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Safety-Critical Java (SCJ) is a recent technology that restricts the execution and memory model
of Java in such a way that applications can be statically analysed and certified for their real-time
properties and safe use of memory. Our interest is in the development of comprehensive and sound
techniques for the formal specification, refinement, design, and implementation of SCJ programs,
using a correct-by-construction approach. As part of this work, we present here an account of laws
and patterns that are of general use for the refinement of SCJ mission specifications into designs of
parallel handlers used in the SCJ programming paradigm. Our notation is a combination of languages
from the Circus family, supporting state-rich reactive models with the addition of class objects and
real-time properties. Our work is a first step to elicit laws of programming for SCJ and fits into a
refinement strategy that we have developed previously to derive SCJ programs.
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1 Introduction

Java is indisputably one of the most popular programming languages. Despite this, its use in the safety-
critical industry has been modest due to Java’s generality and rich set of features. Significant issues are,
for example, the use of garbage collection and problems related to thread prioritisation [24, 26], which
render it inadequate for time-critical applications. Safety-Critical Java (SCJ) [16], a recent initiative,
addresses these issues by introducing a restricted subset of Java; it is based on the Real-time Specification
for Java (RTSJ) [27], but further restricts RTSJ’s execution and memory model. This facilitates the formal
analysis of SCJ applications, and thereby enables the application of formal methods to satisfy stringent
criteria of certification standards like DO-178C.

SCJ is organised in three levels (Level 0 to Level 2) that define progressively more complex models
of execution. Our focus is SCJ Level 1, which roughly corresponds to the Ravenscar profile for Ada [5].
At Level 1, applications are organised as a sequence of missions, and each mission consists of a set of
handlers that are executed in parallel. Handlers can either be periodic, which means they are released at
regular time intervals, or aperiodic implying that they are released sporadically by some external event
or stimulus. When a handler is released, its handleAsyncEvent() method is scheduled for execution.

Our previous work has focused on complementing the informal account of SCJ [26] with a formal
model of SCJ’s mission-based execution paradigm [29] and memory model [11]. Our notation is a
combination of languages from the Circus family [9, 10, 23], specifically tailored for the specification
and development of state-rich reactive systems with the addition of discrete time, object-orientation, and
object references. We have also proposed a refinement strategy [12] to transform abstract specifications
of SCJ programs into models that directly correspond to SCJ programs. Such a strategy is inherently
ambitious and complex, as it simultaneously addresses a multitude of concerns. Therefore, it is not
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surprising that the existing work [12] only gives a broad description of the top-level approach; details of
the application of this strategy to a specific example are available in [30].

Our contribution in this paper is to examine in detail the refinement of centralised and sequential
specifications of missions into parallel handler designs. Our general starting point is a Circus process
specification that supports all constructs of Circus, including Z data operations, classes, and Timed CSP
constructs, except for parallelism and interleaving. We then show how decomposition at the level of
data operations, time budgets, and process actions can be used to transform the model into a uniform
shape that determines the structure and behaviour of handlers of an SCJ mission. Refinement laws
directly reflect particular program designs that encapsulate the way in which data is shared and how the
computational work is divided between the handlers of a mission.

The motivation for our work is to pave the way for automated tool support. Due to the novelty of SCJ,
there are not many tools currently available that support the development of critical software in SCJ. The
available tools mostly focus on isolated statically-checkable properties [25, 13, 15], but do not address
the combination of concerns that characterise the SCJ paradigm. While we do address many concerns
of SCJ simultaneously by using a highly expressive language, the practicalities of performing actual
refinements are largely an open problem. It is, clearly, unrealistic to carry out such refinements entirely
by hand, which is well illustrated by the complexity of the example in [30]. Some refinement steps are,
however, inherently difficult to automate. Our work, most importantly, highlights where automation is
feasible, and where human guidance is indispensable to guide the refinement process.

The results in this paper contribute towards elaborating the proposed refinement strategy for SCJ
in [12], but they are also useful outside the context of that technique. Decomposition of centralised
models is a general issue in refinement-based techniques [9], and the models we produce can, in principle,
serve as a starting point for any form of parallel implementation. As the essence of the SCJ paradigm (its
mission-based execution model) can be captured independently of the Java language, our account on
mission decomposition is relevant for other languages that adopt a similar execution model, too.

The structure of this paper is as follows. In Section 2 we review preliminary material: Safety-Critical
Java and the Circus family of languages. Section 3 then discusses our refinement laws, and Section 4
presents an example of their application. Finally, in Section 5 we conclude and suggest future work.

2 Preliminaries

We here discuss in more detail Level 1 SCJ and the Circus family of notations.

2.1 Level 1 SCJ

The execution model for SCJ Level 1 programs is based on four primary conceptual entities: safelet,
mission sequencer, missions and handlers. They are realised by classes that derive either from an in-
terface or abstract class of the SCJ API. Namely, these are Safelet, MissionSequencer, Mission,
PeriodicEventHandler, and AperiodicEventHandler.

Fig. 1 illustrates the life-cycle of a Level 1 safelet, the top-level entity of an SCJ application. The
SCJ infrastructure1 first initialises the safelet. This is followed by a series of mission executions, each
involving the initialisation, execution and termination of a particular mission of the safelet. Mission
initialisation creates the mission’s event handlers, which are released either periodically or by external
events during mission execution. When there are no more missions to execute, the safelet terminates.

1By ‘SCJ infrastructure’ we mean an SCJ-compliant virtual machine.
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Figure 1: Life-cycle of a safelet during execution of a Level 1 application

In terms of the SCJ API, a class implementing Safelet has to provide the methods setUp() and
tearDown(), which are called by the SCJ infrastructure to initialise and shutdown the safelet. Another
method (not in Fig. 1) is called on the safelet object to obtain the mission sequencer of the application,
which defines the sequence of missions to execute. In addition, various methods are called by the in-
frastructure on the mission sequencer, mission and handler objects during execution of the safelet. Most
notably, these are getNextMission() to obtain the next mission to execute, initialize() to create
the handlers of a mission, and handleAsyncEvent() when a handler is released. An SCJ program
must provide implementations of these methods, and it thereby defines the architecture of the application
in terms of missions and handlers. (We note that although the missions and handlers of a safelet are
determined at run-time, we assume in our model that they are a priori fixed.)

When a mission terminates, cleanup() is called on the mission object to perform application-
specific clean-up tasks. As already mentioned, the entire safelet terminates when there are no more
missions to execute, signalled by getNextMission() returning a null reference. In summary, the
safelet and the mission sequencer are control components that orchestrate the execution of the missions
(and their handlers). The missions and the handlers, on the other hand, are the central components that
implement the behaviour of the program, and the main focus of our work here.

2.2 The Circus family

Circus [9] is a language for specification and refinement of state-rich reactive systems. It combines
notations from CSP [22], Z [28], and Morgan’s refinement calculus [19]. As in CSP, the key elements
of Circus models are processes that can interact with their environment through channels. Unlike CSP,
Circus processes encapsulate a state that can be modified by actions and data operations of the process.
Circus has a denotational semantics defined using the Unifying Theories of Programming [21].

An example of a Circus process is given in Fig. 2. It illustrates the general form of an SCJ handler
design, and the laws we discuss in the next section transform (sequential) specifications of safelets into
processes of this shape. The name of the process is SCJDesign, and its state is defined by the State
schema, introducing the components ci of type Ti (Inv is an optional state invariant). The Ti may be Z
schema types or OhCircus class types, as it is also the case for the types in any of the laws. We then have
local action definitions for Init, Missioni, Handleri and HdlControl. The actual behaviour of the process
is defined by the main action at the bottom after the ‘•’; it typically makes use of the local actions.

Local actions can be either specified by Z operation schemas or using a mixture of CSP constructs
and guarded commands. Here, Init is a Z operation that initialises the state, and Missioni and Handleri

are CSP actions that provide models of missions and handlers as they emerge during verification. Each
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process SCJDesign =̂ begin
state State == [c1 : T1; c2 : T2, . . . ,cn : Tn | Inv(c1,c2, . . . ,cn) ]

Init == [State′ | InitOp(c′1,c
′
2, . . . ,c

′
n) ]

Missioni =̂





Handler1
Jns1 | cs1∪{| termMsn |} | ns2∪ . . .∪nshK
Handler2
Jns2 | cs2∪{| termMsn |} | ns3∪ . . .∪nshK
. . .
Jnsh−1 | csh−1∪{| termMsn |} | nshK
Handlerh


Jns1∪ . . .∪nsh | csc∪{| termReq, termMsn |} | nsc KHdlControl


where Handleri may be either defined as
Handleri =̂ (for an aperiodic handler) µX •


 e(i,1) ?v−→A(v) @

e(i,2) ?v−→A(v) @
. . .

 ; X

@ termMsn−→ skip


 or

Handleri =̂ (for a periodic handler)(
µX •

(
(A �T 9wait T) ; X
@ termMsn−→ skip

))

HdlControl = (termReq−→ termMsn−→ skip) ‖ . . .
• Init ; Mission1 ; Mission2 ; . . . ; Missionm

end

Figure 2: Target for refinement transforming mission models.

Missioni action is defined by a parallel composition of a mission-specific set of handler actions. In
Circus, parallel composition of two actions A1 and A2 is written as A1 J ns1 | cs | ns2 K A2, where cs is
a set of interface channels that require synchronisation of the actions, and ns1 and ns2 are disjoint sets
of variables that each action is allowed to write to. Hence, all handlers of a mission write to mutually
disjoint parts of the state space, determined by the nsi. This ensures that all Circus constructs (including
parallel composition) are monotonic with respect to refinement due to intrinsic non-interference in shared
data access by parallel processes and actions.

The action HdlControl is included to incorporate control mechanisms. It controls termination of
the mission via the channels termReq (for a termination request raised by one of the handlers) and
termMsn (to synchronously terminate the handlers). It also permits the definition of additional control
actions (dots) whose design is not a concern for mission decomposition into handlers.

The handler models, captured by the actions Handleri, take different shapes for aperiodic and pe-
riodic handlers. Both, however, have the form of a recursion (µX • A ; X @ termMsn−→ skip) that
repetitively executes some action A and at the same time enables termination by HdlControl. Aperiodic
handlers are modelled by an external choice that synchronises on a set of channels e(i,1), e(i,2), and so on,
which correspond to SCJ events that are bound to the handler i and therefore cause its release. Potentially,
each event provides an input v, and the handleAsyncEvent() method is specified by A(v).

For periodic handlers, the repetitive behaviour is determined by the action A � T 9 wait T , using
additionally constructs from Circus Time. The A � T operator imposes a termination deadline T on A,
wait T corresponds to a delay of T time units, and the interleaving with wait T prevents the action from
terminating before T time units have elapsed. Hence, we obtain a cyclic behaviour that executes the
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handleAsyncEvent() method A once every T time units. For clarification, we point out that all Circus
Time constructs take relative times as their arguments.

We note that interleaving (A1 9 A2) is a special case of parallelism where the synchronisation set cs
is empty; termination only occurs when both parallel actions have terminated. Later on, we also make
use of the wait t1 . . t2 statement, which corresponds to a nondeterministic delay between t1 and t2 time
units, and A � T which is a deadline on A to interact via a visible event, such as a communication or
synchronisation.

The main action of SCJDesign at the end first initialises the state and then executes all missions in
sequence (operator A1 ; A2). In Fig. 2, we use notations from both Circus and Circus Time [23], and
generally also support the use of constructs from OhCircus [10] for class objects. The UTP [17] enables
us to give a sound semantic foundation to this combination of languages.

3 Refinement Laws

Our starting point is a centralised mission specification that defines communication patterns, data oper-
ations, and timing restrictions using sequential Circus actions. We deal with three aspects of the verifi-
cation of a mission implementation with respect to such a centralised specification. The first aspect is
decomposition of data operations to introduce functional models of handlers. The second is distribution
of time budgets between the handlers. And the third is parallelisation of handlers to match the archi-
tecture of Level 1 SCJ; this also addresses data flow and control mechanisms via communications. We
present here collections of Circus refinement laws and tactics to address each of these verification issues.
Although some of these laws have already been given in [8] and [9], the parallelisation laws in Fig. 5 and
Fig. 10 are to our knowledge novel, and so are the Circus Time laws in Section 3.2.

3.1 Decomposition of data operations

Here we target data operations. We note that we do not generally require that the specification of a
mission involves a single data operation. For missions with simple interaction patterns, such as reading
an input, performing a computation, and writing an output, it is possible to capture the functional aspects
of the mission in a single data operation. In the general case, however, where inputs and outputs may
occur sporadically during mission execution, a functional mission model may be split into more than one
data operation. We assume, on the other hand, that all data operations specify mission behaviour at a
suitably high level of abstraction: this means they are centralised models of functionality, and hence do
not already encapsulate any form of computational design.

Our goal is to decompose data operations so that the (functional) specifications of individual han-
dlers emerge. We employ schema composition to model sequential execution of handlers, and schema
conjunction to model parallel execution of handlers. All refinement is carried out at the level of Z. The
Z Refinement Calculus [8, 14], whose laws are valid in Circus [21], provides the foundation for our laws
here. The laws we present are therefore applicable and relevant for Z refinement in general.

Though [8, 14], for example, present a collection of laws that address issues of decomposition too,
it is well understood that decomposition of data operations is overall difficult to automate. We propose a
number of specialised laws that cover a broad spectrum of mission designs. Each law encapsulates either
a sequential or parallel design that carries out a centralised computation by two or more handlers.
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Law 1 Let State == [x : T1; y : T2 | I1(x) ∧ I2(y) ]. Then,

Op
∆State

P(x,y,x′) ∧ Q(y,y′)
≡

Op1
∆ [x : T1 | I1(x) ]
Ξ [y : T2 | I2(y) ]

P(x,y,x′)

#

Op2
∆ [y : T2 | I2(y) ]
Ξ [x : T1 | I1(x) ]

Q(y,y′)

Figure 3: Sequential decomposition of independent data operations.

Law 2 Let State == [x : T1; y : T2 | I1(x) ∧ I2(x,y) ]. Then,

Op
∆State

P(x,y,x′) ∧ Q(x′,y,y′)
≡

Op1
∆ [x : T1 | I1(x) ]
Ξ [y : T2 ]

I2(x,y) ∧
P(x,y,x′)

#

Op2
Ξ [x : T1 | I1(x) ]
∆ [y : T2 ]

I2(x′,y′) ∧
Q(x,y,y′)

Figure 4: Sequential decomposition of dependent data operations.

Laws for sequential decomposition of data operations We distinguish two fundamental cases. The
first one assumes no dependency between the data operations in terms of the computed results. The
corresponding law is presented in Fig. 3. We assume the existence of a State schema that specifies the
state on which the operations act. It is partitioned into two disjoint lists of variables, x and y, which are
respectively constrained by the state invariants I1(x) and I2(y). The law decomposes Op into a sequence
Op1 # Op2, where Op1 only modifies the components in x, and Op2 only modifies the components in
y and does not depend on x. Application of this law entails transforming the predicate of an operation
schema into a form P(x,y,x′) ∧ Q(y,y′). This may in general require intelligent decision making, but
in some cases ought to be automatable using elementary laws and syntax-driven rewriting realised by
generic tactics of proof for the Z mathematical notation.

The second case is where there exists a dependency between the data operations in terms of the
result. That is, the second operation uses data that is computed by the first one. Here, we have the
general law in Fig. 4. The crucial difference is in the shape of the predicate of the refined operation Op,
where Q(x′,y,y′) refers to the final value of x. The state invariant is decomposed as well, namely into
a conjunct I1(x) that only considers constraints on x, and another conjunct I2(x,y) that relates x and y.
The invariant I2(x,y) is not enforced by the ∆ and Ξ schemas but moved into the predicates for technical
reasons: we observe that I2 may in fact not hold for the intermediate state of the decomposition.

The propagation of invariants proves to be especially important to facilitate further decomposition
and later algorithmic refinement. Invariant decomposition once again requires guidance. It involves
the transformation of a single invariant I(x,y) into the conjunction I1(x) ∧ I2(x,y) so that all relevant
knowledge about the components in x is encoded by I1(x).

We have defined several variations of the previous two laws that moreover deal with inputs and
outputs of operations. We omit their discussion as they are straightforward generalisations. They can,
however, be found in the appendix of [12]. Next, we take a look at parallel decomposition.
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Law 3 Let State == [x : T1; r : T2 | I1(x) ∧ I2(x,r) ]. Then,

Op
Ξ [x : T1 | I1(x) ]
∆ [r : T2 | I2(x,r) ]

∃r1, . . . ,rn : T2 |
Q(r1,1,x) ∧
Q(r2,2,x) ∧
. . .
Q(rn,n,x)

 •
r′ = r1 op r2 op . . . op rn

≡



varr1, . . . ,rn : T2 •
(∃ i? : Z • POp[r1/r!] ∧ i? = 1) ∧
(∃ i? : Z • POp[r2/r!] ∧ i? = 2) ∧
. . .
(∃ i? : Z • POp[rn/r!] ∧ i? = n);
MOp([[r1, . . . ,rn ]] )



where

POp
Ξ [x : T1 | I1(x) ]
r! : T2
i? : 1 . .n

Q(r!, i?,x)

and

MOp
Ξ [x : T1 | I1(x) ]
∆ [r : T2 | I2(x,r) ]
rb? : bag T2

∃s : seq T2 | s = itemsrb? •
r′ = fold op zero s

provided that op is an associative and commutative binary operation. The function fold is the standard
folding operation over a sequence of values and zero a zero for op.

Figure 5: Parallel decomposition of dependent data operations.

Laws for parallel decomposition of data operations As before, we have a pair of laws that consider
the case of independent and dependent data operations. Dependency here means that the operations
cumulatively participate in the computation of some result. For independent data operations, the law is
similar to that in Fig. 3 with a small modification of the right-hand side: firstly, the sequence Op1 # Op2
is replaced by a conjunction Op1 ∧ Op2, and secondly, we remove the Ξ schemas in the declaration part
of Op1 and Op2. The fact that both laws have the same left-hand side illustrates that there is often more
than one possible handler design, giving rise to different degrees of parallelisation.

A more interesting parallelisation law is presented in Fig. 5. There, we have n handlers participating
in the computation of the result r and using the components x. The behaviour of the handlers is specified
by the predicate Q(ri, i,x) for 1≤ i≤ n. Decomposition here yields a conjunction that includes a conjunct
POp for each handler, as well as a merge operation MOp that collects the partial results ri to compute
the overall result of the refined operation. Following the Z convention, the symbols ‘?’ and ‘!’ in the
declaration part of the schemas POp and MOp are used to identify input and output parameters. The
merge operation is parametrised by a bag to enforce syntactically that the order in which the results are
delivered is irrelevant. Hence, we require that the binary operation used in the merge is associative and
commutative; the merge basically consists of folding this operation over the list of partial results.

It turns out that the application of the above decomposition laws, in comparison to subsequent sets
of laws, is the most challenging to automate. The developer needs to determine the target of each law
application, that is, the schema predicates on the right-hand side of the laws. With that, a verification
condition can be generated to establish that the predicate of the schema being refined can be written in
the form required for the application of the law. Specialised proof tactics will be useful in this context.
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Law 4 wait 0 . . t ≡ wait 0 . . t1 ; wait 0 . . t2 where t = t1 + t2
Law 5 wait 0 . . t1 v wait 0 . . t2 where t2 ≤ t1
Law 6 Assuming Op is a data operation and P is a Circus process, we have
P(wait t1 . . t2 ; Op) ≡ P(Op ; wait t1 . . t2)

Figure 6: Laws for decomposition and distribution of time budgets.

3.2 Distribution of time budgets

Data operations in Circus are atomic and instantaneous. Hence, all timing behaviour has to be specified
explicitly using timed action operators. Time budgets specify the permissible amount of time that an
implementation may take to execute a data operation; in Circus, they can be captured by nondeterministic
wait statements of the form wait0 . . t that precede a data operation. The laws in this section are hence
essentially about wait statements modelling time budgets, and, therefore, are useful in any context where
we want to reason about the timing of Z data operations in (Oh)Circus.

Our general assumption is that the specification of mission behaviour may utilise wait statements in
arbitrary places. The laws in this section decompose and distribute those waits in order to attach them
to the data operations emerging from decomposition in the previous section. Using these laws, we can
equip each decomposed data operation Op with an operation-specific time budget wait0 . .TBOp, where
TBOp determines the amount of time the operation may take to execute in the SCJ program.

The refinement laws needed can be divided into two classes. In the first class, we have two key
laws (given in Fig. 6) for the decomposition and narrowing of time budgets. Whereas the first Law 4
replaces a single time budget by a sequence of two time budgets, the second Law 5 incurs a reduction of
nondeterminism that narrows a time budget. A point of design in applying these laws is to decide on the
values of t1 and t2, which subsequently determine the amount of time available to the underlying data
operations. Decomposition may, of course, be applied iteratively, so that a single time budget can be split
into several time budgets for any given number of operations.

The second class of laws addresses the issue of moving the decomposed time budgets to suitable
locations to attach them to their respective data operations. For this, we first transform all Z schema
compositions into Circus action sequences. The standard law for this is recaptured below from [8].

Law 7 Op1 # Op2 ≡ Op1 ; Op2 provided pre(Op1 # Op2) ∧ Op1⇒ pre′(Op2)

As usual, pre(Op) yields the precondition (domain) of a Z operation Op, and we use pre′(Op) to indicate
that the variables in the result are primed. We note that the semicolon ‘#’ is used for composition of Z
operations, as opposed to ‘; ’ which is used for composition of Circus actions.

We further require the specialised distribution Law 6 in Fig. 6. This law is in fact non-compositional:
it is a law about processes rather than actions. Hence, it only holds if the underlying action wait t1 . . t2 ; Op
is embedded in a process P. The justification for the law comes from the structure and semantics of
processes that prevents observation of the precise time at which an (internal) state change takes place. A
proof is possible by induction over the structure of processes.

We note that no distribution laws exist to move time budgets across prefixes, since such transforma-
tions would not be correct as they alter the observable behaviour. Consider, for example, c−→wait t ; A.
Refining this action by wait t ; c−→A would be wrong since the refining action refuses communication
on the channel c for t time units, whereas the refined action offers it immediately. Some general laws for
Circus refinement in [20] are useful, too, namely to distribute time budgets into and out of internal and
external choice. Lastly, we have a fusion law for nondeterministic choice of time budgets:
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Law 9 Let A1 and A2 be actions and c a fresh typeless channel. Then,
A1 ; A2 ≡ ((A1 ; c−→ skip) Jwrt(A1) | {|c |} | wrt(A2) K (c−→A2)) \ {|c |}
provided wrt(A1)∩wrt(A2) =∅ and wrt(A1)∩used(A2) =∅

Figure 7: Parallelisation of independent sequential data operations.

Law 10 Let A1 and A2 be actions and c a fresh channel. Then,
A1 ; A2 ≡ ((A1 ; c !x−→ skip) Jwrt(A1) | {|c |} | wrt(A2) K (c?x−→A2)) \ {|c |}
provided wrt(A1)∩wrt(A2) =∅ and wrt(A1)∩used(A2) = {x}

Figure 8: Parallelisation of dependent sequential data operations.

Law 8 wait t1 . . t2 u wait t′1 . . t
′
2 ≡ wait min(t1, t′1) . .max(t2, t′2)

This law is useful as it enables the combination of two budgets.
The laws we present here are evidently complete for mission specifications in which each abstract

data operation is already associated with an (abstract) time budget. Automation of the refinement can be
envisaged by annotating each data operation with the intended time budget, and using tactics to mechan-
ically perform the decomposition and distribution steps. An overall caveat for the transformation is that
we cannot distribute time budgets into parallel data operations which are represented by Z schema con-
junctions. This is because the conjunction operator only applies to schemas and not to actions, and the
schema calculus does not support timing constructs such as wait t1 . . t2. (In our strategy, we, therefore,
distribute the budgets of parallel operations after the Circus parallel operators are introduced.)

The next section examines the refinement of sequential actions and schema conjunctions, as they
emerge from the laws discussed so far, into parallel actions.

3.3 Introduction of parallel handler actions

In Section 3.1, we have presented laws to parallelise data operations using schema conjunction, but
considered no laws to parallelise actions. The laws we discuss next can be used to parallelise mission ac-
tions. Like in Section 3.1, we divide the necessary laws into two classes: laws that account for sequential
designs and laws that cater for parallel designs. The shapes we target are precisely those produced by
earlier decomposition of data operations, which makes this aspect of the verification more susceptible to
automation. In the sequel, we discuss both classes of laws.

Laws for sequential handler designs Two central laws for parallelisation of handlers are given in
Fig. 7 and Fig. 8. The first one assumes that there exists no data dependency between the sequential
handler actions A1 and A2, hence we have the proviso wrt(A1) ∩ used(A2) =∅, which states that the state
components written by A1 are disjoint from those read by A2. A fresh typeless channel c is introduced
to control the order of execution of the parallel actions: they both have to synchronise on it, so that the
right parallel action c−→A2 blocks until the left parallel action is ready to execute the prefix c−→ skip.
The channel c models an SCJ event that is bound to the second handler and fired by the first handler.

The second law (Fig. 8) assumes that there is a data dependency between the sequential handlers. In
that case, the channel c is parametrised by the type of the data that is passed between A1 and A2. Multiple
data items can be passed by using product types, and, as mentioned earlier, class types are permissible,
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Law 11 Op1 ∧ Op2 ≡ Op1 Jwrt(Op1) |∅ | wrt(Op2) KOp2
provided wrt(Op1) ∩ wrt(Op2) =∅

Figure 9: Low-level law for refining parallel data operations into actions.

too. An interesting observation at this point is that the channel c fulfils a dual purpose: it controls both
the order of execution of handlers and makes available shared data. Further refinement is hence required
to untangle these concerns, namely by way of encapsulating the shared data independently of the control
aspect. This is, however, beyond the scope of parallelisation of handlers and a separate and orthogonal
design issue, so we do not discuss it further here. The report [30] examines it in detail though.

We emphasise that the parallelisations performed by Law 9 and Law 10 are to align the model with
the SCJ paradigm and architecture. In other words, they do not parallelise the computations of the
respective handlers, which are still performed in sequence here. This reflects that any sequentialism in
an SCJ design needs to be explicitly enforced, while parallel execution (of handlers) is the default.

For multiple applications of the two laws, we also require the application of several elementary
Circus laws between each application of Law 9 or Law 10. Their purpose is firstly to extract the newly
introduced channel c to the outer level of the mission action in which the targeted (refined) action is
embedded, and secondly to distribute prefixes c [?x]−→A2 introduced in the right-hand parallel action
into A2, namely if A2 is itself an action sequence or parallelism.

We conclude by observing that the first parallelisation Law 9 targets precisely the shape of models
generated by earlier application of Law 1 (Fig. 3), and the second parallelisation Law 10 precisely the
shape of models generated by earlier application of Law 2 (Fig. 4), subsequent to replacing Z composi-
tions by action sequences, which is done collaterally as part of the distribution of time budgets.

Laws for parallel handler designs A key law for transforming parallel data operations modelled by
conjunctions into parallel actions is presented in Fig. 9. It applies to data operations Op1 and Op2 that
write to disjoint sets of variables, which is what we usually expect from a parallelism at that level.

Although this law permits us to replace parallel data operations by parallel actions, this might not
immediately yield a top-level parallelism of handlers as present in our refinement target in Fig. 2. It
shows, in general, that due to the fact that the conjunction might be embedded into action sequences (see
Law 3), there is still a considerable number of refinement steps and specialised laws required to arrive at
the desired shape. In particular, these refinements involved further decomposition of time budgets related
to the particular parallel design adopted. Applying Law 11, for instance, to the result of Law 3 (Fig. 5),
we observe that there still remains a sequential composition with MOp. We can parallelise it using
Law 10 in the previous section, but this does not completely eliminate it due to a prefix emerging in
the left parallel action. In [30], we precisely detail the basic refinement steps that are needed prior and
subsequent to application of Law 9; they involve two specialised laws: one for channel decomposition
and one for distribution of an interleaving of basic communications into a preceding parallelism.

We also consider high-level parallelisation laws. Namely, Law 12 in Fig. 10 directly targets shapes
emerging from parallelising data operation via Law 3 and at the same time caters for further decompo-
sition of time budgets. This shows in the time budgets POpTB, RecTB and MergeTB replacing the global
time budget OpTB. We hence have a proviso POpTB+n∗RecTB+MergeTB≤OpTB that considers the time
allowance of the parallelised operations to compute the partial results, the time to record them, and the
time needed to merge them. The concrete value of these budgets has to be determined by the developer
as part of the verification process.
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Law 12 wait 0 . .OpTB ; RHS of Law 3 v


(varr1 : T • wait 0 . .POpTB ; (∃ i? : Z • i? = 1) ; rec !r1−→ skip) ‖
(varr2 : T • wait 0 . .POpTB ; (∃ i? : Z • i? = 2) ; rec !r2−→ skip) ‖
. . .
(varrn : T • wait 0 . .POpTB ; (∃ i? : Z • i? = n) ; rec !rn−→ skip)


J∅ | {|rec |} | {r}K

varr1,r2, . . . ,rn : T •
(rec?x−→wait 0 . .RecTB ; r1 := x)
(rec?x−→wait 0 . .RecTB ; r2 := x)
. . .
(rec?x−→wait 0 . .RecTB ; rn := x)

 ;

wait 0 . .MergeTB ; MOp([[r1,r2, . . . ,rn ]] )




provided POpTB +n∗RecTB +MergeTB ≤ OpTB

Figure 10: High-level law for refining parallel data operations into actions.

A design artifact of Law 12 is that it introduces a fresh typed channel rec that is used to communicate
the partial results to a parallel operation that receives and merges them into the final result. From this, a
control fragment emerges that is later refined into shared data to hold the partial result(s); it contributes
to the HdlControl action in Fig. 2 and its refinement gives rise to further design of how partial results are
stored and processed; this relies on its own set of laws which are omitted here.

To conclude this aspect of the refinement, we observe that we can either tackle it by way of applying
the more general Law 11, or use specialised high-level laws like Law 12 that encapsulate particular
designs. Since it is still an open issue how the general case can profit from further elementary laws
and their automation, we recommend the use of high-level laws. Therefore, we assume that for every
decomposition law into a parallel data operation, there exists at least one specialised action law that
directly targets the emerging shape. So far, this appears to be the case, however, further experience
needs to be gained to ascertain this. In [30], we sketch a proof of Law 12 which uses a few novel and
interesting elementary laws. Beyond this, future work may propose alternative parallelisation laws with
more sophisticated merge operations that can, for instance, deal with partial results of heterogeneous
type. We next look at an example that illustrates the refinement of a realistic SCJ program.

4 Example

As an example, we consider the refinement of an action that models the behaviour of the collision detec-
tor (CDx benchmark) in [18]. The CDx SCJ program consists of a single mission that periodically carries
out the following tasks: reading a set of aircraft positions from a radar device, calculating their predicted
motions, and identifying the number of aircraft at risk of colliding due to their distances decreasing be-
low a certain threshold. Whereas [18] provides a sequential implementation using a single handler, we
have developed a parallel program by breaking down the mission design into seven handlers: (1) a cyclic
input handler that reads the next radar frame; (2) a reducer handler that performs a voxel-hashing algo-
rithm, which partitions the space; (3) four parallel detector handlers that carry out the detection work;
and (4) an output handler that communicates the result.

Our starting point is the abstract operation ComputeCycle in Fig. 11. It is embedded into an action
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ComputeCycle
∆ [currentFrame : RawFrame; state : StateTable; work : Partition; collisions : Z]
frame? : Frame

∃posns,posns′,motions,motions′ : Frame |
dom posns = dom motions ∧ dom posns′ = dom motions′ •
∃voxel map : HashMap[Vector2d,List[Motion]] | voxel map 6= null •

posns′ = frame? ∧
motions′ = (λ a : dom posns′ • ifa ∈ dom posns then (posns′ a)−V (posnsa) else ZeroV) ∧
posns = F(currentFrame) ∧ motions = G(currentFrame,state) ∧
posns′ = F(currentFrame′) ∧ motions′ = G(currentFrame′,state′) ∧
∀a1,a2 : Aircraft | {a1,a2} ⊆ dom posns′ •
(a1,a2) ∈ CalcCollisionSet(posns′,motions′)⇒(
∃ l : List[Motion] | l ∈ voxel map .values() .elems() •
“predicate that states the collision pair (a1,a2) is in l”

)
 ∧

voxel map .values() .elems() =
⋃
{i : 1 . .4 • work′ .getDetectorWork(i) .elems()} ∧

∃collset : F(Aircraft×Aircraft) | collset = CalcCollisionSet(posns′,motions′) •
(#collset = 0 ∧ collisions′ = 0) ∨ (#collset > 0 ∧ collisions′ ≥ (#collset)div 2)


Figure 11: Z operation specifying the cyclic mission behaviour of the CDx.

that defines the cyclic mission behaviour, as specified below.

CDxMission =̂ µX •

 (next frame? frame−→ComputeCycle) � INP DL;

wait0 . . (FRAME PERIOD− INP DL−OUT DL);
(output collisions !collisions−→ skip) � OUT DL


9 waitFRAME PERIOD

 ; X


The channel next frame (of a type Frame encoding radar frames) is used to read the next frame of aircraft
positions, and output collisions (of type Z) to output the detected number of collisions. Collisions are
computed by ComputeCycle and stored in a state component collisions. The constant FRAME PERIOD
determines the length of a cycle, and INP DL and OUT DL are deadlines on external communications.
We observe that ComputeCycle is equipped with a time budget FRAME PERIOD−INP DL−OUT DL,
obtained by subtracting from the cycle time the maximal amount of time that the communications are
permitted to take. Besides, RawFrame, StateTable and Partition are OhCircus classes.

We start by decomposing ComputeCycle into sequences and conjunctions of data operations. This is
done by applying Law 2 three times, followed by an application of Law 3. This is not trivial, however,
since the ComputeCycle operation contains further existentially quantified variables that either corre-
spond to abstract model variables (posns and motions) here arising from earlier data refinement, or local
variables like voxel map, capturing the result of the voxel-hashing algorithm. These quantifiers either
have to be eliminated using the one-point rule, or localised to predicates corresponding to single handlers.

Another issue that needs to be addressed is that the data flow is not always explicit in abstract op-
erations specifying missions. In our SCJ program, for example, data is transmitted between the reducer
handler that carries out the voxel-hashing, and the detector handlers that perform the detection. That is,
the reducer handler writes to the component work which determines how the computational work is split,
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and this variable is also read by the detector handlers. In the operation, the last existential conjunct

∃collset : F(Aircraft×Aircraft) | collset = CalcCollisionSet(posns′,motions′) •
(#collset = 0 ∧ collisions′ = 0) ∨ (#collset > 0 ∧ collisions′ ≥ (#collset)div 2)

models the detector handlers, and we notice that the new value of collisions is determined by the function
CalcCollisions(posns′,motions′) in terms of the abstract model variables. To reformulate it in terms of
work requires some ad hoc refinements that appear to be difficult to automate by a machine. We skip
further details and merely present the result of the decomposition.

CDxMission =̂ µX •






next frame? frame−→ RecordFrame;

ReduceAndPartitionWork;
DetectCollisions


 � INP DL;

wait0 . . (FRAME PERIOD− INP DL−OUT DL);
(output collisions !collisions−→ skip) � OUT DL


9waitFRAME PERIOD


; X


where the decomposed Z operations CalcPartCollisions, SetCollisionsFromParts and DetectCollisions
can be found in Appendix A. We next decompose and distribute the time budget between the newly
introduced sequential operations. For this, we introduce the handler-specific time budgets RFTB, RPWTB

and DCTB. This yields the following refinement.

CDxMission =̂ µX •



next frame? frame−→
wait0 . .RFTB ; RecordFrame;
wait0 . .RPWTB;
ReduceAndPartitionWork;
wait0 . .DCTB ; DetectCollisions

 � INP DL

. . .

 ; X


The time budget DCTB is further decomposed during the parallelisation of actions. For the last part of the
refinement parallelising the action above, we refer to the detailed description in our technical report [30],
which is available from http://www.cs.york.ac.uk/circus/publications/techreports/. It
entails applying Law 10 and Law 12, and after a finalising transformation that uses elementary laws and
can be automated, too, we obtain an action that has the shape in Fig. 2.

5 Conclusion

We have presented a collection of Circus refinement laws that can be used to refine sequential specifi-
cations of SCJ mission behaviour into parallel designs that match the SCJ Level 1 programming model.
Our refined models are a suitable starting point for further refinement of shared data and control mech-
anisms. We have also highlighted challenges for automation: they are, primarily, in the decomposition
of sequential and parallel data operations, and to provide a repository of parallelisation laws, both at the
level of data operations and actions, that deal with a wide spectrum of recurring program designs. Due to
the novelty of SCJ, there are still open issues related to the designs that ought to be supported, and hence

http://www.cs.york.ac.uk/circus/publications/techreports/
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we do not claim completeness at this stage. On the other hand, our results showed that the decomposition
of time budgets can largely be automated, and so can (the intermediate steps in) the refinement of data
operations into parallel handler actions, which ultimately creates a positive outlook. Like in SCJ, our
model and strategy also supports data being shared between missions. But this is less of an issue for
the refinement laws because no write conflicts or race conditions can arise. The mission design in fact
emerges where sequential actions of an abstract centralised model are retained during refinement.

In practical terms, we propose to facilitate the decomposition of data operations, the more difficult
aspect of a refinement, by asking the developer to identify intermediate target models that permit the
application of one of the decomposition laws. Each intermediate model generates a refinement proof
obligation which can be tackled in isolation, and, as we hope, its resolution will be able to take some
advantage of automatic refinement tactics. The development of useful tactics is still work in progress,
however, their mechanisation may use a tool like [31] to ensure soundness of refinements and laws alike.

An open issue is the validation of our laws against a semantics for the particular combination of
Circus languages that we use. Our recent work explores in detail the semantics of Circus Time, and this
shall provide a platform to prove, for instance, the laws about time budgets in Section 3.2. Further work
is, however, required to integrate that semantics with that of OhCircus . And importantly, we require a
proof that the laws from either language (OhCircus and Circus Time) hold within the combined language.
The Unifying Theories of Programming (UTP) [17], the common semantic foundation for all Circus
dialects, ought to facilitate such a proof. It is an issue that is high on our agenda of research.

Related work includes action systems and their refinement [2, 3]. Action systems combine state and
behaviour by away of atomic actions that operate on the state and that can be executed concurrently if
there are no write conflicts to variables. Like Circus, action systems come with an extensive refinement
calculus, supporting the refinement of centralised sequential specifications into distributed implementa-
tions [2, 4]. The computational paradigm is, however, more restrictive since actions have to adhere to a
specific form, whereas Circus actions can, for instance, use all of CSP’s constructs.

Event-B [1] is a practically-oriented formalism closely-related to action systems; it has been success-
fully used in the formal development of distributed systems in academia and industry. Research has been
prompted to overcome initial restrictions of the method to deal with decomposition [6] and time [7]. It
would be interesting to see whether Event-B would be expressive enough for SCJ handler models, and
whether the refinement laws we propose can be formulated and perhaps validated.

SCJ is still a very recent technology, and, as far as we know, this is the first work that looks at
refinement more specifically in the context of the SCJ programming model. Our results though contribute
to a wider objective of proposing and proving refinement laws for all aspects of the verification of SCJ
programs. These are, among others, data refinements in Circus Time and the introduction of class
objects, the refinement of shared data and use of object references, and the transformation of models
into SCJCircus , a new language sufficiently concrete to be directly translatable into code. They are all
immediate areas for future work, each bringing its own set of challenges for refinement and automation.
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A Decomposed data operations of the CDx example

CalcPartCollisions
Ξ [currentFrame : RawFrame; state : StateTable; work : Partition; collisions : Z]
i? : 1 . .4
pcolls! : Z

pcolls! = #{a1 : Aircraft; a2 : Aircraft | ∃ l : work .getDetectorWork(i?).elems() • . . .}div 2

SetCollisionsFromParts
∆ [currentFrame : RawFrame; state : StateTable; work : Partition; collisions : Z]
collsbag? : bag int

currentFrame′ = currentFrame ∧ state′ = state ∧ voxel map′ = voxel map ∧ work′ = work
∃s : seq int | s = itemscollsbag? • collisions′ = Σs

DetectCollisions =̂

varcolls1,colls2,colls3,colls4 : Z •
(∃ i? : Z • CalcPartCollisions[colls1/pcolls!] ∧ i? = 1) ∧
(∃ i? : Z • CalcPartCollisions[colls2/pcolls!] ∧ i? = 2) ∧
(∃ i? : Z • CalcPartCollisions[colls3/pcolls!] ∧ i? = 3) ∧
(∃ i? : Z • CalcPartCollisions[colls4/pcolls!] ∧ i? = 4)

 ;

SetCollisionsFromParts([[colls1,colls2,colls3,colls4 ]] )



http://dx.doi.org/10.1007/s00165-009-0119-6
http://dx.doi.org/10.1007/s00165-009-0119-6
http://dx.doi.org/10.1145/1167999.1168008
http://dx.doi.org/10.1145/1850771.1850792
http://jcp.org/en/jsr/detail?id=302
http://dx.doi.org/10.1007/978-3-642-24559-6_6
http://dx.doi.org/10.1007/978-3-642-24559-6_6
http://www.cs.york.ac.uk/circus/publications/techreports/
http://www.cs.york.ac.uk/circus/publications/techreports/
http://dx.doi.org/10.1007/s00165-011-0218-z
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