so, the body program is
executed. Otherwise, we execute ⊥oo , which corresponds to program failure in
the theory of object orientation and arises if an undefined method is called.

We observe that, above, body can in fact be any predicate. Our earlier dis-
cussion of soundness of the theory of methods in Section 4 relaxes the caveat
in the earlier work that it has to be syntax. Secondly, this definition is compo-
sitional since the higher-order type of m can be a priori determined: while it
needs to include all rank 1 variables for methods, the types of those variables are
fixed and not affected by the definition of further methods. Finally, recursion at
the level of method definitions is possible since m may itself be included in the
alphabet of m without giving rise to issues related to recursions in procedure
types — we recall that m and m are different variables.

For overriding a method in a subclass, methC m =̂ (pds • body) has a differ-
ent definition. As hinted in Section 3, we do not introduce a new variable in that
case, but instead alter the procedure that m records. That is, for every overriding
of m in a subclass D , we inject an additional test body / self is D at a suit-
able position into the conditional in mp. This is a syntactic transformation that
requires part of the procedure value to be encoded in syntax. The mix of syntax
and semantics turns out not to be an issue though, and neither does it compro-
mise soundness and language independence. To formalise the combination of the
two, we adopt the approach in [20] by first defining a generic datatype METHOD
for the syntactic fragment into which the method bodies are embedded.

METHOD [PRED] ::=

CondSytx 〈〈METHOD × CVAL×METHOD〉〉 | BotSytx | Body 〈〈PRED〉〉

The type parameter PRED is instantiated with the predicate model of the em-
bedded theory for method behaviour; in this way, we retain language indepen-
dence. To give a semantics to the syntactic fragment, we inductively define a
denotational function J K that maps elements of METHOD [PRED] (syntax) to
predicates in PRED . For instance, CondSytx (M1, c,M2) elements are translated
into conditionals JM1K / c is self . JM2K, and BotSytx into ⊥oo . For Body P , we
just have P . We hence require the operators P / b .Q and ⊥oo to be defined in
the respective theory for method behaviour. Thanks to their uniform character-
isations in UTP, we can always introduce them if they are not already available.
The inductive definition of J K can easily be shown to terminate. Soundness of
the altered procedure model is established using a similar proof as in [20].

We omit further aspects of our integrated theory for reasons of space. The
report [12] provides a comprehensive account and, in particular, additionally

4 Using refinement here instead of equality ensures monotonicity of the construct.

addresses issues of definedness, the encoding and creation of objects, and sup-
port for references in our theory. We conclude by observing that we now can
encode (2), as it was our initial motivation and goal.

methC m1 =̂ ((resn : N • n := n − 1 ; m2(n)) / n > 1 . II) ;
methC m2 =̂ ((resn : N • n := n − 1 ; m1(n)) / n > 1 . II)

where α(methC m1 =̂ . . .) =df {m1,m
′
1,m2,m

′
2,m1,m

′
1,m2,m

′
2} and

α(methC m2 =̂ . . .) =df {m1,m
′
1,m2,m

′
2,m1,m

′
1,m2,m

′
2}

Whereas the first method declaration constrains m1, the second one constrains
m2. The procedures refer to each other via m1 and m2, and at the point where
m2 is first called, m2 does not have to be declared yet. Whereas above, the
methods were simple imperative programs, in the next section we investigate
the case where methods have more elaborate semantic models.

6 Example: an object-oriented real-time language

The ability to instantiate the method model is a feature of our theories that
segregates it from other theories of object orientation. This requires the inclusion
of additional healthiness conditions that constrain procedure variables to record
predicates of particular theories, rather than admit any kind of predicate. If
the theory to be used to describe method behaviour has a set H of healthiness
conditions, we proceed as follows. For each function H ∈ H, we define a pair Ĥ1

and Ĥ2 that embed H into the theory of object orientation.

Ĥ1(P) =df SIH
(
∀m ∈ αP • ψH(m)

)
(P)

Ĥ2(P) =df SIH
(

(∀m ∈ αP • ψH(m))⇒ (∀m ∈ αP • ψH(m))
)

(P)

where ψH(m) =̂ (∀ args • H(m(args)) = m(args))

The embedded healthiness conditions are again invariants, here constraining
procedure variables. In particular, Ĥ1 forces all programs recorded by procedure
variables at rank 1 in the alphabet of P to be fixed points of H. Ĥ2 does the same
for procedure variables at rank 2, albeit assuming that the property already holds
for rank 1 variables, since the procedures recorded in rank 2 predicates typically
use rank 1 variables, namely when they call other methods.

The function ψH(m) abbreviates the property that a method m, if called
on a valid argument list args, yields a predicate that is a fixed point of H. By
introducing Ĥ1 and Ĥ2 for all healthiness conditions H of H, we obtain that
the programs recorded by procedure variables are fixed points of all healthiness
conditions in H and so valid predicates of the embedded theory.

To illustrate an embedding of a theory, we consider Circus Time [18], a theory
of reactive processes that supports communication events, state operations, and
real-time. The auxiliary variables of the theory include tr and tr ′ to record time
traces of interactions. They are of type seq

+
(seqEvent × PEvent) so that each

trace element consists of a pair whose first component is a sequence of events in

Healthiness condition

R1(A) =df A ∧ tr ≤ tr ′

R2(A) =df A[〈(〈〉, last(tr).2)〉, tr ′ − tr) / tr , tr ′] where tr ≤ tr ′

R3(A) =df II / wait .A where II =df (¬ ok ∧ tr ≤ tr ′) ∨ (ok ′ ∧ II{wait,tr,state})

Table 2. Healthiness conditions of Circus Time.

a time slot, and whose second component is the set of events refused at the end
of the slot. The variables ok and ok ′ of boolean type record the observation that
the predecessor or current process has not diverged. Termination is captured
here by the boolean variables wait and wait ′. Specifically, wait records that the
predecessor has terminated, and wait ′ records termination of the current process.

Healthiness conditions are listed in Table 2. The first healthiness condition
R1(A) establishes that a process action A cannot alter the previous history of
interactions. The second one R2(A) enforces insensitivity of A to interactions
that took place before it started. And the third one R3(A) masks out any
behaviours of A until its predecessor action has terminated (wait is true). The
operators ‘≤’ and ‘−’ are special prefix and sequence subtraction operators on
timed traces, whose definition can be found in [18].

The three healthiness conditions in Table 2 give rise to six healthiness con-
ditions in the integrated theory. Hence, in addition to OO1 to OO7, we have,
for instance, the following pair of healthiness conditions for R1:

R̂11(A) =df SIH
(
∀m ∈ αP • ψR1(m)

)
(A)

R̂12(A) =df SIH
(

(∀m ∈ αP • ψR1(m))⇒ (∀m ∈ αP • ψR1(m))
)

(A)

The lifted version of the remaining healthiness conditions are analogous.
Inside our new theory, we can encode, for instance, actions such as

var o : C ; r : T • c := newC () ;
(in ? x −→ o.calc(x , r)) � 5 ; wait 0 . . 10 ; out ! r −→ Skip

Above, in and out are communication channels, and o is a local object, initialised
with a new instance of a class type C . We first wait for a communication on a
channel in that inputs a value x . The synchronisation deadline (. . . � 5) specifies
that a communication on in with the environment must take place within 5 time
units. Subsequently, the method calc(. . .) is called on o, and a nondeterministic
wait models a time budget of 10 time units for the call.

While x is a value parameter of calc, we assume the result of the call is
deposited in a result parameter r ; we, lastly, output r through a communica-
tion on the channel out . Whereas the interaction and time operators above are
provided by the embedded theory (Circus Time), the method call o.m(x , r) is
translated into a procedure call m(o, x , r) in the host theory, so that the target
object becomes an additional argument of the procedure call.

The above mix of reactive, timed and object-oriented operators is to a cer-
tain extent already possible in TCOZ [11], however, our combined theory here
inherits the generality in supporting calc to be defined recursively, redefined and
overridden. To reason about programs such as the above, we use the laws of
the embedded theory (Circus Time), alongside new special laws in the theory of
methods, for instance, to reason about recursive methods.

The example shows that it is in essence very easy to integrate an existing UTP
theory with our theory of object orientation. Certain operators, however, might
have to be defined in the embedded theory, namely to construct the cascades of
tests to resolve dynamic binding in method definitions and overloading.

The language we defined in this section is interesting in its own right, as it
is a step towards resolving the dichotomy between active process behaviour and
passive class objects which is present in many of the current works that combine
object orientation with reactive theories. While those works typically provide
good coverage of object-oriented concepts for class objects, they have little to
no support to deal with the same features in terms of processes. The theory we
have defined promises to enable progress in this area.

7 Conclusion

We have presented a novel theory of object orientation that segregates itself from
other works by facilitating the integration with theories that address comple-
mentary aspects. In particular, we are free to define and instantiate the semantic
model for method behaviour. This was achieved by extending and combining two
existing unifying theories: one that addresses object orientation and another one
that uses a novel approach to encode methods as higher-order programs.

Our theory is compositional in the presence of recursive method definitions,
and enables us to reason about declarative concepts at a fine level of granularity.
For instance, we can formulate a law that sequenced definitions of mutually-
recursive methods commute, or that individual recursive methods can be over-
ridden by a refinement of the method in a subclass.

We note that our theory here has also been integrated with the UTP theory
of pointers in [6] to support object references and data sharing. A detailed dis-
cussion of this integration can be found in [12]; here, we decided to omit those
details as it is not a central part of the particular problem we solve. It appears,
moreover, that we can perform this integration by instantiating our theory of ob-
ject orientation, namely with a theory of method behaviour that already includes
a treatment of pointers; this makes pointers an orthogonal aspect.

The practical relevance of our theory is illustrated by two notable applica-
tion examples. Firstly, Safety-Critical Java (SCJ) [17] is a recent technology that
has been proposed to enable the verification and certification of Java programs;
it requires a highly-integrated theory that includes object orientation, a spe-
cialised execution and memory model [4], and time. Secondly, SysML [5] is an
extension of UML 2.0 that adds support for system-level specification; its se-
mantics likewise involves the combination of a theory of object orientation with

other theories [9], here VDM and CSP. We are currently looking at both these
languages in order to define semantic models.

An open problem is refinement strategies that take advantage of the com-
binations of laws that arise from integrating our theory with others. While the
UTP model we present can already be used to prove general properties of object-
oriented designs such as the soundness of refactorings, a repository of novel laws
for the verification of concrete applications is expected to emerge, too.

Related work Most of the existing UTP-related works on object orientation
give a semantics for a fixed language. Smith’s work [16] defines a semantics for
Abadi and Cardelli’s theory of objects [1]; He et al. [7] a model for rCOS, a
language for refinement of object systems; and Qin et al. [11] a semantics for
TCOZ, an integration of Object Z and Timed CSP. Our earlier work in [13]
does not introduce a fixed language, but, as explained in Section 3, it lacks a
justification that its combination with arbitrary theories for method models does
not raise unsoundness issues in its use of higher-order UTP.

We next examine in more detail to what extent the existing UTP works
address the issue of dynamic dispatch, recursion and compositionality.

Dynamic dispatch In Smith’s work [16], dynamic dispatch emerges naturally as
it is a theory of an object-based language (that is, [1]), rather than a theory of
object orientation. Whereas rCOS [11] gives a comprehensive semantic account
of the issue, TCOZ [7] leaves an explanatory gap here by only defining the
denotation of fresh and overridden methods, but not, in detail, how method
calls are resolved based on dynamic type information.

Recursion Only Smith’s work [16] and our earlier theory [13] fully support
recursion. In rCOS [7], recursion fails due to the denotational function that maps
rCOS programs to their UTP models not terminating for recursive methods, and
TCOZ [11] excludes recursive methods altogether from its class operations, since
recursion is not part of the language of Object Z on which TCOZ is based.

Compositionality In [20], we first pointed out fundamental issues that prevent
any theory that uses higher-order UTP to encode methods in a näıve way from
being fully compositional. These issues indeed apply to [7,11,16]; they are not
elicited in those works though as HOP is only used in an informal manner. As
explained in Section 3, our earlier work [13] suffers from these problems too.

Future work Future work consists of two strands: first we require a comprehen-
sive set of laws to reason about object-oriented constructs in our theory and the
paradigm in general. Some laws have already been defined and proved in [12],
but, in particular, we require additional laws to reason about method definition
and overriding in the presence of recursion, exploiting OO7 in Section 5.

Secondly, the integration of languages has to be examined in more detail,
especially in terms of proof strategies. Finally, we have also started to mechanise
our theory in a theorem prover: Isabelle/HOL. So far, our mechanisation provides
a provably sound model for higher-order predicates up to rank 2, and a generic
encoding of parametrised procedures. We are currently completing this work.

Acknowledgements We would like to thank the anonymous reviewers for their
useful suggestions. This work was funded by the EPSRC grant EP/H017461/1.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Monographs in Computer Science.
Springer, New York, Berlin, Heidelberg, January 1996.

2. M. Abadi and R. Leino. A Logic of Object-Oriented Programs. In Proceedings of
TAPSOFT ’97, volume 1214 of LNCS, pages 682–696. Springer, April 1997.

3. A. Butterfield, A. Sherif, and J. Woodcock. Slotted-Circus. In Integrated Formal
Methods (IFM 2007), volume 4591 of LNCS, pages 75–97. Springer, July 2007.

4. A. Cavalcanti, A. Wellings, and J. Woodcock. The Safety-Critical Java memory
model formalised. Formal Aspects of Computing, 25(1):37–57, January 2013.

5. Object Management Group. OMG Systems Modeling Language (OMG SysMLTM).
Technical Report Version 1.3, OMG, June 2012.

6. W. Harwood, A. Cavalcanti, and J. Woodcock. A Theory of Pointers for the UTP.
In Proc. of ICTAC 2008, volume 5160 of LNCS, pages 141–155. Springer, 2008.

7. Jifeng He, Xiaoshan Li, and Zhiming Liu. rCOS: A refinement calculus for object
systems. Theoretical Computer Science, 365(1-2):109–142, November 2006.

8. C. A. R. Hoare and H. Jifeng. Unifying Theories of Programming. Prentice Hall
Series in Computer Science. Prentice Hall, Upper Saddle River, NJ, USA, 1998.

9. A. Miyazawa, L. Lima, and A. Cavalcanti. SysML Blocks in CML. Technical Report
COMPASS White Paper WP02, Seventh Framework Programme: Comprehensive
Modelling for Advanced Systems of Systems (Grant 287829), April 2013.

10. M. Oliveira, A. Cavalcanti, and J. Woodcock. A UTP semantics for Circus. Formal
Aspects of Computing, 21(1-2):3–32, February 2009.

11. S. Qin, J. S. Dong, and C. Wei-Ngan. A Semantic Foundation for TCOZ in Unifying
Theories of Programming. In FME 2003: Formal Methods, volume 2805 of LNCS,
pages 321–340. Springer, September 2003.

12. T. Santos. A Unifying Theory of Object-Orientation. Technical Report (Qualifying
Dissertation), Federal University of Pernambuco, Centre of Informatics, Brazil,
2007. http://www.cin.ufpe.br/~acas/pub/TheoryObjectOrientation.pdf.

13. T. Santos, A. Cavalcanti, and A. Sampaio. Object-Orientation in the UTP. In
Proceedings of UTP 2006, volume 4010 of LNCS, pages 18–37. Springer, 2006.

14. S. M. Shaner, G. T. Leavens, and D. A. Naumann. Modular Verification of Higher-
Order Methods with Mandatory Calls Specified by Model Programs. ACM SIG-
PLAN Notices, 42(10):351–368, October 2007.

15. A. Sherif, A. Cavalcanti, H. Jifeng, and A. Sampaio. A process algebraic framework
for specification and validation of real-time systems. FAC-J, 22:153–191, July 2009.

16. M. A. Smith and J. Gibbons. Unifying Theories of Objects. In Integrated Formal
Methods (IFM 2007), volume 4591 of LNCS, pages 599–618. Springer, July 2007.

17. The Open Group. Safety Critical Java Technology Specification. Technical Report
JSR-302, Java Community Process, January 2011.

18. J. Woodcock. CML definition 4. Technical Report COMPASS Deliverable 23.5,
FP7 Grant 287829, 2013. Available at http://www.compass-research.eu.

19. F. Zeyda. Mechanising Higher-Order UTP in Isabelle/HOL. Technical report,
University of York, York, YO10 4DL, UK, November 2013. Available at http:

//www.cs.york.ac.uk/circus/publications/techreports/index.html.
20. F. Zeyda and A. Cavalcanti. Higher-Order UTP for a Theory of Methods. In

Proceedings of UTP 2012, volume 7681 of LNCS, pages 204–223, August 2012.

http://www.cin.ufpe.br/~acas/pub/TheoryObjectOrientation.pdf
http://www.compass-research.eu
http://www.cs.york.ac.uk/circus/publications/techreports/index.html
http://www.cs.york.ac.uk/circus/publications/techreports/index.html

