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Abstract. Safety-Critical Java (SCJ) is a restriction of the Real-Time
Specification for Java to support the development and certification of
safety-critical applications. It is the result of an international effort from
industry and academia. Here we present the first formalisation of the
SCJ execution model, covering missions and event handlers. Our formal
language is part of the Circus family; at the core, we have Z, CSP, and
Morgan’s calculus, but we also use object-oriented and timed constructs
from the OhCircus and Circus Time variants. Our work is a first step in
the development of refinement-based reasoning techniques for SCJ.
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1 Introduction

Safety-Critical Java (SCJ) [11] restricts the Java API and execution model in
such a way that programs can be effectively analysed for real-time requirements,
memory safety, and concurrency issues. This facilitates certification under stan-
dards like DO-178B, for example. It also makes possible the development of
automatic tools that support analysis and verification.

SCJ is realised within the Real-Time Specification for Java (RTSJ) [21]. The
purpose of RTSJ itself is to define an architecture that permits the develop-
ment of real-time programs, and SCJ reuses some of RTSJ’s concepts and actual
components, albeit restricting the programming interface. SCJ also has a specific
execution model that imposes a rigid structure on how applications are executed.

The SCJ specification, as designed by the JSR 302 expert group, comprises
informal descriptions and a reference implementation [8]. As a result, analysis
tools have been developed to establish compliance with the SCJ restrictions [20].

In this paper, we complement the existing work on SCJ by presenting a
formal model of its execution framework in a Circus-based language. The Open
Group’s informal account of SCJ [8] relies on text and UML diagrams, and our
objective is to formalise the execution model. Circus [5] is a refinement notation
for state-rich reactive systems. Its variants cover, for instance, aspects of time
and mobility. We use its object-oriented variant, OhCircus, as our base notation.

Our formal model first elicits the conceptual behaviour of the SCJ frame-
work, and secondly illustrates the translation of actual SCJ programs into their
OhCircus specifications in a traceable manner. For now, we ignore certain aspects
of SCJ, such as the memory model, which we discuss in a separate paper [7],



and scheduling policy. Our focus is the top-level design and execution of SCJ
programs, and its primary framework and application components.

The SCJ framework as designed in Java is a reflection of a general program-
ming paradigm. It embeds a particular view of data operations, memory, and
event-based versus thread-based designs [22]. Our model identifies the fundamen-
tal concepts of SCJ at a level where it can be regarded itself as a programming
language. The fact that it can be realised on top of Java and the RTSJ is a bonus.
It is conceivable, however, to implement specific support based on other main-
stream languages, or even define an entirely new language, and formalisation is
conducive to the development of such a language which is our future ambition.

What we present here is a precise semantics for core elements of SCJ. It
enables formal verification of SCJ applications beyond the informal validation of
statically checkable properties currently available [20]. OhCircus provides a notion
of refinement, and our work is an essential first step to justify development and
verification methods that can produce high-quality SCJ implementations.

Our work also highlights the need for a particular integration of Circus vari-
ants. Their Unifying Theories of Programming (UTP) [13] foundation facilitates
this work. The UTP is a uniform framework in which the semantics of a vari-
ety of programming paradigms can be expressed and linked. UTP theories have
already been presented for Circus and Circus Time [16,18], and also for object-
orientation [17] and the SCJ memory model [7]. We thus identify the Circus
variant necessary to formalise SCJ programs. The design of the semantic model
establishes the right level of detail for reasoning about SCJ, and determines
where the added expressiveness of Java should be ignored.

Finally, our work guides the construction of a platform for reasoning. Our
models are free from the noise that originates from the expressiveness of Java.
They allow us to reason about SCJ programs using refinement-based techniques.
For verification, we can construct models of particular programs, and use the
Circus and UTP techniques for reasoning. For development, we can start from
an abstract specification, and develop implementations that follow the structure
and respect the restrictions of our models.

In the next section, we introduce the SCJ framework and a case study used
throughout as an example. We also provide a brief overview of our formal nota-
tion. In Section 3 we present our models and modelling approach. In Section 4,
we discuss our contributions and some related work.

2 Preliminaries

In this section we present first the SCJ execution model and introduce an exam-
ple: an automotive cruise controller. Afterwards, we present Circus and OhCircus.

2.1 Safety-Critical Java

SCJ recognises that safety-critical software varies considerably in complexity.
Consequently, there are three compliance levels for SCJ programs and framework
implementations. In this work, we are concerned with Level 1, which, roughly,
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Fig. 1. ACCS interactions

corresponds in complexity to the Ravenscar profile for Ada [4]. Level 1 applica-
tions support periodic event handlers and aperiodic event handlers.

The SCJ programming model is based on the notion of missions. They are
sequentially executed by an application-specific mission sequencer provided by a
safelet, the top-level entity of an SCJ application. All these concepts are realised
by either interfaces or abstract classes. Namely, they are the Safelet interface,
and the abstract classes MissionSequencer and Mission (see Fig. 2).

A Level 1 mission consists of a set of asynchronous event handlers; both
periodic and aperiodic handlers are supported. Each aperiodic handler is asso-
ciated with a set of events: firing of one of them causes the handler method
to be scheduled for execution. Periodic event handlers, on the other hand, are
controlled by a timer. Event handlers are also provided through abstract classes
whose handling method must be implemented by concrete subclasses (see Fig. 2).

A cruise control system As an example of an SCJ program, and to illustrate
our modelling approach, we present an implementation of Wellings’ automotive
cruise control system (ACCS) in [21] that uses SCJ Level 1.

The goal of an ACCS is to automatically maintain the speed of a vehicle
to a value set by the driver; in Fig. 1 we give an overview of its main compo-
nents and commands. Explicit commands are given by a lever whose positioning
corresponds to the following instructions: activate, to turn on the ACCS if the
car is in top gear, and maintain (and remember) the current speed; deactivate,
to turn off the ACCS; start accelerating , to accelerate at a comfortable rate;
stop accelerating , to stop accelerating and maintain (and remember) the cur-
rent speed; and resume to return to the last remembered speed and maintain it.
Implicit commands are issued when the driver changes gear, operates the brake
pedal, or switches on or off the engine. The ACCS is deactivated when the driver
changes out of top gear, presses the brake pedal, or switches the engine off.

The speed of the vehicle is measured via the rotation of the shaft that drives
the back wheels. The shaft generates an interrupt for each rotation, which causes
an event being fired and an associated handler being scheduled for execution.
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Fig. 2. UML class diagram for the cruise controller

The actual speed of the car depends on the throttle position, which is deter-
mined by the depression of the accelerator pedal and a voltage supplied by the
ACCS. The combination of these values is performed outside the ACCS.

Sensors detect external happenings and generate appropriate interrupts, as
illustrated in Fig. 1. These interrupts are reflected in the SCJ program by the
firing of SCJ events that correspond to the possible happenings. For the setting
of the throttle voltage, communication of the new voltage value to the ACCS
components is realised in the program using a hardware data register.

Fig. 2 presents a UML class diagram that gives an overview of the design
of the ACCS as an SCJ Level 1 safelet. As said above, Safelet is an inter-
face, and the classes MissionSequencer, Mission, AperiodicEventHandler and
PeriodicEventHandler are abstract. They are part of the SCJ API developed
on top of the RTSJ API to capture the SCJ programming model.

MainSafelet is the entry point for the application. It provides the method
getSequencer() that returns the mission sequencer. The other two methods
setUp() and tearDown() are provided for initialisation and cleanup tasks. The
MainMissionSequencer class constructs instances of the Mission class, by im-
plementing getNextMission(). Concrete subclasses of Mission have to imple-
ment the initialize() and missionMemorySize() methods. The former cre-
ates the periodic and aperiodic event handlers of the mission. The handlers
register themselves with the mission by way of the register() method.

Both periodic and aperiodic handlers implement handleAsyncEvent() to
specify their behaviour when the handler is released. The two extra methods
requestTermination() and terminationPending() cannot be overridden; they
allow for the mission to be terminated by one of the handlers.

Fig. 2 does not show all components of the SCJ API. There are eight classes
that realise the mission framework, twelve classes in the handler hierarchy, five
classes that deal with real-time threads, seven classes concerned with scheduling,



and ten classes for the memory model. The formal model that we present here
abstracts from all these details of the realisation of the SCJ Level 1 programming
paradigm in Java. We capture the main concepts of its novel execution model.
This enables reasoning based on the core components of the SCJ paradigm.

2.2 Circus and OhCircus

The Circus language [5] is a hybrid formalism that includes elements from Z [19],
CSP [12], and imperative commands from Morgan’s calculus [15]. Several exam-
ples are provided in the next section: see Fig. 4, 5, 6, and 7, for instance.

Like in CSP, the key elements of Circus models are processes that interact with
each other and their environment via channels. Unlike CSP, Circus processes may
encapsulate a state. The definition of a Circus process hence includes a paragraph
that identifies the state of the process using a Z schema.

The behaviour of a process is defined by its main action (which may refer-
ence local actions, introduced for structuring purposes). The language of actions
includes all constructs from CSP, such as Skip and Stop, input and output pre-
fixes, sequencing, parallelism, interleaving and hiding, as well as operations to
modify the state. Parallelism and interleaving are parametrised in terms of the
state components that each parallel action can modify to avoid potential write
conflicts. State operations can be specified either by Z operation schemas or
guarded commands. We explain the details of the notation as needed.

OhCircus [6] extends Circus with an additional notion of class. Unlike pro-
cesses, objects can be used in arbitrary mathematical expressions. The permissi-
ble notation for OhCircus class methods includes all schema operations, guarded
commands, and some additional notations used to instantiate new data objects,
invoke methods, access object fields, and support inheritance.

Processes describe the active behaviour of the model (or of its components),
including the whole system. Classes model passive data objects and operations
performed on them. In the following section we present our model for SCJ pro-
grams. The notation we use is OhCircus. We, however, use a few action operators
of the Circus Time [18] variant, and object references from our previous SCJ mem-
ory model in [7]. The latter is specified at the level of the Unifying Theories of
Programming [13], the semantic framework of Circus and its extensions.

3 Framework and application models

Our model of SCJ factors into two dimensions: a generic framework model, and
an application model that corresponds to a particular concrete SCJ program. We
specify the semantics of safelets, the mission sequencer, missions, and aperiodic
as well as periodic event handlers. To illustrate the application model, we make
use of the cruise controller application as it was presented in the previous section.

Fig. 3 presents an overview of the structure of the model of a typical SCJ
application — here the cruise controller. Each of the five top-level boxes refers
to a process that realises a specific component of the SCJ programming model.
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Fig. 3. Structure of the model the SCJ cruise controller

We label these boxes with the process names. Arrows indicate the channels on
which the components communicate. For instance, the processes MainSafelet and
MainMissionSequencer communicate on start sequencer and done sequencer .

The model of the application is obtained by parallel composition of the top-
level processes, and by hiding all but the external channels. These define the
interface of the system; for example, we define the event engine on to represent
the happening that occurs when the engine is switched on.

Each top-level process is itself defined by the parallel composition of a generic
framework process (suffix FW ), and a process that is in direct correspondence
with the Java code (suffix App). We have an instance of the EventHandlerFW
framework process for each handler. To obtain the model of an existing SCJ
program, we can follow the strategy explained below to construct the App pro-
cesses, and use the FW processes as defined later on; except only that, in the
case of a handler App process, we need to be aware of the events the handler is
bound to, and declare channels to represent them.

The following provides the definition of the MainSafelet process.

channelset MainSafeletChan =̂
{| setUpCall , setUpRet , tearDownCall , tearDownRet |}

process MainSafelet =̂

(SafeletFW J MainSafeletChan K MainSafeletApp) \MainSafeletChan

The channels on which framework and application process communicate are
hidden (operator \). Here, these are setUpCall , setUpRet , tearDownCall , and
tearDownRet . Above, a channel set MainSafeletChan is defined to contain all



these channels. In the definition of MainSafelet , it is used to define the synchro-
nisation set of the parallelism (operator J . . . K), and the set of channels to be
hidden. The synchronisation set defines the channels over which communication
requires synchronisation between the two parallel processes.

We differentiate between channels that represent framework events, and chan-
nels that represent method calls. Channels suffixed with Call and Ret encode
method calls. Method calls are in some cases modelled by channel communica-
tions rather than mere OhCircus data operations to allow the framework pro-
cesses to trigger or respond to those calls. A call to requestTermination(), for
instance, has to interact with the mission framework process. We then require a
Call and a Ret channel for this method.

In the following we specify each of the top-level processes.

3.1 Safelet model

The framework process SafeletFW for a safelet is given below; it has no state.

process SafeletFW =̂ begin
SetUp =̂ setUpCall −→ setUpRet −→ Skip
Execute =̂ start sequencer −→ done sequencer −→ Skip
TearDown =̂ tearDownCall −→ tearDownRet −→ Skip

• SetUp ; Execute ; TearDown
end

The main action, which is given at the end after the •, sequentially executes
the SetUp, Execute and TearDown local actions. They correspond to the ini-
tialisation, execution, and cleanup phases of the safelet. SetUp and TearDown
synchronise in sequence (prefixing operator −→) on the setUp[Call/Ret ] and
tearDown[Call/Ret ] channels, before terminating (basic action Skip). The syn-
chronisations model calls to the methods setUp() and tearDown() of the Java
class. Since the methods are parameterless and do not return any values, the com-
munications through the channels are just synchronisations: there is no input or
output. The methods themselves are specified in the application process as exem-
plified below: the framework process defines the flow of execution, and the appli-
cation process defines specific program functionality. Execute raises two frame-
work events: start sequencer to start the mission sequencer, and done sequencer
to detect its termination. These channels are exposed by the Safelet component
(that is, not hidden in its definition as shown above), and their purpose is to
control the MissionSequencer component which we specify later on.
We now present the application process for the safelet in our example.

process MainSafeletApp =̂ begin
setUpMeth =̂ setUpCall −→ Skip ; setUpRet −→ Skip
tearDownMeth =̂ tearDownCall −→ Skip ; tearDownRet −→ Skip

Methods =̂ µX • setUpMeth ; X

• Methods 4 tearDownMeth
end

The specification is trivial here since setUp() and tearDown() in MainSafelet



process MissionSequencerFW =̂ begin
Start =̂ start sequencer −→ Skip

Execute =̂ µX • getNextMissionCall −→ getNextMissionRet ? next−→
if next 6= null −→ start mission .next −→ done mission .next −→X
8 next = null −→ Skip
fi

Finish =̂ end sequencer app −→ end mission fw −→ done sequencer −→ Skip

• Start ; Execute ; Finish
end

Fig. 4. Mission sequencer framework process

do not contain any code in the ACCS implementation. More important is the
modelling approach, which we adopt in all application processes. A local action
Methods recursively (operator µ) offers a choice of actions that correspond to
methods of the SCJ class; the choice is exercised by the associated framework
process. For the safelet application process, the only action offered by Methods is
setUpMeth. In the main action, we have a call to Methods. Termination occurs
when there is a call to the tearDown() method. In the main action, this is
captured by an interrupt (operator 4) that calls the tearDownMeth action.

A method action, here setUpMeth or tearDownMeth, synchronises on the
channel that represents a call to it, setUpCall or tearDownCall , for instance, and
then executes actions that correspond to the method implementation. Since, as
already mentioned, setUp() and tearDown() in MainSafelet do not contain any
code, in our example above, these actions are just Skip. At the end the method
action synchronises on the channel that signals the return of the call, setUpRet
or tearDownRet , for instance. If the method has parameters or returns a value,
the call and return channels are used to communicate these values. Examples of
our encoding of parametrised methods are shown below.

3.2 Mission sequencer model

The mission sequencer process (Fig. 4) communicates with the safelet process to
determine when it has to start, and to signal its termination.

The main action executes Start to wait for the mission sequencer to be
started, which is signalled by a synchronisation on start sequencer . Afterwards,
execution proceeds as specified by a recursion in the action Execute. In each itera-
tion, it synchronises on the channels getNextMissionCall and getNextMissionRet
to obtain the next mission via next . This corresponds to a call to the SCJ method
getNextMission(). Since it returns a (mission) object, getNextMissionRet takes
as input a value next of type MissionId (containing identifiers for the missions
of an application). A special mission identifier null is used to cater for the case
in which the method returns a Java null reference to signal that there are no
more missions to execute. In Execute, a conditional checks the value of next . If
it is not null , synchronisations on start mission .next and done mission .next
are used to control the Mission process (defined later on) that manages exe-
cution of the particular mission next , and then Execute recurses (calls X ) to



handle the next mission. Otherwise, Execute finishes. At the end, in the Finish
action, synchronisation on end sequencer app is used to terminate the mission
sequencer application process. Next, synchronisation on end mission fw termi-
nates the mission framework process. Finally, synchronisation on done sequencer
acknowledges to the safelet process that the mission sequencer has finished.

For our example, the mission sequencer application process is as follows.

process MainMissionSequencerApp =̂ begin
state MainMissionSequencerState == [mission done : BOOL]
Init =̂ mission done := FALSE
getNextMissionMeth =̂ getNextMissionCall−→

if mission done = FALSE−→
mission done := TRUE ; getNextMissionRet ! MainMissionId −→ Skip

8 ¬ mission done = FALSE −→ getNextMissionRet ! null −→ Skip
fi

Methods = µX • getNextMissionMeth ; X

• Init ; (Methods 4 end sequencer app −→ Skip)
end

This is a more complete illustration of our approach to modelling SCJ classes as
Circus processes. The member variables of the class become state components. In
the above example, we have one state component mission done corresponding
to a variable of the same name in the SCJ class MainMissionSequencer. We
define a free type BOOL ::= TRUE | FALSE to support boolean values in Z.

The action Init specifies the constructor. Other method actions are named
after the methods of the class. In the case of the mission sequencer application
class modelled above, we have just the method getNextMission().

The main action of an application process is always of the above shape: a call
to Init , if present, and a call to Methods, with an interrupt that allows a control-
ling process to terminate it via a special event (here end sequencer app). In the
case of the safelet application process discussed earlier, the special termination
event corresponded also to a call to its tearDown() method.

In MainMissionSequencerApp, the specification of getNextMissionMeth is in
direct correspondence with the code of getNextMission(). We have a con-
ditional that, depending on the value of mission done updates its value and
outputs (returns) the next mission or null . The difference is that, instead of rep-
resenting a mission by an object, we use constants of type MissionId . In our ex-
ample, since we have only one mission, we have just one constant MainMissionId .

We omit the definition of the process MainMissionSequencer , which is a
parallel composition of MissionSequencerFW and MainMissionSequencerApp,
similar to that used to define MainSafelet at the beginning of this section.

3.3 Mission model

The purpose of a mission process, defined by a parallelism between the mission
framework process and an associated mission application process, is to create the
mission’s event handlers, execute the mission by synchronously starting them,



process MissionFW =̂ begin

state MissionFWState == [mission : MissionId , handlers : FHandlerId ]

Init == [MissionFWState ′ | mission ′ = null ∧ handlers ′ = ∅]

Start =̂ Init ; start mission ? m −→mission := m

AddHandler =̂ val handler : HandlerId • handlers := handlers ∪ {handler}
Initialize =̂ initializeCall .mission−→µX •

add handler?h −→ (AddHandler(h); X )
@
initializeRet .mission −→ Skip


StartHandlers =̂ 9 h : handlers • start handler . h −→ Skip

StopHandlers =̂ 9 h : handlers • stop handler . h −→ done handler . h −→ Skip

Execute =̂ StartHandlers;activate handlers −→ stop handlers −→ StopHandlers

Cleanup =̂ cleanupCall .mission −→ cleanupRet .mission −→ Skip

Finish =̂ end mission app .mission −→ done mission .mission −→ Skip

• (µX • Start ; Initialize ; Execute ; Cleanup ; Finish ; X )

4 end mission fw −→ Skip

end

Fig. 5. Mission framework process

wait for their termination, and afterwards finish the mission. It also allows the
termination of the mission by a handler at any point.

Fig. 5 presents the framework process for mission execution. Its state has two
components: the identifier mission of the mission being executed, if any, and its
finite set handlers of handlers. The handlers are identified by values of a type
HandlerId . The action Init is a standard Z operation to initialise the state. The
declaration MissionFWState ′ introduces dashed versions of the state component
names (mission ′ and handlers ′) to represent the values of the components after
initialisation. Init defines that, initially, there is no mission executing, so that
the value of mission is null , and therefore, the set of handlers is empty.

In the main action, we use again the modelling pattern where we have a
sequence of actions that define the different phases of the entity life-cycle, here
a mission. In the case of the mission framework process, a recursion perpetu-
ally calls this sequence of actions, because this process controls all missions in
the program, and so repetitively offers its service. Termination of the service is
determined by the mission sequencer process using the channel end mission fw .

The Start action initialises the state and waits for the mission sequencer to
start a mission. Since this framework process can handle any mission, Start uses
start mission to take a mission identifier m as input, and records it in mission.
Finish uses that mission identifier to terminate the application process for the
mission with a synchronisation on end mission app .mission, and to signal to
the mission sequencer that the mission has finished with done mission .mission.



The Initialize action models the initialisation phase which is initiated by the
framework calling the initialize() method. It is specified using a recursion
which continually accepts requests from the mission application process, through
the channel add handler , to add a handler h to the mission (this is achieved by
the parametrised action AddHandler). Besides, the application process may use
the event initialiseRet .mission to terminate Initialize at any time.

In the action Execute, first of all, all handlers are started with a call to the ac-
tion StartHandlers. It uses synchronisations start handler .h to start in interleav-
ing (operator 9) all handlers h recorded in the state. The processes corresponding
to the handlers h synchronise with the mission process on start handler .

The handlers do not immediately become active after they are started. For
that, the action Start uses a channel activate handlers. All handler processes
synchronise on it, but only those that previously synchronised on start handler
proceed to execute their active behaviour. In this way, we ensure that handlers
can be initialised asynchronously, but have to start execution synchronously.

Termination of the handlers is initiated by the mission application process
with a synchronisation on stop handlers, raised by the action corresponding to
requestTermination(). After that, Execute calls the action StopHandlers. For
each handler h of the mission, StopHandlers uses stop handler .h to stop it, and
then waits for the notification done handler .h that it actually terminated.

Finally, the Cleanup action calls the action of the mission application pro-
cess corresponding to its cleanup() method. In what follows we discuss the
application process, using the ACCS MainMission class as example.

Action methods are encoded as before; the model for initialize() is dif-
ferent, though, since it not only results in the creation of data objects, but
also provides information to the framework about the handlers that have been
created. Below we include an extract of its specification for the ACCS model.

initializeMeth =̂ initializeCall .MainMissionId−→
var . . . ; speed : SpeedMonitorClass;

throttle : ThrottleControllerClass;

cruise : CruiseControlClass; . . . •
throttle := new ThrottleControllerClass(speed , . . .);
ThrottleControllerInit ! throttle −→ Skip;
add handler .ThrottleControllerHandlerId −→ Skip
cruise := new CruiseControlClass(throttle, speedo);
engine := new EngineClass(cruise, . . .);
EngineInit ! engine −→ Skip;
add handler .EngineHandlerId −→ Skip ; . . .

initializeRet .MainMissionId −→ Skip

This formalises the declaration of local variables speed , throttle, and so on for
handler objects. These variables have a class type, and are initialised using its
constructor. For instance, throttle := newThrottleControllerClass(speed , . . .) is
a reference assignment to throttle of an object of class ThrottleControllerClass
defined by its constructor, given speed and other parameters.

An important observation is that a handler is characterised not merely by
(framework and application) processes, but also by a data object. In Fig. 3 this



is indicated by boxes in the processes for handlers. Accordingly, we need to
establish a connection between the data object and the process that aggregates
it. This is achieved via a designated channel with suffix Init . The application
process uses this channel to retrieve the data object it is connected to.

A pair of Java statements that create and register a handler with the current
mission is, therefore, translated to one assignment and two communications.
As already explained, the assignment constructs the handler’s data object and
assigns it to the appropriate local variable. Next, we have a communication like
ThrottleControllerInit ! throttle, which outputs a reference to the data object to
the handler process. Finally, to record the handler as part of the mission, we
have a communication like add handler .ThrottleControllerHandlerId . In the
program this corresponds to a call to register() on the handler object.

We note, however, that not all data objects need to be wrapped in a process.
For example, the CruiseControlClass object does not need to be associated with
a process since the framework does not need to directly interact with it. It is
used to aggregate other objects and has a direct translation as an OhCircus class.

Another method of a mission application class that needs special encoding
is requestTermination(); it also needs to communicate with the framework
process as it raises the stop handlers event. All other action methods, like, for
instance, the action for the missionMemorySize() method, and the main action
are as already explained and exemplified for application processes.

3.4 Handler models

As already noted, the application process for a handler associates application
events to it. On the other hand, the specification of the framework process is
similar for periodic and aperiodic handlers. In Fig. 6, we sketch the generic frame-
work process for an event handler. It is parametrised by an identifier that must be
provided when the framework process is instantiated for a particular handler. For
the engine handler, for example, we use EventHandlerFW (EngineHandlerId).

The state component active of the EventHandlerFW records if the handler
is active in the current mission or not. The main action defines an iterative
behaviour that is interrupted and terminated by the event end mission fw ,
which, as mentioned before, indicates the end of the mission execution.

Each iteration defines the behaviour of the handler during a mission. First,
the state is initialised using Init . Afterwards, the handler waits to be started us-
ing the StartHandler action in external choice (operator @) with a synchronisa-
tion on activate handlers, offered by ActivateHandlers. The action StartHandler
synchronises on a particular start handler event determined by the handler iden-
tifier. Afterwards, it also offers a synchronisation on activate handlers (calling
ActivateHandlers), which always occurs prior to entering the execution phase.

If the start handler event occurs before activate handlers, the value of active
is TRUE . In this case, the handler calls the action DispatchHandler . It raises the
enter dispatch event to notify the application process that it has to enter the
handler’s dispatch loop in which it starts responding to the external events asso-
ciated with it. The dispatch loop is interrupted after the stop handler . handler



process EventHandlerFW =̂ handler : HandlerId • begin

state EventHandlerFWState == [active : BOOL]

Init == [EventHandlerFWState ′ | active ′ = FALSE ]

StartHandler =̂ start handler . handler −→ active := TRUE

ActivateHandlers =̂ activate handlers −→ Skip

DispatchHandler =̂ enter dispatch−→
stop handler . handler −→ leave dispatch −→ Skip

•


µX • Init;

((StartHandler ; ActivateHandlers) @ ActivateHandlers);
if active = TRUE −→DispatchHandler
8 active = FALSE −→ Skip
fi

 ; X


4 end mission fw −→ Skip

end

Fig. 6. Framework process for event handlers

event, by synchronising on leave dispatch. If active is FALSE , the handler pro-
cess skips, as in this case the handler is not part of the current mission.

As already said, the application processes for handlers are factored into a
data object modelled by an OhCircus class, and a process that aggregates it and
releases the handler. Fig. 7 presents the OhCircus class for the Engine Java class.
The correspondence is direct, with member variables defined as state compo-
nents, and the constructor defined in the initial paragraph. For methods, the
only difference is that events are not treated as objects: we use event identi-
fiers. So, handleAsyncEvent takes an event identifier as a value parameter, and
compares it to the identifiers of the events that are handled in the class.

The application process for a handler lifts its data objects to a process that
can interact with the other components of the model. We present in Fig. 8 the
process for the engine handler. The object for the handler is recorded in its state
component obj . The Init action initialises it with the object input through the
constructor call channel: here, the channel EngineInit of type EngineClass.

The handleAsyncEventMeth action simply executes the corresponding data
operation. We cannot adopt exactly this model when handleAsyncEvent() han-
dles an output event. For instance, the throttle controller handler process has to
carry out communications set voltage ! v . In such cases, we cannot represent the
method by just a call to a data operation like in Fig. 8, but have to encode it by
an action. The handleAsyncEventMeth of the application process, in this case,
reflects directly the Java code, but outputs a value in the correct external channel
where in Java we have a device access to achieve the hardware interaction.

Since a handler the used by several missions, the application process re-
peatedly initialises (Init), executes (Execute), and terminates (Terminate) it.
Execution waits for the enter dispatch event, and then enters a loop that re-
peatedly waits for the occurrence of one of the external events associated with



class EngineClass =̂ begin
state EngineState == [private cruise : CruiseControlClass]

initial EngineInit =̂ val cruise? : CruiseControlClass • cruise := cruise?

public handleAsyncEvent =̂ val event : EventId •
if event = EOnEvtId −→ cruise.engineOn()
8 event = EOffEvtId −→ cruise.engineOff ()
fi

end

Fig. 7. OhCircus class for the Engine handler

process EngineApp =̂ begin

state EngineState == [obj : EngineClass]

Init =̂ EngineInit ? o −→ obj := o

handleAsyncEventMeth =̂ val e : EventId • obj .handleAsyncEvent(e)

Execute =̂ enter dispatch −→Dispatch

Dispatch =̂

µX •

leave dispatch −→ Skip
@

 engine on −→ handleAsyncEventMeth(EOnEvtId)
@
engine off −→ handleAsyncEventMeth(EOffEvtId)

 ;

u t : 0..EngineDeadline • wait t




; X


Terminate =̂ done handler .EngineHandlerId −→ Skip

• (µX • Init ; Execute ; Terminate ; X ) 4 end mission fw −→ Skip

end

Fig. 8. Application process for the Engine handler

the handler. In our example, these are engine on and engine off . When such an
event occurs, Dispatch calls the handleAsyncEventMeth action. The subsequent
nondeterministic wait captures the permissible amount of time the program
may take to execute it. The dispatch loop is abandoned when the leave dispatch
event occurs. Termination that follows raises a particular done handler . h event
to notify the mission framework process that the handler has terminated.

In the case of an application process for a periodic handler, the only difference
is in Dispatch. It does not wait for external events and calls handleAsyncEvent()
when an internal timer event release occurs. An additional parallel action Release
generates the timer events. It is given below for ThrottleController.

Release =̂

(µX • (release −→ Skip I 0) ; wait ThrottleControllerPeriod ; X )
4 leave dispatch −→ Skip

The Circus Time wait t action waits for the end of the period before terminat-



ing, and the I operator specifies that the release event happens immediately
afterwards. ThrottleControllerPeriod is a constant that specifies the period of
the handler. (We have one such constant for each periodic handler.)

4 Conclusions

As far as we know, what we presented here is the first formalisation of the SCJ
paradigm. Our models capture the essence of its design, and are an essential asset
for analysis and development techniques for SCJ programs based on refinement.

To validate the models, we have translated them for FDR. The CSP trans-
lation encapsulates all Circus state into process parameters. Timing aspects are
ignored, and so is the detailed application-level behaviour of handlers. We en-
sured that simple interaction scenarios do not result in a deadlock, and also that
the mechanism for starting and terminating missions works as expected.

The direct correspondence between SCJ programs and our models enables
automation in both directions. The framework processes are the same for all
programs. The application processes use a fixed modelling pattern. The formal-
isation of the model-generation strategy discussed here, and the development of
an associated tool, is work in progress. What remains to be done is to formalise
the translation rules, and we believe this can be done in a compositional manner
to facilitate their implementation using visitors. The tool will allow us to tackle
larger industrial examples like those in Kalibera et al.’s benchmark [14].

The SCJ also incorporates a region-based memory model with restrictions
on access to support safe dynamic memory management, and associated static
verification techniques. We have abstracted from this here, but refined versions
of our model will incorporate the language features we have formalised else-
where [7]. For this we will further introduce constructs into the language that
make explicit the memory areas in which objects are allocated. Importantly, this
does not impact on any of the models presented earlier: they remain valid.

There are many approaches and tools to reason about object-oriented pro-
grams and Java [3,1], but they do not cater for the specificities of concurrency
in SCJ. Brooke et al. present a CSP specification for a concurrency model for
Eiffel (SCOOP) [2]. Their CSP specification shares some basic ideas with our
Circus models, but is necessarily more complex due to its generality.

Kalibera et al.’s work in [14] is concerned with scheduling analysis and race
conditions in SCJ programs, but it does not use proof-based techniques. Instead,
exhaustive testing and model-checking is applied. Annotation-based techniques
for SCJ can be found in [20,9]. In [20] annotations are used to check for com-
pliance with a particular level of SCJ, and for safe use of memory. Haddad et
al. define SafeJML [9], which extends JML [3] to cover functionality and timing
properties; it reuses existing technology for worst-case execution-time analysis in
the context of SCJ. Our model is a conceivable candidate to justify the soundness
of checks supported by the annotations and carried out by the tools.

Our long term goal is the definition of refinement-based techniques for de-
veloping SCJ programs. Like in the Circus standard technique, we will devise a



refinement strategy to transform centralised abstract Circus Time models into an
SCJ model as described here. The development of this strategy, and the proof
of the refinement rules that it will require are a challenging aspect of this en-
deavour. This involves the identification of refinement and modelling patterns.
All this shall also provide further practical validation of our model.
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