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Abstract

The Unifying Theories of Programming (UTP) of Hoare and He is a general framework in which the semantics
of a variety of specification and programming languages can be uniformly defined. In this paper we present
a semantic embedding of the UTP into the ProofPower-Z theorem prover; it concisely captures the notion
of UTP theory, theory instantiation, and, additionally, type restrictions on the alphabet of UTP predicates.
We show how the encoding can be used to reason about UTP theories and their predicates, including
models of particular specifications and programs. We support encoding and reasoning about combinations
of predicates of various theory instantiations, as typically found in UTP models. Our results go beyond what
has already been discussed in the literature in that we support encoding of both theories and programs (or
their specifications), and high-level proof tactics. We also create structuring mechanisms that support the
incremental construction and reuse of encoded theories, associated laws and proof tactics.
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1. Introduction

The Unifying Theories of Programming (UTP) provides a framework for the semantic integration of
a variety of programming languages from different computational paradigms within a unified relational
model. It captures the meaning of imperative, functional and concurrent languages, for example, and helps
to identify common features. It also provides a unified semantic presentation of programming theories,
and shows how links between them can be formulated and reasoned about. The semantics of a variety of
integrated programming and modelling languages are based on the UTP [MD00, SJ02, BSW07]. Crucially,
the UTP unifies different notions of refinement, and enables us to formally state and prove that a program
acts in accordance with a specification of its required behaviour.

The UTP models a program (or specification) as a relation capturing the observations that can be made
of its behaviour. The calculus of the UTP is based on alphabetised relations similar to Tarski’s [Tar41], but
presented in a predicative style. For example, x ′ = x + 1 encodes the relation that increments the value of
x . By convention, undashed variables are used to denote the state (values of the variables in the alphabet)
before the computation, and corresponding dashed variables the values of the variables at a later point in
the computation. A UTP theory is characterised by an alphabet and a collection of healthiness conditions
that identify the predicates that are valid models of computation in that theory.

In [OCW07], Oliveira presents an embedding of the UTP for the ProofPower-Z theorem prover. Proof-
Power is a versatile and extendable prover for higher-order logic that has been successfully used in the
avionics industry [AC05]. ProofPower-Z is an extension of ProofPower that provides additional reasoning
support for the Z language [WD96]. (ProofPower itself is based on the logic of HOL [Gor88].)

In the approach of [OCW07], the static notion of a ProofPower theory is used to capture the definitions,
operators, axioms and laws of various UTP theories, namely the theories of relations, designs, reactive

∗Corresponding Author.
Email address: frank.zeyda@cs.york.ac.uk (Frank Zeyda)

Preprint submitted to Elsevier March 9, 2010



designs, CSP, and Circus. The mechanisation has been successfully used to prove laws that are generally
valid within these UTP theories; hereby a repository of more than 500 verified theorems was created.

A question of practical interest which Oliveira’s work did not address in full, however, is reasoning about
particular UTP specifications, especially in the presence of types. We consider, for example, the proof of
the following refinement conjecture within the UTP theory of relations.

x := x + 1 / x = 1 . II v x := 2

The notation P / b . Q is used for conditionals: the program that behaves as P if b holds, otherwise as Q .
II denotes the computation that has no effect (Skip). The above refinement is valid under the assumption
that x ranges over the values of the set {1, 2}. Since the UTP acknowledges strict typing, it is sensible and,
as illustrated here, in certain cases even necessary to exploit assumptions about the types of variables.

The alphabet of each of the UTP theories described in [HJ98] includes a set of variables w , whose
particular names are left unspecified. They are included to represent the programming variables and are
named after them. In the case of our example above, this would be the single variable x and its dashed
counterpart x ′ used to denote the final value of x . Therefore, we can conclude that the theory descriptions
in [HJ98] define families of theories rather than particular instances which fix the set of programming
variables of interest and their types. Our refinement conjecture cannot be expressed and does not hold in
all instantiations, only in those which include x and x ′ in their alphabet, and specify {1, 2} as their type.

With the existing semantic encoding, there are a few subtle complications related to reasoning about
refinement statements such as the above. They mostly arise from the fact that neither a dynamic notion of
UTP theory nor of instantiation of a theory is provided. Instead, that encoding introduces a global universe
of variable names with no restrictions imposed on their types. Concretely, a type of bindings (records) that
associate names to values is introduced and predicates of all theories are modelled as sets of bindings.

BINDING =̂ NAME 7→VALUE

To capture type-constraints on variables, restrictions on BINDING have to be placed a posteriori by virtue
of suitable axiomatic constraints. For the previous example, we would have to specify

`∀ b : BINDING | x ∈ dom b • b (x ) ∈ {1, 2}

as an additional axiom. Here, x refers to a global constant that represents the variable x.
We identify a number of problems with this approach. Firstly, such axioms would not merely restrict the

predicates of a singular UTP theory but in fact all UTP theories in the current ProofPower theory scope.
This is due to UTP theories being organised in a static hierarchical manner, and ultimately each theory
being characterised by further restrictions on the general theory of relations whose underlying predicates
would be constrained by axioms such as the above. (The BINDING type is indirectly shared by all theories.)
For this reason, it would not be possible for two predicates in which the variable x has different types to
coexist within the same definitional scope of the prover, a drawback that we overcome in this work.

A second difficulty is that when reasoning about particular programs, it is frequently necessary to work
with predicates of different instances of a theory. A trivial example is a variable block, whose body is a
predicate in a theory whose alphabet is enriched by the declared variables, and so different from the theory
of the block itself. The presence of other encapsulation mechanisms, in languages like Circus [CSW03] and
TCOZ [MD00], for example, whose semantics are based on the UTP, raises more issues of this nature.
Circus specifications contain a series of processes, and a TCOZ specification contains a series of classes. The
states of the processes and the attributes of the classes define different instances of theories that need to be
handled in a single specification. In other words, a ProofPower theory defining these specifications involves
predicates of several UTP theories, so that the static association is appropriate for families of theories, but
less accurate when we reason about their instances.

At this point it is worth noting the significant distinction between UTP theories and ProofPower theories.
Whereas ProofPower theories are database-like entities of the host environment, carrying the definitions and
theorems for the semantic encoding, UTP theories are the abstract mathematical entities that we model
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and reason about. In the existing treatment, UTP theories are ‘instantiated’ by importing the appropriate
ProofPower theory; due to the static structure of theory hierarchies in ProofPower, this can only be done once
and for all. Hence it is in principle possible to formulate and prove the above refinement conjecture even in
the existing encoding by creating a designated ProofPower theory for it, but this approach is not viable for
verification techniques where multiple specifications have to reside in the same definitional reasoning scope.

The third difficulty with the current encoding is that the introduction of subsequent constraints for
constants could potentially result in the model becoming inconsistent and thus vacuous. To establish con-
sistency, ProofPower-Z has facilities to generate existential proof obligations, but only for newly introduced
constants and not for subsequently added constraints on existing ones.

To solve these problems, we introduce a new approach to the mechanisation of the UTP in which we
provide a semantic characterisation of theories, and a means for dynamic instantiation. This reduces the risk
for inconsistency, and creates opportunities for formulating and proving properties which were previously
beyond the scope of mechanical reasoning. These are, for example, theorems about links between UTP
theory instantiations such as isomorphisms, Galois connections, and many others.

Our contributions in this paper can be summarised as follows.

1. We propose a method for encoding specific UTP theories which lends itself to integration into verifi-
cation strategies based on a UTP semantics. The hierarchical presentation of UTP theories, which is
explored in [OCW07], has crucial benefits in terms of reusing definitions and laws, hence we do not to
abandon it, but rephrase it in a more dynamic and modular way. We illustrate our ideas through many
examples, and use Circus as a major case study (see Section 4). The mechanisation and its approach,
however, are of a much wider applicability, and can support, for instance, reasoning in TCOZ.

2. A second contribution is a strategy to encode particular specifications. In doing so we outline some
of the opportunities for reasoning about concrete specifications and their refinements. We use a
Circus specification as a motivating example, and also explain how the theory of Circus is embedded,
how modularity is exploited in its presentation, and how different theory instantiations arise. This
illustrates the benefits of recasting Oliveira’s original model because our, and other similar scenarios,
are difficult to deal with in the original approach.

3. A third additional contribution of the work is the implementation of the majority of the high-level proof
tactics we suggested in [ZC09]. This produced further insight into how we create an infrastructure
of tactics that can dynamically be extended as the ProofPower theory hierarchy encoding specific
UTP theories unfolds. Altogether three layers of organisation can be identified: the Z definitions for
particular UTP theories, a collection of associated theorems, and extensions to the automatic proof
tactics. The organisation and dependency of these layers is another aspect which we address.

We have to a certain extent tackled these problems previously in [ZC08]. In this paper, we significantly
improve on that work by presenting new ideas and practical results motivated by experience since gained.
A major new feature of the encoding described here is the adoption of a more concise model for typing. It
is isomorphic to our previous model, but more convenient for proof. The motivation in our previous work
was to render the semantic model of alphabetised predicates as simply as possible, but it has been shown to
complicate many proofs of theorems about universes, including their simplification. We, therefore, present a
new model (different from that in [ZC08]), an encoding strategy like that described in [ZC08] and illustrated
for Circus in [ZC09], but adapted for the new model, and, as already said, the proof tactics that are only
suggested in [ZC09], but here are discussed in detail and considered in the context of the new model.

In summary, we provide a model that can cover all the features in [OCW07], and in addition supports
reasoning about particular specifications of a theory, as well as its general laws. Furthermore, we provide a
model that improves on our own previous results [ZC08], in that it is better suited for (automated) proof.

The structure of the paper is as follows. First, in Section 2 we further detail the main principles and ideas
of the UTP. Section 3 presents the relevant parts of our semantic encoding defining the notion of alphabetised
predicate, UTP theory, and instantiation. Section 4 then explains the encoding of more elaborate theories
using Circus as an example. Here, we also present and discuss the UTP model of a simple vending machine
described in Circus; it is used for illustration in subsequent sections. Section 5 surveys how we reason
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about UTP theories in general, formulate properties of theory links, and specify and apply refinement laws.
Section 6 discusses the encoding of particular specifications making use of the vending machine example,
and Section 7 reports on techniques and experiences regarding proof automation. In Section 8 we finally
draw our conclusions, raise some discussion of our design decisions, and outline future work.

2. The Unifying Theories of Programming

The UTP provides a unified framework for semantics definitions which aims to be independent of the
particular language or paradigm studied. The motivation of the UTP is to support direct comparison of a
variety of differing programming and modelling languages, isolate their semantic features, and, additionally,
facilitate their combination. First, it instructs that general concepts such as sequential composition or non-
determinism should be equally expressed across semantic theories. Another important aspect is a common
notion of refinement and associated calculus that permits the verification of implementations with respect
to some specified behaviour. A common notation is used for both, programs and their specifications.

To achieve these goals, the UTP follows a denotational approach that represents the elements of a
semantic model as relations over some agreed alphabet; hence the calculus of the UTP is essentially one
of relations, presented in a predicative style. Relations are used to describe the observable behaviour of
a particular computation, process or system under consideration, and the sets of relations that represent
meaningful computations in some paradigm, including their operators, are called theories.

As already mentioned, we use predicates to define relations, and therefore assume every predicate to be
implicitly (or explicitly) associated with an alphabet. For this reason, predicates in the UTP are customarily
referred to as alphabetised predicates. The alphabet of a predicate P is given by αP . As a simple example,
the predicate x ′ > x with alphabet {x , x ′} specifies the computation that nondeterministically increases the
value of x by some unknown quantity. In general, undecorated variables are used to represent initial obser-
vations, and corresponding dashed variables to represent subsequent or final observations. The in operator
yields all undashed variables of some alphabet, and the out operator all (single-)dashed variables.

Alphabets in general define the variables that record a relevant observable property. In programming
theories these could be, for example, state variables, but also auxiliary variables that may record termination
of the program (okay), traces of events while the program executes (tr), and indeed any further ones that
are required to fully characterise computations in the paradigm under consideration.

Apart from alphabetised predicates we also consider UTP theories to have alphabets. The alphabet of a
theory predetermines the alphabet of the predicates belonging to that theory. It is possible to dash individual
variables as well as alphabets; in case of the latter, dashing applies to each variable of the alphabet. The
notion of an alphabetised predicate is slightly more general than that of a relation: whereas predicates permit
any sets of variables, relations are restricted to undecorated ones and those with a single dash.

Standard predicate calculus operators can be used to combine alphabetised predicates; for example,
x ′ = x + 1 ∨ x ′ = x − 1 specifies a program that either increments or decrements the value of x . Nondeter-
minism here is modelled by disjunction of predicates, and this is indeed a common feature across different
UTP theories. The sequence of computations P ; Q , similarly, is generally characterised by relational com-
position. Other standard operators include Skip (IIA), the assignment x :=A e, the conditional P / b . Q ,
and local variable blocks. The subscript A in some of these operators is an alphabet that needs to be given
as a parameter for the construct. Every UTP operator must specify the alphabet of the resulting predicate;
where the alphabet cannot be implicitly determined from the operand(s), it must be explicitly given.

Table 1 lists the core operators of the UTP, including their definitions, alphabets and possible caveats.
Skip is the computation that leaves the state unchanged. Assignment changes the value of a variable by
constraining its final value, but leaves other variables in the alphabet unaffected. The UTP conditional
takes a less familiar form as an infix operator, leading to a more symmetric presentation of its algebraic
properties; the more familiar analogue is if b then P else Q . For sequential composition to be well-defined,
the output alphabet of the first predicate has to match the input alphabet of the second predicate; it is
defined by existentially quantifying over the intermediate states. It is also possible to extend the alphabet
of a predicate; namely P+x extends the alphabet of P with the variable x and its dashed version. The
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Name Syntax Definition Alphabet Caveat

Skip IIA v = v ′ A A = {v , v ′}

Assignment x :=A e x ′ = e ∧ a ′ = a ∧ b′ = b ∧ . . . A A = {x , x ′, a, a ′, b, b′, . . .}

Conditional P / b . Q (b ∧ P) ∨ (¬ b ∧ Q) αP αP = αQ and αb ⊆ αP

Sequential Composition P ; Q ∃ v0 • P [v ′\v0] ∧ Q [v\v0] in αP ∪ out αQ out αP = {v ′} = (in αQ)′

Nondeterministic Choice P u Q P ∨ Q αP αP = αQ

Alphabet Extension P+x P ∧ x = x ′ αP ∪ {x , x ′} αP ∩ {x , x ′} = ∅

Declaration var x ∃ x • IIA A \ {x} {x , x ′} ⊆ A

Undeclaration end x ∃ x ′ • IIA A \ {x ′} {x , x ′} ⊆ A

Weakest Fixed Point µX • F (X )
d
{P | P ⇒ F (P)} αF (X ) ∀ P1,P2 • αF (P1) = αF (P2)

Strongest Fixed Point νX • F (X )
⊔
{P | F (P)⇒ P} αF (X ) ∀ P1,P2 • αF (P1) = αF (P2)

Iteration b ∗ P µX • (P ; X ) / b . IIαP αP

Table 1: Definition of common UTP Operators

definition ensures the variable retains its value. Lastly, the var and end constructs support the use of
local variables. This is achieved by sequentially composing them with the body of the variable block as in
var x ; P ; end x . Composition with var hides the initial value of the local variable, and composition with
end hides its final value. Thus, var is used to open the scope of a local variable, and end to close it. The
body P of the declaration must have the declared variable and its dashed counterpart in its alphabet.

As already mentioned, the UTP is founded on a unified notion of refinement. Refinement intuitively
captures that all behaviours of some concrete specification (intermediate refinement or implementation) are
also possible behaviours of some abstract specification. Hence, refinement establishes the formal correctness
of an implementation with respect to a specification, and therefore is used to construct verification arguments.
For example, the previous specification x ′ = x + 1 ∨ x ′ = x − 1 is refined by x := x + 1; we use the notation
x ′ = x + 1 ∨ x ′ = x − 1 v x := x + 1 to formally state this. The example illustrates how refinement
may resolve possible nondeterminism in the specification. Mathematically, refinement is characterised by
universal (reverse) implication: S v P =̂ [P ⇒ S ]. Here, [ ] is the universal closure of a predicate; it is
defined by [P ] =̂ ∀w • P where w are the variables in the alphabet of P .

Relational theories are complete lattices under refinement, with bottom element true and top element
false. It then follows that monotonic functions on their predicates have weakest and strongest fixed points
with respect to that order, and the operators µX • F (X ) and νX • F (X ) are introduced to denote them.
Their definition is also in Table 1; we observe that

d
and

⊔
are meet and join operators. Recursion

is modelled using fixed points, and iteration is treated as a special case of recursion. Intuitively, b ∗ P
repetitively executes P unless b becomes false; its more familiar syntax is the while b do P statement.

In the UTP approach, specific features of a paradigm are usually captured by custom relational operators,
and further validation and understanding is provided by a set of algebraic laws that relate them to the other
operators. One such law is, for instance, that non-deterministic choice distributes through conditional,
expressed as P / b . (Q u R) = (P / b . Q) u (P / b . R). This, and many other theorems relating the
operators in Table 1 are presented in [HJ98], and they constitute a repository for proving further algebraic
properties of new operators, and refinement conjectures of relational predicates.

In defining UTP theories, we are usually only interested in a subset of the predicates over a given
alphabet, namely those that represent meaningful computations. The most general theory is the one of
relations as it includes all predicates of a certain alphabet. It is at the top of the theory hierarchy. In
more concrete theories we use healthiness conditions to identify the predicates that belong to the theory.
These embody facts about the computational models by restricting the set of permissible predicates. For
example, the theory of designs is a restriction of the theory of relations that supports reasoning about
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program termination. It is useful since the general theory of relations is not expressive enough to capture
nonterminating behaviour, as required in a total-correctness program semantics.

The theory of designs handles nontermination by introducing additional boolean variables okay and okay ′

which record whether a program has started or finished. To filter out predicates that make assumptions
about the effect of a program before it has started, all predicates P are required to satisfy the healthiness
condition P = okay ⇒ P . Predicates satisfying this condition evaluate to true whenever okay = false.
This condition, and healthiness conditions in general, can be expressed using idempotent functions that map
a possibly unhealthy predicate to a valid healthy one; here, it would be the function H1(P) = okay ⇒ P .
The predicates of a theory are exactly the cumulative fixed points of its healthiness functions.

A second healthiness condition H2 for a design P is that P [okay ′\false]⇒ P [okay ′\true]; it requires that
any observable behaviour under nontermination must also be a possible terminating behaviour. This implies
that it is not possible to actually rely or insist on nontermination. H2 can be written as an idempotent by
defining an auxiliary predicate J =̂ okay ⇒ okay ′ ∧ v = v ′ with v being the state alphabet of the design
theory under consideration. With it we can define H2(P) = P ; J . That the fixed points of H2 are exactly
those predicates that satisfy the property above is proved in [HJ98].

Together, H1 and H2 characterise valid designs. It can be proved that they are exactly the predicates
that can be written in the form P ∧ okay ⇒ Q ∧ okay ′ where P and Q specify the familiar pre and
postcondition pair of a computation. They are described using the design notation P ` Q .

In summary, the UTP adopts a very general approach in which theories are predicate sets characterised
by alphabets and healthiness conditions. Unification is achieved by the ability to freely combine predicates
of different theories, a common notion of refinement, and fundamental operators like sequential composition
and nondeterminism being equivalently defined across theories. New theories may be specified by specialising
existing theories with additional healthiness conditions, and naturally laws that have been proved for the
less restrictive theories carry over to the more restrictive ones. The theory of designs, for example, restricts
the theory of relations over a certain alphabet. Additionally, new operators may be introduced, and their
soundness with respect to a theory can be examined by showing they are closed under its predicates.

An area on which the UTP literature is not very explicit is types. Generally, we assume any theory to
be strongly typed, and this implies that variables in alphabets implicitly have type constraints associated
with them. In the next section we explain how we encode aspects of the UTP that concisely capture the
notion of alphabetised predicate and UTP theory, and doing so moreover deal with the issue of typing.

3. Semantic Encoding of the UTP

In this section we present and explain the core definitions of our semantic encoding of the UTP. Our
main objective is to develop a semantic model for alphabetised predicates and UTP theories that, unlike
existing mechanisations, takes into account type restrictions on variables. Because of the extensiveness of
the encoding, we are not able to present and explain all definitions in detail. The complete ProofPower
theory scripts can be found on the web at http://www.cs.york.ac.uk/circus/tp/tools.html.

In this section we particularly look at the contents of the ProofPower-Z theories utp-lang, utp-pred, and
utp-theory, establishing the fundamental language definitions and semantic model for alphabetised predicates
and of UTP theories. An overview of the entire theory hierarchy is presented in Figure 1.

3.1. Expressions and Values
Before examining the particulars of modelling alphabetised predicates, we need to establish a few funda-

mental definitions that allow us to embed the syntax and semantics of expressions and values. The definitions
necessary for this part of the mechanisation are provided in the ProofPower-Z theory utp-lang.

First, we introduce a new type NAME to represent variable names. Names are characterised by a triple
of natural numbers whose first component is a unique identifier, the second component records the number
of dashes, and the third component is used to specify a possible subscript. We seldom need to refer to the
detailed representation of names. We usually introduce them as arbitrary elements from NAME with some
additional constraints; it is however important to have this amount of detail in the semantic model to prove

6

http://www.cs.york.ac.uk/circus/tp/tools.html


utp-z-ext

utp-lang

utp-pred

utp-theory

utp-z-rel

utp-des

utp-rea

utp-csp

utp-circus

Core Definitions UTP Theories

Theory of Relationsz_library

ProofPower-Z

Theory of Designs

Theory of Reactive 
Processes

Theory of CSP

Theory of Circus

Basic Language Definitions

Semantics of
Alphabetised Predicates

Semantics of UTP Theories
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Figure 1: Hierarchy of ProofPower theories of the mechanisation.

distinctiveness properties such as x ′ 6= x ′′ and x1 6= x2 in places where we need them. A purely axiomatic
characterisation that did not define a concrete model for NAME is used in [OCW07]. It acknowledges some
incompleteness, and assumes that whenever additional properties of names and their operators are required,
they are added as new axioms. The reason we deviate from this approach is because of a technical intricacy
in ProofPower-Z concerning the consistency proofs for operators. This also lessens the risk of invalidating
proofs by future alterations to definitions.

Several operators are provided of which the most important one is the dash function. Its effect is to
decorate names by appending them with a dash. This is achieved by incrementing the second component
of the name. We omit the formal definition here, but it can be inspected in Appendix A.1. We point out
that dash is injective, a property which is relied upon in the sequel.

Using dash we also define the constant dashed =̂ ran dash as the set of decorated names, and furthermore
undashed =̂ NAME \ dashed as the set of undecorated names. We support the encoding of names that
carry multiple dashes, though in the following we only consider decorated names with a single dash. The
corresponding set dashed once is introduced for them and specified as dash L undashed M.

Alphabets are elements of a type ALPHABET and are introduced as subsets of NAME . They are
homogeneous if they contain only matching pairs of dashed and undashed names. Two alphabets a1 and
a2 are composable if the dashed names of the first correspond the undashed names of the second, that
is, ∀n : undashed • n ∈ a2 ⇔ dash n ∈ a1. Composability is crucial for relational composition to be
well-defined. Both properties are specified by the relational constants homogeneous and composable.

We now turn to the definition of VALUE and EXPRESSION , which capture the semantic domain of
values and the syntax of expressions. They are both introduced by Z declarations of suitable free types.
VALUE , whose definition is given below, represents all values in the semantic universe; its specification
by virtue of a new ProofPower-Z type allows for a uniform treatment of values in the host logic (HOL). It
also permits reasoning about types within the model of the object language (UTP). Although we generally
assume that encoded expressions and predicates are type correct, it is nevertheless necessary to be able to
reason about types in the semantics, for example, to prove theorems relying on such assumptions.

VALUE ::= Int(Z) | Bool(B) | Real(R) | Channel(NAME ) |
Set(P VALUE ) | Pair(VALUE ×VALUE ) | Seq(seq VALUE ) | Sync

Simple values can be integers, booleans, real numbers, or channel names, and are obtained by the respective
7



constructor functions Int , Bool , Real , or Channel . Sync is a special value used in synchronising communi-
cations without data exchange. Set , Pair and Seq are constructor functions to create more complex values
such as sets, pairs, and sequences; for example, Seq(〈Int(1), Int(2), Int(3)〉) encodes the sequence 〈1, 2, 3〉.
Alongside, we introduce the sets INT VAL, BOOL VAL, and so on to refer to the values representing
integers, booleans, etc. We can think of them as modelling carrier sets for particular value types.

The abstract syntax of expressions is encoded by virtue of a free type EXPRESSION . It considers the
case of value constants, variables, relations, and unary as well as binary function applications.

EXPRESSION ::= Val(VALUE ) | Var(NAME ) |
Rel(REL× EXPRESSION × EXPRESSION ) |
Fun1(UNARY FUN × EXPRESSION ) |
Fun2(BINARY FUN × EXPRESSION × EXPRESSION )

The three sets REL, UNARY FUN and BINARY FUN model the types for relations VALUE ↔ VALUE ,
unary functions VALUE 7→ VALUE , and binary functions VALUE ×VALUE 7→ VALUE on values. Such
functions have to be individually provided to give a semantic interpretation for all relations and operators
of the syntax. For example, a function ( +V ) : BINARY FUN is required to encode the expression 1 + 2,
whereby the encoding is Fun2(( +V ),Val(Int(1)),Val(Int(2))). Analogously, to encode x ≤ y we would
use Rel(( ≤V ),Var(x ),Var(y)) with ( ≤V ) being suitably defined. Although many such concrete
relations and operators are defined in utp-lang, their specific definition shall not be relevant here. As a
convention, we agree on a general rule to use a subscript V for functions and relations on values.

Two important operators on expressions are FV (e) and Eval(b, e). The first infers the free variables of
an expression e, and the second evaluates an expression with respect to some binding b. Intuitively, bindings
associate (a subset of) names with values. Since functions on values are partial, evaluation in general is
partial too. As a restriction for Eval(b, e) to be well-defined, we first require the binding b to equate each
free variable in e with a value. Secondly, it has to be a value of the correct type depending on the operators
occurring in the expression. For example, to evaluate x + y a binding would have to associate both x and
y with integer values; namely, because the result is eventually determined by the function ( +V ), which
is only defined for integer pairs. Although, fundamentally, well-definedness of evaluation in our model is
subject to verification, initial type checking of the syntax of expressions and predicates justifies to postulate
it as an axiom. This eases the burden on proofs having to discharge respective provisos.

The next sections introduce the semantic model of alphabetised predicates and UTP theories.

3.2. Alphabetised Predicates and Universes
The semantic model for an alphabetised predicate is a set of bindings describing the valuations that

render it true. For example, the predicate x = 1 ∨ x = 2 is characterised by the set of bindings including
just x 7→ 1 and x 7→ 2 if we assume the only variable of the alphabet is x . The potential bindings that can
be used in representing predicates are, however, subject to type restrictions. The formal characterisation of
an alphabetised predicate is a pair defined as follows.

ALPHA PREDICATE =̂ {bs : BINDINGS ; u : UNIVERSE | bs ⊆ BindingsU u}

In this definition, BINDINGS is the set of all binding sets irrespective of type constraints, and UNIVERSE
the set of all valid typing definitions specifying the predicate’s alphabet and the types of the variables
included in it. Individual bindings are represented by partial functions from variable names to values,
that is BINDING =̂ NAME 7→ VALUE , and BINDINGS =̂ P BINDING is the type of all binding sets.
Universes are modelled by partial functions from names to non-empty sets of values. We introduce a new
set TYPE =̂ P1 VALUE , and with it define UNIVERSE as given below.

UNIVERSE =̂ NAME 7→ TYPE

The variables (or alphabet) of a universe is simply its domain. For clarity, we introduce the function
AlphabetU to infer it. For each name n ∈ AlphabetU u, the application u(n) yields the set of values over
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which n may range in the universe u. The functional requirement ensures that variables can have at most one
type associated with them, and the restriction to non-empty subsets of values avoids the case of degenerate
types that contain no values at all. The problem with empty types is that the respective universe has no
bindings, and does not allow the differentiation of the predicates true and false. For that, at least one
binding needs to exist, since otherwise both true and false correspond to the empty set of bindings.

The purpose of the function BindingsU used in the definition of ALPHA PREDICATE is to construct
the binding set that corresponds to a given universe. It contains all the bindings that assign values to all
the variables in the universe, and no others, that agree with the type restrictions imposed by it. Clearly,
we do not want to mention variables outside the universe, but also we do not consider bindings that may
valuate only a subset of the universe’s alphabet. For the definition of BindingsU see Appendix A.1.

The universe model we specify here is different from the earlier one proposed in [ZC08], where universes
were characterised directly by sets of well-typed bindings, including bindings that may not valuate all
alphabet variables (Appendix B provides the definition of UNIVERSE in that model). It, however, shall be
noted that this does not affect the expressiveness of the model: it was merely a design decision to simplify
universe combinators. Our new model in fact turns out to be isomorphic to this model. On one hand, the
BindingsU function enables us to extract the binding set of a universe. Vice versa, it is always feasible to
extract the type of a variable in the former model.

The motivation behind the earlier approach was to simplify the definition of ALPHA PREDICATE : its
constraint was simply bs ⊆ u. We expected this also to facilitate proofs which either exploit or have to
show this property. However, it turned out that a high price had to be paid for this design, for proofs
about universes became much harder; firstly, as universe operators required more elaborate definitions, and
secondly since essential properties of UNIVERSE , like for example subset-closure, had to be established to
prove closure of operators. To show that some specific value is a universe required more proof effort too.

The present model is evidently more concise, and a considerable simplification in the proof of laws
about universes mirrors this. Interestingly, it is also not more complicated in terms of proofs of properties
of alphabetised predicates; by introducing BindingsU , we can formulate theorems about the bindings of
universes in a modular and general way. Mathematically, the two models have equal expressive power. A
formal proof of the underlying isomorphic relationship is possible, but would distract us from the main
objectives of the paper. We now look at some of the operators for manipulating universes.

3.3. Universe Operators
The two central universe operators are universe extension u1 ⊕U u2 and universe restriction u 	U a.

Universe extension is simply defined as the union of u1 and u2, yielding a universe whose alphabet contains
the variables of both u1 and u2. It is only applicable if the universes agree on the types of the shared
variables. If so, we say that the universes are compatible. We formally define compatibility as follows.

CompatibleU : UNIVERSE ×UNIVERSE → B

∀ u1, u2 : UNIVERSE •
CompatibleU (u1, u2) ⇔ (dom u1 ∩ dom u2)C u1 = (dom u1 ∩ dom u2)C u2

Complementary, universe restriction removes the variables in the alphabet a from the universe u; its result
is defined by the domain subtraction a −C u.

A few further operators are provided, namely MergeU (us) which merges a set of universes, RenameU (f , u)
which renames the variables in a universe, and typeof (n, u) and typeofE (e, u) which yield the type of a
variable and of an expression in a universe, respectively. The simple definitions of MergeU and RenameU

are omitted in the narrative here, but can be inspected in Appendix A.1; the former is just a generalisation
of u1 ⊕U u2 using generalised set union, and the latter carries out a renaming according to a given injective
function f on names. The function typeof (u,n) is defined as the application of u to n, providing n is in
the alphabet of u. For typeofE we have the following definition. Here, WF EXPRESSION UNIVERSE
encapsulates restrictions on the arguments e and u. Specifically, typeofE (e, u) is only meaningful and hence
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applicable if the free variables in e are also included in u.

typeofE : WF EXPRESSION UNIVERSE → P VALUE

∀ e : EXPRESSION ; u : UNIVERSE |
(e, u) ∈WF EXPRESSION UNIVERSE • typeofE (e, u) = {b : BindingsU u • Eval (b, e)}

Operationally, we evaluate the expression e in all bindings of u and thereby construct the set of values e may
take. The typeofE function is useful to formulate semantic constraints in which the type of an expression
must be compatible with the type of a variable; a typical example of this is substitution or assignment.

In the previous two sections we have developed a semantic model for alphabetised predicates that takes
into account type restrictions. For this purpose, we have introduced and formalised the notion of (typing)
universes, which conceptually is an extension of alphabets in the UTP. Indeed we shall think of universes as
alphabets that additionally record type information. Such must be taken into account when, for example,
defining the operators in Table 1 that expect alphabets — implicitly they all take universes now. In the
following section, we discuss some of the core operators on alphabetised predicates.

3.4. Core Predicate Operators
The core predicate operators are contained in the ProofPower theory utp-pred. They include alphabet

extension and restriction, the common logical connectives, equality of expressions, substitution, refinement,
lattice-theoretic operations, and operators that allow one to bridge between object and host language logic.
Our definitions are based on the ones in [Oli05, OCW07] with the difference that operators have to construct
the universe of the result rather than its alphabet, in addition to the binding set.

As a first example, alphabet extension P+a of predicates is specified. In our encoding, this operator does
not take an alphabet a as its argument, but a universe u which indirectly defines an alphabet, but also the
types of its variables. The ProofPower-Z definition is given below.

⊕P : WF ALPHA PREDICATE UNIVERSE →ALPHA PREDICATE

∀ p : ALPHA PREDICATE ; u : UNIVERSE |
(p, u) ∈WF ALPHA PREDICATE UNIVERSE •

p ⊕P u = ({b : BindingsU (p.2 ⊕U u) | (AlphabetP p C b) ∈ p.1}, p.2⊕U u)

The semantic restriction WF ALPHA PREDICATE UNIVERSE on the domain of the function requires
the universe of the predicate p and the argument universe u to be compatible (they need not be disjoint).
The universe of the resulting predicate is obtained by extending the universe of p with u. The binding
set contains all bindings of the extended universe which, if restricted to the alphabet of p, are original
bindings of p. The effect of this is that no constraints are placed on those variables in u which are not in
the alphabet of p. The definition of alphabet restriction is even simpler: we apply domain subtraction to
all bindings of the predicate to obtain the bindings of the restricted predicate. We observe that the above
alphabet extension is not the alphabet extension of relations defined in Table 1. For the latter, we provide
an analogue operator ( ⊕R ) in utp-rel that also constrains variables to retain their value.

It is useful noting that subscripts are used to highlight membership of operators to specific UTP theories.
Above, for instance, the subscript P indicates that we are dealing with operators of the (most general) theory
of plain predicates. Other subscripts R, D , REA, CSP and C are later employed when specifying operators
in more concrete theories, namely those of relations, designs, reactive processes, CSP processes and Circus.
Additionally, we use the subscript V for functions on values, E for functions on expressions, and U for
universe operators. We later also make use of the subscript T for general operators on theories.

The logical constants true and false are characterised by the operators TrueP u and FalseP u; both have
a universe argument. The bindings of true are exactly the ones of the universe (given by BindingsU u), and
the binding set of false is always empty. The exclusion of empty types guarantees that there is at least one
binding in BindingsU u. Thus True u 6= False u and furthermore P 6= ¬ P are universally valid theorems,
as one would expect; otherwise this would not generally be the case.
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Negation is defined by constructing the complementary set of bindings with respect to the bindings of
the predicate’s universe. (The BindingsU function is again used to infer them.)

¬P : ALPHA PREDICATE →ALPHA PREDICATE

∀ p : ALPHA PREDICATE • ¬P p = (BindingsU p.2 \ p.1, p.2)

The universe is not altered by the operator. To provide an example of a binary logical connective, we present
below the definition of conjunction.

∧P : WF ALPHA PREDICATE PAIR→ALPHA PREDICATE

∀ p1, p2 : ALPHA PREDICATE | (p1, p2) ∈WF ALPHA PREDICATE PAIR •
p1 ∧P p2 = ((p1 ⊕P p2.2).1 ∩ (p2 ⊕P p1.2).1, p1.2⊕U p2.2)

The domain type WF ALPHA PREDICATE PAIR imposes restrictions that require the two arguments
to be compatible predicates, meaning their universes must be compatible. We obtain the binding set of
the result by intersecting the binding sets of the predicates after extension of their universes to the joint
universe. The universe of the result emerges from combining the universes of the individual predicates.
Disjunction is defined analogously using union of the binding sets instead of intersection.

Two other operators of special interest are equality and substitution. Equality constructs a predicate
from two expressions and needs to be supplied with a universe in whose context the equality is considered.

=P : WF EqualsP →ALPHA PREDICATE

∀ u : UNIVERSE ; e1, e2 : EXPRESSION | (u, e1, e2) ∈WF EqualsP •
=P (u, e1, e2) = ({b : BindingsU u | Eval(b, e1) = Eval(b, e2)}, u)

The semantic restriction WF EqualsP includes all triples (u, e1, e2) where (u, e1) and (u, e2) are well-defined
universe and expression pairs. This means that the universe must include the free variables of each of the
expressions. We then select all bindings from the binding set of u in which evaluation of the expressions
yield the same value. We assume that the expressions are type-correct with respect to u; this ensures that
Eval(b, e1) and Eval(b, e2) are well-defined for any binding of u.

The definition of substitution is slightly more complicated. Again, we have to provide a universe u, the
name n of the variable to be substituted, and an expression e. Substitution is an example of an operator
for which we need to restrict applicability to cases where type-correctness is guaranteed. For this we first
define the domain of the corresponding semantic function as follows.

WF SubstP =̂ {p : ALPHA PREDICATE ; n : NAME ; e : EXPRESSION |
n ∈ AlphabetP p ∧
(AlphabetP p, e) ∈WF ALPHABET EXPRESSION ∧
typeofE (e, p.2) ⊆ typeof (n, p.2)}

The first two conjuncts establish that the substituted variable as well as the free variables of the expression
are contained in the universe. The third conjunct establishes that the substituted expression denotes a value
of the right type, that is the type of n. Below the definition of substitution is presented.

/P : WF SubstP →ALPHA PREDICATE

∀ p : ALPHA PREDICATE ; n : NAME ; e : EXPRESSION |
(p,n, e) ∈WF SubstP •
/P (p,n, e) = ({b : BindingsU p.2 | b ⊕ {n 7→ Eval(b, e)} ∈ p.1}, p.2)

The intuition behind this definition is that, for b to be a binding of the substituted predicate, the expression
e has to evaluate to some value which the variable might have had in the original predicate to render it true.

11



To give an example, the binding set that represents the predicate x = 2 has only one binding x 7→ 2. The
substitution (x = 2)[x\x + 1], which is equivalent to the predicate x + 1 = 2, thus contains those bindings
where x + 1 evaluates to 2, that is x 7→ 1. The functional override is necessary to accommodate additional
variables of the predicate unaffected by the substitution.

As a final remark we discuss why precisely we need the restriction typeofE (e, p.2) ⊆ typeof (n, p.2) in
order to apply substitution. One reason is that it is not possible to prove, for example, distributivity of
substitution through negation without it. The conjecture (¬ okay)[okay\1] = ¬ (okay [okay\1]) illustrates
the problem, if we assume okay to be of boolean type. The following proof sketch shows how this leads to
a contradiction, if the type restrictions are not enforced like we do.

(¬ okay)[okay\1] = ¬ (okay [okay\1])
≡ “okay is an abbreviation for okay = true where true is a boolean value.”

(¬ okay = true)[okay\1] = ¬ (okay = true)[okay\1]
≡ “okay is of boolean type”

(okay = false)[okay\1] = ¬ (okay = true)[okay\1]
≡ “substitution”

(1 = false) = ¬ (1 = true)
≡ “evaluation of equalities; in what follows false and true are predicates.”

false = ¬ false
≡ “simplification of negation”

false = true

This kind of problem is overcome if we substitute okay with a value of its type. Moreover, it is possible to
prove the general distributivity law for substitution through negation with the additional assumptions on
the type of the substituted expression. This exemplifies how in our encoding some of the operators have to
integrate assumptions about typing to support proofs of essential laws and reasoning in general.

The last operator we consider is refinement. Unlike the operators we have encountered before, the result
of P v Q directly constitutes a predicate of the host logic (ProofPower), and thus it is not the encoding
of some alphabetised predicate of the object language (UTP). For its definition, it is useful to introduce a
function Tautology which determines if an encoded predicate is universally true. This corresponds to the
[ ] operator used in the UTP, which universally quantifies over all variables of the alphabet.

Tautology : ALPHA PREDICATE → B

Tautology p ⇔ p = TrueP (p.2)

The definition is in fact equivalent to demanding that the bindings of the predicate p have to be equal to
the binding set of its universe. With this definition we can conveniently define refinement as follows.

v : P WF ALPHA PREDICATE PAIR

∀ p1, p2 : ALPHA PREDICATE | (p1, p2) ∈WF ALPHA PREDICATE PAIR •
p1 v p2 ⇔ Tautology (p2 ⇒P p1)

Implication is defined in the usual way as P ⇒ Q =df ¬ P ∨ Q . The encoding of refinement in the
mechanised semantics enables us to state and mechanically prove refinement conjectures about particular
specifications; this is further discussed in Section 5.2.

Further operators are specified to characterise, for example, universal and existential quantification, the
least upper and greatest lower bound of predicate sets, and the weakest and strongest fixed points of functions
on predicates. For their inspection we point to http://www.cs.york.ac.uk/circus/tp/tools.html where
all ProofPower scripts are published. In the next section we will look at the characterisation of UTP theories.
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3.5. Characterisation of UTP Theories
UTP theories are modelled as records: elements of a schema type whose components define the theory’s

universe, and a set of healthiness conditions.

UTP THEORY
THEORY UNIVERSE : UNIVERSE
HEALTH CONDS : P HEALTH COND

The alphabet of the theory can be inferred from its universe using the previously introduced AlphabetU
function, hence there is no need to record it separately. The theory universe determines the universe of the
predicates of the theory. The next section explains how they can be determined.

Healthiness conditions are elements of a type HEALTH COND containing all idempotent, partial func-
tions from ALPHA PREDICATE to ALPHA PREDICATE . To specify it we first introduce another set
ALPHA FUNCTION . It contains all partial (unary) functions on ALPHA PREDICATE that are valid in
the sense that they preserve compatibility of predicates.

ALPHA FUNCTION =̂ {f : ALPHA PREDICATE 7→ALPHA PREDICATE |
∀ p1, p2 : ALPHA PREDICATE | (p1, p2) ∈WF ALPHA PREDICATE PAIR ∧
{p1, p2} ⊆ dom f • (f (p1), f (p2)) ∈WF ALPHA PREDICATE PAIR}

We recall that for (p1, p2) to be an element of WF ALPHA PREDICATE PAIR, the predicates have to
be compatible. The definition thus states that for f to be a member of ALPHA FUNCTION , any two
compatible predicates in the domain of f have to be mapped to predicates which are also compatible.

The justification for this restriction is that when, for example, specifying properties of functions, there
is a risk of undefinedness. To illustrate this, we consider the set monotonic ⊆ ALPHA FUNCTION which
records whether a function is monotonic. Formally, we have to establish that [f (p1) ⇒ f (p2)] holds under
the assumption [p1 ⇒ p2]. First, for p1 ⇒ p2 to be meaningful, we only consider predicates p1 and p2 that
are compatible; however, for f (p1) ⇒ f (p2) to be meaningful the above properties is additionally required.
Additionally, observe that restricting ALPHA FUNCTION to total functions would be too strong. An
example case is the healthiness function H1(p) = okay ⇒ p. It is only defined for predicates p in which the
type of okay is boolean if it occurs, therefore it is not total on ALHPA PREDICATE .

We give below the definition for HEATH COND , which captures the requirement for idempotence.

HEALTH COND : ALPHA FUNCTION

∀ h : HEALTH COND • h # h = h

Because the elements of HEALTH COND are partial functions, any concrete definition of a function as a
member of HEALTH COND must also specify the function’s domain. Partiality has another pragmatic
advantage here: it enables us to define healthiness conditions that only apply to predicates with specific
alphabets, for example homogeneous predicates. Idempotence is captured by h being invariant with regards
to relational composition with itself. This is equivalent to h(x ) = x for any x in the range of h.

The type UTP THEORY allows us to represent arbitrary instantiations of UTP theories within the
same ProofPower reasoning scope. To make the process of constructing theories more convenient, we pro-
vide functions for generic instantiation, instantiation through strengthening existing theories, or specific
instantiation of common UTP theories. The inherent hierarchy of various types of UTP theories is directly
reflected by the ProofPower definitions which provide their instantiation means.

Figure 1 on page 7 presents an overview of all ProofPower theories that are part of the mechanisation. The
theories in the middle column encapsulate the core definitions previously explained, and do not contribute
specific definitions for UTP theory encodings. An exception is utp-theory, which beyond providing the types
and functions for handling theory instances also specifies the instantiation means for the theory of plain
predicates explained in the sequel. In the right column we find a ProofPower theory for each UTP theory that
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Encoding of H1 in utp-des.

H 1 : HEALTH COND

dom H 1 = DES COMPATIBLE ∧
(∀ p : DES PREDICATE • H 1 p = OKAY ⇒P p)

Encoding of H2 in utp-des.

H 2 : HEALTH COND

dom H 2 = DES COMPATIBLE ∧
(∀ p : DES PREDICATE • H 2 p = p ;R J (ContractU (p.2, out a (AlphabetP p))))

Figure 2: Encoding of the healthiness conditions H1 and H2 for designs.

is encoded. Arrows between boxes indicate the static inclusion dependency between ProofPower theories,
which ensures that more specific theories can access the definitions and theorems of more general ones.

The theory of relations (utp-rel) is the most general one placing no restrictions on the predicates other
than requiring their alphabets to be homogeneous. The other theories encapsulate specific computational
paradigms. Designs (utp-des) are, as previously mentioned, used to model computations that may exhibit
non-termination. Reactive designs (utp-rea) describe reactive processes which can have sequential behaviour
while continuously interacting through communication events with the environment. The theory of CSP (utp-
csp) provides an enriched model of failures and divergences, the canonical semantics for CSP [Hoa85, Ros97,
CW04]. Finally the theory of Circus (utp-circus) provides a suitable model for the Circus language [CSW03],
which, as said before, is an integration of Z and CSP. The left-most theory z library is not part of the
encoding. We include it to import the default laws and utilities for the ProofPower encoding of Z, provided
by ProofPower-Z, and utp-z-ext is a custom extension of these laws.

At the bottom of this hierarchy resides the general theory of alphabetised predicates, which has no
healthiness conditions or restrictions on the theory universe.

InstPredTheory : UNIVERSE →UTP THEORY

∀ u : UNIVERSE • InstPredTheory u = InstTheory (u,∅)

Here InstTheory (u, hs) yields an element of UTP THEORY whose theory universe and healthiness func-
tions are trivially determined by u and hs.

We can strengthen an existing theory by adding further healthiness functions while maintaining its
alphabet and typing universe using the function SpecialiseTheory (th, hs). The following definition illustrates
how we exploit it in building UTP theory hierarchies. In particular, we provide a function to instantiate a
theory of designs as discussed in Section 2; its definition is based on an instantiation of a theory of relations.

InstDesTheory : DES UNIVERSE →UTP THEORY

∀ u : DES UNIVERSE • InstDesTheory u = SpecialiseTheory (InstRelTheory u, {H 1,H 2})

The encoding of the healthiness conditions H1 and H2 is given in Figure 2. DES COMPATIBLE is the
set of all predicates whose universe is compatible with constraining okay and okay ′ to boolean values.
ContractU (u, a) contracts a universe u to the variables in a, and the encoding of J is in Appendix A.4.

InstRelTheory(u) actually yields InstPredTheory(u) as a result, but imposes further restrictions on the
alphabet of u; relational theories must contain only undashed and single-dashed names. Besides, dashed vari-
ables, if present, must have the same types as their corresponding undashed counterparts. These restrictions
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are captured by the set REL UNIVERSE , which acts as the domain of InstRelTheory .

REL UNIVERSE =̂ {u : UNIVERSE | AlphabetU u ∈ REL ALPHABET ∧
(∀n : NAME | {n, dash n} ⊆ AlphabetU u • typeof (n, u) = typeof (dash n, u))}

REL ALPHABET is defined as undashed ∪ dashed once, the set of names which are either undashed or
have a single dash. For generality, relational alphabets do not necessarily have to be homogeneous.

By equating the domain of the instantiation functions InstRelTheory , InstDesTheory , and so on with
REL UNIVERSE , DES UNIVERSE , and so on, we are able to impose suitable restrictions on the alphabet
and types of variables of the respective UTP theories. For instance, DES UNIVERSE , used in our example
above specifies restrictions requiring all design theories to incorporate the boolean variables okay and okay ′.

DES UNIVERSE =̂
{u : REL UNIVERSE | AlphabetU u ∈ DES ALPHABET ∧ typeof (okay , u) = BOOL VAL}

This exemplifies how modularity is exploited in defining not only instantiation functions, but also the
alphabets and universes of theories within the hierarchy. Here, the definition of the type DES UNIVERSE
imposes additional restrictions on the elements of REL UNIVERSE . Similarly, DES ALPHABET , whose
definition we omit, restricts REL ALPHABET so that okay and okay ′ are present.

With the instantiation functions, we can now define theory families: sets that contain all the theories of a
particular kind, albeit with different universes. They are given by the range of the corresponding instantia-
tion functions. For example, REL THEORY , the family of relational theories, is given by ran InstRelTheory ;
DES THEORY , the family of design theories, by ran InstDesTheory , and so on. The sets REL THEORY ,
DES THEORY , . . . effectively allow us to reason about the possible instantiations of the respective theo-
ries. We will make use of them in formulating laws for particular theory families.

The approach we present here is not just an effort towards supporting dynamic instantiation of theories,
but a uniform mechanisation of UTP theories. Uniformity facilitates the development of reusable laws and
proof tactics, and therefore automation. For example, by strengthening theories we exploit the fact that any
predicate of the new theory fulfils the healthiness conditions of the extended theory, and so its laws apply.

3.6. Theory Predicates
One of the main motivations for instantiation is to permit reasoning about the predicates of particular

UTP theories, and construct verification arguments based on refinement. Although UTP THEORY has the
ingredients to distinguish various theories, we have to provide further means to characterise the predicates of
these theories. The predicates of a UTP THEORY object are determined by the function TheoryPredicates.

TheoryPredicates : UTP THEORY → P ALPHA PREDICATE

∀ th : UTP THEORY • TheoryPredicates th =
{p : ALPHA PREDICATE | p.2 = th.THEORY UNIVERSE ∧

(∀ h : th.HEALTH CONDS • p ∈ dom h ∧ h (p) = p)}

The definition implies that for predicates to belong to a particular theory, they have to share the the-
ory’s universe, and fulfil its healthiness conditions. Using this function, we define the sets of all relational
predicates, design predicates, and so on. For example, the set of all designs can be characterised as follows.

DESIGN = {p : ALPHA PREDICATE | (∃ th : DES THEORY • p ∈ TheoryPredicates th)}

Membership of some p to DESIGN implies that there is an instantiation of a design theory to which
p belongs, in other words p possesses a permissible universe and fulfils the healthiness condition for de-
sign theories. Beyond this, we also introduced two further, less restrictive sets: DES PREDICATE and
DES COMPATIBLE . The first contains all predicates that have an adequate universe for a design predi-
cate, but need not fulfil the healthiness conditions. The second one only requires compatibility with some
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design theory universe, hence if okay and okay ′ occur they have to be of boolean type. DES COMPATIBLE
is, for instance, used in specifying the domain of the healthiness condition H1 in Figure 2. Analogue sets
are defined for all UTP theories in the hierarchy.

Finally, it is possible to take an arbitrary predicate and apply the healthiness conditions of a UTP theory
to obtain a healthy one with respect to that theory (or in fact any arbitrary set of healthiness functions).
The corresponding function is ApplyHealthConds (p, hs), which expects a predicate p and a sequence of
elements from HEALTH COND . The result is obtained by folding the application of the functions in hs.
The reason for using sequences rather than sets of healthiness functions is to accommodate cases in which
the healthiness functions do not commute, and hence their order of application is significant. The definition
of ApplyHealthConds is included in Appendix A.2 for inspection.

3.7. Theory-specific Operators
It is sometimes necessary to impose additional restrictions on the arguments of operators; for example,

sequence, or relational composition, is only defined if the dashed variables in the alphabet of the first relation
match the undecorated variables of the alphabet of the second relation. Besides, there exist operators whose
application only makes sense in the context of particular UTP theories and their predicates.

Therefore, operator definitions may specify restrictions on the arguments. In our encoding, the most
fundamental restriction is that predicates must have compatible universes, which agree on the types of the
common variables. Additionally, functions representing operators of specific UTP theories may only be
partially defined on ALPHA PREDICATE : the argument has to be a predicate of the respective theory.
Similarly, the range may be specified to identify predicates of specific theories. An example is the definition
of the Skip operator for designs, which is different from the relational Skip IIR.

IID : DES UNIVERSE →DESIGN

∀ u : DES UNIVERSE • IID (u) = TrueP (u) `D IIR (u)

Using total functions with a more specific characterisation of their domain and range simplifies proofs of
theorems involving their application: it factors the proof of properties of the range into the consistency proof
of the functions. For example, the total function axiom of IID allows us to easily prove IID (u) ∈ DESIGN
by showing u ∈ DES UNIVERSE . Section 7 returns to this issues in the light of automating proofs.

To illustrate how operators are used to encode specifications, we present a program that nondetermin-
istically chooses to toggle the value of a variable x between 0 and 1, or leave it unchanged. Assuming the
type of x is {0, 1}, the program (x := 1 / x = 0 . x := 0) u II{x} is encoded as follows.

(AssignR (u, 〈x 〉, 〈Val(Int(1))〉) /R =P (u,Var(x ),Val(Int(0))) .R AssignR (u, 〈x 〉, 〈Val(Int(0))〉))
uR (IIR u)

The various semantic functions used here are ‘AssignR’, ‘=P ’, ‘( /R .R )’, ‘uR’ and ‘IIR’ which are
apart from equality all defined in the corresponding ProofPower theory utp-rel for relational predicates. A
suitable universe u must moreover be provided to apply some of them. ProofPower-Z definitions for these
operators are included in Appendix A.3 for scrutiny but are not discussed in detail here.

In the next section we look at the encoding of more elaborate theories by examining the mechanisation
of Circus. Although we use a similar approach to the one discussed in the current section, it gives rise to
more interesting healthiness conditions and the possibility of structuring theories in hierarchies. We thereby
besides develop the preliminaries for later encoding concrete Circus specifications.

4. More Elaborate Theories: Circus

In this section we review some of the fundamental elements of Circus and its semantic model, and illustrate
its encoding in ProofPower as a theory using our mechanisation.

The Circus language combines aspects of both sequential and reactive programming. It is therefore
especially suitable for the specification and development of state-rich reactive systems. As in CSP, the key
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channel Insert5pCoin, Insert10pCoin,DispenseItemBtn,ReturnChangeBtn

channel GiveItems,GiveChange : N

capacity , item price : N1

process SimpleVendingMachine =̂ begin

state State == [credit : N; stock : N]

InitState == [State ′ | credit ′ = 0 ∧ stock ′ = capacity ]

InsertMoney =̂
Insert5pCoin −→ credit := credit + 5 @ Insert10pCoin −→ credit := credit + 10

CalcDispense
ΞState; items!, left credit ! : N

items! ≤ credit div item price ∧ left credit ! = credit − items! ∗ item price]

DispenseItem =̂

DispenseItemBtn −→ var items, left credit : N • CalcDispense;
((items 6= 0 ∧ items ≤ stock) N

(GiveItems!items −→ credit , stock := left credit , stock − items))
@

(items = 0 ∨ items > stock) N Skip

ReturnChange =̂
ReturnChangeBtn −→ ((credit 6= 0) N GiveChange!credit −→ credit := 0) @ (credit = 0) N Skip

• InitState;
µX • InsertMoney @ DispenseItem @ ReturnChange ; X

end

Figure 3: Circus process of the simple vending machine.

concept in Circus is that of a process; it encapsulates state, and actions which operate on the state while at
the same time interacting with the environment by means of communication events. The state of a process
is specified as a Z (state) schema, and actions are defined through a mixture of Z operation schemas, CSP
constructs, and guarded commands [Dij76]. The state and internal actions are local to the process and thus
not externally visible; the behaviour is exposed by a designated main action of the process. Circus also
defines CSP-like operators such as parallelism, interleaving and hiding to combine processes.

4.1. Circus: Notation and Example
Figure 3 depicts a simple example of a Circus process. It specifies the behaviour of a minimalistic vending

machine. We assume there is only one type of item dispensed by the machine whose price is item price. It
is possible to either insert a 5p or a 10p coin, press the dispense button, or press the return change button.
An idealising assumption we make is that there is no limit to the amount of credit that may be inserted.
Pressing the dispense button results in one or more items being dispensed, provided sufficient money has
been entered and the machine has enough items in stock to serve the request. The actual number of items
dispensed is left unspecified, therefore an implementation can make a choice here. Possible resolutions are,
for example, to dispense exactly one item, or alternatively dispense as many items as the current credit
warrants. Pressing the return change button returns whatever credit currently resides in the machine. The
buttons may be pressed at any time. Initially, the number of items in stock is given by the constant capacity .

The Circus model first declares the communication channels. The four typeless channels Insert5pCoin,
Insert10pCoin, DispenseItemBtn, and ReturnChangeBtn represent the events of either inserting coins into
the machine or pressing one of its buttons. The next two channels GiveItems and GiveChange are both of
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type natural, and communicate the number of items dispensed by the machine, and the amount of change
returned, if so. The global constants capacity and item price respectively determine the stock capacity and
price of an item sold, and are loosely introduced as positive natural numbers.

The process body first declares the state of the process in a state paragraph. In the example, we have
two state components, credit and stock , which record the amount of credit in the machine and the number
of items in stock, respectively. They are both represented by natural numbers. The rôle of InitState is to
suitably initialise the state; here, the initial value of credit is set to zero, and the value of stock to capacity .

The following three auxiliary actions InsertMoney , DispenseItem, and ReturnChange specify the be-
haviour for inserting money or pressing one of the two buttons. In their definition we use a mixture of CSP
constructs, including prefixing and external choice, as well as sequential commands, such as assignments.
The guarded action P N A proceeds if predicate P holds, and otherwise is blocked.

A fourth action CalcDispense is specified by a Z schema and its purpose is to calculate the number of
items dispensed, and the amount of credit subsequently remaining in the machine. The schema components
here include the state of the process, as well as two extra output variables stock ! and left credit ! that
are used to hold the computed values. ΞState in the declarative part of the schema ensures that the
state variables are not changed by the operation (the values of dashed variables are equated with their
undashed counterparts). Regarding the operation’s behaviour, the predicate items! ≤ credit div item price
encapsulates the nondeterminism in dispensing any number of items for which the credit suffices; they may
also be zero. The second conjunct left credit ! = credit− items!∗ item price determines the amount of credit
remaining in the machine after the items are actually dispensed.

The DispenseItem action first waits for the DispenseItemBtn event to occur (press of button). It then
invokes CalcDispense to determine the number of items to be dispensed and the remaining credit. This
information is stored in the two local variables items and left credit , introduced by the var statement.
Following this, we specify a choice between two actions with complementary guards; due to the choice being
external, it selects whichever one is enabled. In the case of sufficient items in stock and the number of
items not being zero, the delivery of the items is signalled by communicating their number on the GiveItems
channel. Afterwards, it updates the credit and stock state components accordingly. In the complementary
case of insufficient items in stock, it terminates immediately without changing the state (Skip).

ReturnChange similarly waits for an occurrence of the ReturnChangeBtn event, and then outputs the
current value of credit on the GiveChange channel, thereafter setting it to zero. This only happens if credit
is not equal to zero, otherwise the operation does nothing. The behaviour we specify permits the button to
be pressed at any time, but money only to be returned when there is some credit in the machine.

The main action of the process, following the ‘•’, consists of two sequential commands: the first one
invokes InitState to initialise the state, while the second one keeps letting the environment choose among
the three auxiliary actions. The latter is realised by recursion: the name X is introduced to refer to the
body of the recursion, and a recursive call after the choice ensures that it is offered over and over again.

4.2. The Circus UTP model
Reactive Processes. To model interactions with the environment and intermediate states, four auxiliary
variables, and their dashed counterparts, are needed. They are okay , tr , ref and wait . The boolean variable
okay is used to distinguish stable from divergent states. The initial observation okay indicates that the
previous process has not diverged, and okay ′ indicates that the current process has not reached a divergent
state. Regarding the stable states of a process, a further distinction between intermediate and final states
is recorded by the boolean variable wait ; if wait is true, the previous process has reached an intermediate
state, and wait ′ records that the current observation is that of an intermediate state. So, if wait ′ is false
(and okay ′ is true), we have reached a final state (termination of the process).

To record the interaction with the environment while the process executes, tr and ref are used. Specifi-
cally, tr records event traces that have already taken place when the process is started, and tr ′, by extending
it, the events the process has engaged in (tr ′− tr yields the actual events contributed by the process). In any
intermediate state ref ′ records the set of events which are refused by the process in that state; the refusal
set is not relevant after termination, and therefore the initial variable ref is merely added as a technicality
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Name Definition Informal Description

R1 R1(P) =̂ P ∧ tr ≤ tr ′ A process cannot change the previous history of events.

R2 R2(P) =̂ P [tr , tr ′ \ 〈〉, tr ′ − tr ]
The process behaviour must be oblivious to events that
happened prior to its activation.

R3 R3(P) =̂ IIrea / wait . P
A process is only activated when its predecessor has fin-
ished; intermediate stable states do not progress.

Table 2: Healthiness conditions for reactive processes.

to make predicates of the theory homogeneous, and therefore, for their relational composition to be well-
defined. The auxiliary variables are needed to reason about the reactive behaviour, but we also allow the
presence of arbitrary state variables as in plain sequential computations.

Reactive processes are characterised by the three healthiness conditions R1 to R3 listed in Table 2. R1
captures that a process cannot alter any events that took place prior to its activation, hence the trace of any
subsequent state has to be an extension of the initial trace tr . R2 specifies that the process behaviour does
not depend on events before its activation. This is so if it can be described solely in terms of tr ′− tr . Lastly,
R3 requires that if the previous process is in an intermediate state, then the behaviour must be that of IIrea,
the reactive identity, defined as IIrel / okay . tr ≤ tr ′. It is an identity for relational composition whenever
okay is true, and otherwise permits any subsequent behaviour as long as trace extension is maintained. The
latter captures that after divergence any behaviour may be observable.

We encapsulate the UTP theory of reactive designs in the ProofPower theory utp-rea. The encoding
approach is similar to the one for the theory of designs already explained in Section 3. We note that the
theory of reactive designs is not a restriction of the theory of designs. This is so since H1-healthy predicates
do not satisfy R1. In particular, H1 requires the absence of any constraint on the behaviour when okay is
false; however, for a predicate to obey R1 it has to guarantee tr ≤ tr ′ in all circumstances.

The encoding of utp-rea first introduces the three auxiliary variables wait , tr and ref and their dashed
counterparts. Since we statically include utp-okay, we do not need to introduce okay again.

wait , tr , ref : NAME

{wait , tr , ref } ⊆ undashed ∧ distinct 〈okay ,wait , tr , ref 〉

The distinct relation states that the elements of a sequence of names are mutually distinct. This is con-
veniently expressed by requiring the sequence to be injective: distinct s ⇔ s ∈ iseq NAME . The dashed
versions of the variables are introduced via individual definitions wait ′ =̂ dash wait , and so on. The alphabet
consisting of the four auxiliary variables, and their dashed counterparts, is finally introduced through the
constant ALPHABET OWTR =̂ {okay , okay ′,wait ,wait ′, tr , tr ′, ref , ref ′}.

Next the two constants REA ALPHABET and REA UNIVERSE are introduced to specify the types of
valid alphabets and universes for reactive process theories. We follow a similar approach to that in Section 3,
however reusing the definitions of design alphabets and universes.

REA ALPHABET =̂ {a : DES ALPHABET | ALPHABET OWTR ⊆ a}

REA UNIVERSE =̂ {u : DES UNIVERSE | AlphabetU u ∈ REA ALPHABET ∧
typeof (wait , u) = BOOL VAL ∧
typeof (tr , u) = SEQ EVENT VAL ∧
typeof (ref , u) = SET EVENT VAL}

Above, SEQ EVENT VAL and SET EVENT VAL are particular types (subsets of VALUE ) that represent
sets and sequence of events. Events are in turn characterised by channel / value pairs.

Additionally, we define REA UNIVERSE MIN as the minimal reactive universe that contains no other
than the auxiliary variables, that is AlphabetU REA UNIVERSE MIN = ALPHABET OWTR.
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TReqTR′ =̂ =P ({tr , tr ′} × {SEQ EVENT VAL},Var(tr),Var(tr ′))
TRprfxTR′ =̂ =P ({tr , tr ′} × {SEQ EVENT VAL},Rel(( ≤V ),Var(tr),Var(tr ′)),TrueE )
TRdiffTR′ =̂ Fun2(( SeqDiffV ),Var(tr ′),Var(tr))

Figure 4: Utility definitions for the encoding of the reactive healthiness conditions.

As explained in the previous section, two predicate sets REA PREDICATE and REA COMPATIBLE
are introduced to define sets of predicates that impose the correct type restrictions on the auxiliary variables,
but not necessarily fulfil the healthiness conditions. Whereas predicates in REA PREDICATE must also
have a valid alphabet from REA ALPHABET , REA COMPATIBLE merely requires the auxiliary variables
to be of the correct type if they occur. These sets are needed to specify the domain of the healthiness functions
R1 to R3. In [OCW07], such is the set of all relational predicates, for the types of variables were statically
determined. In our recast model we have to be more discriminating to avoid type conflicts.

To make the encoding of healthiness functions more readable, we provide a few supplementary definitions.
For example, WAIT =̂ =P ({wait 7→BOOL VAL},Var(wait),TrueE ) encodes the predicate wait (or more
accurately wait = true). In this construction, the universe is explicitly provided, and TrueE is the encoding
of the syntactic expression true, namely Val(Bool(True)). Other useful constants include TReqTR′ encoding
tr = tr ′, TRprfxTR′ encoding tr ≤ tr ′, and TRdiffTR′ encoding tr ′− tr . They are given in Figure 4. Using
these utility definitions, R2, for example, is encoded as follows.

R2 : HEALTH COND

dom R2 = REA COMPATIBLE ∧
(∀ p : REA COMPATIBLE •
/P (/P (p ⊕P {tr , tr ′} × {SEQ EVENT VAL}, tr ,Val(Seq(〈〉))), tr ′,TRdiffTR′))

Since p, the predicate to which the function is applied, does not necessarily mention tr and tr ′, we extend
its universe within the inner substitution to ensure that it does. This is always possible as compatibility of p
with the universe {tr , tr ′}×{SEQ EVENT VAL} is implied by p being an element of REA COMPATIBLE .
The fact that we use REA COMPATIBLE and not REA PREDICATE for the domain of R2 enables us
to apply the function to a larger set of predicates, whose universe does not need to include all auxiliary
variables for reactive predicates. For example, R2 can be applied to the predicates of some design theory.
We show how this is useful when defining linking functions between theories in Section 5.1.

The two other healthiness idempotents R1 and R3 are encoded in the same way. Their corresponding
definitions are given in Appendix A.5. For R3 we additionally need the encoding of IIrea, the reactive Skip,
which, as explained above, slightly differs from the relational Skip. This throws up a minor problem since
we prefer to define theory-specific operators after the healthiness conditions and instantiation functions for
the theory. The advantage of this order is that we are able to introduce sets that comprise the healthy
predicates of some theory first, and subsequently refer to them in the definition of operators. Our strategy
to break circularity is to introduce R1, R2 and R3 loosely first by only stating their type and domain. In
this way, we can refer to them in the definition of operators, and complete their exact specification by means
of supplementary constraints once all operators of the theory have been specified.

We define the instantiation function InstReaTheory by strengthening a relational theory that has the
correct universe. The set REA THEORY , defined as ran InstReaTheory , contains all reactive theories, and
REA PROCESS the set of predicates that belong to some reactive process theory. Their formal definitions,
including the one of InstReaTheory can be found in Appendix A.5 as well.

The remainder of the encoding is concerned with theory-specific operators. For example, R is introduced
as the composition R1 ◦R2 ◦R3 of the healthiness conditions: it takes any REA COMPATIBLE predicate
and turns it into a healthy one. A reactive design is the result of the application of R to some design, in
general R(P ` Q). It is extensively used to define operators in the more specialised theories utp-csp for CSP
processes and utp-circus for Circus actions; otherwise utp-rea does not define any further notable operators.
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Name Definition Informal Description

CSP1 CSP1(P) =̂ P ∨ (¬ okay ∧ tr ≤ tr ′)
No other guarantees are made on divergence than preser-
vation of the history; tr ≤ tr ′ is the only guarantee.

CSP2
CSP2(P) =̂ P ; J where

J =̂ (okay ⇒ okay ′) ∧ IIrel

Nontermination may not be specified as a requirement.
This is an analogue of H2, recast for reactive designs.

CSP3 CSP3(P) =̂ SKIP ; P
The value of ref holding the refused events of the previous
process after termination is ignored.

CSP4 CSP4(P) =̂ P ; SKIP A process does not restrict ref ′ after termination; refused
events are irrelevant thereafter.

CSP5 CSP5(P) =̂ P 9 SKIP
Refusals of a process are subset closed. Hence, if a process
in some circumstances refuses a set of events, any subset
of those events must be refused as well.

Table 3: Healthiness conditions for CSP processes.

The paragraphs above have illustrated a general pattern for presenting the definitions of new UTP
theories. Although the theory of reactive processes is not an extension of the theory of designs, we can
nevertheless make use of some of the definitions in utp-des. Since the encoding does not impose global con-
straints, for example to capture typing, there is crucially no risk of interference when including a ProofPower
theory for the sake of using its definitions to encode another UTP theory. This notably leads to a better
exploitation of modularity and reuse of aspects of existing theory encodings.

CSP Processes. We follow the pattern already illustrated to encode the UTP theory for CSP (and Circus
later on in this section). While reactive processes provide the most general notion of reactive behaviour, CSP
processes require further constraints in the form of healthiness conditions that more specifically deal with the
case of divergence. Table 3 includes the complete set of additional healthiness conditions for CSP processes
of which only CSP1 and CSP2 are considered essential. The encoding of the ProofPower theory utp-csp for
CSP processes follows the same schema as the one for reactive processes. The alphabet CSP ALPHABET
and universe CSP UNIVERSE are simply equated with REA ALPHABET and REA UNIVERSE . We
encode the healthiness conditions CSP1 and CSP2, and define the instantiation function InstCSPTheory by
specialising a reactive theory. The predicate sets CSP PREDICATE and CSP COMPATIBLE are defined
as before to refer to predicates that have a compatible alphabet, and CSP PROCESS is the cumulative set
of predicates representing valid CSP processes.

The theory of CSP introduces a few more theory-specific operators. These are, for example, the constant
processes Skip, Stop and Chaos, representing immediate termination, deadlock and divergence, as well as
external choice P1 @ P2 and prefixing a −→ P . We do not discuss the semantics and encoding of these
operators in detail, which are available from [HJ98, CW04]. It is nevertheless useful to illustrate how the
presence of universes affects the definitions. As an example, we consider the deadlocked process Stop.

STOP : WF SkipREA→ CSP PROCESS

∀ u : WF SkipREA • STOP u = R (AssignR ({wait ,wait ′} × BOOL VAL, 〈wait〉, 〈FalseE 〉)⊕P u)

First, STOP takes a universe argument u. The predicate that defines Stop is R(wait := false) where ref is
assumed not to be in the alphabet of the assignment, to leave ref ′ unconstrained and thereby establish that
all events are refused. This is reflected by the ad hoc construction of a universe for the assignment which
only contains wait and wait ′ (with the right type). For the resulting predicate to have the correct universe,
we need to extend it with u, either before or after applying R. WF SkipREA is a semantic restriction which
requires the alphabet of u to be homogeneous and respect the types of auxiliary variables.
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Name Definition Informal Description

C1 C1(A) =̂ A ; Skip
Analogue of CSP4 for Circus actions. The Circus Skip
moreover takes into account state variables.

C2 C2(A) =̂ A ||[ v | ∅ ]|| Skip
Analogue of CSP5 for Circus actions. ||[ . . . ]|| is the Circus
interleaving and v the state alphabet of A.

C3 C3(A) =̂ R(¬ Af
f ; true ` At

f )
The precondition P of a Circus process expressed as a
reactive design R(P ` Q) contains no dashed variables.

Table 4: Healthiness conditions for Circus actions and processes.

Circus. Finally, at the most concrete layer we have the theory of Circus. It is constructed by further
strengthening the theory of CSP with the healthiness conditions C1, C2 and C3 listed in Table 4. For
the Circus theory we define CIRCUS ALPHABET and CIRCUS UNIVERSE to be exactly the same as
CSP ALPHABET and CSP UNIVERSE . The encoding of the healthiness conditions requires several
theory-specific operators such as the Circus version of Skip and interleaving. The instantiation function
InstCircusTheory specialises a theory obtained through InstCSPTheory with the healthiness functions C1,
C2 and C3. CIRCUS PREDICATE and CIRCUS COMPATIBLE similarly provide the sets of compatible
predicates, and CIRCUS ACTION all predicates that fulfil the healthiness conditions of Circus.

We additionally introduce a set CIRCUS PROCESS which contains exactly those predicates from
CIRCUS ACTION whose alphabet only includes the auxiliary variables. Whereas CIRCUS ACTION
characterises main or auxiliary actions of a process, CIRCUS PROCESS is used to characterise a process
by assuming any state components are concealed.

To summarise, as a general recipe for encoding new UTP theories we first determine whether the theory to
be defined is the specialisation of an existing theory, and if so import the corresponding ProofPower theory
to reuse types and, in particular, the instantiation function of the existing theory. The sets, healthiness
functions, operators, and so on, of the new theory are then presented in a uniform order. We start with the
definition of auxiliary variables, alphabet and universe types, and with these subsequently specify the sets
of compatible predicates. We then introduce healthiness functions and the theory’s instantiation function,
which usually is defined in terms of the instantiation function of the existing theory. Next, we introduce sets
characterising the theory’s instantiation family. The remaining definitions are concerned with theory-specific
operators and corresponding semantic sets specifying domains of the operator functions. Where we have to
defer the exact definitions of healthiness functions, because they require theory-specific operators, they are
given last by virtue of supplementary constraints.

5. Reasoning about UTP Theories

In this section we examine how our mechanisation enables us to reason about UTP theory families in
a general manner. We discuss separately our approaches for reasoning about general properties of theory
families, and about properties of particular instantiations of theories and their predicates. Theory families
can be, for example, all instances of design theories, reactive design theories, CSP theories, and so on, but also
more abstract families characterised solely by certain properties their healthiness conditions must possess.
Laws about more general theory families may be specialised to more specific theory families. Dealing with
instances of theories, on the other hand, is important to formulate soundness and verification properties of
particular specification and program encodings. To prove these, we usually have to resort to general laws
that are valid across instantiations. Reasoning about instantiations is the subject of Section 6.

To illustrate our approach to reasoning about properties that are valid in families of theories, we consider
the family of design theories. A general law that may be formulated is the following.

`∀ th : DES THEORY • TrueP (th.THEORY UNIVERSE ) ∈ TheoryPredicates th

It states that true (over the correct universe) is a valid predicate in any design theory instantiation. To
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prove this law we appeal to the healthiness conditions for designs. In the mechanical proof this is done when
rewriting TheoryPredicates th into its definition (see Section 3.6); we can make use of the theory universe
and healthiness conditions to characterise the predicates of th. The healthiness conditions of th, namely the
encoding of H1 and H2, are determined by membership to DES THEORY .

To express this law (and others) more concisely, we provide an alternative definition for TrueP (and
other operators) that takes as a parameter a theory rather than a universe. Conceptually, this allows us to
speak of predicates such as true, x := 1, x ′ = 2, II, and so on within specific theories. The required universe
of these operators is inferred from that of the theory. Below we show how this results in a more compact
rendition of the above law.

`∀ th : DES THEORY • TrueT th ∈ TheoryPredicates th

This law is indeed not more complicated than a corresponding theorem would have been in the original
treatment in [OCW07]. Providing the theory th is defined as illustrated in the previous section, using an
instantiation function, the requirement to prove th ∈ DES THEORY , raised by the use of the above law,
can be trivially discharged. In the original treatment we can similarly prove that for any alphabet, TrueR (a)
is a valid design; the corresponding theorem in that treatment would be

`∀ a : ALPHABET DES • TrueR (a) ∈ DESIGN

where DESIGN refers to the predicates of all possible instantiations of design theories, as it is also the case
in our treatment. Clearly, the above law does not capture predicate membership to a specific instance of
design theory. The fact that we can do so in our treatment allows for a more specialised reasoning.

Closure theorems for general and theory-specific operators are another example of laws whose validity
is expressed in terms of the theory context. The following theorem establishes that any theory of designs is
closed under disjunction.

`∀ th : DES THEORY • ∀ p1, p2 : TheoryPredicates th • p1 ∨P p2 ∈ TheoryPredicates th

To apply this law, we first have to establish that there is a member of the family of design theories to
which the predicates p1 and p2 in question belong. This law is not equivalent to stating that if p1 and p2

are elements of the set DESIGN , as defined in Section 3.6, so is p1 ∨P p2. The latter is how closure laws
would have been formulated in the original treatment, but here this would have a different interpretation,
namely that if we combine any two design predicates of possibly different design theory instances, we obtain
a design predicate (of some design theory). This is false due to the restrictions on alphabets and universes,
and the associated compatibility requirements of operators. Specifically, if p1 and p2 are incompatible, the
application p1 ∨P p2 is not well-defined and we should not be able to deduce any properties from it.

Beyond proving laws about the predicates of specific UTP theories as shown above, it is also possible in
our encoding to prove more general laws about UTP theories that, for example, exploit their relationship. A
very intuitive law establishes that the predicates obtained by extending an existing theory with additional
healthiness functions form a subset of the original theory’s predicates. We state this theorem as follows.

`∀ th : UTP THEORY ; hs : P HEALTH COND •
TheoryPredicates (SpecialiseTheory (th, hs)) ⊆ TheoryPredicates th

Here th can be any instance of a UTP theory, underpinning the generality of the law. Although this
property is not particularly surprising, it exemplifies how we can state universal facts about UTP theories
independently of theory families with specific sets of healthiness conditions.

A more interesting and practically relevant scenario arises when expressing and proving laws about fam-
ilies of UTP theories for which the healthiness functions possess certain properties. For example, [HCW08]
discusses theories in which the healthiness functions are expressed in terms of conjunctions. We can prove
certain theorems, for example, closure under conjunction, disjunction, sequence and so on, for the predicates
of all such theories. If we define, for example, a predicate CH(h) that tells us whether a healthiness function
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h is expressible in this way, the theorem

`∀ th : UTP THEORY | (∀ h : th.HEALTH CONDS • CH (h)) •
∀ p1, p2 : TheoryPredicates th • p1 ;R p2 ∈ TheoryPredicates th

asserts that the predicates of all such theories are closed under relational composition. The possibility of
expressing such properties of classes of theories distinguishes our approach from the existing one, and adds
to its expressive power. The general theorem above may be particularised to any theory whose healthiness
conditions have the required property, and the effort invested in proving it once is effectively reused.

So far we have confined our attention to properties of theory families and their predicates at different
levels of abstraction. Below we address reasoning about links between families of theories.

5.1. Linking Theories
Theory links are functions mapping the predicates of one theory into (a subset of) the predicates of

another. We have already encountered such functions, namely the healthiness functions H1 and H2 which
map predicates from the more general theory of relations into the more restrictive theory of designs, providing
the appropriate assumptions are met on the types of okay and okay ′ in the relational theory.

Linking functions often enjoy properties like idempotence, monotonicity, or weakening and strengthening
as described in [HJ98]. These properties allow us to deduce further characteristics of links and their predi-
cates. In our encoding we formalise links between theories by partial functions on ALPHA PREDICATE .
For this we use the type ALPHA FUNCTION as introduced in Section 3.5.

As an introductory example, we consider the link that maps a relation to a (terminating) design.

L (Q) =̂ true ` Q

We recall that the turnstile operator P ` Q yields a design predicate with precondition P and postcondition
Q ; as explained in Section 2 it is defined as okay ∧ P ⇒ okay ′ ∧ Q and encoded by

`D : DES COMPATIBLE ×DES COMPATIBLE →DESIGN

∀ p, q : DES COMPATIBLE • p `D q = (OKAY ∧P p)⇒P (OKAY ′ ∧P q)

Here, OKAY and OKAY ′ are constants which represent the predicates okay and okay ′, respectively. Their
definition is included in Appendix A.4. We recall that DES COMPATIBLE is the set of all alphabetised
predicates whose universes are compatible with the typing restrictions on design predicates. By contrast,
DESIGN is the set of predicates belonging to some instantiation of a design theory as explained in Section 3.6.

We now can encode the linking function L above as

L : ALPHA FUNCTION

dom L = DES COMPATIBLE ∧ (∀ p : DES COMPATIBLE • L (p) = TrueP ∅ `D p)

Because ALPHA FUNCTION only entails partial functions, the first conjunct defining the domain of L is
crucial to determine where application of L is defined. We now express the property that for every relational
theory th1 : REL THEORY with suitable typing on the auxiliary variables, there exists a corresponding
theory of designs where L maps each predicate of the former theory to a predicate of the latter.

`∀ th1 : REL THEORY | CompatibleU (th1.THEORY UNIVERSE ,DES UNIVERSE MIN ) •
∃ th2 : DES THEORY • L LTheoryPredicates th1M ⊆ TheoryPredicates th2

A similar technique can be used to express the law that a particular theory of CSP processes is an image of
a certain theory instance of designs under the function R which is the composition of healthiness functions
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R1 to R3 for reactive processes as defined in Table 2.

`∀ th1 : CSP THEORY • ∃ th2 : DES THEORY | TheoryPredicates th1 = R L TheoryPredicates th2 M

This law asserts that, for very every CSP theory, there is a theory of designs such that R, the linking function
in this context, maps the predicates of the design theory surjectively into those of the CSP theory.

Even more concretely, we can formulate and prove laws for particular theory instantiations. If theory
instances inst th1 and inst th2, not necessarily with compatible universes, are given, we can try to establish,
for example, that for those particular values

L LTheoryPredicates inst th1M ⊆ TheoryPredicates inst th2

holds.
As a closing remark, we observe that this section did not aim to explore in all detail the possibilities

for reasoning about theory links. We content ourselves with providing evidence for its feasibility, and give
an indication of which properties may be expressible. Particular properties of UTP theories are refinement
laws that hold for the predicates of those theories. We look at them in more detail in the following section.

5.2. Refinement Laws
A standard step in formal verification consists in proving that a given specification is refined by some

implementation. In essence, refinement is a property of alphabetised predicates that can be established
independently of their particular UTP theory membership. In the mechanical proof environment this shows
in the fact that every refinement can be proved by appealing to the definition of operators involved, as well
as axioms and laws specified in the lowest level of the theory hierarchy.

In practice, however, proofs unfolding the definition of all operators involved, and thereby expanding
predicates in terms of their semantic representation, are tedious and require a lot of low-level proof steps.
We consider, for example, the simple refinement

x := 1 u x := 2 v x := 1

in the context of the design theory instantiation presented in Section 5. Rewriting the operator definitions
yields the following sequence of steps.

x := 1 u x := 2 v x := 1

≡ [x := 1 u x := 2 ⇐ x := 1]

≡ [x := 1 ∨ x := 2 ⇐ x := 1]

≡ [(true ` x ′ = 1) ∨ (true ` x ′ = 2) ⇐ (true ` x ′ = 1)]

≡ [(okay ∧ true ⇒ okay ′ ∧ x ′ = 1) ∨ (okay ∧ true ⇒ okay ′ ∧ x ′ = 2)

⇐ (okay ∧ true ⇒ okay ′ ∧ x ′ = 1)]

To continue the proof in the context of our encoding, we have to unfold the definition of the logical operators
and equalities yielding a purely semantic representation of the alphabetised predicate, which by extensional
means has to be proved equal to the alphabetised predicate true. This is feasible but not practical, as the
unfolding of functions can produce very complex terms.

An alternative approach is to formulate and prove a collection of algebraic (refinement) laws. This is
achieved by explicitly stating the family of theories within which they hold. In the case of nondeterministic
choice we can formulate the following law that allows us to easily prove the above refinement.

`∀ th : DES THEORY • ∀ d1, d2 : TheoryPredicates th • d1 uD d2 v d1

The only proviso for this law is that the two predicates have to belong to the same theory, otherwise the
uD operator would not be well-defined, namely due to possible incompatibility of universe. Applying the
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refinement law hence requires the proof that constituent operators belong to a certain theory of designs;
this kind of requirement is in fact common to the application of most algebraic laws. In our particular case
this obliges us to show that the predicates x := 1 and x := 2 are predicates of some theory of designs.

The required proofs are partly based on the definitions of the programming operators. For our example,
the constructor function for design assignments guarantees that x := 1 and x := 2 are elements of DESIGN ,
from which easily follows that there is a theory of designs to which they belong. That it is the theory the law
is specialised with partly follows from the universe of the predicates. These extra proofs are an additional
cost that we have to pay for our more expressive semantics. We can, however, largely automate them for
typical cases by supplying suitable lemmas and tactics.

To clarify this point, we consider the application of the nondeterminism law to predicates involving other
operators, for example, sequence.

(x := 1; x := 2) u x := 3 v (x := 1; x := 2)

To apply the law, we need to establish that all constituting predicates are within the design theory of
discourse; this involves showing that x := 1; x := 2 ∈ TheoryPredicates th for some th : UTP THEORY .
The proof of properties like these cannot be sensibly captured by a single law; it is first necessary to prove
that x := 1 ∈ TheoryPredicates th, then x := 2 ∈ TheoryPredicates th, and finally exploit the closure
property of sequence. The structure of the predicate guides the proof. In summary, we can reduce the proof
effort to discharge refinement conjectures considerably by providing algebraic laws, but their application
requires further theorems, and importantly, high-level tactics for automation which we address in Section 7.

Another type of law which is useful to reason algebraically about refinements are identity laws such as

`∀ th : DES THEORY • ∀ d1, d2 : TheoryPredicates th • d1 uD d2 = d2 uD d1 ,

here exploiting the commutativity of nondeterministic choice. Again, to fundamentally apply such laws we
have to establish membership of the predicates involved to a particular UTP theory.

To conclude, we observe that our encoding enables us to prove the refinement conjecture presented in the
introduction, namely x := x + 1 / x = 1 . II v x := 2. To do so we first define an alphabet containing x
and x ′, and a universe in which they range over the set {1, 2}. Using the instantiation function for relational
theories, we then instantiate the corresponding UTP theory, as explained in Section 5; we call it th here.
The programs can be directly expressed as predicates of th and thereby acquire their universes from it.

AssignR (th, 〈x 〉, 〈x + 1〉) /R x = 1 .R IIR (th) v AssignR (th, 〈x 〉, 〈2〉)

The proof is carried out by unfolding the definition of the conditional into primitive logical operators on
alphabetised predicates. We can then use an algebraic law that rewrites the implication P ⇒ (Q ∧ R)
originating from the refinement and conditional into a conjunction, and another law that allows us to
prove the conjuncts separately. The interesting case is where ¬R (x = 1) appears in the antecedent of the
implication. Here, we exploit the fact that the universe only permits bindings mapping x to either 1 or
2; the semantic definition of negation takes this into account. This yields the necessary assumption x = 2
required to complete this branch of the proof as IIR (th) has no influence on the value of x .

The formulation and proof of general algebraic laws of designs, reactive designs, Circus, and so on has
already been explored in Oliveira’s work. In this section we contemplated how these laws may be rephrased
and used to reason about particular specifications. In the next section we investigate how to reason about
theory instances and their predicates in a more specific way.

6. Reasoning about Theory Instances

Beyond general laws, our semantic encoding enables us to reason about particular UTP theories and
their predicates. In this section we illustrate this by giving a few examples.
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6.1. Instantiating a Theory
First, we consider a UTP theory of designs with alphabet {x , x ′, okay , okay ′}. The auxiliary variables

okay and okay ′ are introduced in the ProofPower theory utp-des encapsulating common definitions for
design theories, but x and x ′ are specific variables which have to be introduced, for example, in a separate
ProofPower theory accommodating the definitions for the instantiation as follows.

x , x ′ : NAME

x ∈ undashed ∧ x ′ = dash x ∧ distinct 〈x , okay〉

The first two conjuncts establish that x is an undecorated name with x ′ being its dashed version. To
exclude the case where x = okay , we once again use the distinct function, and formalise this requirement as
distinct 〈x , okay〉. Because of the injectivity of the dash function and disjointness of the sets of undashed
and single-dashed names, this implies too that x , x ′, okay and okay ′ are all distinct.

The alphabet of our example theory instance can now be specified as follows.

INST ALPHABET : DES ALPHABET

INST ALPHABET = {x , x ′, okay , okay ′}

In the above, DES ALPHABET includes all alphabets that contain okay and okay ′, amongst other possible
variables. Discharging the existential consistency proof obligation for this definition establishes that the
alphabet we provide is a valid alphabet for a theory of designs.

Generally, consistency proof obligations in Z are used to establish that definitions are free of contra-
dictions, and hence guarantee the existence of a model for the constants. Formally, the proof has to
provide a witness that can be used in place of the defined constant, and moreover renders its predicate true.
Should this predicate, as here, be an equality in which the left-hand side matches the constant defined,
the only sensible witness is the right-hand value. Thus what we effectively prove for consistency is that
{x , x ′, okay , okay ′} ∈ DES ALPHABET . An alternative way of specifying INST ALPHABET would be

INST ALPHABET =̂ {x , x ′, okay , okay ′}

Consistency of this conservative definition is trivial, but we cannot immediately infer from it that the defined
INST ALPHABET is an element of DES ALPHABET ; this would have to be specified as a separate
theorem. The former style of defining constants as member of some suitable semantic set is the preferable
method for two reasons. First, a failure in the consistency proof reveals a conceptual error in the specification
which otherwise would be harder to localise, and second the membership of the defined constant to some
type becomes an axiom that can immediately be used in other proofs, facilitating automation.

We are next required to provide a theory universe. The instantiation function for design theories obliges
us to type the variables okay and okay ′ as boolean. By contrast, we can choose any type for x and x ′. By
reusing the set DES UNIVERSE which already captures the appropriate type constraints for the auxiliary
variables, the following definition specifying the types of x and x ′ uniquely determines the theory universe.

INST UNIVERSE : DES UNIVERSE

AlphabetU INST UNIVERSE = INST ALPHABET ∧
typeof (x , INST UNIVERSE ) = INT VAL

The same style of specification is used as before, yielding immediately that INST UNIVERSE is a valid
universe for designs (member of DES UNIVERSE ), providing consistency of the definition has been proved.
No predicate is included for explicitly constraining the type of x ′. Such is redundant since the properties
of REL UNIVERSE , of which DES UNIVERSE is a restriction, ensure that the dashed counterparts of
undecorated variables, if present, have identical types. INT VAL is defined as the subset of the semantic
domain of values that includes all integers (see Section 3.1). We observe that the additional constraint
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typeof (okay , INST UNIVERSE ) = BOOL VAL, namely to type-constrain okay (and okay ′) to boolean
values, is not required as it is already implied by the definition of DES UNIVERSE .

The previous example can be used to illustrate why it is important to ensure distinctiveness of x and
okay . Under the assumption x = okay , the above definition would by referential transparency imply that

typeof (x , INST UNIVERSE ) = typeof (okay , INST UNIVERSE )

which is a contradiction because of typeof (x , INST UNIVERSE ) = BOOL VAL; hence, in that case we
cannot find a model for INST UNIVERSE . Indeed, the only possible model fulfilling all constraints is

{okay 7→ BOOL VAL, okay ′ 7→ BOOL VAL, x 7→ INT VAL, x ′ 7→ INT VAL}

Clearly, it is only a universe (partial function) if x and okay are distinct. Distinctiveness of the variables
for this reason becomes a necessary proviso for the consistency proof.

The UTP theory is conveniently obtained using an instantiation function for design theories.

INST THEORY =̂ InstDesTheory INST UNIVERSE

We are now able to prove, for example, that certain alphabetised predicates belong (or do not belong) to
the instantiated theory’s predicates. For example, we can prove that

TrueP INST UNIVERSE ∈ TheoryPredicates INST THEORY

as well as

FalseP INST UNIVERSE 6∈ TheoryPredicates INST THEORY

That is, the predicate true, or more accurately true of our particular alphabet and universe, is a design
predicate, whereas false over that same alphabet and universe is not. This is done, for example, by using
the law presented in Section 5. Proofs of this kind are necessary to verify that the concrete computations
we encode and reason about belong to the UTP theory in which they are considered.

6.2. Handling Multiple Theory Instances: the Circus Example
We proceed to present a more elaborate example illustrating Circus theory instantiation and encoding of

their process actions. Our objective is to show how we can handle examples written in languages with an
elaborate scope structure. Within a Circus program, we can have a collection of processes, each with a local
state that defines a particular alphabet and universe. In addition, inside a process, it is possible to introduce
extra variables with limited and possibly nested scopes. In [ZC09], we have given an overview of the main
issues raised by this problem and discussed our proposed solution. Below, we review and complement this
work in the context of our revised model by presenting a more elaborate example that in addition provides
interesting opportunities for refinement.

6.3. Models of Circus Programs
We now explore how the mechanisation of Circus is used to encode concrete processes. For this we resort

to the example of the simple vending machine presented in Figure 3.
To accommodate the ProofPower-Z definitions, we create a new ProofPower theory circus-vm as a child

of utp-circus. We begin by creating definitions that introduce channel names, state components and local
variables. They are introduced through axiomatic definitions as unique elements of the NAME type. For
the channel names it does not matter whether channels are typeless or communicate values as we are only
interested in their identifier. Types are important when we communicate values over these channels, and
such communication events are represented separately by name / value pairs.

The SimpleVendingMachine process has two state components, credit and stock , which are introduced
(together with their dashed counterparts) as distinct values from the set Z VAR NAME ; this implicitly
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ensures distinctiveness from the auxiliary variables okay , wait , tr , and ref . The constant Z VAR NAME
is simply defined as NAME \ ALPHABET OWTR.

The minimal alphabet of process actions includes auxiliary variables as well as state components and is
added as a separate definition VM ALPHABET .

VM ALPHABET =̂ ALPHABET OWTR ∪ {credit , stock , credit ′, stock ′}

We refer to it as ‘minimal’ since it is possible for auxiliary actions to include additional variables; for example,
operation schemas can have extra input and output variables, and variable blocks and input communications
introduce new variables (with limited scope). This is, for example, the case for the CalcDispense action
which introduces the additional output variables items and left credit . The main action of the process,
however, must exactly have the alphabet VM ALPHABET .

The next step consists of instantiating the Circus theory for the main action. To do so we first define the
universe VM UNIVERSE of the main action. This is a Circus universe with alphabet VM ALPHABET
that imposes suitable type restrictions on the state components.

VM UNIVERSE : CIRCUS UNIVERSE

AlphabetU VM UNIVERSE = VM ALPHABET ∧
typeof (credit ,VM UNIVERSE ) = INT VAL ∧
typeof (stock ,VM UNIVERSE ) = INT VAL

By selecting the universe from CIRCUS UNIVERSE we already ensure that auxiliary variables are typed
correctly; the only type constraints to be formulated here are the ones restricting the state variables.

We are now able to define the UTP theory for the actions of SimpleVendingMachine. It is not just one
UTP theory, because, as hinted above, the alphabet of actions may include extra variables. We require a
family of Circus theories whose universe can be any possible extension of VM UNIVERSE .

VM THEORY =̂ {u : CIRCUS UNIVERSE |
VM ALPHABET ⊆ AlphabetU u ∧ CompatibleU (u,VM UNIVERSE ) • InstCircusTheory u}

The main benefit of VM THEORY is that it permits us to state (or verify) that actions such as InsertMoney ,
CalcDispense, DispenseItem, and so on, are characterised by predicates that belong to (one of) the Circus
theories for the VM process, encapsulating healthiness conditions as well as type constraints on the state
components. For this we define the set VM ACTION which contains all predicates characterising valid
actions in the context of the SimpleVendingMachine process.

VM ACTION =̂
⋃

TheoryPredicates L VM THEORY M

It is simply the union of all predicates of UTP theories in VM THEORY . The property that a predicate
P is a valid process action of SimpleVendingMachine can hence be easily expressed as P ∈ VM ACTION .
This helps in formulating theorems that formally state the soundness of action encodings. Another definition
VM MAIN ACTION ⊆ VM ACTION is included to specify those predicates which are valid main actions
of the process; their universe has to be exactly VM UNIVERSE , not including any extra variables.

We now turn to encoding the actions specified in SimpleVendingMachine. We first look at the initiali-
sation action InitState which is defined through a Z operation schema. In its definition the corresponding
schema [State ′ | credit ′ = 0 ∧ stock ′ = capacity ] has to be lifted to become a Circus action, more accurately a
valid predicate of a Circus theory in VM THEORY . The schema itself is encoded by a relational predicate
over the universe that contains its components credit ′ and stock ′ with the right type. We note that it neither
belongs to a Circus theory instance, nor does it have the auxiliary variables in its alphabet.

The semantic function SchemaExpC performs the lifting; it takes a relational predicate and an instance
of VAR DECLS encapsulating the declaration of the schema components. The universe of the predicate
has to be compatible with the variable declarations. The latter are encoded by a pair of sequences: the first
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component listing the variable names, and the second, their types.

VM InitState VAR DECLS =̂ (〈credit ′, stock ′〉, 〈INT VAL, INT VAL〉)

Types are represented as sets of values, that is sets of elements from the unified VALUE type introduced in
Section 3.1. Here, INT VAL is the set of integer values in the semantic model, defined as {n : N | Int(n)}.
It is obtained by applying the type constructor Int for integer values to all elements of its domain N.

The encoding of VM InitState is as follows.

VM InitState : VM ACTION

VM InitState = SchemaExpC (VM InitState VAR DECLS ,
(=P ({credit ′ 7→ INT VAL},Var(credit ′),Val(Int(0)))) ∧P

(=P ({stock ′ 7→ INT VAL},Var(stock ′),Var(capacity))) )

In the above =P is the semantic function used to construct alphabetised predicates for equalities between
variables and expressions as defined in Section 3.4. It must be provided with a universe, namely that of the
resulting predicate, a variable, and an expression. The universe is created in an ad hoc manner as we need
it. The fact that a simpler universe model is used in this paper, as opposed to [ZC09] makes the construction
particularly concise. Namely, the earlier approach requires the use of another function CreateU here.

Notably, the universe of the schema predicate has credit ′ and stock ′ in its alphabet, since ∧P merges
the universes of the constituent predicates. The predicate defined by SchemaExpC additionally includes in
its universe the auxiliary variables and (provably) fulfils the healthiness conditions for Circus actions. This
more generally illustrates how predicates of different UTP theories coexist in the same definition.

By introducing VM InitState as an element of VM ACTION , we ensure that irrespective of how we
define it, that is, using Circus operators or, alternatively, plain predicate connectives, it has to characterise
a valid action of SimpleVendingMachine. This is effectively discharged by the consistency proof of the
axiomatic definition generated by ProofPower-Z. A situation in which VM InitState 6∈ VM ACTION would
result in a contradiction and hence the existential proof to fail.

The encoding of schemas that include extra components, like CalcDispense, is similar. To simplify the
encoding of the schema predicate, we define a universe VM CalcDispense UNIVERSE containing exactly
the components of the schema. We omit its definition here, and the one of VM CalcDispense VAR DECLS .
The encoding of the action is presented below.

VM CalcDispense : VM ACTION

VM CalcDispense = SchemaExpC (VM CalcDispense VAR DECLS ,
(=P (VM CalcDispense UNIVERSE ,Var(credit ′),Var(credit))) ∧P

(=P (VM CalcDispense UNIVERSE ,Var(stock ′),Var(stock))) ∧P

(=P (VM CalcDispense UNIVERSE ,
Rel(( ≤V ),Var(item ′),Fun2(( DivV ),Var(credit),Var(item price))),TrueE )) ∧

(=P (VM CalcDispense UNIVERSE ,Var(left credit ′),
Fun2(( −V ),Var(credit),Fun2(( ∗V ),Var(items ′),Var(item price)))))

The first two conjuncts reflect the inclusion of ΞState which requires the state components of the Circus
process to maintain their value; the corresponding implicit constraints are credit ′ = credit and stock ′ = stock .
The next two conjuncts encode the schema predicate. Here, DivV , −V and ∗V are appropriate functions
on values. As before, SchemaExpC lifts the schema into a Circus action, and membership to VM ACTION
ensures that is an action of the correct Circus theory family.

The shriek, which introduces an output variable in the operation schema, is generally translated into a
corresponding pair of variables to render the alphabet of the action homogeneous (in our case {items, items ′}
and {left credit , left credit ′}). The same also applies to input variables decorated with question marks
should they occur. Generally, we identify variables decorated with a question mark with the corresponding
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undashed name, and those decorated with a shriek with the corresponding dashed name.
An example of a more complex encoding of an action that uses a combination of guarded commands and

CSP operators is DispenseItem. It is given in full below.

VM DispenseItem : VM ACTION

VM DispenseItem = DispenseItemBtn −→CSync varC (items, varC (left credit ,

VM CalcDispense ;C
(=P (VM UNIVERSE ⊕U {items, items’, left credit, left credit′} × {INT VAL},

Rel(( 6=V ),Var(items),Val(0)),TrueE )) ∧P

(=P (VM UNIVERSE ⊕U {items, items’, left credit, left credit′} × {INT VAL},
Rel(( ≤V ),Var(items),Var(stock)),TrueE )) &C

(GiveItems,Var(items))→Cout AssignC (
VM UNIVERSE ⊕U {items, items’, left credit, left credit′} × {INT VAL},
〈credit , stock〉, 〈Var(left credit),Fun2(( −V ),Var(stock),Var(items))〉)

@C

(=P (VM UNIVERSE ⊕U {items, items’, left credit, left credit′} × {INT VAL},
Rel(( =V ),Var(items),Val(0)),TrueE )) ∨P

(=P (VM UNIVERSE ⊕U {items, items’, left credit, left credit′} × {INT VAL},
Rel(( >V ),Var(items),Var(stock)),TrueE )) &C

SkipC (VM UNIVERSE ⊕U {items, items’, left credit, left credit′} × {INT VAL})
))

The encoding of this action uses the above defined VM CalcDispense, and besides requires a few theory-
specific operators of the Circus theory. We give a brief explanation of them without elaborating on their
semantic encoding in the ProofPower theory utp-circus. The latter can be found in Appendix A.6.

• The operator c −→CSync a is used to encode prefixed actions in Circus where c is the channel to
synchronise on.

• The operator (c, e) −→Cout a encodes an output prefix in which the value of the expression e is
communicated over the channel c.

• The varC (n, a) construct declares a local variable n whose type is determined by the universe of the
action a which constitutes the body of the declaration, and must include n in its alphabet. It is defined
in terms of the UTP constructs for variable declarations given in Table 1.

• The AssignC (u,ns, es) construct encodes the reactive assignment. Although parameterised in the
same way, it is different from the relational or design assignment. Similarly, SkipC (u) encodes the
reactive Skip (IIrea), which we have already encountered in Section 4.2.

• The operator a1 @C a2 encodes external choice between actions a1 and a2. For the application to be
well-defined, they have to belong to the same Circus theory instance.

The action VM DispenseItem first waits for synchronisation on the DispenseItemBtn channel, signalling
the button press. It then declares the two local variables items and left credit which store the results
after executing VM CalcDispense. It is important that the body of the chained declarations has the
variables items and left credit , including their dashed versions, in its universe. We have explained that
this is true for VM CalcDispense, however it should also hold for each of the statements following it.
This importantly ensures composability and thus well-definedness of the sequential composition. It is why
subsequent operators are equipped with universes obtained by suitably extending VM UNIVERSE . We
have highlighted these universes in the encoding of the action in bold font.

The afore-mentioned is another example that illustrates how predicates of different UTP theories can
coexist in the same ProofPower definitional scope. The encoding of the remaining actions will not be
discussed in detail as they follow the same principle of the exemplified action encodings.

Since the main action of the process is anonymous, we introduce a designated constant VM MainAction.
It does not, however, truly characterise the process since it still contains the state components in its universe.
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Because these are local to the process, they should be hidden it its semantic description. This is achieved
by the operator beginC endC . With it we obtain the following definition for SimpleVendingMachine.

SimpleVendingMachine : CIRCUS PROCESS

SimpleVendingMachine = beginC VM MainAction endC

As said earlier, the set CIRCUS PROCESS contains all predicates of the Circus theory obtained by instan-
tiation with a minimal universe, which comprises auxiliary variables only and no state components. The
hiding of the state components is achieved by existential quantification over non-auxiliary variables.

In this section we have demonstrated how specifications of more elaborate theories can be encoded, and
how we can formulate the encoding of specifications in such a way as to verify their soundness. The encoding
requires that type information is computed prior to translation and consequently exploited in the construc-
tion of universes; this can be easily achieved using the Circus type checker [XCS06, FWC07]. We stress that
our approach is such that no interference among ProofPower theories encoding different Circus specifications
can arise. As a consequence we are able to import and reason about them in the same declarative ProofPower
theory scope; for example, none of the axiomatic definitions for the vending machine process specify global
constraints, and all information about types is captured in local definitions such as VM UNIVERSE or
VM CalcDispense UNIVERSE . This also enables us to incrementally construct specifications from multi-
ple processes by virtue of process combinators, and thereby paves the way for employing the mechanisation
in the verification of more complex systems such as control law diagrams [CCO05].

7. Proof Automation

We have so far limited our discussion to definitions and theorems of the mechanisation. In this section
we report on strategies for proof automation. Developing mechanisms to facilitate proof is important for a
number of reasons. First, it allows us to prove general theorems efficiently within the various UTP theory
encodings. These are, for example, algebraic properties of operators on predicates, universes, or refinement
laws. In Oliveira’s original work, a large number of such theorems have already been proved, aided by
rudimentary use of custom proof tactics. This raises the question whether tactic programming may be
further exploited to modularise and shorten proofs.

A second reason for developing such tactics is to automate soundness and refinement proofs for particular
specifications in order to support the construction of highly integrated tools that can be used by engineers
without expert knowledge of ProofPower. In our case the use of tactics is essential, as we aim at proofs of
properties of particular specifications. Instead of just proving laws which are generally useful, we also want
to support theorem proving about particular UTP models.

Finally, factoring common functionality into tactics enables us to design proofs in a more robust way.
This is important to tame the effect of possible future changes to the encoding with respect to re-establishing
proofs of theorems that might thus become invalid: a problem we are currently facing in reusing Oliveira’s
original proofs and recasting them in the light of modifications to definitions.

In this section we examine two layers of automation. The first section on low-level tactics discusses
general facilities for automation that extend those already designed in [OCW07]. They are tactics which
we believe are of more general use, and thus are not specific to the mechanisation of the UTP. The second
section discusses more specialised, high-level tactics tailored to facilitate proofs of specific properties in the
mechanisation. Both low-level and high-level tactics are implemented in Standard ML (SML).

7.1. Low-level Tactics for Automation
Low-level utilities and proof tactics are defined in the ProofPower theory utp-z-ext, the parent of all other

ProofPower theories in our encoding (see Figure 1). The purpose of utp-z-ext is to provide a few custom
extensions to the embedding of Z in ProofPower, including additional laws for Z operators.

Generic utility tactics and functions have evolved through analysis of repetitive and tedious steps in
proofs. We do not discuss all of them, but give a few examples that illustrate their benefit. In doing so the
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main issue we address is the one of rewriting expressions. Although this is generally a well-established branch
of research [VB98], the standard facilities of ProofPower-Z prevent us from taking full advantage of more
sophisticated strategies for rewriting. We look at three areas of particular relevance to our application of the
UTP encoding to reason about models of particular programs, namely the rewriting of sets, of memberships
of function applications to their range, and of applications of semantic functions.

Rewriting of Set Memberships. To prove predicates of the form x ∈ S , it is often necessary to rewrite S into
its definition. This is very common in our proofs, arising from the application of semantic functions and
laws. Definitions and laws in most cases have provisos that require entities to belong to some semantic set,
and for function applications we need to show membership of the argument(s) to the function’s domain.

To give an example, in order to rewrite p1 ∧P p2 into its semantic definition given in Section 3.4, we
have to show (p1, p2) ∈ WF ALPHA PREDICATE PAIR, that is (p1, p2) belongs to the domain of the
function. Using the definition of WF ALPHA PREDICATE PAIR for rewrite reduces the goal to

(p1, p2) ∈ {p1 : ALPHA PREDICATE ; p2 : ALPHA PREDICATE | (p1.2, p2.2) ∈WF UNIVERSE PAIR}

We moreover see that expanding the above generates again subgoals of the form x ∈ S , namely to establish
membership of p1 and p2 to ALPHA PREDICATE and (p1.2, p2.2) to WF UNIVERSE PAIR. They are
respectively provisos for type membership and compatibility of universes.

Conventionally, the default ProofPower tactic to achieve such simple rewrites is (rewrite tac thms), which
takes as an argument the list of equational theorems used for rewriting. An inconvenience using it is that
we always have to provide the definition of the global constant to be rewritten.

We make such proof steps easier by creating a parameterless tactic (prove ∈ tac), which first extracts
the set S from the expression of the goal (provided the goal is of the above form), then automatically obtains
its definition from the theory database, and subsequently uses it for rewriting. The tactic besides performs
several other steps to ascertain that the goal is of the correct shape, and that the right-hand operand of
the set membership is a global constant. It also performs standard simplification and stripping steps after
the rewrite. The advantage of the tactic is that it does not require specific knowledge of the set. This is
convenient in manual proof steps, but also in automatic proof tactics as a tentative step if the goal is of the
form x ∈ S . In practice, simple tactics like (prove ∈ tac) do already make manual proof more efficient.

A second possibility that we exploit in rewriting sets is the use of proof contexts. They are structures of
ProofPower to store equational theorems used for default rewriting. A problem with proof contexts in our
work, and in general, is that they provide no control under what conditions expressions should be rewritten.
This problem is investigated in more detail in Section 7.2 on high-level tactics.

Rewriting of Range Memberships. The development of more elaborate tactics directed by the structure of
the goal is common place in proof strategy programming, and has also been showed to be generally powerful
in reducing the proof effort in our work. To present an example of how this idea is used, a kind of theorem
frequently encountered in subgoals is f (x ) ∈ R where f : D → R is typically some semantic function in the
denotational model. It particularly occurs in rewriting function applications corresponding to theory-specific
operators. To prove, for example, associativity of conjunction, stated by the following goal,

{p1, p2, p3} ∈WF ALPHA PREDICATE SET ` (p1 ∧P p2) ∧P p3 = p1 ∧P (p2 ∧P p3)

we aim at entirely eliminating the applications of ∧P (see Section 3.4 for its definition). We do so by rewriting
the outer conjunctions first. The order of rewrite matters since once an expression has been rewritten into its
semantic representation (in terms of a binding set and universe), proving certain properties such as member-
ship to semantic sets can become harder. One of the provisos for rewriting, for instance, (p1 ∧P p2) ∧P p3

is that p1 ∧P p2 and p3 are elements of ALPHA PREDICATE . (There is also the requirement for compat-
ibility which we shall ignore here.) Because ∧P is a total function whose range is ALPHA PREDICATE , it
is sufficient to prove that (p1, p2) is in its domain to establish that p1 ∧P p2 ∈ ALPHA PREDICATE ; thus
we have a theorem of the form f (x ) ∈ R, where f is ∧P and R is WF ALPHA PREDICATE PAIR.

The proof relies on the trivial law f : D → R ∧ x ∈ D ⇒ f (x ) ∈ R. We can hereby reduce the proof of
p1 ∧P p2 ∈ ALHPA PREDICATE to (p1, p2) ∈ WF ALPHA PREDICATE PAIR exploiting the axioms
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of ∧P which specify it to be a total function. To automate this step, we define a parameterless tactic
(prove app tac) that automatically reduces goals of the form f (x ) ∈ R to subgoals x ∈ D , and does so
independently of the actual definition of the function f as well as of the domain and range sets.

The specification of this tactic is slightly more complicated than the previous one as it makes use of
a supplementary theorem, but in principle follows a similar approach of first extracting the name of the
function, then obtaining the appropriate axiom that defines its functional type, adding it to the current list
of assumptions, and finally using the backward-chaining theorem below to reduce the goal.

` ∀ f : U; X : U; Y : U; x : U | x ∈ X • f ∈ X →Y ∨ f ∈ X � Y ∨ f ∈ X →→Y ∨ f ∈ X �→Y ⇒ f (x ) ∈ Y

The backward-chaining theorem in addition implicitly deals with the case of total injections, surjections
and bijections. To support backward-chaining using theorems which are written in the Z sub-language of
ProofPower, a few other low-level tactics had to be implemented which are not mentioned here. Observe
that the theorem by itself is not sufficient to carry out the reduction performed by (prove app tac) because
generated subgoals of the form f ∈ X →Y then would have to be manually discharged.

Rewriting of Function Applications. The previous two tactics have been useful in many practical cases but
their application is limited to subgoals of a very specific form. In the sequel, we present a generic tactic
that much more substantially automates repetitive steps in proofs that inherently do not require human
interaction, and in combination with other (high-level) tactics reduces the size of proof scripts in some cases
by a ratio of up to 70% compared to similar ones in [OCW07].

A recurring task when proving properties in our mechanisation, and presumably in any deep semantic
embedding, is that the application of semantic functions has to be frequently rewritten or eliminated. This
applies, for example, when proving elementary laws that rely on the semantic definition of the operators,
but also when applying laws to conduct proofs at a more algebraic level. Many of the laws in the UTP are
expressed in terms of equalities, and the main strategy for proof is indeed rewriting of terms.

To prove the associativity law for ∧P previously presented, we want to rewrite both sides of the equation
purely in terms of binding sets and universes, eliminating all occurrences of ∧P and other dependent oper-
ators it may unfold into. This kind of rewrite differs from the default rewriting of ProofPower in that the
theorems (or axioms) used for rewriting have assumptions to be discharged. ProofPower clearly has expres-
sive mechanisms to deal with term rewriting, but they are not immediately designed to handle equalities
qualified by assumptions. In practical terms this meant that in many of the proofs in [OCW07] the standard
rewrite facilities could not be used for the purpose of eliminating semantic functions and applying laws.

The process involves several steps for each individual application to be rewritten, and furthermore re-
quires manual instantiation of the defining axioms for the operators. They are in most cases of the form

` ∀ x1 : T1; x2 : T2; . . . | P1 ∧ P2 ∧ . . . • f (x1, x2, . . .) = E

Where many applications have to be rewritten in succession, the resulting goal expression can become very
large spanning over multiple pages of formulae. For example, equivalence unfolds into implications and
conjunction, implication unfolds into negation and disjunction, and so on.

To facilitate this process in backward proofs, we provide a set of tactics and conversions that are able
to process rewrite theorems with assumptions, and cumulatively generate subgoals for all provisos to be
discharged. This extension gives rise to a framework that reimplements all of the standard functions of
ProofPower for rewriting, albeit in a more powerful way to directly process theorems for laws and defining
axioms of operators like the one above. The thereby provided rewrite tactics, rules and conversions were
given similar names to those in ProofPower, however prefixed with ‘z ’ to highlight that they are particularly
useful in the view of the Z extension of ProofPower. (Theorems in ProofPower-Z often have assumptions, let
it be only to establish type membership of variables.) A crucial advantage of this approach is that now more
sophisticated rewrite mechanisms can be implemented using all of ProofPower’s default tools, for example
controlling traversal orders, combining multiple rewrites in one invocation, and many others.

As an example, the tactic (z rewrite fun tac ops) takes a list of operator terms ops, and in one atomic
step rewrites them in the correct (top-down) order within the goal; while doing so, it automatically generates
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subgoals that need to be discharged for the rewrite to succeed. Another tactic is (z rewrite tac thms) which
instead takes a list of theorems that now may be quantified equalities that may include assumptions. To
exercise more control over the order in which functions are rewritten, we also provide respective conversions.
Conversions in ProofPower are a convenient mechanism to rewrite subexpressions by means of equality
theorems exploiting the axiom of referential transparency. They can be combined in various ways to specify
which subexpressions should be rewritten and also the order in which recursive rewrite has to proceed.

The implementation of the new rewrite framework is in essence simply based on a different canonicali-
sation of the theorems before they are used for rewriting. This means that outer universal quantifications
are automatically removed, and provisos are moved into the assumptions of the theorem. Hence, the above
defining axiom would be canonicalised into the following theorem prior to being used.

x1 ∈ T1 ∧ x2 ∈ T2 ∧ . . . ,P1 ∧ P2 ∧ . . . ` f (x1, x2, . . .) = E

Although ProofPower can in principle use this theorem for rewriting, a technical problem arises when em-
ploying it within structured proofs, for example, as an argument to the standard rewrite and conversion
tactics; by default these expect equality theorems without assumptions. To solve the problem, we speci-
fied enhanced versions of certain default tactics, such as conv tac sharp which extends the behaviour of
ProofPower’s conv tac to properly handle assumptions when performing rewrites in backward proofs.

Our experience showed that by using (z rewrite fun tac ops), rewriting of semantic functions can usually
be done in only a few lines of proof script, and the only work required is the discharge of the assumptions
of the rewrite theorems. Similarly, laws can be applied in a very flexible manner; namely, the same law
may be applied multiple times, or interleaved in defined order with other laws. Conversions provide the
expressive power to specify such actions. The residual goals are of a more specific nature, and we have an
infrastructure of high-level tactics to automate their proof in many cases. The next section discusses them.

7.2. High-level Tactics for Automation
High-level tactics are intended to accomplish proofs whose goals are very specific to the UTP embedding.

They typically involve more complex reductions and recursive interaction with other tactics to be effective.
To give an example, we consider rewriting the disjunction in ¬P (p1 ∧P p2) ∨ ¬P (p2 ∧P p3). Using the
tactic (z rewrite fun tac [pZ( ∨P )q]) for rewriting of the top-level application yields the following subgoals.

1. ¬P (p1 ∧P p2) ∈ ALPHA PREDICATE
2. ¬P (p2 ∧P p3) ∈ ALPHA PREDICATE
3. (¬P (p1 ∧P p2),¬P (p2 ∧P p3)) ∈WF ALPHA PREDICATE PAIR.

We observe that the proof of some of these properties is a recursive process; for example, to show (1) we can
apply (prove app tac) and thereby eliminate ¬P and reduce the goal to p1 ∧P p2 ∈ ALPHA PREDICATE .
Further application of (prove app tac) to this subgoal yields another triple of subgoals.

1. p1 ∈ ALPHA PREDICATE
2. p2 ∈ ALPHA PREDICATE
3. (p1, p2) ∈WF ALPHA PREDICATE PAIR.

We often know by assumption (or otherwise can easily conclude so via forward-chaining) that individual
predicates such as p1, p2, and p3 belong to ALPHA PREDICATE and are mutually compatible; this trivially
discharges subgoals like (1) and (2). For subgoal (3) a different strategy has to be used, that is, applying
(prove ∈ tac). This generates further subgoals that capture the compatibility requirement; they, however,
can be eventually discharged by the initial hypotheses.

The example illustrates that the way we proceed in each step depends on the structure of the goal, and
further that tactics have to be applied recursively to emerging subgoals. ProofPower provides proof contexts
to encapsulate proof strategies, but by default they follow a rigid pattern: first rewriting the goal and
hypotheses according to an equational context of rewrite theorems, and then performing a resolution-based
proof. It is on the other hand not possible to store a dynamic collection of tactics in a proof context.
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What we require, however, is a mechanism that allows exactly this, and to exercise finer control when
those tactics are applied. For this we have a framework that automates proofs as the above for arbitrarily
complex predicates; it is flexible, modular, and allows the reasoning capabilities to be dynamically extended
when new theorems are added and new theories are incorporated into the UTP hierarchy.

The General Proof Tactic. The general proof tactic is utp gen prove tac, which first performs several basic
initial proof steps such as carrying out default rewriting and stripping of the goal. It then obtains the goal
and uses a dictionary of expression patterns to determine the tactic(s) that should be applied to the goal.
This dictionary can be dynamically extended to associate new tactics with arbitrary goal patterns. Once
the tactics applicable to the current goal are obtained, we apply them in their recorded order until one of
them succeeds. Otherwise, if no match is found some finalising actions are performed that usually require
the proof to be interactively completed, leaving remaining subgoals on the goal stack.

The tactic dictionary is implemented as a discrimination net [CRMM87] in ProofPower. This is a partic-
ular data structure that supports efficient lookup of objects indexed by terms, albeit may deliver spurious
results that are not exact matches of the pattern. This does not matter since in such cases the application
of the tactic simply fails, and the next candidate is tried. Efficiency is an issue because the dictionary is
deemed to become large with more tactics being registered throughout the hierarchy. The general proof
tactic is frequently used and thereby becomes a bottleneck for run-time performance.

The registration of new tactics can be performed at any point when new theories, definitions, and
theorems are added. Monolithic high-level tactics for particular proof tasks, on the other hand, become
very unwieldy and do not do justice to the modularity and interdependency of tactics at different levels of
the hierarchy. The current approach also supports recursive calls to utp gen prove tac at any point in the
component tactics; recursion is commonly used to discharge subgoals generated within tactics.

Execution of Component Tactics. In the encoding of the ProofPower-Z theory utp-pred, for example, several
tactics for automation are configured. One of these, PROVE ∈ ALPHA PREDICATE TAC , applies to
goals of the general form p ∈ ALPHA PREDICATE where p can be an arbitrary expression of the right
type. It is one of the essential components in automating the proof of provisos for rewriting semantic
functions as considered above. It first checks that the goal is of the correct form, and afterwards extracts
the left-hand side p of the membership. It then determines whether it is a function application, and if so
whether the operator belongs to ALPHA PREDICATE OPS , a list that records all operators on alpha-
betised predicates. If this is the case, the previously explained low-level tactic (prove app tac) is invoked
to try and prove the goal, and utp gen prove tac is recursively applied to all subgoals resulting from this
application. Proving, for example, p1 ∧P p2 ∈ ALPHA PREDICATE would result in utp gen prove tac
being applied to (p1, p2) ∈ WF ALPHA PREDICATE PAIR. By registering another tactic that handles
goals of this form we enable the proof to proceed recursively, and in principle to establish membership to
ALPHA PREDICATE for arbitrarily complex predicates.

If the (recursive) application of utp gen prove tac determines that no recorded tactic for a certain form
of goal exists, or the applied tactic did not discharge the goal but instead produced a collection of subgoals,
the residual goals are simply left on the goal stack to be tackled manually. The user may then decide
to either conduct these proofs by hand, or otherwise enhance utp gen prove tac by registering additional
component tactics to improve its capabilities in a reusable manner.

Contention arises if more than one tactic is applicable. Some refinements of the operational behaviour
are possible; for example, we could preferably select tactics that leave fewer subgoals. Such extensions can
be incorporated if they display practical benefit; experience still needs to be gained in this respect.

In summary, the execution mechanism of the general proof tactic enables us to exercise finer control
when, for example, backward and forward-chaining tactics are applied, and effectively promotes the use of
a combination of backward-chaining, forward-chaining, and rewriting at a custom level of abstraction. The
behaviour of the general proof tactic depends largely on the component tactics. By having a single, dynami-
cally growing, high-level tactic as a common entry point for all emerging subgoal proofs, we can incorporate
additional proof capabilities as required, and let tactics added earlier take advantage of capabilities incorpo-
rated later without having to redefine any of the earlier encoded functions. Our approach moreover breaks
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down complex proofs into small, manageable component tactics that can be distributed across theories.

Practical Application and Experiences. We have created several component tactics primarily to automate
proofs about universes, and membership to semantic sets such as ALPHA PREDICATE , UNIVERSE ,
and related ones. The tactic suite for universes also entails tactics to prove compatibility of universes;
this is necessary and exploited, for example, to prove membership to WF ALPHA PREDICATE PAIR,
hence proofs about predicates and universes are tightly coupled. In fact, we automate proofs much more
complex than those presented in this section, such as the equivalence of elaborate universe expressions using
a combination of high-level and custom normalisation tactics; this confirms the scalability of the approach.

High-level tactics are in particular useful in combination with the backward-chaining rewrite tactic
(z rewrite fun tac ops) discussed in the previous section. We can put the two together as follows.

(z_rewrite_run_tac ops) THEN_BUT_FIRST UTP_GEN_PROVE_TAC

The effect of this tactic is to rewrite all semantic functions given by ops, and then try to automatically
discharge all subgoals generated, apart from the original one. THEN BUT FIRST is an infix tactic com-
binator that applies the second argument to all subgoals produced by the left-hand tactic, the first goal
excluded. Depending on the success rate of utp gen prove tac, this can entirely automate the rewrite of
semantic functions. More importantly, a similar approach is also feasible for discharging provisos when ap-
plying, for instance, refinement laws. The automation of individual law applications is necessary to automate
more complex refinement strategies such as the one in [CCO05].

To conclude this section, we note that Oliveira suggests in [OCW07] that specialised tactics may be used
to prove typing premises such as p ∈ REL PREDICATE for more complex predicates, and considered this
as a potentially significant reduction in proof effort. Our practical experience confirms this. We also claim
the approach to be viable to automate (low-level) aspects of reasoning about particular specifications, that
is, to discharge the proofs of assumptions for the automated application of laws.

8. Conclusion

We have presented a semantic encoding of the UTP in ProofPower-Z that provides facilities for theory
instantiation and thus allows us to mechanically reason about UTP theories in a specific as well as general
manner. Previous work on mechanised reasoning in the UTP was geared towards proving laws valid in
certain families of theories rather than properties of particular models. In contrast, our approach supports
reasoning about (elements of) specific instances of theories, and as almost a side effect, about theories
in general. Families can be characterised in a very general way, for example by properties of the their
healthiness conditions. We also support succinct reasoning about relationships between theories such as
theory links. Our work can be regarded as a recast of Oliveira’s encoding that enables us to formulate
and discharge refinement conjectures for specifications and implementations within arbitrary UTP theory
instantiations by permitting predicates of different theories to coexist in the same declarative scope. We
have also examined opportunities for automation in proofs, and illustrated how modularity and reusability
are exploited not just at the level of definitions and theorems, but also tactics for automation.

Since the very beginning we tried to minimise changes to the semantic encoding in [OCW07] in order
to increase the likelihood of reusing the majority of the existing laws and proofs. This tight-rope walk
unfortunately proved to fail, forcing us to open a Pandora’s Box by incorporating a notion of theory and
instantiation. Consequently, a lot of the existing laws are rephrased as discussed in Section 5 making it much
harder to transfer existing mechanical proofs. On the positive side, this provides us with the opportunity
to address issues that deserve further attention in the existing work; they are discussed below.

A first problem is consistency. In general, the axiomatic definitions of constants in ProofPower-Z are
not consequently checked for introducing contradictions. We can enable and actually enforce such checks,
however previous work did not exploit this facility. This did in fact result in an inconsistency: in the
introduction we hinted that BINDING would have be to specified loosely in order to allow further type
constraints being imposed on the variables. Previous work, however, used the unambiguous definition
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BINDING =̂ NAME 7→ VALUE . It is unlikely this inconsistency was exploited in any of the proofs, but
especially with automated proof tactics there is always a potential risk of doing so without realising.

We are currently working towards establishing consistency of all axiomatic definitions, and reduce or
avoid the use of a posteriori constraints being placed on existing variables as they are not checked. This has
been taken into consideration when recasting the existing definitions. For example, to handle the restrictions
on the type of okay and okay ′ in a theory of designs, we do not impose any constraints on a previously
introduced set. Instead, we define a set DES UNIVERSE , which explicitly specifies the domain of the
instantiation function InstDesTheory presented in Section 3.5. To apply InstDesTheory to some universe
u, we have to prove that u introduces the correct type restrictions on the auxiliary variables. Otherwise,
the result of the function application is undefined, and this can be detected as soon as we attempt to prove
properties about InstDesTheory u because of the absence of knowledge concerning its value. This is not,
however, an inconsistency and does not raise the possibility of vacuous proofs.

A second problem has to do with taming the complexity introduced by formalising theories. It seems
inevitable that we have to associate theories with a universe that captures the typing constraints on variables
in the alphabet, but besides it proves essential to equip alphabetised predicates themselves with a universe
in order to provide sufficient information for operators such as negation or substitution. These operators
need to know about the types of variables; for example, negating b = true should contain the bindings
where b equals false, but not any other values such as 1, 2, and so on. Associating alphabetised predicates
with universes seems to yield a more coherent encoding than, for example, associating them with theories.
The latter, besides, does not reflect the fact that a predicate can belong to more than one theory.

Finally, in this paper we adopt a more succinct universe model than the one we proposed in [ZC08, ZC09].
In particular, this facilitates proofs about specifications, where we are often required to verify properties
about the universes of the predicates involved; this especially amounts to discharging antecedents of algebraic
and refinement laws. The new model does not seem to introduce any additional complication in terms of
proving general laws about predicates, but considerably simplifies those formerly mentioned proofs, which
are symptomatic for reasoning about particular specifications. This aspect of mechanical proof is what we
primarily aim to automate in the long run. Based on universe laws, we have developed normalisation tactics
for universe expressions, which further play an important part in simplifying proofs.

A noteworthy piece of related work is Nuka’s mechanisation of the alphabetised relational calculus [NW04]
and UTP [NW06]. It explores a mechanised semantic model for alphabetised predicates, and the definition
of common UTP operators. The work is especially interesting as it assumes an untyped view of predicates,
but otherwise shares conceptual similarities with Oliveira’s encoding and our own by representing predicates
as sets of bindings, and introducing a unified value domain. A problem in that work arises if we represent,
for example, predicates such as x ′ = x + 1. Semantically, we construct the set of bindings that render the
predicate true, but in an untyped world it is not clear what values x and x ′ must range over. In [NW06]
this is the set of all values, but this can result either in undefinedness when we evaluate expressions like
true = false+1, or possibly incompleteness if we force all functions on values to be total in order to guarantee
that terms such as false + 1 are defined. We observe that the definition of =P in Section 3.4 solves this by
only quantifying over the bindings that are well typed according to the given universe.

Although we used ProofPower-Z as our proof environment, the work could have potentially been done
in other theorem provers as well. PVS [SRI], for example, offers specific features for dynamic instantiation
of parametrised axiomatic theories. This could be explored as a means for instantiating UTP theories and
providing further structuring mechanisms for encapsulating their axioms and theorems. The comparative
study [Gor95] suggested that PVS supersedes Isabelle and HOL in user-friendliness and has more powerful
built-in decision procedures for proof, but at the same time lacks the openness and extensibility of HOL that
is afforded by the LCF approach. In particular, HOL appears to be more suitable for developing special-
purpose proof infrastructures; we also profit from this using ProofPower-Z, being at its core based on HOL.
An ongoing investigation is how this work could be done in alternative provers such as Coq [Ins].

Future work will first investigate how the large collection of laws proved in Oliveira’s original encoding
can be transferred to our setting. The work we have done so far on simplifying, for example, the rewriting
of semantic functions, and further experience gained with proofs about universes, should make this process
manageable. Rather than merely rephrasing the laws, one is challenged to find ways of adopting proofs
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while making them more robust and maintainable; the existing proofs amount to approximately 80,000 lines
of proof script, and it would be desirable to reduce the effort for their recreation.

Further experience needs to be gained with proving properties of particular specifications in different
UTP theories. This far we have only carried out toy-example experiments. The wider objective of this
research is to use the encoding to do algebraic reasoning, for example, about Circus specifications and
refinements in a general manner. Automation of such reasoning poses a particular challenge; a benchmark
is the ClawZ [AC05] suite of tools, which shows that verification of embedded control systems can be carried
out by engineers without in-depth knowledge of the underlying formalism and semantics. To do justice to this
goal, we currently investigate the integration of ArcAngelC [OC08], a tactic language specifically developed
for refinement, into ProofPower. It supports the specification of high-level strategies for refinement, and
eventually, we anticipate, the development of verification tools based on the mechanisation.

Current approaches to verify implementations of control systems [AC05] translate the specification of
the control law into a Z model, encoded for ProofPower-Z, and use built-in reasoning support for Z to
discharge refinement proof obligations — aided by custom, high-level tactics to automate proof procedures.
An extension of this approach using Circus is presented in [CCO05]. It considers a wider class of models and
implementations by capturing and describing parallelism in the control law and supporting the refinement
into concurrent programs. One line for future work is to use the mechanisation and embedding of Circus to
conduct refinement proofs of such control systems. A refinement strategy is presented in [CCO05] that relies
upon a collection of Circus laws which we aim to prove in the mechanisation. The application of the laws
to particular specifications will be facilitated by tactics, building on the principles discussed in Section 7.
The refinement strategy, on the other hand, can be expressed in ArcAngelC [OC08]. Future research will
determine whether and how the combination of the two can in practice effectively automate proofs arising
from this approach to verifying control systems. We hope that the experience will give rise to new methods
and verification tools based on our mechanisation of the UTP.
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A. Appendix: Relevant Definitions of the Mechanisation

In this appendix we include an extract of the Z definitions that are relevant to the material presented in
the paper. It is not intended to give a comprehensive account of the entire mechanisation in ProofPower-Z.
For that we refer to the theory source published at http://www.cs.york.ac.uk/circus/tp/tools.html.

A.1. ProofPower Theory utp-lang (Common Language Definitions)
ProofPower-Z Definition 1. Type representing variable names.

NAME =̂ N× N× N

The first component of the tuple is a unique identifier, the second component indicates the number of dashes,
and the third component specifies a possible subscript.

ProofPower-Z Definition 2. The dash function is used to decorate a name with a dash.

dash : NAME �NAME

∀ i , j , k : N • dash (i , j , k) = (i , j + 1, k)
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ProofPower-Z Definition 3. Semantic set that characterises universes.

UNIVERSE =̂ NAME 7→ TYPE

Universes record type information for the names in their alphabets by means of a partial function. The set
TYPE is defined as TYPE =̂ P1 VALUE, hence a type must at least include one value.

ProofPower-Z Definition 4. Alphabet of a universe.

AlphabetU : UNIVERSE →ALPHABET

∀ u : UNIVERSE • AlphabetU u = dom u

The alphabet of a universe is simply its domain.

ProofPower-Z Definition 5. Bindings of a universe.

BindingsU : UNIVERSE → BINDINGS

∀ u : UNIVERSE •
BindingsU u = {b : BINDING | dom b = AlphabetU u ∧ (∀n : dom b • b(n) ∈ u(n))}

The rôle of the first constraint dom b = AlphabetU u is to ensure that we only consider bindings that exactly
associate the variables of the universe with values. Type correctness is guaranteed by the second constraint.
It ensures that the value bound to n in a binding of the universe belongs to the type that u records for n.

ProofPower-Z Definition 6. Binary merge of universes.

⊕U : WF UNIVERSE PAIR→UNIVERSE

∀ u1, u2 : UNIVERSE | (u1, u2) ∈WF UNIVERSE PAIR • u1 ⊕U u2 = u1 ∪ u2

Above WF UNIVERSE PAIR restricts the arguments to be compatible universes.

ProofPower-Z Definition 7. Restriction of universes.

	U : (UNIVERSE ×ALPHABET )→UNIVERSE

∀ u : UNIVERSE ; a : ALPHABET • u 	U a = a −C u

Restriction of a universe is simply defined in terms of domain restriction.

ProofPower-Z Definition 8. Merge of a set of universes.

MergeU : WF UNIVERSE SET →UNIVERSE

∀ us : WF UNIVERSE SET • MergeU us =
⋃

us

Above WF UNIVERSE PAIR restricts the argument to be a set of universes whose members have to be
pairwise compatible.

ProofPower-Z Definition 9. Renaming of the variables of a universe.

WF RenameU =̂ {f : NAME 7�NAME ; u : UNIVERSE | AlphabetU u ∈ dom f }
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RenameU : WF RenameU →UNIVERSE

∀ f : NAME 7�NAME ; u : UNIVERSE | (f , u) ∈WF RenameU •
RenameU (f , u) = {n : NAME ; t : P VALUE | (n, t) ∈ u • f (n) 7→ t}

The restriction WF RenameU ensures that the variables of the universe to be renamed are in the domain
of the remaining function f . The renaming function has to be an injection on names.

A.2. ProofPower Theory utp-theory (UTP Theories)
ProofPower-Z Definition 10. ApplyHealthConds (p, hs) realises the application of a sequence of healthi-
ness functions hs to a predicate p. Its use is to construct a healthy predicate from an unhealthy one.

ApplyHealthConds : ALPHA PREDICATE × seq HEALTH COND 7→ALPHA PREDICATE

∀ p : ALPHA PREDICATE ; hs : seq HEALTH COND •
ApplyHealthConds (p, hs) = (fold hs) p

In the above, the application (fold hs) realises the successive application of the functions in hs, that is their
folding. The formal Z definition of fold is included with the following definition.

ProofPower-Z Definition 11. Folding of a sequence of functions.

[X ]
fold : seq (X 7→X )→ (X 7→X )

(∀ fs : seq (X 7→X ) | fs = 〈〉 • fold fs = id X ) ∧
(∀ fs : seq (X 7→X ) | fs 6= 〈〉 • fold fs = (head fs) # (fold (tail fs)))

Here, head and tail are functions that yield the head and tail of a sequence, and id yields the identity relation
on a given set. Making the fold function generic promotes its reuse in other possible contexts.

A.3. ProofPower Theory utp-rel (Relations)
ProofPower-Z Definition 12. Relational Skip.

Domain of Relational Skip.

REL UNIVERSE HOM =̂ {u : REL UNIVERSE | AlphabetU u ∈ homogeneous}

Definition of Relational Skip.

IIR : REL UNIVERSE HOM → REL PREDICATE

∀ u : REL UNIVERSE HOM •
IIR u = ({b : u | dom b = AlphabetU u ∧

(∀n : AlphabetU u | n ∈ undashed • b(n) = b(dash n))}, u)

The restrictions imposed by REL UNIVERSE HOM ensure that the universe only mentions undashed and
single-dashed names, and that it is moreover homogeneous. The bindings of the relational Skip are exactly
those that associate corresponding undashed and dashed names with the same value.
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ProofPower-Z Definition 13. Assignment.

Domain of Assignment.

WF AssignR =̂ {u : UNIVERSE ; ns : iseq NAME ; es : seq EXPRESSION |
AlphabetU u ∈ homogeneous ∧
(∀n : ran ns • n ∈ AlphabetU u ∧ n ∈ undashed) ∧
(∀ e : ran es • (AlphabetU u, e) ∈WF EXPRESSION ∧ FV (e) ∈ undashed) ∧
# ns = # es 6= 0}

Definition of Assignment.

AssignR : WF AssignR→ REL PREDICATE

∀ u : UNIVERSE ; ns : iseq NAME ; es : seq EXPRESSION |
(u,ns, es) ∈WF AssignR ∧ # ns = 1⇒

(∃n : NAME | n = head(ns) •
AssignR (u,ns, es) =

=P (u,Var(dash n), head(es)) ∧P IIR (AlphabetU u 	U {n, dash n})) ∧
(u,ns, es) ∈WF AssignR ∧ # ns > 1⇒

(∃n : NAME | n = head(ns) •
AssignR (u,ns, es) =

=P (u,Var(dash n), head(es)) ∧P

AssignR (AlphabetU u 	U {n, dash n}, tail(ns), tail(es)))

Since assignment is to be generally defined for lists of variables and expressions, we split the definition into
two cases: one for the base case of a singleton list and one for the inductive case. Each variable assigned
amounts to the encoding of an equality of the form n ′ = e, and other variables retain their value.

ProofPower-Z Definition 14. Non-deterministic Choice.

Domain of Choice.

WF REL PREDICATE PAIR =̂
{p1 : REL PREDICATE ; p2 : REL PREDICATE |
∃ th : REL THEORY • {p1, p2} ⊆ TheoryPredicates th}

Definition of Choice.

( uR ) : WF REL PREDICATE PAIR→ REL PREDICATE

∀ p1 : REL PREDICATE ; p2 : REL PREDICATE |
(p1, p2) ∈WF REL PREDICATE PAIR • p1 uR p2 = p1 ∨P p2

Non-deterministic choice is simply defined in terms of disjunction, as explained in Section 2. The restriction
WF REL PREDICATE PAIR specifying the domain of uR captures that the argument predicates have to
belong to the same relational theory. That is, they have to be relations and their universe must be the same.

ProofPower-Z Definition 15. UTP Conditional.

Domain of UTP Conditional.

WF CondR =̂ {u1, b, u2 : REL PREDICATE |
{u1, b, u2} ∈WF REL PREDICATE SET ∧R

AlphabetP b ⊆ AlphabetP u1 ∧ AlphabetP u1 = AlphabetP u2}
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Definition of UTP Conditional.

/R .R : WF CondR→ REL PREDICATE

∀ p1, b, p2 : REL PREDICATE | p1 /R b .R p2 = (b ∧P p1) ∨P (¬P b ∧P p2)

The conditional is defined in the familiar way. WF CondR requires the predicates to have the same universe,
and the variables of the condition to be included in the alphabets of the predicate’s universes. Observe that
the function AlphabetP p simply yields AlphabetU p.1: the alphabet of the universe of p.

A.4. ProofPower Theory utp-des (Designs)
ProofPower-Z Definition 16. The function J is used to encode the healthiness idempotent H2.

J : UNIVERSE 7→DES PREDICATE

dom J = {u : UNIVERSE | AlphabetU u ⊆ dashed once} ∧
(∀ u : UNIVERSE | AlphabetU u ⊆ dashed once •

J u = (OKAY ⇒P OKAY ′) ∧P IIR((RenameU (undash, u)⊕U u) 	U ALPHABET OKAY ))

OKAY and OKAY ′ encode the predicates okay and okay ′, respectively. The RenameU function, as already
explained, is used to rename the variables in a universe. ALPHABET OKAY is the set {okay , okay ′}.

ProofPower-Z Definition 17. The constant OKAY encodes the UTP predicate okay = true. The universe
of the predicate only includes the variable okay of boolean type.

OKAY : DES COMPATIBLE

OKAY = =P ({okay 7→ BOOL VAL},Var(okay),TrueE )

The constant TrueE abbreviates the expression Val(Bool(True)).

ProofPower-Z Definition 18. The constant OKAY ′ encodes the UTP predicate okay ′ = true. The uni-
verse of the predicate only includes the variable okay ′ of boolean type.

OKAY : DES COMPATIBLE

OKAY = =P ({okay 7→ BOOL VAL},Var(okay),TrueE )

The constant TrueE above abbreviates the expression Val(Bool(True)).

A.5. ProofPower Theory utp-rea (Reactive Designs)
ProofPower-Z Definition 19. Instantiation function for reactive design theories.

InstReaTheory : REA UNIVERSE →UTP THEORY

InstReaTheory u = SpecialiseTheory (InstRelTheory u, {R1,R2,R3})

Here, R1, R2 and R3 are functions that encode the healthiness idempotents for reactive designs.

ProofPower-Z Definition 20. Set of reactive design predicates.

REA PROCESS =̂
{p : ALPHA PREDICATE | (∃ th : REA THEORY • p ∈ TheoryPredicates th)}

For p to be a valid reactive design some reactive theory must exist whose predicates include p.
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ProofPower-Z Definition 21. Healthiness function R1 for reactive designs.

R1 : HEALTH COND

dom R1 = REA COMPATIBLE ∧ (∀ p : REA COMPATIBLE • R1 p = p ∧P TRprfxTR′)

The constant TRprfxTR′ was previously defined in Figure 4.

ProofPower-Z Definition 22. Healthiness function R3 for reactive designs.

R3 : HEALTH COND

dom R3 = {p : REA COMPATIBLE | p.2 ∈WF SkipREA} ∧
(∀ p : REA COMPATIBLE | p.2 ∈WF SkipREA • R3 p = (IIREA p.2) /R WAIT .R p)

WF SkipREA is the domain of the IIREA function. It requires the alphabet of the predicate to be homogeneous,
with additional compatibility constraints imposed on the types of auxiliary variables, should they occur. WAIT
encodes the predicate wait as was explained in Section 4.2.

A.6. ProofPower Theory utp-circus (Circus)
ProofPower-Z Definition 23. Synchronising prefix for Circus actions.

−→CSync : (VAR NAME × CIRCUS ACTION )→ CIRCUS ACTION

∀n : VAR NAME ; p : CIRCUS ACTION • n −→CSync p = (n,Val(Sync)) −→C p

Here (n, v) −→C p is the general operator for a communication prefix in the theory of Circus. It is
parametrised in terms of a channel name n, a value v, and the prefixed action p. We omit its definition
which, however, can be found in the ProofPower theory scripts mention at the beginning of the appendix.

ProofPower-Z Definition 24. Output prefix for Circus actions.

−→Cout : WF PREFIXINGC → CIRCUS ACTION

∀n : VAR NAME ; e : EXPRESSION ; p : CIRCUS ACTION |
((n, e), p) ∈WF PREFIXINGC • (n, e) −→Cout p = (n, e) −→C p

Here (n, v) −→C p is the general operator for a communication prefix in the theory of Circus, and its
domain WF PREFIXINGC identifies the constraints for its applicability. Both definition can be found in
the ProofPower theory scripts mention at the beginning of the appendix.

ProofPower-Z Definition 25. Local variable block in Circus.

WF varC =̂ {n : VAR NAME ; p : CIRCUS ACTION |
(p.2,n) ∈WF varR endR ∧ n ∈ ALPHABET OWTR}

varC : WF varC → CIRCUS ACTION

∀n : VAR NAME ; p : CIRCUS ACTION |
(n, p) ∈WF varC • varC (n, p) = varR(p.2,n) ;C p ;C endR(p.2,n)

The declaration of a local variable block in Circus directly reuses the functions for declaring local variables in
relational theories, apart from additional restriction on the domain of the function that require the predicate
to be a Circus action. In particular, ;C is sequential composition of Circus actions, and WF varR endR the
domain of the varR and endR functions in the ProofPower-Z theory for UTP relations (utp-rel).
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ProofPower-Z Definition 26. Circus Assignment.

AssignC : WF AssignC → CIRCUS ACTION

∀ u : UNIVERSE ; ns : seq NAME ; es : seq EXPRESSION | (u,ns, es) ∈WF AssignC •
AssignC (u,ns, es) = R (TrueP u `D AssignR(u,ns, es) ∧P TReqTR′ ∧P (¬PWAIT ′))

Circus assignment is defined in terms of applying the reactive healthiness idempotent R to a design assign-
ment. As before, WAIT ′ encodes the predicate wait, and the definition of TReqTR′ can be found in Figure 4.
Its domain WF AssignC ensures that the arguments are actions that belong to the same Circus theory.

ProofPower-Z Definition 27. External Choice of Circus actions.

uC : WF CIRCUS ACTION PAIR→ CIRCUS ACTION

∀ p1, p2 : CIRCUS ACTION | (p1, p2) ∈WF CIRCUS ACTION PAIR •
p1 uC p2 = R (
¬P (p1 ωf σf ) ∧P ¬P (p2 ωf σf )
`D

((p1 ωf σt) ∧P (p2 ωf σt)) /R TReqTR′ ∧P WAIT ′ .R ((p1 ωf σt) ∨P (p2 ωf σt)))

In the above definition, ωt and ωf are post-fix operators that perform a substitution of wait with true and
false, and σt and σf are similar operators that perform a substitution of okay ′ and true or false. The
restriction imposed by WF CIRCUS ACTION PAIR requires the arguments to be actions from the same
Circus theory. WAIT ′ encodes the predicate wait ′, and the definition of TReqTR′ can be found in Figure 4.

B. Appendix: Universe Model in [ZC08]

ProofPower-Z Definition 28. Semantic definition of universes in our previous work.

UNIVERSE =̂ {bs : BINDINGS |
∅ ∈ bs ∧ (∀ b1 : bs; b : BINDING | b ⊆ b1 • b ∈ bs) ∧ (∀ b1, b2 : bs • b1 ⊕ b2 ∈ bs)}

The first constraint requires the empty binding to be a member of any universe, the second constraint ensures
that the bindings of a universe are subset-closed, and the third orthogonality constraint that type restrictions
imposed on one variable cannot be sensitive to the values taken by other variables. Subset closure means
that if, for instance, {x 7→ 1, y 7→ 2} is a universe binding, so is {x 7→ 1}.
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