
Higher-Order UTP for a Theory of Methods

Frank Zeyda and Ana Cavalcanti

University of York, Deramore Lane, York, YO10 5GH, UK
{frank.zeyda,ana.cavalcanti}@york.ac.uk

Abstract. Higher-order programming admits the view of programs as
values and has been shown useful to give a semantics to object-oriented
languages. In building a UTP theory for object-orientation, one faces
four major challenges: consistency of the program model, redefinition of
methods in subclasses, recursion and mutual recursion, and simplicity. In
this paper, we discuss how the UTP treatment of higher-order programs
impacts on these issues and propose solutions to emerging problems. Our
solutions give rise to a novel UTP theory of methods.

Keywords: object-orientation, semantics, recursion, consistency

1 Introduction

Higher-order programming is a paradigm that admits programs as values. Using
the notation {|p|} for the program value p, var m • m := {|x := x + 1|} ; call m,
for instance, is equivalent to the program x := x + 1. Thus, the local variable m
holds a program value whereas x is an integer variable. Generally, we have that
call {|p|} is equivalent to p, hence call can be regarded as the inverse of {| |}.

Higher-order programming has many useful applications and is prevalent in
guise in many modern programming languages. An extensive semantic account
based on predicate transformers is given in [9,10]. Our motivation is to reason
about object-oriented programs: we take method definitions as assignments to
program-valued variables that can be updated by method redefinitions.

There are a number of challenges in defining a comprehensive semantics of an
object-oriented language and reasoning about object-oriented programs. Many
of these have been addressed, for example, in [8,1,6,14]. Our objective in this
paper is, however, not to present a comprehensive model for object-orientation
but complement existing and on-going research efforts by presenting practical
solutions to issues arising from the modelling and redefinition of class methods.

In [7], Hoare and He examine the integration of higher-order predicates into
the Unifying Theories of Programming (UTP) framework. This includes the
treatment of programs as values as well as procedures with parameters. A pro-
gram value is said “to range over predicates, or rather some subset of predicates
(or programs)”. The word ‘program’ is used in the UTP sense here, thus referring
to a predicate that is constructed from a syntactic (program) expression.

To build on such a theory to reason about (object-oriented) programs, we
face four major challenges. The first is a consistent account of the notion of
program value. Program values are used to specify the behaviour of methods.



As mentioned above, we do not handle a complete object-oriented theory; our
focus is on methods. Nonetheless, due to the modular nature of the UTP, our
work can be combined with existing UTP theories that address complementary
features such as modelling of classes and inheritance, as well as object references.

To reason about higher-order programs written in a particular language, we
require a method by which program values can be constructed. This usually
induces a particular model for program values in terms of predicates and begs
the question if there are constraints that such a model has to satisfy.

For instance, does the model have to be an encoding of some form of syntax or
can we equate program values directly with predicates of a suitable UTP theory?
The latter would be tempting as it is in harmony with the philosophy of the UTP,
which is agnostic to syntactic issues and focuses on the semantic properties of
objects. However, there are potential pitfalls. To illustrate this, we assume that
program values are higher-order predicates themselves. The {| |} operator then
becomes a type constructor that turns a higher-order predicate into a (program)
value. Because the set of predicates with a single variable whose value ranges
over some type is equipotent to the subsets of such values, the domain of the {| |}
function would have a higher cardinality than its range. Therefore, its use as a
type constructor is unsound (it fails to be injective). This is a well known issue
in recursive data type definitions, and is, for example, illustrated in [15]. We can
remedy the situation by confining ourselves to finitely expressible predicates. For
an arbitrary UTP theory, however, we usually do not assume that all elements
of the underlying predicate lattice are finitely expressible; this would already
amount to narrowing the discourse to more specific families of theories.

The above hence shows that we cannot admit just any predicate as a pro-
gram value. The account in [7] does in fact restrict the admissible higher-order
predicates indirectly by constraining the type of higher-order variables. This
effectively excludes recursions like p := {|x := x + 1 ; call p|}.

A second challenge that we face is method redefinition. In a view of methods
as program variables, a method redefinition is an update to an existing program
value. In the UTP theory of object-orientation presented in [14], for instance,
this is handled by relying on the fact that program values are syntactic elements
of a particular form that reflects the hierarchy of classes where the method is
(re)defined. This is a simple elegant solution that enables the use of the copy
rule to give semantics to method calls. On the other hand, it ties the theory to
a specific syntax of programs, which is against the UTP philosophy.

Recursion, and, in particular, the extensive use of mutual recursion in object-
oriented programs impose a third challenge. As already explained, the theory
in [7] does not permit the use of a program variable itself in its value. This
means that recursion has to be treated in the context defined by the particular
notion of programs. In [14], this is achieved by taking fixed points in the UTP
theory that is used to give semantics to the syntactic elements taken as program
values. To treat mutual recursion, it is therefore necessary to give semantics to
all method definitions (and their redefinitions) together. This is illustrated by
the following example, where we have two program variables m1 and m2 that



represent methods that mutually call each other (they calculate | x − y |). Prior
to encoding the methods as a predicate, the recursions have to be eliminated.

m1,m2 := {|µX ,Y •
〈

(x := x − 1 ; Y ) / x > 0 . II,
(y := y − 1 ; X ) / y > 0 . II

〉
|}

As shown, this gives rise to fixed-point constructions in the program values.
Another issue arises if m1 is redefined later on. Such a redefinition does not
merely affect the value of m1, but also m2 as the fixed point needs to be calculated
afresh. Though this approach is feasible, it forfeits compositionality.

A final challenge is simplicity. Higher-order programs are just one of the
many aspects of an object-oriented program. We strive for simplicity, although
this can be fully appreciated only once we combine our theory with other UTP
theories (to cater to concurrency, time, sharing, and so on).

Our contribution in this paper is to examine solutions to all these challenges
to provide a UTP theory that can be used in the context of a theory of object-
orientation like that in [14]. We first illustrate the construction of a sound se-
mantic model for higher-order predicates. Importantly, our program model does
not encode programs as syntax, but directly in terms of their semantics as pred-
icates. We show how, in spite of that, we can still cope with method redefinition
by using a combination of syntax and semantics in the program model; this also
turns out to be useful for the semantic encoding of procedures with parameters.

Finally, we provide a sound solution for the (mutual) recursion problem.
This does not affect the underlying semantic model of higher-order predicates
and hence does not compromise consistency.

The structure of the paper is as follows. In Section 2 we review the UTP in
its higher-order version. Section 3 describes a consistent model of higher-order
predicates that is based on predicates rather than a fixed syntax. In Section 4
we propose a UTP theory of methods that overcomes the restriction on the
use of recursion in [7]. Section 5 includes some discussions and revisits the initial
problem presented above, and in Section 6 we report on related and future work.

2 Preliminaries

In this section, we discuss specific features of higher-order UTP, assuming the
reader is familiar with standard UTP. We also give some brief background on
the theory of object-orientation in [14], which motivated the work in this paper.

2.1 Higher-Order UTP

The Unifying Theories of Programming [7] is a mathematical framework that
provides means for defining the semantics of a variety of programming languages
and modelling notations. The primal extension in higher-order UTP is the in-
clusion of procedure variables. Procedure variables are declared and used just
like standard variables. For example, var p : proc{x ,x ′} ; p := {|x := x + 1|} in-
troduces a (local) procedure variable p that holds predicates whose alphabet is
{x , x ′}, and assigns to it the program x := x + 1. Procedure values are directly



identified with predicates of some theory of designs or programs. The purpose of
{| |} is merely “to distinguish what is to be stored from what is to be executed”
as stated in [7]. Otherwise, the brackets have no semantic significance and are
simply omitted in a procedure call.

Procedure variables can be written as executable statements in a predicate.
For example, var p ; p := {|x := x + 1|} ; p ; end p is equivalent to x := x + 1.
The type of p has been omitted in the declaration, but we note that all variables,
whether they are standard variables or procedure variables, need to have a type.
The notion of a procedure type is explained in more detail in the next section.
For clarity, we hereafter make the invocation of a procedure variable explicit by
writing call p rather than just p as in [7].

A fundamental law about procedure calls is recaptured below.

(p := {|Q |} ; call p) = (p := {|Q |} ; Q)

It entitles us to replace the invocation of a procedure by its definition and can
be regarded as a manifestation of the copy rule.

An intricacy in higher-order UTP arises from the desire that procedure as-
signment ought to be monotonic with respect to refinement. Formally,

P v Q ⇒ (p := {|P |}) v (p := {|Q |})

This cannot be true if assignment has its standard meaning of equating the
primed variable with the assigned expression. This issue and a new definition of
refinement were first discussed in [9]. Hence, in higher-order UTP, the meaning
of assignment is modified. Here, the semantics of p := {|Q |} is a non-determinism
that constrains the value of p′ to be any refinement of Q .

p := {|Q |} =̂ (true ` (Q v p′)) ∧ (v v v ′)

where α(p := {|Q |}) = {p, p′, v , v ′}. The new definition implies that we require a
notion of refinement of values. For standard values, this is just a flat order, and
for program values it is the underlying refinement order on predicates.

Procedures with parameters are supported through functions that map values
or variables to (higher-order) predicates. This is essentially the approach that
is described in [2]. Permitted are both value and result parameters, and their
semantics is expressed in terms of a more general construct {|λ x : var(T ) • P |}
which corresponds to a procedure that takes a variable of type T as a parameter.

In [7] further aspects of the theory are discussed related to functions and
declarative programming. They are not relevant for the material in this paper
though. In terms of terminology, we shall use the word ‘program’ from here on
in preference of ‘procedure’ and reserve the later for programs with parameters.
We next give a brief summary of Santos’ theory of object-orientation.

2.2 A theory of object-orientation

The theory in [14] builds on an integration of the theory of UTP designs and
higher-order programs. The theory introduces observational variables that de-
termine declared classes, their attributes, as well as the subclass order. Methods



are encoded via higher-order program variables, and only one variable is used
for all redefinitions (overridings) of a method in subclasses.

The theory supports declarations of classes, attributes and methods, and
hence entails the possibility to reason about class and method definitions, as well
as particular object-oriented programs. Dynamic binding is supported by im-
posing a certain syntactic structure on method definitions that resolves method
binding as part of the method invocation. Namely each value of a method vari-
able has a fixed syntactic structure illustrated below.

(p1 / self is C1 . (p2 / self is C2 . (. . . (pn / self is Cn .⊥oo) . . .)))

Above, self is an auxiliary variable that determines the target of a method
invocation. The pi are basically specifications of the same method, albeit defined
in different subclasses C1, C2, . . ., Cn . The cascade of tests is used to resolve
dynamic binding when the method is called on an object, with tests against
more concrete types being carried out before tests against more abstract types.

Method redefinition in a class C has to inject a new test (p / self is C . ...)
at the right place into this cascade, depending on where C fits into the subclass
hierarchy. Redefinition of methods is therefore a syntactic transformation of the
top-level cascade of tests; this is made possible in [14] by the fact that programs
are uniformly treated as syntax.

3 A program model

Our first challenge is to provide a consistent account of a program model. As
already explained, our goal is an account that does not assume a fixed syntax for
program values but identifies them directly with the predicates of a UTP theory.
This enables us to consider a generic theory of object-orientation, independent
of the syntax in which we write, for instance, the body of a method.

On the other hand, to take advantage of the approach in [14] to method redef-
inition and dynamic binding, we do not exclude syntax entirely. In Section 3.1,
we first prove soundness of treating program values directly as predicates of an
arbitrary UTP theory. This is a useful insight for any work that uses higher-
order UTP. Our motivation, as hinted above, is to eradicate any constraints on
the underlying theory in which we express the computational effect of methods
when instantiating a generic theory of object-orientation. We then extend this
argument (Section 3.2) by making a case for the safe combination of syntax and
semantics to support method redefinition as in [14]. This provides us with full
flexibility on the one hand to remain in the realm of semantics but escape into
syntax where this is beneficial to the model and operator definitions.

3.1 Consistency of higher-order programs

As already pointed out, in a sound program model, program values cannot range
over arbitrary predicates. The treatment in [7] rules this out by restrictions
on alphabets that effectively prohibit recursion. More precisely, this is done by



introducing a notion of variable type for higher-order predicates that does not
admit circularity. The corresponding BNF-like encoding is reproduced below.

<type> ::= <program type> | <base type>

<program type> ::= ProcType(<alphabet>)

<alphabet> ::= list of (<variable> : <type>)

<base type> ::= BaseType(int) | BaseType(bool) | . . .

The dots indicate that we might have further type constructors for base values,
for instance, to create composite values like pairs or (finite) sets. As long as those
constructors are sound and only recursive into <base type>, this is not an issue
and does not invalidate any of the subsequent reasoning.

As briefly discussed in the introduction, with the restriction in [7] to predi-
cates whose variable types are finite terms constructed by the above rules, recur-
sion is effectively excluded. To illustrate this, we consider the invalid predicate

p := {|x := x + 1 ; call p|}

In this example, it is already clear though that to define the type of the variable
p, we would need to refer to that type itself, and this circularity is not allowed.
Mutual recursion gives rise to similar situations. We use {| |} only informally here
since we have not formally established its existence and semantics yet.

In the sequel we argue that the finitary nature of types is sufficient to ensure
consistency. This is a result left implicit in [7]. The argument that we present
clarifies important issues related to the treatment of higher-order programs. It
can also be used as a basis for a formal treatment of the UTP theory of higher-
order programs and its embedding in a theorem prover. Our argument is based
on the inductive construction of a model. For this, we first define the notion of
the rank of a type inductively over the type structure.

rank(BaseType(t)) = 0 and

rank(ProcType(list of [v1 : t1, v2 : t2, . . .])) = max {rank(t1), rank(t2), . . .}+ 1

Since types are finite by construction, the above recursion properly defines the
rank of any given type. We define the rank of a variable to be the rank of its
type. The rank of an alphabet is defined as the maximum rank of its variables,
and the rank of a predicate is defined just as the rank of its alphabet.

Intuitively, the rank determines the maximal nesting level of program ab-
stractions in a predicate. For instance, the predicates of rank 0 are just the stan-
dard predicates; predicates of rank 1 include program variables whose values are
standard predicates; predicates of rank 2 moreover admit program values being
rank 1 predicates, and so on. Thus, x := 1 is a rank 0 predicate, m1 := {|x := 1|}
is a rank 1 predicate, and m2 := {|x := 1 ; call m1|} is a rank 2 predicate.

The motivation for introducing a notion of rank is twofold: first we observe
that it allows us to partition all higher-order predicates into an enumerable
succession of higher-order predicate subsets since every valid predicate must
have a finite rank. Secondly, we shall see that the concept of ranks is also central
in a theory of methods, which we propose and discuss in Section 4.



We next give a constructive definition of a function pred(n) that yields the
predicates of a given rank; our motivation is to subsequently use it to construct
the predicates of arbitrary ranks, and as mentioned in the last paragraph, these
encompass all valid higher-order predicates. We name StdPred the standard
(non-higher-order) predicates and define, again inductively,

pred(0) = StdPred and pred(n + 1) = lift(pred(n), pred(n))

This definition rests on the existence of a lifting function lift (ps, vs), which takes
a set of predicates ps and lifts them into a set of predicates that introduce pro-
gram variables that range over the values in vs, which are predicates themselves.
By way of an example, we have that pred(1) = lift(StdPred ,StdPred). These are
the standard predicates augmented with variables whose values can range over
standard predicates. We can convince ourselves that in general the application
of lift (ps, ps) admits predicates one rank higher than those in ps.

A precise constructive definition of lift can only be given with respect to a core
semantic encoding of predicates, like the one in [12], which characterises them in
terms of binding sets. Rather than defining lift for a specific model, we instead
present an abstract axiomatic characterisation that relies on four operators, α p,
m = v , u ps and t ps. The value of lift(ps, vs) is equated with the smallest
set of predicates hps that satisfies the following five properties.

A1 ps ⊆ hps

A2 ∀m : ProcType(l) • ∀ v : vs | SetOf (l) = α v • m = v ∈ hps

A3 ∀ ps ⊆ hps • u ps ∈ hps

A4 ∀ ps ⊆ hps • t ps ∈ hps

A5 u and t are the meet and join of a complete lattice v

The axioms capture elemental correctness properties of the lifting that ensure
completeness of the lifted model and that we retain the property of a complete
lattice. The boxed operators have to be provided by the core predicate model.
Here, α p determines the alphabet (set of variables) of a predicate p, m = v
constructs a simple equality between a variable m and a value v , and u ps and
t ps are the greatest lower bound and least upper bound of a set of predicates
with respect to an ordering that serves as refinement. The latter two operators
are moreover used to define disjunction and conjunction of predicates in the lifted
model. This is by virtue of p1 ∨ p2 = u {p1, p2} and p1 ∧ p2 = t {p1, p2}.

The first property A1 establishes monotonicity, namely that each lift extends
the previous predicate rank. From it we can prove, by induction over the rank,
that ∀n ≤ m • pred(n) ⊆ pred(m). The second property A2 is a family of
axioms for each alphabet given by the list l . The alphabet encoded by a list
simply corresponds to the elements in the list, and we use the function SetOf
to obtain the list elements as a set. A2 introduces new predicates into the lifted
model; they are just simple equalities over (new) program variables. We note
that generally, the predicates in vs have a variety of types.

A3 and A4 are closure properties that enable us to construct arbitrary predi-



cates over the added program variables and values. We note that no closure axiom
for negation is needed because ¬ m = v , for instance, can be constructed by
u {w | w 6= v • m = w}, the disjunction of all predicates m = w where w 6= v .

We can think of A2 as providing the building blocks for constructing predi-
cates over program variables of the successor rank. If we consider, for example,
the lifting of rank 0 predicates, m = {|x := 1|} and m = {|x := 2|} are admitted
by A2 and m = {|x := 1|} ∨ m = {|x := 2|} is admitted by A3. In this way,
the complete lattice of successor rank predicates is constructible. A refinement
ordering v on predicates exists by A5. The top and bottom of the lattice are
obtained by the meet and join over empty sets: > =̂ u {} and ⊥ =̂ t {}.

The question of the semantics of lift has now been pushed into the definition
of α p, m = p, u ps and t ps in a core predicate model. For their interpre-
tation in that model, we require that the operators obey the algebraic laws that
are presented in [7]. This validates the soundness of the operator definitions in
the lifted predicate model. We next define the set pred as follows.

pred =
⋃
{n ∈ N • pred(n)}

It contains all predicates of any rank. We claim that if StdPred are the standard
predicates, and the boxed operators are soundly defined, in the above sense, pred
is also a model for precisely the higher-order predicates considered in [7]. The
axioms A1 to A5 are sufficient to establish this. The purpose and motivation for
the lift function now becomes clear as being primarily a utility for constructing
the entire set of admissible higher-order predicates.

To conclude the consistency argument, we observe that {| |} only has to be
injective on the predicates that are well-formed, thus having non-circular types
as introduced above. We trivially define it as follows.

{| |} =df (λ p : pred • p) where dom {| |} = pred

It is simply the identity on pred . Clearly, {| |} is injective on pred , so it serves as
a sound type constructor for program values. We have thus shown that it is safe
to treat higher-order UTP predicates as semantics just like the standard ones,
and in doing so also illustrated the layered construction of a predicate model.
The cardinality of values from <base type> is moreover irrelevant. Namely, the
carrier sets of base value types may be infinite, even uncountably so.

3.2 Syntax and semantics in program values

We have now established the use of predicates directly as program values. On the
other hand, in order to support the approach in [14] for redefinition of methods
in subclasses, it turns out that part of the program value in fact has to be kept as
syntax as explained in Section 2.2. Our treatment views them as predicates and,
despite the discussed benefits, this invalidates the transformational approach.
Our solution is to alter the iterative definition of pred(n) as follows.

pred(n + 1) = lift(pred(n), embed(pred(n)))

The only modification is the application of a function embed to the set of pred-
icates that determines the values of programs at the next rank. This function



realises the syntactic embedding of the semantic entities. The definition of lift
remains fundamentally the same. The only implication is that the α function
in A2 now has to extract the alphabet of a predicate that is embedded in a
segment of syntax. This is not a problem: we can define the extraction function
inductively over the data type that encodes the syntactic structure.

In the above example, the syntax is specified by the following generic data
type that represents a method in [14]. (We use the Z notation [16].)

METH [PRED ] ::=

CondSytx 〈〈METH × CVALUE ×METH 〉〉 | BotSytx | Body 〈〈PRED〉〉

This is a Z definition of a new data type METH , which is generic (PRED is
a type parameter). As usual, the bar is used to separate the definition of type-
constructor functions and between 〈〈. . .〉〉 brackets, we specify the types of those
functions. The type constructor CondSytx encodes the syntax c1 / self is C . c2,
where the underlined elements may themselves be pieces of syntax. BotSytx
encodes the syntax of ⊥oo , the bottom element in the theory of [14]. The con-
structor Body is non-recursive and injects the semantics of a method body as a
predicate, supplied by an element of the generic type PRED , into the syntactic
domain defined by METH . Hence we have embed(ps) = METH [ps].

We note that despite the presence of the embed function in the lifting, the
result of the lifting is still a predicate set. On the other hand, the call operation
has to be adjusted when identifying METH [PRED ] with program values. We
require an additional layer of denotation in the definition of call m that turns
a value from METH [PRED ] into a value of PRED . This can be achieved by
interpreting the conditional and bottom with their usual definitions in the UTP.
The denotation is inductively defined over METH [PRED ]. It also serves as a
basis for defining refinement on the syntactic program values.

Our conclusion in this section is that we have a certain leeway to mix syntax
and semantics, as long as we can provide a way of embedding the semantics into
the syntax and provide a denotation in terms of the embedded predicate model.
Having established the soundness of a suitable program model for our purposes,
in the next section we examine issues that emerge from method redefinition.

4 A theory of methods

In this section, we illustrate a fundamental challenge posed by method definition
and redefinition in theories of object-orientation. This motivates us to propose a
novel UTP theory of methods that overcomes the problem. It exploits the notion
of programs as predicates, as established in the previous section, and is applicable
and useful in any context where higher-order variables are used to record method
behaviour. Importantly, it restores the simplicity of the treatment in [14] in the
view of the issues raised and thereby paves the way for a compositional semantics.

In Section 4.1 we illustrate a fundamental problem with method redefinition
in theories of object-orientation, and in Section 4.2 we present our solution. As



mentioned, the primary motivation is to solve issues of compositionality when
defining methods, but also to unify the treatment of method (re)definition.

4.1 Method definition revisited

As an example, we consider the following higher-order predicate.

S1 =̂ m1 := {|x := x + 1|} ; m2 := {|x := x + 2 ; call m1|}

It captures the definition of two methods, recorded by the program variables m1

and m2. We observe that m1 is a rank 1 variable whereas m2 is a rank 2 variable.
Hence, the predicate S1 is a rank 2 predicate.

We first observe that, in general, to encode programs by way of method
variables, we cannot restrict ourselves to predicates of a rank lower than 2. This
begs the question whether rank 2 is enough to encode all possible object-oriented
programs? Unfortunately, the answer is ‘no’. For instance, assume we compose
the predicate S1 with the definition of another method m3.

S2 =̂ S1 ; m3 := {|x := x + 3 ; call m2|}

Clearly, the rank of variable m3 has to be one greater than the one of variable
m2. This renders S2 a rank 3 predicate. The issue is subtle because it depends
on the careful accounting for types in program variables. This has important
implications. In deciding the type of m3, we need to have knowledge of the type
of m2 in S1 — its name is not enough. This is because the alphabet of m3 does not
merely include standard variables for the inputs and outputs of the method, but
also program variables for methods that are called by the method; and clearly,
the type of m3 depends on the type(s) of those variables too.

This means that in general, we cannot give a compositional account of
method definition in cases where a method calls other methods, unless we make
the type of the called method(s) a parameter of that definition. In that case, the
definition of S2 would not be a predicate but a function that, if applied to a type,
yields a predicate, and further mechanisms would have to be put into place to
instantiate this type parameter. This kind of treatment is not unsound, in par-
ticular with our result of admitting predicates of any rank, but it considerably
complicates the theory of object-orientation and its application.

Method redefinition further complicates matters because it can result in the
type of a method variable having to change. We consider the scenario where we
introduce another method m4 and then redefine m1 to call it.

S3 =̂ S2 ; m4 := {|x := x + 4|} ; m1 := {| call m4|}

The variable m1 above cannot possibly be the same m1 as in the definition of
S1 because there its rank is 1 whereas here its rank has to be at least 2. We can
envisage a solution in which we know in advance that m1 would subsequently be
redefined in terms of a program with a higher rank, and already use that higher
rank in typing m1 in S1. Such knowledge, however, is doubtful in practice and
certainly not available in a compositional treatment. In consequence, we have



to redefine m1 together with all previous method definitions that depend on its
value. This gives rise to

S3b =̂

(
m1 := {| call m4|} ; m2 := {|x := x + 2 ; call m1|};
m3 := {|x := x + 3 ; call m2|} ; m4 := {|x := x + 4|}

)
We thereby tame the impact of the type change of m1 by adjusting the types
and definitions of all method variables that directly or indirectly call m1.

A similar problem arises even when redefinition does not involve a predicate
of a higher rank. To illustrate this, instead of m1 we redefine m2 in S2.

S4 =̂ S2 ; m4 := {|x := x + 4|} ; m2 := {| call m4|}

The rank of the new program value of m2 is the same as before, so this is not
an issue. However, originally the variable m4 was not in the alphabet of m2.
Introducing it during redefinition is again problematic since this changes the
type of m2, giving rise to exactly the same issues as illustrated before (since m3

calls m2). We could try and include all other method variables in the alphabet
of any method variable we introduce. But then, what rank(s) should those other
method variables have? This decision again imposes a priori restrictions on what
calls between methods are permissible at a future point; this is not practical.

As a note, the finite nature of alphabets prohibits inclusion of all method
variables, but we can get around this in practice by using a finite but large enough
repository of method variables. Although this style of modelling is somewhat
against the philosophy of the UTP, where alphabets are used in meaningful
ways, it is difficult to avoid even in the solution we propose in the sequel.

Motivated by the above observations, we next present a treatment in which
the rank of any method variable is not greater than 2. The rank of a predicate
encoding an object-oriented program is thus not greater than 2 either.

4.2 A UTP theory of methods

We present our theory in the usual UTP style. The observational variables of the
theory are program variables that represent methods. We only include program
variables at rank 1 and rank 2 and call them method variables hereafter. The
rationale for this is that all method definitions we introduce shall constrain rank 2
variables, while all calls within those definitions will be to rank 1 variables.

In the sequel we use overbars to highlight the rank of a method variable. Thus
m is a rank 1 method variable and m is a rank 2 method variable. No overbar
indicates a standard program variable (rank 0). We note that the overbars are
mere annotations that highlight the type of the variable.

To illustrate the main idea, below we encode the predicate S1 presented
earlier on in Section 4.1. We name it T , rather than S , to emphasise that this
predicate belongs to the theory of methods we develop here.

T1 =̂ m1 := {|x := x + 1|} ; m2 := {|x := x + 2 ; call m1|}

Close inspection reveals an important difference: the call is to m1 rather than
to m1 as it was the case in S1. Method assignment is uniformly carried out to



rank 2 variables, highlighted by two overbars in the assigned method variables
m1 and m2. Although, in principle, the first assignment could be to a rank 1
variable, our approach puts uniformity above such ad hoc optimisations.

Next, we sequence T1 with a predicate that introduces another method that
calls m2, as we did in S2. This now yields

T2 =̂ T1 ; m3 := {|x := x + 3 ; call m2|}

Once again, the call is to m2 rather than m2. This shows that the rank of method
variables does not increase with subsequent definitions of methods, and neither
does it increase upon method redefinition. However, mx and mx are clearly
different variables, and our theory hence has to create a link between them.

This is achieved by a single healthiness condition. It establishes a connection
between rank 1 and rank 2 method variables of the same name. To formulate
it, we require a way to refer to the name of a variable rather than its identity,
which includes its type. To facilitate notation, we shall assume that m and m
have the same name, and moreover that a quantification ∀m m • P [m,m] is
over variables that have rank 1 and rank 2 and the same name. In this way, we
do not have to talk about names and types explicitly.

The healthiness condition HM is defined as follows.

HM(P) = P ∧ (∀m m | {m,m} ⊆ αP • [call m ⇔ call m]0)

It states that two method variables in P of the same name, but at different
ranks, have to be consistent in terms of the constraints they impose on program
variables ([ ]0 is the closure operator over standard (program) variables).

We can think of HM, together with the constraints imposed on rank 2
method variables by a predicate of the theory, as defining a family of equa-
tions that constrain the value of rank 1 method variables and thereby yield an
interpretation of methods purely in terms of standard predicates. This interpre-
tation falls out when we quantify over the rank 2 method variables in a healthy
predicate and observe the corresponding rank 1 method variables. It corresponds
to an encoding of methods in terms of weakest fixed points of a recursive equa-
tion that uses recursive parameters instead of method variables. For instance,
the predicate (∃m1 m2 • T1) is equivalent to the concurrent assignment

m1,m2 := {|µX ,Y • 〈x := x + 1, (x := x + 2 ; X )〉|}

where call statements in T1 have been eliminated by virtue of a multi-variable
recursion over standard predicates. For two variables, this takes the general form
µX ,Y • 〈F (X ,Y ),G(X ,Y )〉. We note that above only G recurses (into X )
whereas F depends on neither X nor Y . Such a transformation was already used
in [14] to deal with (mutual) recursions. Our claim is that both interpretations
are mathematically equivalent. To support this conjecture, we first quote Hoare
and He in [7]: “The inclusion of high order variables does not increase the power
of the language”. Secondly, in the particular example, we can use fixed-point laws
to show that X is equivalent to x := x + 1 and Y is equivalent to x := x + 3. A



formal proof is presented at the end of the section that this is exactly the value
of m1 and m2 in T1. Proving the general case is still future work and requires a
precise definition of how to transform one representation into the other.

We next present some essential properties and laws of our theory.

Closure of operators The notion of a conjunctive healthiness condition is formu-
lated in [5] and means that the healthiness condition can be expressed in the
form CH(P) = P ∧ γ for some constant predicate γ. In our case, that predicate
is not constant though, as it depends on the alphabet of P . In particular, we
have HM(P) = P ∧ γHM (αP) where

γHM (a) = (∀m m | {m,m} ⊆ a • [call m ⇔ call m]0)

Despite this, we can recover essential closure properties that hold for conjunc-
tive healthiness conditions. They are, however, subject to additional caveats. To
formulate them, we first require a notion of compatibility of alphabets.

Definition 1. Two alphabets a1 and a2 are compatible if, and only if,

∀m m • (m ∈ a1 ∧ m ∈ a2)⇔ (m ∈ a1 ∧ m ∈ a2)

Intuitively, compatibility implies that if alphabets share a method variable with
the same name but at different ranks, each alphabet has to include both instances
of that variable. By way of illustration, the alphabet pairs ({m1,m1}, {m1,m1}),
({m1,m1}, {m2,m2}) and ({m1}, {m2}) are compatible but ({m1}, {m1}) is not.

It is easy to show that compatibility is reflexive and symmetric, however, it
is not transitive. The latter we illustrate by observing that ({m1}, {m2}) and
({m2}, {m1}) are compatible alphabet pairs, but ({m1}, {m1}) is not.

Compatibility of alphabets enjoys closure properties with respect to set op-
erations like union, intersection and difference. The following law specifies them.

Law 1. Let (a1, a2) and (a1, a3) be compatible alphabets. Then,

(a1, a2 ∪ a3) , (a1, a2 ∩ a3) and (a1, a2 \ a3) are compatible alphabets.

An important property of γHM is formulated by the following lemma.

Lemma 1. Let a1 and a2 be compatible alphabets. Then we have

γHM(a1 ∪ a2) = γHM(a1) ∧ γHM(a2)

The law is proved by splitting the universal quantification in γHM into a con-
junction of two parts in which m and m range over a1 and a2, respectively; this
succeeds because of the compatibility property. A mechanised theory in Isabelle
HOL that proofs the above law and lemma is available [17]. The lemma enables
us to prove closure under conjunction of HM-healthy predicates.

Law 2. Let P and Q be HM-healthy predicates with compatible alphabets. Then,

P ∧ Q is a HM-healthy predicate.



Proof. We show that P ∧ Q is a fixed point of HM.

P ∧ Q

≡ “P and Q are HM-healthy”

HM(P) ∧ HM(Q)

≡ “unfolding definition of HM”

(P ∧ γHM(αP)) ∧ (Q ∧ γHM(αQ))

≡ “reordering conjuncts”

(P ∧ Q) ∧ (γHM(αP) ∧ γHM(αQ))

≡ “Lemma 1”

(P ∧ Q) ∧ γHM((αP) ∪ (αQ))

≡ “rewriting (αP) ∪ (αQ) into α (P ∧ Q)”

(P ∧ Q) ∧ γHM(α (P ∧ Q))

≡ “folding definition of HM”

HM(P ∧ Q)

Unfortunately, compatibility of alphabets is insufficient for closure under dis-
junction. There, we require the stronger proviso of the alphabets being equal.

Law 3. Let P and Q be HM-healthy predicates with equal alphabets. Then,

P ∨ Q is a HM-healthy predicate.

In general, if we restrict ourselves to predicates over the same alphabet, all theo-
rems for conjunctive healthiness conditions proved in [5] continue to hold. This is
because in that case, we can treat γHM(αP) as a constant. We thus have closure
under sequential composition, too, proved by factoring γHM(a) into orthogonal
constraints on undashed and dashed variables: γHM(in a) ∧ γHM(out a). Re-
quiring equal alphabets may nevertheless be a strong caveat, for instance, in the
presence of local variable blocks that incur alphabet changes. The motivation for
alphabet compatibility can also be understood as an attempt to weaken the as-
sumptions of closure laws in our theory. Exploiting it further in order to discover
laws with weaker assumptions is on-going research.

Lastly, also following from [5], the set of HM-healthy predicates over a fixed
alphabet is a complete lattice, as it is the image of a monotonic and idempotent
healthiness function [7]. Further properties detailed in [5] consider the interaction
with designs; they also transfer to our work. We next examine how we use the
theory to reason about programs.

Application example We first introduce a utility law that allows us to extract
properties of specific method variables from an HM-healthy predicate. This law
facilitates reasoning about methods and will also be used later on. To express
it concisely, we extend the use of the α operator to apply to method variables
also, where it yields the alphabet of the underlying procedure type.



Law 4. Assume P is HM-healthy and we have {mx ,mx} ⊆ αP, αmx ⊆ αP,
and αmx ⊆ αP. Then, P = P ∧ (call mx ⇔ call mx ).

Proof.

P ≡ “P is HM-healthy”

HM(P)

≡ “unfolding definition of HM”

P ∧ (∀m m | {m,m} ⊆ αP • [call m ⇔ call m]0)

≡ “specialisation of quantification with mx and mx”

P ∧ . . . ∧ [call mx ⇔ call mx ]0

≡ “specialisation of quantification (universal closure)”

P ∧ . . . ∧ (call mx ⇔ call mx )

≡ “logic and folding definition of HM”

HM(P) ∧ (call mx ⇔ call mx )

≡ “P is HM-healthy”

P ∧ (call mx ⇔ call mx )

Another useful law is a predicative version of the substitution rule.

Law 5. P [Q1] ∧ (Q1 ⇔ Q2) = P [Q2] ∧ (Q1 ⇔ Q2) where the notation P [Q ]
expresses that the predicate Q occurs in another predicate P.

Let us revisit S1. We encode it in our theory as illustrated below.

T1 =̂ HM(m1 := {|x := x + 1|} ; m2 := {|x := x + 2 ; call m1|})

We note that the assignments above are relational assignments rather than gen-
eralised higher-order assignments. The simple technical reason for this is to take
advantage of the one-point rule; it is not a limitation of our theory.

The transformation below exemplifies how we reason about T1.

T1 ≡ “unfolding definition of HM, let γ∗HM =̂ γHM({m1,m2,m1,m2})”
(m1 := {|x := x + 1|} ; m2 := {|x := x + 2 ; call m1|}) ∧ γ∗HM

≡ “unfolding sequential compositions and assignments, one-point rule”

(m
′
1 = {|x := x + 1|} ∧ m

′
2 = {|x := x + 2 ; call m ′1|}) ∧ γ∗HM

≡ “Law 4 with (m ′1,m
′
1) and (m ′2,m

′
2), predicate is HM-healthy”(

m
′
1 = {|x := x + 1|} ∧ m

′
2 = {|x := x + 2 ; call m ′1|} ∧

(call m ′1 ⇔ call m
′
1) ∧ (call m ′2 ⇔ call m

′
2)

)
∧ γ∗HM

≡ “one-point rule using m
′
1 = {|x := x + 1|} and m

′
2 = {|x := x + 2 ; call m ′1|}”m

′
1 = {|x := x + 1|} ∧ m

′
2 = {|x := x + 2 ; call m ′1|} ∧

(call m ′1 ⇔ call {|x := x + 1|}) ∧
(call m ′2 ⇔ call {|x := x + 2 ; call m ′1|})

 ∧ γ∗HM



≡ “cancellation law: call {|p|} = p”m
′
1 = {|x := x + 1|} ∧ m

′
2 = {|x := x + 2 ; call m ′1|} ∧

(call m ′1 ⇔ x := x + 1) ∧
(call m ′2 ⇔ (x := x + 2 ; call m ′1))

 ∧ γ∗HM

≡ “Law 5 using call m ′1 ⇔ x := x + 1 ”m
′
1 = {|x := x + 1|} ∧ m

′
2 = {|x := x + 2 ; call m ′1|} ∧

(call m ′1 ⇔ x := x + 1) ∧
(call m ′2 ⇔ (x := x + 2 ; x := x + 1))

 ∧ γ∗HM

≡ “simplification of sequence: (x := x + 2 ; x := x + 1) = (x := x + 3)”m
′
1 = {|x := x + 1|} ∧ m

′
2 = {|x := x + 2 ; call m ′1|} ∧

(call m ′1 ⇔ x := x + 1) ∧
(call m ′2 ⇔ x := x + 3)

 ∧ γ∗HM

The last step makes precise the effect of calling the methods m1 and m2. It
agrees with our intuition and moreover shows the validity of the copy rule.

To summarise, in this section we have presented a novel theory of methods
that deals with the issues raised when using higher-order UTP to model object-
oriented software. For instance, it allows us to redefine m1 in T1 as follows.

T2 =̂ T1 ; HM(m1 := {|(x := x + 1 ; call m1) / x < 10 . II|})

where II has a suitable alphabet. This introduces a call into the method body.
The types of m1 is exactly as before, assuming that m1 and m2 a priori have m1

and m2 in their alphabets; this ceases to be a problem in our theory as it does
not constrain calls. Thus compositionality of method (re)definition is restored.

5 Discussion

In this section we first discuss the treatment of procedures with parameters and
secondly tackle the problem of (mutual) recursion in our theory of methods.

5.1 Procedures with Parameters

In our treatment so far, we have ignored the possibility of program values being
procedures — that is having parameters. A standard approach to support pro-
cedures is to encode them as functions [2] whose domains correspond to the kind
of objects being passed to the procedure (a variable or value) and whose range is
the underlying semantic model of the procedure body. Higher-order UTP adopts
a similar approach to realise parameter passing. For instance, we can define a
procedure p1 with a name parameter n as follows.

p1 := {|λn : var(Z) • n := n + x |}

It takes an integer variable as its argument and adds the value of x to it. It is
a function from variables to predicates. This procedure is besides ‘polymorphic’



in the sense that the alphabet of the predicate that results from applying p1

is determined by the argument. For instance, we have that the alphabet of the
predicate resulting from the call p1(x ) includes {x , x ′, y , y ′} whereas the call
p1(z ) gives rise to a predicate whose alphabet is {y , y ′, z , z ′}.

The polymorphic nature of procedures is difficult to reconcile with the model
construction in Section 3.1. This is because the notion of type that is used there
and taken from [7] is not appropriate anymore, precisely because no a priori
knowledge of the alphabet of a procedure’s predicate is possible. Because of
this, we confine ourselves to procedures that are non-polymorphic. They are the
procedures that only admit value parameters. An example is given below.

p2 := {|λ v : val(Z) • x := x + v |}

We note though that the absence of result parameters does not prohibit or
constrain the use of object references (pointers) [3]. Java, for instance, only
includes value parameters. To integrate these kinds of procedures into our higher-
order program model, we can, in essence, use the same technique as in Section 3.2.
This is by introducing additional syntax that corresponds to the declaration of
formal procedure parameters. Once again, a data type is used for this purpose.

PROC [BODY ] ::= ValArg 〈〈TYPE × PROC [BODY ]〉〉 | Body 〈〈BODY 〉〉

Above, TYPE encodes the type of a parameter; we assume this is <base type>.
The recursion in ValArg enables us to support procedures with arbitrary num-
bers of parameters, as an object of a unified type PROC [BODY ] where BODY
provides the semantic model of the procedure body. We note that in the theory
of object-orientation in [14], BODY is itself syntax, which is not a problem.

Importantly, a new definition of call, refinement and at least assignment (to
support refinement of procedure values) have to be provided for PROC [BODY ].
These definitions take advantage of a function apply that applies a procedure to
a list of arguments; its signature is illustrated below.

apply : PROC [BODY ]→ seq(VALUE )→ BODY

The apply function has a simple inductive definition which we omit. Refinement
is defined as a pointwise extension of vbody , the refinement of objects of type
BODY . It only considers argument sequences of the correct length and type,
which is determined by an auxiliary function valid .

p1 vproc p2 = ∀ args | valid(p1, p2, args) • (apply p1 args) vbody (apply p2 args)

The new call operation pcall is defined as pcall p(args) =̂ call(apply p args)
where call provides the semantics of calls on entities of type BODY , which we
assume already exists. If needed, other operators can be provided via pointwise
lifting too, using the same approach as in [2].

The above shows how we can integrate limited support for parametrised pro-
cedures into our model without compromising soundness. Its primary limitation
is that it excludes result parameters. Result parameters are, it seems, needed in
order to support methods with return values. This is an open issue that we are
currently investigating and planning to report on in follow-up work.



5.2 Mutual Recursion

We return now to the problem in the introduction of encoding

S =̂ m1,m2 := {|µX ,Y •
〈

(x := x − 1 ; Y ) / x > 0 . II,
(y := y − 1 ; X ) / y > 0 . II

〉
|}

In our theory of methods, this can now be written as

T1 =̂ HM(m1 :=A {|(x := x − 1 ; call m2) / x > 0 . II|}) and

T2 =̂ HM(m2 :=A {|(y := y − 1 ; call m1) / y > 0 . II|}) and

T =̂ T1 ; T2

where A =̂ {m1,m
′
1,m2,m

′
2,m1,m

′
1,m2,m

′
2} and

αm1 = αm
′
1 = αm2 = αm

′
2 = {m1,m

′
1,m2,m

′
2}

We observe that T1 introduces the method definition for m1 and T2 introduces
the method definition for m2. Neither of them relies on a fixed-point construction,
and compositionality is illustrated by the combined definition T that composes
the individual method definitions in sequence. For composability, the alphabets
of the assignments have to be suitably extended with A.

Although this is not proved here, we claim that

S ⇔ (∃m1,m
′
1,m2,m

′
2 • T )

A proof of this conjecture requires special laws that permit one to move between
formulations in terms of recursive calls to rank 1 method variables and fixed
points; we are currently examining those laws. It seems that in order to reason
about particular programs, the form in S may have practical advantages. How-
ever, to reason about features of object-orientation, the form in T is superior
because there we profit from compositional method (re)definition.

Above we introduced an alphabet A that contains all method variables under
consideration. In practice, it is necessary to fix such an alphabet since otherwise,
we still run into the problems discussed in Section 4.1 regarding the types of
method variables. We recapture that in the theory of methods, there is, however,
no problem in fixing this alphabet as this per se does not restrict calls. The
fixing of alphabets in general involves the provision of a predefined repository of
method variables in which the rank 2 variables have all rank 1 variables in their
alphabets; we believe that this is largely a technical (and tractable) issue.

Finally, it is even possible to redefine recursive methods individually. For
instance, we may redefine m1 in T as follows.

T ; HM(m1 :=A {| call m2|})

Importantly, this redefinition implicitly also alters the behaviour of m2, which
now leaves x unaffected and sets y to 0. It appears that the theory of methods
solves the problem of redefinition gracefully also in the context of (mutual)
recursion. This may be at the cost of a possibly more complicated strategy
for reasoning about the properties of methods, such as proving that the above
specification implies that [call m2 ⇔ y := 0]. We are currently investigating this.



6 Conclusion

We have examined the ramifications of higher-order UTP in theories of object-
orientation and presented solutions to four major challenges: consistency of the
program model, redefinition of methods in subclasses, the treatment of recursion
and mutual recursion, and simplicity. We briefly comment on each of them.

Consistency is achieved by the inductive construction of a program model
that caters for our needs to combine syntax and semantics, as well as procedures
with parameters. We thereby proved a result that was left implicit in [7], namely
that arbitrary theories can be used in place of the program model. The con-
struction also provides guidance for mechanisation in a theorem prover. There
are still open issues with regards to supporting result parameters; it seems that
in order to do so, we have to elaborate the notion of variable type to reflect the
signature of polymorphic procedures. This is on-going research work.

A number of issues that arise from method (re)definition have been discussed
and we have presented a novel solution in terms of a UTP theory. The important
contribution of the theory is to restore compositionality. Almost as a side effect, it
also gracefully handles recursive definitions in a compositional manner. Notably,
this is useful for the theory of object-orientation in [14], as it eliminates the need
to rewrite recursive methods into multi-variable fixed-point terms.

Simplicity is achieved as our theory of methods provides a uniform treatment
of types: method definitions are assignments to rank 2 variables while method
calls are to rank 1 variables. The only complication that persists is that we have
to introduce an a priori repository of method variables which determines the
minimal alphabet of all rank 2 method variables (the set A in Section 5.2).

As related work, we first note Naumann’s foundational work on the semantics
of higher-order imperative programming [9,10]. It is based on predicate trans-
formers and tackles features of object-oriented programs, such as inheritance and
dynamic binding through the use of record subtyping. In [6], Jifeng et al. intro-
duce rCOS, a UTP-based refinement calculus for object systems. It is based on
a fixed syntax and defines the semantics of an object-oriented program by way
of a denotation function; this seems to side-step the explicit use of procedure
variables, although the treatment of recursion is not discussed.

Recent work by Chin et al. [4] proposes a modular verification technique for
object-oriented programs based on separation logic. Their approach seems effi-
cient and pragmatic, but is tied to a design-based view of method specifications.
Our aim is to create a framework that can be integrated with arbitrary theories
of programming. Lessons may be learned from [4] in terms of modular reasoning.

There are two main strands for future work. The first one is to formulate and
prove more laws and properties of the theory of methods, and show how they
are used in practice to reason about object-oriented programs. We expect there
exist further interesting laws waiting for discovery, in particular in conjunction
with fixed points and the theory of designs.

A second strand is the mechanisation of higher-order UTP as well as the
theory in [14]. We already have preliminary but promising results on such a
mechanisation in the Isabelle HOL prover [11]; it extends the semantic model of



alphabetised predicates that was used in [13] and [18] to incorporate program
values. A delicate open issue is that presently we rely on custom axioms for the
type morphism {| |} and its inverse; future work will aim to remove those axioms.

Acknowledgements We thank the anonymous reviewers for their useful
comments. This work was funded by the EPSRC grant EP/H017461/1.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Springer, 1996.
2. R.-J. Back and V. Preoteasa. Reasoning About Recursive Procedures with Pa-

rameters. In Proceedings of the 2003 ACM SIGPLAN workshop on Mechanized
reasoning about languages with variable binding. ACM, August 2003.

3. A. Cavalcanti, A. Wellings, and J. Woodcock. The Safety-Critical Java Memory
Model: A Formal Account. In FM 2011: Formal Methods, volume 6664 of Lecture
Notes in Computer Science, pages 246–261. Springer, June 2011.

4. W.-N. Chin, C. David, H. H. Nguyen, and S. Qin. Enhancing Modular OO Verifi-
cation with Separation Logic. ACM SIGPLAN Not., 43(1):87–99, January 2008.

5. W. Harwood, A. Cavalcanti, and J. Woodcock. A Theory of Pointers for the UTP.
In Theoretical Aspects of Computing - ICTAC 2008, volume 5160 of Lecture Notes
in Computer Science, pages 141–155. Springer, September 2008.

6. Jifeng He, Xiaoshan Li, and Zhiming Liu. rCOS: A refinement calculus for object
systems. Theoretical Computer Science, 365(1-2):109–142, November 2006.

7. C. A. R. Hoare and Jifeng He. Unifying Theories of Programming. Prentice Hall
Series in Computer Science. Prentice Hall, February 1998.

8. I. Kassios. Decoupling in Object Orientation. In FM 2005: Formal Methods, volume
3582 of Lecture Notes in Computer Science, pages 632–632. Springer, July 2005.

9. D. Naumann. Predicate Transformer Semantics of an Oberon-Like Language. In
PROCOMET ’94, Proceedings of the IFIP TC2/WG2.1/WG2.2/WG2.3 Working
Conference on Programming Concepts, Methods and Calculi, pages 467–487, 1994.

10. D. Naumann. Predicate transformers and higher-order programs. Theoretical Com-
puter Science, 150(1):111–159, October 1995.

11. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL, volume 2283 of Lecture
Notes in Computer Science. Springer, 2002.

12. G. Nuka and J. Woodcock. Mechanising a Unifying Theory. In Unifying Theories
of Programming, First International Symposium, volume 4010 of Lecture Notes in
Computer Science, pages 217–235. Springer, February 2006.

13. M. Oliveira, A. Cavalcanti, and J. Woodcock. Unifying Theories in ProofPower-
Z. In Unifying Theories of Programming, First International Symposium, volume
4010 of Lecture Notes in Computer Science, pages 123–140. Springer, 2006.

14. T. Santos, A. Cavalcanti, and A. Sampaio. Object-Orientation in the UTP. In
Unifying Theories of Programming, volume 4010 of Lecture Notes in Computer
Science, pages 18–37. Springer, February 2006.

15. M. Spivey. The Consistency Theorem for Free Type Definitions in Z. Formal
Aspects of Computing, 8:369–375, May 1996.

16. J. Woodcock and J. Davies. Using Z: Specification, Refinement and Proof. Inter-
national Series in Computer Science. Prentice Hall, July 1996.

17. F. Zeyda. A Theory of Methods: Validation of Laws. Technical report, July 2012.
Available from http://www.cs.york.ac.uk/circus/hijac/publication.html.

18. F. Zeyda and A. Cavalcanti. Mechanical reasoning about families of UTP theories.
Science of Computer Programming, 77(4):444–479, April 2012.

http://www.cs.york.ac.uk/circus/hijac/publication.html

