
Automating Refinement of Circus Programs

Frank Zeyda and Ana Cavalcanti

University of York, Heslington, York, YO10 5DD, U.K.
{zeyda,ana}@cs.york.ac.uk

Abstract. In previous work, we have presented a mechanisation of Cir-
cus for the theorem prover ProofPower-Z. Circus is a refinement language
for state-rich reactive systems that combines Z and CSP. In this paper,
we present techniques to automate the discharge of proof obligations typ-
ically generated by the Circus refinement laws. They eliminate most of the
proofs that are imposed by the fact that the encoding has to be precise
about typing and well-definedness issues, and leave just those that are
expected in a pen-and-paper refinement. This allows us to concentrate
on the proof of properties that are significant for the problem at hand,
while benefiting from the increased assurance and efficiency afforded by
the use of a theorem prover as well as high-level tactic languages for
refinement. Our case study is a refinement strategy for verification of
control systems; we present the result of several experiments.

Key words: theorem proving, tactics, ArcAngelC , ProofPower

1 Introduction

Circus [4] is a process algebra that captures state as well as behavioural aspects
of a system. Its key concept is that of a Circus process, which, like a CSP [15]
process, communicates with the environment via channels, but also aggregates
local state that can be internally accessed and modified. A Circus process spec-
ification contains a Z schema that specifies its state, and a list of dependent
local actions used by the process, of which a designated action, the main action,
defines the process behaviour. Actions may be specified using a mixture of CSP
constructs, Z operation schemas [16], and guarded commands of Dijkstra and
Morgan [5,8]. Processes can also be combined using CSP constructs.

A notable feature of the Circus language is its formal semantics and associated
refinement calculus [4]. This permits the derivation or verification of executable
programs. The flexibility of the language to handle both sequential behaviour
and parallelism in a unified way makes it especially suitable for the description
and formal derivation of state-rich concurrent systems [9].

A semantic embedding of Circus for ProofPower-Z, a theorem prover based
on HOL that also supports Z, was first presented in [12]. We have extended
that encoding to handle types and Circus programs (rather than the Circus se-
mantics [19]). We have also developed a ProofPower implementation of ArcAn-
gelC [18]. This is a refinement-tactic language to formulate strategies to auto-
mate the derivation and verification of programs from Circus specifications.



A general issue with the mechanisation is the large number of provisos raised
by the application of refinement laws. They are mostly conditions that we would
not deal with in a pen-and-paper proof. For example, the associativity law
a1 ; (a2 ; a3) ≡ (a1 ; a2) ; a3 for actions does not require any provisos to
be discharged when applied in a pen-and-paper proof. This is not so in its en-
coding in the semantic embedding of Circus, which is given below.

` ∀ a1, a2, a3 : CIRCUS ACTION |
α a1 = α a2 ∧ α a2 = α a3 • a1 ;C (a2 ;C a3) ≡ (a1 ;C a2) ;C a3

First, we have to introduce the provisos that a1, a2 and a3 belong to the set
CIRCUS ACTION , the semantic domain for actions. Secondly, two provisos
are needed to ensure that all actions have the same alphabet. The α operator
gives the alphabet of an action: the variables on which it operates.

These provisos establish well-formedness constraints that are typically taken
for granted given the syntactic and type correctness of the actions. A mecha-
nised model, however, forces us to make them explicit to establish the neces-
sary assumptions for provability of the laws. Each Circus operator, like sequen-
tial composition of actions above, is encoded by a semantic function [12], and
these functions are total on CIRCUS ACTION , but only partial with respect to
the corresponding maximal set. This gives rise to non-trivial constraints, since
CIRCUS ACTION , in our model, is not a type in the sense of being maximal.

In a deep semantic embedding, it is possible to formalise well-formedness
as a property of the program syntax. (The difference between a shallow and
deep embedding is that the latter also formalises the syntax of the embedded
language.) We can then prove that (syntactic) well-formedness implies mem-
bership to the aforementioned (semantic) domains. Additionally, a collection
of laws may be used to deduce well-formedness of compound expressions from
the well-formedness of its components, or conversely, deduce well-formedness of
components from the well-formedness of the expression as a whole.

There are, however, important reasons for not pursuing a deep approach in
our mechanisation of the UTP and Circus to encode alphabetised predicates. The
most crucial one is that the language of the UTP is not static: in higher-level
theories new operators may be introduced that effectively become part of the
syntax. In a deep embedding such extensions would be difficult to handle.

In combination with our implementation of ArcAngelC and more complex
refinement tactics, the problem of provisos is exacerbated by the fact that tactic
application relies on so-called ‘model theorems’, monotonicity of operators, and
reflexivity and transitivity of refinement. Those theorems are frequently applied
as part of many of the core tactics and suffer from the same problem of in-
troducing conceptually superfluous provisos. Executing the tactics, the provisos
quickly accumulate and result in theorems that become unmanageable.

Our contribution is a novel treatment of the notion of well-formedness at
the semantic level. It allows us to eliminate most of the inherent provisos in law
applications with minimal incisions to the embedding. To take advantage of that,
we have made changes to the implementation of ArcAngelC as given in [18]; we
also discuss those alterations here. We evaluate our new technique by encoding



tactics that perform part of a refinement strategy for control laws [3].
Section 2 introduces the relevant preliminary material: core aspects of our

semantic embedding of Circus, ArcAngelC , and its implementation. Section 3
explains our solution to managing well-definedness, and Section 4 discusses the
accompanying extensions to the ArcAngelC implementation. Section 5 reports
on a case study, and in Section 6 we present our conclusions and future work.

2 Preliminaries

In this section, we first present relevant details of our mechanisation of Circus.
The mathematical notation we use is standard Z [16], but the ideas in Section 3
and Section 4 also exploit the higher-order support afforded by ProofPower being
based on HOL. We secondly briefly introduce ArcAngelC and its implementation.

2.1 Mechanisation of Circus

The mechanisation of Circus is based on its denotational semantic model [12],
which is formulated in terms of the Unifying Theories of Programming (UTP) [6].
The UTP is a general framework in which the semantics of a variety of modelling
and programming languages can be uniformly expressed. It is founded on a
relational calculus like Tarski’s, but presented in a predicative style.

In the UTP, relations represent computational behaviours. To encode them,
we use alphabetised predicates, which are predicates equipped with an alphabet
of variables. The predicate x ′ = x + 1 ∨ x ′ = x − 1, for example, encodes the
computation that either increments or decrements the value of x ; its alphabet
includes x and x ′. We use undecorated names to denote initial observations of
the value of a variable, and dashed names to denote subsequent ones. In the
UTP theory for Circus, alphabetised predicates describe actions and processes.

In our mechanisation, an alphabetised predicate is a pair.

ALPHA PREDICATE =̂ {bs : BINDINGS ; u : UNIVERSE | bs ⊆ BindingsU u}

Its first component is a set of bindings (records) describing the valuations of the
variables of the alphabet that render it true. The second component records the
types of the alphabet variables. BINDINGS is the type of all binding sets, and
UNIVERSE consists of all partial functions from VAR to TYPE , where VAR
is the semantic domain for variables, and TYPE (=̂ P1 VALUE ) contains all
non-empty sets of values. The condition bs ⊆ BindingsU u effectively establishes
that the bindings of a predicate have to be well typed. (The function BindingsU
constructs the complete set of bindings according to a given typing universe.)

Alphabetised predicates are embedded shallowly in the mechanisation: we
characterise their semantics, but do not formalise the syntax of the UTP and
the Circus language. Instead we provide a collection of semantic functions that
correspond to the various syntactic constructs.

We define in [19] operators that provide the logical connectives, equality,
substitution, including all Circus constructs, and importantly refinement. The
latter allows us to state that some (concrete) program P behaves according to



its (abstract) specification S . Formally, this is expressed by S v P , and given the
mechanisation we can, by aid of a collection of refinement laws, prove whether
a given refinement holds. To automate this process, we have implemented a
bespoke tactic language ArcAngelC ; it is explained in the next section.

2.2 ArcAngelC

ArcAngelC is a tactic language for the derivation of Circus programs from speci-
fications [10]. (Hereafter, we will use the word ‘program’ synonymously for both
specifications and programs.) A salient feature of ArcAngelC is first that it sup-
ports backtracking through angelic choice, namely from failure of tactic applica-
tions. This it inherits from its kin Angel [7], which is more generally concerned
with proving arbitrary goals. Secondly, it has a formal semantics that has been
specified in the Z notation, and permits the reasoning about tactics.

Basic literal tactics provided by the ArcAngelC are skip, which leaves the
program unchanged, fail, which always fails, and abort, whose application is
not guaranteed to terminate. To apply refinement laws, the tactic law name(args)
takes the name of the law and a list of arguments. Compound tactics may be
declared using the Tactic name (args) =̂ body end construct.

We further have the binary tacticals t1 ; t2 for sequence and t1 | t2 for al-
ternation. Sequence executes the tactics one after another, and alternation first
attempts to apply t1, and if that fails, applies t2. Other tactics are ! t which
acts like a cut on the backtracking search of finding a successful path of tactic
execution, and applies to p do t which guards the application of a tactic t by
successful matching of the program against a pattern p. Finally, recursive tactics
are supported via the fixed-point operator µX • t(X ).

To apply tactics to the operands of a Circus action or process construct, a set
of structural combinators is provided. They are boxed versions of the respective
Circus operators. For example, the combinator t1 u t2 applies to actions of the
form a1 u a2. Its behaviour is to apply t1 to a1 and t2 to a2. The application is
justified by the monotonicity of Circus operators with respect to refinement.

We have implemented ArcAngelC in ProofPower [18]. The fundamental design
of the implementation supports tactics as theorem-generating functions that ap-
ply to program expressions A and return lists of refinement theorems Γ ` A v B .
The construction of refinement theorems is necessarily sound because of the LCF
approach that prevents invalid theorems from being derived. More specifically,
ProofPower-Z uses the type system of the prover’s implementation language (ML)
to differentiate between (unproved) conjecture and (proved) theorems.

3 Managing well-definedness

Most of the laws of our Circus semantic encoding specify well-definedness provisos
for their applicability. The provisos ensure that relational expressions, such as
p1 v p2, as well as operator applications, like p1 uC p2, are well-defined, that



is, the underlying semantic functions are applied inside their domain.
As already said, these well-definedness constraints give rise to proof obliga-

tions that accumulate through the application of ArcAngelC tactics. Sources for
the provisos are model theorems automatically applied in the mechanics of the
ArcAngelC implementation, monotonicity theorems applied when invoking struc-
tural combinators, and user-defined laws. In practice, even after applying just the
first three of the seven phases of the refinement tactic NB for control laws [13],
the resulting theorem already includes more than 130 assumptions. Thereafter
it becomes unmanageable, slowing down or even bringing to a stall further ap-
plication of tactics. To tackle this problem we have pursued a combination of
two approaches. They are explained separately in the following sections.

3.1 Reducing constraints in the semantic encoding

To tame the complexity of generated assumptions, we have used a novel treat-
ment of typing . This reduced the number of provisos but has retained soundness.

By way of illustration, the semantic function for ∧ is defined as follows.

( ∧P ) : WF ALPHA PREDICATE PAIR→ALPHA PREDICATE

∀ p1, p2 : ALPHA PREDICATE |
(p1, p2) ∈WF ALPHA PREDICATE PAIR • p1 ∧P p2 = (tB , tU )

Here, membership of (p1, p2) to WF ALPHA PREDICATE PAIR encapsulates
an additional constraint for the compatibility of the universes of p1 and p2. The
terms tB and tU respectively abbreviate the binding set and universe of the
result; their particular shape is not relevant here and for brevity is omitted.

Opposed to this, in HOL, the types of variables are part of their identity,
meaning that in a term like n ≥ 1 ∧ n = false (that may result from conjoining
Γ1 ` n ≥ 1 and Γ2 ` n = false), we are effectively talking about two different
variables n distinguished by their types. We adopt a similar approach by moving
type information from the universe directly into the entities representing names,
which are now bindings of the following schema type.

VAR =̂ [name : STRING ; dashes : N; subscript : SUBSCRIPT ; type : TYPE ]

The type STRING represents character sequences, and SUBSCRIPT is a free
type for representing a possible subscript. Importantly, the type component
records the type of the variable, and TYPE is equated with the non-empty sub-
sets of VALUE , that is, TYPE =̂ P1 VALUE . In comparison, in the previous
model, VAR only recorded a unique identifier (name), dashes, and a subscript.

This implies that the previous notion of ‘universe’ is subsumed by the con-
ventional notion of an alphabet, which now implicitly carry type information.
The encoding we obtain is in fact very similar to that originally developed by
Oliveira [12], but with the added benefit of concisely capturing type information.
The constraint bs ⊆ BindingsU u is notably redundant now in the definition of
ALPHA PREDICATE . We can also drop additional constraints in definitions



that require compatibility of types. Thus, the definition of ∧P becomes

( ∧P ) : ALPHA PREDICATE ×ALPHA PREDICATE → . . .

∀ p1, p2 : ALPHA PREDICATE • p1 ∧P p2 = (tB , tA)

Most other definitions of our encoding can be simplified in a similar manner.
The notion of compatibility becomes obsolete since the common variables of
alphabetised predicates necessarily have the same type.

This enhancement also displayed benefits in terms of modularising proofs.
First, reasoning about alphabets (which are sets) is logically simpler than rea-
soning about universes (which are functions). Secondly, it is now possible to
introduce a notion of well-typed expressions independently of the universe con-
text; this makes provisos related to evaluation of expressions simpler.

We, however, still have many provisos like p ∈ ALPHA PREDICATE or
p ∈ CIRCUS ACTIONS . The following section explains how we deal with them.

3.2 A semantic formalisation of well-formedness

Our approach to capture well-formedness at the semantic level gives us the same
benefits as a syntactic characterisation of well-formedness in a deep embedding,
and importantly does not compromise soundness. To formalise well-formedness,
we introduce a generic HOL function wd of type ′a→BOOL where ′a is a type
variable. (Hereafter we use the term ‘well-defined’ in favour of ‘well-formed’.)
Initially we do not specify any properties of wd , but for each semantic operator
op we add an axiomatic constraint of the following form.

` wd(op(x1, . . . , xn)) ⇔ wd x1 ∧ . . . ∧ wd xn ∧ (x1, . . . , xn) ∈ dom op

The proposition wd(op(x1, . . . , xn)) entails that op is applied in its domain,
and that all arguments are well-defined. Domain membership enables us to
extract properties of the arguments; for instance wd(p1 ∧P p2) implies that
p1 ∈ ALPHA PREDICATE . Moreover, for complex program terms, the prop-
erty of well-defined arguments allows us to extract well-definedness of any sub-
term. For example, wd(p1 ∧P (p2 ∧P p3)) implies wd p1, wd p2 and wd p3.

A potential risk with this approach is due to the definition of wd not being
obviously conservative. Generally in logic, conservative extensions maintain con-
sistency of the extended theory, and in many case this can be established by the
mere shape of the defining axiom. What we are doing, however, in defining wd
is in fact treating some Z function application op(x1, . . . , xn) as if it revealed in-
formation whether the function was applied in its domain. It is not immediately
evident if and under what conditions such a treatment is sound.

To prove consistency, we provide a model which fulfils the defining axioms.
The essence of our model is the identification of values outside the domain and
range of each operator with undefinedness, and axioms that constrain appli-
cations of operators outside their domains to be closed under this set. This
is possible because the underlying HOL logic is based on total functions, and
therefore any term denotes a value. Specifically, f (x ) denotes a value even when
x 6∈ dom f , and constraining this value by an axiom such as ` f (c) = v for



particular c and v neither impinges on f ’s domain nor produces unsoundness if
c 6∈ dom f . This is a property of the embedding of Z partial functions into HOL.

To illustrate the conceptual idea of the model, we consider, for example,
the set ALPHA PREDICATE . To capture undefinedness for functions encoding
alphabetised predicate operators, we introduce the following set.

⊥ALPHA PREDICATE =̂ U \ALPHA PREDICATE

It is simply the complement of ALPHA PREDICATE with respect to its corre-
sponding maximal type. In ProofPower-Z, U acts as the carrier set of a generic
type which is inferred by the type checker, and which is always maximal. Here,
it would be the set P ((P VAR)× P (VAR↔VALUE )).

For ∧P , for example, we have the supplementary axiom below.

` ∀ p1, p2 : U | (p1, p2) 6∈ dom( ∧P ) • p1 ∧P p2 ∈ ⊥ALPHA PREDICATE

It does not affect (relative) consistency because none of the original definitions
impose any constraints on function applications outside their domains.

Finally, we can give a conservative definition for wd if applied to elements of
type ALPHA PREDICATE : wd p ⇔ p 6∈ ⊥ALPHA PREDICATE . The definition
provably satisfies the axiom for wd(p1 ∧P p2) as it has been specified before,
and thereby establishes the correctness of the model, which itself is sound.

This model in a way simulates a treatment of undefinedness. It is correct if
the types are ‘large enough’ so that we can always find a witness that serves to
distinguish defined from undefined function applications.

There are cases where a collection of semantic types T1, T2, . . . have the same
maximal type Tmax . For example, the semantic domain CIRCUS ACTION for
actions is a subset of ALPHA PREDICATE . In those cases, a single set ⊥T is
defined as Tmax \

⋃
Ti to ensure that ⊥T is disjoint from all sets Ti . In such

a situation, the union
⋃

Ti needs to be a proper subset of Tmax , so that there
is some x ∈ Tmax for which ∀ i • x 6∈ Ti . This implies that ⊥T 6= ∅, which is
crucial to prove that the model satisfies the axioms for wd .

Accordingly, there are functions in our encoding to which we cannot apply
wd . These are first the operators involving the ProofPower-Z B type, which is
maximal. Since refinement is defined by a function with range B, we cannot
specify wd(p1 v p2)⇔ wd p1 ∧ wd p2 ∧ (p1, p2) ∈ dom ( v ). The impact of
this restriction is on provisos that involve refinements themselves. The extension
of our technique to handle such cases is left as future work.

Additionally, the domains of the functions that encode the various opera-
tors on values is VALUE , which is also maximal. This prevents us from spec-
ifying a well-definedness axiom, for example, for Eval(b, e), which evaluates
an expression under a binding and yields an element of VALUE . To handle
expressions, we axiomatise wd slightly differently; we define wd inductively
over the free type EXPRESSION that encodes the syntax of expressions. (Un-
like alphabetised predicates, they are embedded deeply.) We introduce a set
WT EXPRESSION containing the expressions that are well-defined, that is
{e : EXPRESSION | wd e}. Since, the functions that encode Circus operators



involving expressions are parameterised in terms of WT EXPRESSION , their
domains are not maximal, and so we can give wd axioms for them.

We do not actually define our model for wd in ProofPower-Z, as it would
unnecessarily complicate the various definitions of operators. The main point
is that we can introduce wd capturing the well-formedness of terms purely in
semantic terms, and given the above caveats this definition is sound.

It is now possible to specify laws that either exploit or prove wd theorems.
In particular, the associativity law for conjunction is now expressible as below.

∀ p1, p2, p3 : U | wd((p1 ∧P p2) ∧P p3) •
(p1 ∧P p2) ∧P p3 ≡ p1 ∧P (p2 ∧P p3) ∧ wd(p1 ∧P (p2 ∧P p3))

This directly mirrors the intuition that if the left-hand side p1 ∧P (p2 ∧P p3) is
well-defined, the equivalence holds and also the right-hand side (p1 ∧P p2) ∧P p3

is well-defined. Its only non-trivial proviso is the assumption of well-definedness
of the initial program. We mechanically proved the above law without much
effort by utilising its original version and rewriting applications of wd .

This illustrates how wd can provide a framework in which we can handle the
emerging proof obligations for typing with theorems that establish that well-
formedness is preserved. We work in a setting similar to that of pen-and-paper
refinement proofs, where we normally assume that the initial program is well-
formed, as are the programs of each law. If additionally the arguments of param-
eterised laws are well-formed, we conclude that all programs in the derivation
chain must be well-formed. In summary, we work under assumptions that mean
that we do not need to worry about issues of well-formedness.

In the following section we explain how the implementation of ArcAngelC has
been amended to make use of theorems that possess this shape.

4 Extensions to the ArcAngelC implementation

We present here how we have extended the ArcAngel implementation to take
advantage of the wd function.

4.1 Extended refinement theorems

Refinement theorems in our implementation of ArcAngelC had to be of the form
Γ ` A v B , where Γ is a list of proof obligations, and A and B are program
expressions. To integrate well-definedness constraints, we have generalised the
permissible shape of such theorems to Γ,wd A ` A v B ∧ wd B . We call them
extended refinement theorems. Their conclusions are conjunctions in which the
first conjunct provides the actual refinement, and the second conjunct establishes
well-definedness of the result B of the program transformation. We also have an
assumption that asserts well-definedness of the initial program A.

The implementation has been adapted to handle these kinds of theorems.
Importantly, the ArcAngelC mechanics has been adjusted as to only retain the wd



theorem of the initial program, and, as much as possible, discard intermediate wd
provisos via incremental proofs. We also importantly preserve the general shape
of an extended refinement theorem during tactic applications. To illustrate this,
we consider the application of a refinement law. In the previous encoding these
laws were typically of the form

` ∀ v1 : T1; . . . ; vn : Tn | P [v1, . . . , vn ] • A[v1, . . . , vn ] v B [v1, . . . , vn ]

with type provisos v1 : T1, v2 : T2, and so on. The notation A[v1, . . . , vn ] is used
to emphasise that the variables vi are free in A. We now rephrase such laws as

` ∀ v1 : U; . . . ; vn : U | wd A[v1, . . . , vn ] ∧
P [v1, . . . , vn ] • A[v1, . . . , vn ] v B [v1, . . . , vn ] ∧ wd B [v1, . . . , vn ] .

Here, U is the carrier set of a type that is dynamically inferred by the type
checker. It is maximal, and so only incurs trivial proof obligations. This new
version of the law can be proved from the former by rewriting the wd function on
both sides and extracting the type provisos. For example, if A is v1 ∧P v2 we have
that wd(v1 ∧P v2) implies that both v1 and v2 belong to ALPHA PREDICATE .

We observe that all type provisos have been absorbed into just one assertion
wd A[v1, . . . , vn ] that establishes well-definedness of the left-hand program. If we
apply the new law to an extended refinement theorem Γ,wd X ` X v Y ∧ wd Y ,
the right-hand program Y is matched against the left-hand program A of the
law to instantiate the quantified variables. We then obtain an instantiation
P ′,wd Y ` Y v Y ′ ∧ wd Y ′ after moving antecedents to the hypotheses.

The original extended refinement theorem and the instantiated law give rise
to the following four theorems (after eliminating the conjunction in the conclu-
sions): (1) Γ,wd X ` X v Y ; (2) Γ,wd X ` wd Y ; (3) P ′,wd Y ` Y v Y ′;
(4) P ′,wd Y ` wd Y ′. We use (1), (3) and (4) to obtain

(5) Γ,P ′,wd X ,wd Y ` X v Y ′ ∧ wd Y ′

by transitivity of refinement using (1) and (3), and conjunction using (4). The
transitivity model theorem is now recast as

` wd p1 ∧ wd p2 ∧ wd p3 • p1 v p2 ∧ p2 v p3 ⇒ p1 v p3 .

It is formulated in terms of wd theorems rather than type provisos.
The intermediate theorem (5) contains the surplus assumption wd Y , and our

goal is to eliminate it. This can be achieved by the cut rule together with (2). The
cut rule states that from Γ1 ` P and Γ2,P ` Q we can derive Γ1,Γ2 ` Q . All this
requires no real proof effort and can be done with the application of rules. (Rules
are theorem-generating functions in ProofPower, and their evaluation usually
requires less effort.) We then obtain the extended refinement theorem

(6) Γ,P ′,wd X ` X v Y ′ ∧ wd Y ′

with the desired shape. Apart from the wd assertion for the initial program and
provisos Γ, it only introduces the relevant proof obligations P ′ of the law.

All this takes place as part of the mechanics of the implementation of law ap-
plications. It relies, however, on the model and law theorems having the correct



shape. For instance, if the law does not have the wd term of the transformed
program in its consequent, the elimination of the proviso in (5) fails. The imple-
mentation is, nonetheless, sufficiently robust to handle such cases; this merely
shows in the accumulation of provisos that could not be removed.

The examples used so far do not illustrate how provisos in the recast laws
reduce those of the former laws beyond typing conditions. For example, as-
signment is encoded by the semantic function AssignC (a,ns, es) where a is
the alphabet, and ns and es are sequences of variables and expressions. Here,
wd AssignC (a,ns, es) does not merely constrain a to be of type ALPHABET , ns
to be of type seq VAR, and es to be of type WT EXPRESSION , but states the
stronger (a,ns, es) ∈ dom AssignC , which, by definition of AssignC , moreover
implies that the sequences ns and es have the same length. Conditions like these
would formerly have to be explicitly specified in the antecedent of the law. The
simplification becomes even more apparent when the left and right-hand pro-
grams of the law are more complex. Despite, experience so far shows that in cer-
tain cases we still need to specify non-trivial type provisos, namely when in a law
A v B we cannot prove wd B from wd A, but this is not very often the case.

The next section discusses an approach to the treatment of provisos similar to
the one above, but in the context of monotonicity theorems. It ensures that the
application of structural combinators does not introduce further assumptions.

4.2 Structural combinators

The ArcAngelC implementation requires, for each combinator, two monotonicity
theorems: one for equivalence and one for refinement. These theorems are used
when applying the respective combinator tactic. They also give rise to provisos
that accumulate. In general, the monotonicity theorems are of the form

` ∀ a1 : T1; . . . ; ak : Tk ; p1, . . . , pn : T ; p′
1, . . . , p

′
n : T |

P [a1, . . . , ak , p1, . . . , pn ] ∧ P ′[a1, . . . , ak , p′
1, . . . , p

′
n ] •

p1 v p′
1 ∧ p2 v p′

2 ∧ . . . ∧ pn v p′
n ⇒

op(a1, . . . , ak , p1, . . . , pn) v op(a1, . . . , ak , p′
1, . . . , p

′
n)

where op(a1, . . . , ak , p1, . . . , pn) is an (n+k)-ary operator with fixed arguments
a1, . . . , ak and monotonic arguments p1, . . . , pn . For example, a conditional is a
programming operator whose condition is a fixed argument, and whose programs
are monotonic arguments. For action operators, T is CIRCUS ACTION . The
provisos P and P ′ establish that the application of op is well-defined on both
sides of the concluding refinement. They imply that (a1, . . . , ak , p1, . . . , pn) and
(a1, . . . , ak , p′

1, . . . , p
′
n) both belong to dom op.

Using the wd function, we generally express these theorems now as

` ∀ a1 : U; . . . ; ak : U; p1, . . . , pn : U; p′
1, . . . , p

′
n : U |

wd(op(a1, . . . , ak , p1, . . . , pn)) ∧ p′
1 ∈ T ∧ . . . ∧ p′

n ∈ T •
p1 v p′

1 ∧ p2 v p′
2 ∧ . . . ∧ pn v p′

n ⇒
op(a1, . . . , ak , p1, . . . , pn) v op(a1, . . . , ak , p′

1, . . . , p
′
n) ∧

wd(op(a1, . . . , ak , p′
1, . . . , p

′
n)) .

This shape is similar to that of rephrased laws, but additionally includes the



provisos p′
i ∈ T for all i ∈ {1, . . . ,n}. We explain below how they are discarded

during the application of the tactic. We use u , the structural combinator for in-
ternal choice, as an example. The approach applies to all unary, binary and n-ary
combinators of the ArcAngelC program model. An exception is the combinator
µ for recursion, which we address separately.

The combinator u for Circus internal choice has the following monotonicity
theorem in our original implementation. (There are no fixed arguments.)

` ∀ p1, p2, p′
1, p

′
2 : CIRCUS ACTION | α p1 = α p2 •

p1 v p′
1 ∧ p2 v p′

2 ⇒ p1 uC p2 v p′
1 uC p′

2

Besides the type provisos, we require with α p1 = α p2 that p1 and p2 have
the same alphabet. This is crucial for the well-definedness of p1 uC p2. The
refinements in the antecedent imply that α p1 = α p′

1 and α p2 = α p′
2, hence

we can conclude that α p′
1 = α p′

2 holds too. This ensures well-definedness of
p′
1 uC p′

2. Accordingly, the new monotonicity theorem is as follows.

` ∀ p1, p2 : U; p′
1, p

′
2 : U | wd(p1 uC p2) ∧

p′
1 ∈ CIRCUS ACTION ∧

p′
2 ∈ CIRCUS ACTION •

p1 v p′
1 ∧ p2 v p′

2 ⇒ p1 uC p2 v p′
1 uC p′

2 ∧ wd(p′
1 uC p′

2)

We observe that we cannot rid ourselves of all type provisos: membership of p′
1

and p′
2 to CIRCUS ACTION stays, because refinement of p1 and p2 does not

necessarily preserve membership to CIRCUS ACTION . We can, however, use a
proof tactic to remove these provisos in the resulting theorem by proving them
from the residual assumptions and again using the cut rule as follows.

When a structural combinator is applied, the first step is to dissect the op-
erator application and apply the combinator tactics to the program operands.
Here, for example, applying t1 u t2 to A uC B applies t1 to A and t2 to B .
This results in the refinement theorems Γ1,wd A ` A v A′ ∧ wd A′ and
Γ2,wd B ` B v B ′ ∧ wd B ′. We then conjoin these theorems to obtain
Γ1,Γ2,wd A,wd B ` A v A′ ∧ B v B ′ whose conclusion has now the right
shape to apply the monotonicity theorem in a forward-chaining manner, that is,
using modus ponens to obtain the conclusion of the theorem. This yields

Γ1,Γ2,A′ ∈ CIRCUS ACTION ,B ′ ∈ CIRCUS ACTION ,
wd A,wd B ,wd(A uC B) ` A uC B v A′ uC B ′ ∧ wd(A′ uC B ′) .

From the application of wd to the original program, in our example AuC B , it fol-
lows, by the definition of wd , that the operands are well-defined; in our example,
wd A and wd B hold, so both can be easily eliminated as before. For the elim-
ination of the assumptions related to the restrictions on the components of the
new program, that is, A′ ∈ CIRCUS ACTION and B ′ ∈ CIRCUS ACTION
in the example above, we exploit the wd theorems of the individual program re-
finements. They are in the case above Γ1,wd A ` wd A′ and Γ2,wd B ` wd B ′.

A proof tactic uses these theorems by rewriting wd A′. In the example above,
for a binary structural combinator, there are two terms wd A′ and wd B ′. In the
case of a unary combinator, there is only one, and so on. If A′ is an application



opC (A′′) of a Circus operator opC , then wd A′ yields that A′′ ∈ dom opC .
A simple law can then be used to infer that opC (A′′) ∈ ran op. Since, the
range of Circus operators is usually CIRCUS ACTION , we obtain a proof for
A′ ∈ CIRCUS ACTION . Considering such results for all terms wd A′, wd B ′,
and so on, is usually enough to establish well-definedness of the new program.

We observe that this reasoning does not depend on the structural combi-
nator per se. The assumptions are that the provisos are exclusively of the form
p′
i ∈ CIRCUS ACTION , that there exists a wd axiom for every Circus operator,

and that all Circus operators have domains CIRCUS ACTION .
In our example, this permits us to eliminate the two other provisos too.

Γ1,Γ2,wd(A uC B) ` A uC B v A′ uC B ′ ∧ wd(A′ uC B ′)

The result contains only the genuine proof obligations, so no overhead is incurred
by using the monotonicity rule in the mechanisation of the combinator.

The crucial point here is that in the case of structural combinators some real
proof effort is needed to eliminate the surplus provisos. Our implementation of
ArcAngelC is in fact an instantiation of a framework that we have developed for
angelic languages for refinement tactics. It supports ArcAngelC and its prede-
cessor ArcAngel [11] for Morgan’s refinement calculus, and can be extended for
other languages of the same nature. To manage structural combinators, we have
extended the framework to support the dynamic configuration of tactics used
to discharge provisos emerging from their application. For all ArcAngelC com-
binators, the tactics we define are sufficient. The provided flexibility, however,
permits the inclusion of custom tactics that may be needed for other languages.

There are cases in which elimination of the assumptions fails, namely, if the
arguments of the operator are not of the form opC (. . .) where opC is some Circus
operator. Experience, however, shows that this does not happen very often.

More specific extensions have been necessary to handle the structural combi-
nator µ for recursion, which, unlike the other combinators, is supplied with a
function on alphabetised predicates, usually given as a λ-expression. The proof
steps for removing provisos are more involved, and in fact it was not possible
to remove all of them due to the fact that pointwise refinement of a function
does not preserve monotonicity of the function. Precisely, from monotonicity
of f (∀ x , y ∈ dom f • x v y ⇒ f (x ) v f (y)), and the pointwise property
∀ x ∈ dom f • f (x ) v f ′(x ) we cannot conclude that f ′ is monotonic too. In
pen-and-paper proofs, we justify monotonicity assumptions by the particular
shape of actions only using monotonic constructs. In a shallow embedding, cap-
turing this is more difficult because we cannot give a general theorem stating
that Circus actions are monotonic. Solving this problem is part of ongoing work.

The next section comments on experiences in the context of a case study.

5 Practical experiences

The primary motivation for the treatment of well-definedness in the last two
sections is the automation of complex refinement strategies using our tools and
the semantic embedding of Circus. As a case study, we have automated part of



the refinement strategy for control laws described in [2,3].
The work in [2,3] describes first how a formal account of (a subset of) the

Simulink notation can be given by translating the diagrams into Circus specifica-
tions. (Simulink is a de facto industry standard for the design of control systems.)
It then presents a strategy for refinement that gradually transforms the diagram
specification into a Circus model of a given Ada program, and thereby verifies
the correctness of the Ada implementation. For the encoding of the ArcAngelC
tactics, we refer to the work in [13]. The tactics we mechanise are mostly literal
translations of those in [13], including the various Circus laws they rely upon.

The refinement strategy is structured into four phases, and so far we only
automated the first phase NB. This is itself subdivided into 7 steps, NBStep1
to NBStep7, which are assembled into one compound tactic NBMain. The tactic
deals with the normalisation of Circus processes representing blocks (or subsys-
tems) that are realised sequentially in code. Their model is given by a single
centralised process with two parallel actions. The tactic attempts to remove the
parallelism between these actions. A more detailed account of the refinement
strategy is omitted as it would take us too far from the agenda of the paper.

Our example specification is part of the model for the PID controller in [3].
In particular, we have applied the tactics to the model of a differentiator. It
is a simple example, which, however, as we discuss below, already reveals the
importance and effectiveness of our treatment of well-formedness.

Having encoded the tactics and laws, we have verified by inspection, that all
assumptions that remain after the application of the tactics are genuine proof
obligations. As explained in Section 4.2, particular kinds of provisos, namely
those resulting from µ , at present cannot be discharged automatically. We
verified, however, that these are the only residual provisos, apart from the well-
definedness assumption of the initial program of the refinement.

This initial analysis has uncovered some glitches in the recast theories and
implementation that have been subsequently fixed. One of them was a missing
wd axiom for one of the Circus operators which resulted in a simplification tactic
failing. As already mentioned, the implementation has been designed to robustly
deal with such cases, hence no error is raised when individual simplifications of
provisos do not succeed. (In some cases this leads to a partial proof encoded
as a ‘reduced’ proviso, and in other cases the proviso remains unchanged.) We
have increased the efficiency of simplification tactics by incorporating guarding
conditions that ensure they are only applied to assumptions of the correct shape,
and furthermore only involve a predictably small number of proof steps.

We have also compared the efficiency of our technique to that of the stan-
dard explicit treatment of provisos. Since our extensions to the ArcAngelC im-
plementation are fully backward compatible, it is possible to revert to the old
shape of laws and model theorems and execute the same tactics under the same
conditions. Table 1 summarises the results obtained for the tactics NBStep1 to
NBStep7 of the refinement strategy. (NBStep5 and NBStep6 have been merged
into one tactic). Each row entails the invocation of the preceding tactics too; for
instance, the second row refers to the execution of both NBStep1 and NBStep2.



Phase POs Before POs Current Run-time Before Run-time Current

NBStep1 1 1 0.0 sec 0.1 sec
NBStep2 44 4 2.3 sec 1.1 sec
NBStep3 101 8 9.1 sec 2.4 sec
NBStep4 163 15 17.9 sec 3.9 sec

NBStep5 6 198 18 19.9 sec 4.7 sec
NBStep7 243 24 21.1 sec 5.9 sec

Fig. 1. Comparison of the number of generated provisos for NB.

We report on the number of remaining provisos as well as the execution time of
the tactics measured by the timing facilities of Poly/ML.

The results show that assumptions are reduced by approximately 90%. This
remains fairly constant across tactics, and invariant with the growth in size. We
may expect a similar reduction in runtime, but it is offset by the effort required
to discharge the provisos. Despite, we see that overall this effort is recovered, and
the gain increases with the complexity of the generated refinement theorems. For
example, after NBStep2 we only have a small speed-up, and for NBStep1 even a
slight loss. The speed-up, however, becomes larger in the next two phases.

To check if this trend continues with more complex examples, we have slightly
amended the Diff process. This has resulted in larger ProofPower-Z terms and
the need for more elementary steps to transform the program. In this case, the
original implementation takes 61 sec to execute phases NBStep1 to NBStep5 6
and generates a theorem with 259 assumptions. In comparison, the new technique
requires 7.2 sec producing 24 assumptions, giving a further speed-up increase to
8.5. After once more elaborating the complexity of the example specification,
the former approach requires 154.4 sec and produces 301 assumptions whereas
the new ArcAngelC implementation only takes 10.9 sec. Although we still have a
similar 90% reduction in assumptions, the speed-up has now increased to 14.1.

The above suggests that with growing complexity of the ArcAngelC tactics
and Circus specifications, the speed-up may further increase, even so non-linearly.
Reasons for this may be that certain operations on theorems are slowed down
in a non-proportional way when theorems become larger. It should be pointed
out that the system we compare with already includes the simplification to the
mechanisation reducing type provisos that we discussed in Section 3.1.

Our results increase confidence that, with the new technique and tool sup-
port, it is possible now to apply the entire refinement strategy and obtain a
result within a reasonable amount of time.

6 Conclusions

We have presented a treatment of well-formedness in a shallow embedding of
Circus that considerably simplifies the provisos generated in the application of
refinement (and other) laws. Although it was described in the context of our
Circus mechanisation, the techniques and results obtained generalise to other



language embeddings in other tools that raise similar issues.
We have introduced the wd function to capture well-formedness of terms as

if they were syntactic rather than semantic entities. We have then identified
constraints to establish that this axiomatisation, though non-conservative, is
sound. We have thus avoided the added complexity of a deep embedding while
reaping some of its benefits in relation to properties that are inherently syntactic.

The underlying model for wd is actually a strict treatment of undefined
values. We, however, do not make its model explicit and content ourselves with
its mere existence. Since the logic of HOL does not accommodate undefinedness,
limitations arise in that we cannot, for instance, utilise wd on boolean functions
because the type B is not ‘big enough’ to provide enough values to represent the
undefined case. This is a trade off that we have to accept.

The wd function crucially paves the way for the efficient application of more
complex refinement tactics as it enabled us to recast the implementation of
ArcAngelC in such a way that, apart from genuine proof obligations, only one
additional proviso is generated — to establish the well-definedness of the initial
program. This keeps the complexity of emerging refinement theorems at bay,
and thereby creates opportunities for the use of our mechanisation of Circus and
tools for automatic refinement in the context of real industrial systems.

In [17], von Wright presents a tool for stepwise refinement in a simple sequen-
tial command language. Its semantics is characterised in terms of wp predicate
transformers, which are shallowly embedded into HOL. Well-definedness condi-
tions loosely correspond to establishing the monotonicity of predicate transform-
ers, however the semantic domain is not a priori restricted to those.

The implication of von Wright’s and similar approaches are that we required
more relaxed definitions of operators, and also accept limitations on what laws
can be generally established for the semantic entities. In the UTP, we often rely
on proving properties from healthiness conditions rather than by induction over
some syntax, which makes our approach more suitable here.

Other related work is the refinement editor Refine and Gabriel [14] which sup-
ports the specification and interactive application of ArcAngel tactics to derive
programs in Morgan’s calculus. These tools notably offer facilities to interac-
tively apply tactics and laws. Otherwise, Refine and Gabriel were developed in
view of a specific language, and are essentially rewrite systems.

More recent work has been done on developing Saoith́ın [1], a proof assistant
specifically designed for the UTP. Its advantages are that it essentially operates
at the level of syntax, and naturally some of the semantic issues we reported on
do not arise. It also provides proof strategies that are optimised for proofs in the
UTP. On the other hand, it does not specify a model for its deductive system
and calculus, and this imposes limitations on proving consistency of theory ex-
tensions. An interesting line of work could be to try and combine Saoith́ın with
our tools to see if we can reap individual benefits of both of them.

Future work will first consist of mechanising the entire refinement strategy
for control laws in [13]. Secondly, further work is required to provide proof au-
tomation in relation to the well-definedness of the initial program. To obtain



unqualified theorems, those assumptions need to be discharged. It is still an
open issue how provisos in such theorems are best proved, and whether some of
the wd theorems that we discard as we go along should be cached for later use.
Acknowledgements This work has been funded by EPSRC as part of the Pro-
gramming from Control Laws research grant EP/E025366/1.

References

1. A. Butterfield. Saoith́ın Proof Assistant. Available for download at http://www.

scss.tcd.ie/Andrew.Butterfield/Saoithin/.
2. A. Cavalcanti, P. Clayton, and C. O’Halloran. Control Law Diagrams in Circus.

In FM 2005: Formal Methods, volume 3582 of Lecture Notes in Computer Science,
pages 253–268. Springer, July 2005.

3. A. Cavalcanti, P. Clayton, and C. O’Halloran. From Control Law Diagrams to
Ada via Circus. Technical report, University of York, York, U.K., April 2008.

4. A. Cavalcanti, A. Sampaio, and J. Woodcock. A Refinement Strategy for Circus.
Formal Aspects of Computing, 15(2–3):146–181, November 2003.

5. E. Dijkstra. A Discipline of Programming. Prentice Hall Series in Automatic
Computation. Prentice Hall, 1976.

6. C. A. R. Hoare and H. Jifeng. Unifying Theories of Programming. Prentice Hall
Series in Computer Science. Prentice Hall, February 1998.

7. A. Martin, P. Gardiner, and J. Woodcock. A Tactic Calculus - Abridged Version.
Formal Aspects of Computing, 8(4):479–489, July 1996.

8. C. Morgan. Programming from Specifications. Prentice Hall International Series
in Computer Science. Prentice Hall, 1998.

9. M. Oliveira. Formal Derivation of State-Rich Reactive Programs using Circus. PhD
thesis, Department of Computer Science, University of York, 2005.

10. M. Oliveira and A. Cavalcanti. ArcAngelC : a refinement tactic language for Circus.
Electronic Notes in Theoretical Computer Science, 214:203–229, June 2008.

11. M. Oliveira, A. Cavalcanti, and J. Woodcock. ArcAngel: a Tactic Language for
Refinement. Formal Aspects of Computing, 15(1):28–47, July 2003.

12. M. Oliveira, A. Cavalcanti, and J. Woodcock. A UTP semantics for Circus. Formal
Aspects of Computing, Online First, December 2007.

13. M. Oliveira, A. Cavalcanti, and F. Zeyda. A Tactic Language for Refinement of
State-Rich Concurrent Specifications. To appear.

14. M. Oliveira, M. Xavier, and A. Cavalcanti. Refine and Gabriel: Support for Re-
finement and Tactics. In Proceedings of the Second Int. Conference on Software
Engineering and Formal Methods, pages 310–319. IEEE Computer Society, 2004.

15. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall Series in
Computer Science. Prentice Hall, November 1997.

16. J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall International
Series In Computer Science. Prentice Hall PTR, June 1992.

17. J. von Wright. Program Refinement by Theorem Prover. In BCS FACS Sixth
Refinement Workshop – Theory and Practise of Formal Software Development,
London, U.K. Springer, January 1994.

18. F. Zeyda and A. Cavalcanti. Supporting ArcAngel in ProofPower. Electronic Notes
in Theoretical Computer Science, 259:225–243, December 2009.

19. F. Zeyda and A. Cavalcanti. Mechanical Reasoning about Families of UTP Theo-
ries. Science of Computer Programming, March 2010. DOI dx.doi.org/10.1016/
j.scico.2010.02.010.

http://www.scss.tcd.ie/Andrew.Butterfield/Saoithin/
http://www.scss.tcd.ie/Andrew.Butterfield/Saoithin/
dx.doi.org/10.1016/j.scico.2010.02.010
dx.doi.org/10.1016/j.scico.2010.02.010

