
Encoding Circus Programs in ProofPower-Z

Frank Zeyda and Ana Cavalcanti

Department of Computer Science, University of York, U.K.
{zeyda,ana}@cs.york.ac.uk

Abstract. Circus combines elements from sequential and reactive pro-
gramming, and is especially suited for the development and verification
of state-rich, reactive systems. In this paper we illustrate, by example,
how a mechanisation of the UTP, and of a Circus theory, more specifically,
can be used to encode particular Circus specifications. This complements
previous work which focused on using the mechanised UTP semantics to
prove general laws. We propose a number of extensions to an existing
mechanisation by Oliveira to deal with the problems of type constraints
and theory instantiation. We also show what the strategies and practical
solutions are for proving refinement conjectures.

Key words: UTP, semantics, Z, theorem proving, refinement

1 Introduction

The Circus language combines elements from sequential programming and pro-
cess algebra [4]. Its key notion is that of a process, which encapsulates state and
behaviour, defined by actions that operate on the state and communicate with
the environment. Actions may be specified as Z operation schemas, Dijkstra’s
guarded commands, or constructs of the CSP language. Circus is particularly
suitable for reasoning about state-rich, reactive systems [13,6] using refinement.

In [16] Oliveira presents a semantics for Circus based on the UTP, and an
extensive encoding of definitions and laws in the ProofPower-Z theorem prover.
ProofPower is a versatile and powerful mechanical theorem prover based on HOL
that has been successfully used in industry. ProofPower-Z is an extension of
ProofPower that additionally embeds the theory of Z. The work involved the
creation of a hierarchy of UTP theory encodings, namely for the theories of
relations, designs, reactive designs, CSP, and, on top of the hierarchy, Circus.
Each embedded UTP theory gives rise to a collection of axiomatic Z definitions,
and a ProofPower theory is used in each case to hold the definitions.

The motivation for this work was primarily to prove equality and refinement
laws which are generally valid within the various UTP theories. To this end it
has been successfully employed in proving a large repository (≥ 500) of such
laws. Little experience has, however, been gained so far in encoding and proving
properties of particular Circus specifications and programs.

As a motivating example, we consider the process presented in Fig. 1 whose
purpose is to compute and output the series of Fibonacci numbers on a channel

channel out : N

process Fib =̂ begin

state FibState =̂ [x, y : N]

InitFibState =̂ [FibState ′ | x′ = 1 ∧ y′ = 1]

InitFib =̂ out!1→ out!1→ InitFibState

OutFibState =̂
[∆FibState; next! : N | x′ = y ∧ y′ = x+ y ∧ next! = x+ y]

OutFib =̂ µX • var next : N • OutFibState; out!next→ X

• InitFib ;OutFib
end

Fig. 1. Specification of the Circus process Fib.

out . After declaration of the channel in a channel paragraph, the process first
declares its state components by means of a state process paragraph; here, they
consist of the variables x and y both of integer type. This is followed by a se-
quence of actions: first to initialise the state of the process (InitFibState and
InitFib), and further to calculate and communicate the next Fibonacci num-
ber (OutFibState and OutFib). A special action is the main action at the end,
following ‘•’, which defines the process behaviour.

Initialisation in InitFibState is specified by a Z operation that assigns 1 to
the state components. InitFib outputs the first two Fibonacci numbers prior
to initialising the state. OutFibState, again defined by a Z schema, computes
the next Fibonacci number, stores it in the local variable next , and updates
the state. The shriek is merely syntactic sugar for output variables in schemas,
and when interpreting a schema as an action treated as referring to the after-
state variable (here next′). The rôle of OutFib is then to invoke OutFibState
and output the calculated number over out ; it does so repetitively being defined
using recursion. The variable block conceals the next and next′ components
introduced by OutF ibState making them local to the action. The main action
first calls InitFib, and afterwards OutFib; it does not terminate.

The encoding of Fib in Oliveira’s mechanisation of the UTP framework raises
a few problems. One of them is that it does not support well the case where
predicates of different UTP theories coexist in the same ProofPower scope of
definitions. For example, the UTP characterisation of the actions of Fib are
predicates that belong to a specific family of UTP theories that fulfil certain
healthiness conditions (those of Circus), but at the same time have possibly
different alphabets (of programming variables). An example is the variable block
that defines OutFib, whose body is a predicate including next and next ′ in
its alphabet, whereas the resulting predicate does not have these variables in
the alphabet. In addition, the predicates of Z operation schemas used in the
definition of Fib actions belong to another family of UTP theories (namely that
of relations) with no healthiness conditions, but possibly different variables.

To address this problem, we require a dynamic notion of UTP theory instan-
tiation. In the original work of Oliveira, the closest we get is the by nature static
inclusion of the corresponding ProofPower theory. This is problematic mostly
since constraints imposed by such ‘instantiations’ apply globally, and thus affect
all other UTP theories in scope. Typically, the theory of designs may require the
auxiliary variables okay and okay ′ to be of boolean type; however, such a con-
straint would in the existing treatment a priori affect instances of all other UTP
theories, as, for example, the ones of plain predicative or relational theories. In
the Fib process this problem equally arises if we assume the local variable next
is reused somewhere else but with a different type. An illustrating example for
this is the construct (var next • next := 1 ;P) u (var next • next := true ;Q)
in which the type of next differs in each branch of the choice operator, and for
this reason cannot be statically fixed.

In this paper, we first present a revised mechanisation of the UTP Circus
theory that deals with the problem of instantiation and local type constraints.
We then show how the new framework can be used to encode Circus processes in
a way that the problems mentioned above largely disappear. Finally, we discuss
some practical aspects of refinement proofs.

The revisions that we propose follow the approach discussed and justified in
detail in [18]. The agenda in this paper is mainly to view them in the light of the
Circus theory, and apply them to the concrete encoding of a Circus specification
such as Fib. We also address the concern of refinement proofs.

The structure of the paper is as follows. In Section 2 we present the exten-
sions we propose to the original mechanisation of Oliveira. Section 3 explains
the embedding of the UTP theory of Circus in our modified settings; Section 4
discusses the encoding of Circus processes using that embedding; and Section 5
addresses refinement proofs. In Section 6 we draw our conclusions.

2 Extended Mechanised UTP Semantics

In the UTP [9], the fundamental objects are alphabetised predicates representing
observable behaviour. We represent them as a set of bindings (functions) that
map variable names to values, and a universe, used to define type constraints.

Z

ALPHA PREDICATE =̂ {bs : BINDINGS ; u : UNIVERSE |
(∀ b : bs • dom b = AlphabetU u) ∧ bs ⊆ u}

BINDINGS is the set of all binding sets, and UNIVERSE the set of all binding
sets which are valid universes. A universe contains all well-typed bindings and so
determines the types of the variables in the bindings. Its definition is as follows.

Z

UNIVERSE =̂ {bs : BINDINGS | ∅ ∈ bs ∧
(∀ b1 : bs; b : BINDING | b ⊆ b1 • b ∈ bs) ∧
(∀ b1 , b2 : bs • b1 ⊕ b2 ∈ bs)}

The empty set of bindings is a valid universe. Additionally, universes have to be

subset closed, formalising our intuition that the binding resulting from restricting
the domain of a well-typed binding remains well typed. Finally, the type of one
variable cannot be sensitive to values taken by another variable, that is type
restriction has to be orthogonal to binding (function) overriding.

In the specification of ALPHA PREDICATE we state that the binding set
has to be a subset of the universe in order to respect the type constraints imposed
by it. Moreover, the universe must not retain information about types of variables
outside the alphabet of the predicate. (The alphabet AlphabetU u of a universe
u is the union of the domains of all its bindings.) This avoids anomalies when
combining predicates with different universes. In general, this is only possible if
the predicates agree on the types of their shared variables, and we do not want
variables irrelevant to the predicate’s meaning to cause clashes. In our model,
alphabets are identified with universes; namely, we may conceptually think of
universes as alphabets with additional type information attached to them.

A UTP theory is defined by a new schema type as follows.
Z

UTP THEORY

THEORY UNIVERSE : UNIVERSE ;

HEALTH CONDS : P HEALTH COND

UTP theory instances are too associated with universes: the universe of the
predicates of the theory. The type HEALTH COND comprises all partial idem-
potent functions on the set ALPHA PREDICATE , and HEALTH CONDS ac-
cordingly records the healthiness conditions of the theory. We have to restrict
ourselves to partial functions here since some healthiness conditions may not be
applicable to predicates with certain variables or type constraints. For example,
applying H1(P) = okay ⇒ P is only sensible if the type of okay in P is boolean.

UTP THEORY does not record the predicates of the theory. We can derive
them from the universe and healthiness conditions using the function below.

Z

TheoryPredicates : UTP THEORY → P ALPHA PREDICATE

∀ th : UTP THEORY • TheoryPredicates th =

{p : ALPHA PREDICATE | p.2 = th.THEORY UNIVERSE ∧
(∀ h : th.HEALTH CONDS • p ∈ dom h ∧ h p = p)}

As mentioned before, the predicates of a theory share its universe, and are the
common fixed points of all the healthiness functions.

The instantiation of UTP theories is simply carried out by constructing a
binding of UTP THEORY . To achieve modularity we provide instantiation
functions for every encoding of a UTP theory, for example InstRelTheory u
for the plain theory of relations, InstDesTheory u for the theory of designs, and
so on. The functions are solely parameterised in terms of a universe since the
healthiness conditions for specific UTP theory families are usually fixed.

Our encoding provides further useful functions which allow for modular con-
struction of a UTP theory hierarchy. For example StrengthenTheory (th, hs) en-
riches an existing theory instance th with a set of additional healthiness con-
ditions hs. The main benefit of constructing theories in such a manner is that
proofs about lower-level predicates and operators can be easily reused in higher-
level theories, and moreover interesting properties can be formulated regarding
theory dependencies. It is also an approach we will adopt discussing the encoding
of the UTP theory of Circus in the following section.

3 Semantic Embedding of Circus

Our encoding of Circus is in essence a recast of Oliveira’s Circus encoding [16]
that takes into account the alterations of the previous section. Our version of the
ProofPower-Z theory for Circus acts solely as a carrier for the various definitions
for instantiating Circus theories. When instantiating concrete UTP theories we
pursue a uniform approach that suggests a certain structure in the definitions.
It is mirrored by the order in which definitions are presented here.

We first define the sets CIRCUS ALPHABET and CIRCUS UNIVERSE
of possible alphabets and universes of theory instances. Since they are simi-
lar to those for reactive designs, we equate them with REA ALPHABET and
REA UNIVERSE — the corresponding sets for the theory of reactive processes.

The set REA ALPHABET includes all alphabets that contain the aux-
iliary variables okay , wait , tr and ref , including their primed versions. The
variables themselves are introduced as distinct elements of the type NAME
which represents variable names. Since REA ALPHABET is a restriction of
REL ALPHABET (the type of relational alphabets), we only consider alpha-
bets consisting of input (undashed) and output (single dashed) variables.

The set REA UNIVERSE is defined as shown below.
Z

REA UNIVERSE =̂

{u : DES UNIVERSE |
AlphabetU u ∈ REA ALPHABET ∧
typeof (wait , u) = BOOL VAL ∧
typeof (tr , u) = SEQ EVENT VAL ∧
typeof (ref , u) = SET EVENT VAL}

The alphabet of the universe of an instance of a reactive process theory has to be
in REA ALPHABET , and the types of the auxiliary variables are as we expect.
To express the type constraints, we use the function typeof .

Z

typeof : (NAME × UNIVERSE) → P VALUE

∀ n : NAME ; u : UNIVERSE • typeof (n, u) = {b : u | n ∈ dom b • b n}

It takes a variable name and a universe, and returns the type of the variable: the

set of values it can have in the respective universe.
In a DES UNIVERSE , okay has type BOOL VAL, so we do not need to con-

strain it. For the primed variables, as DES UNIVERSE is a REL UNIVERSE ,
a constraint on relational universes ensures that dashed variables, if present,
have similar types to their undashed counterparts.

In order to define the instantiation function for Circus theories, we need to
encode their healthiness conditions. The UTP theory for Circus is a restriction of
the theory of CSP requiring additional healthiness conditions C1 , C2 and C3 ,
which we omit here. Assuming their encoding, the theory instantiation function
yielding elements of UTP THEORY is defined as follows.

Z

InstCircusTheory : CIRCUS UNIVERSE → UTP THEORY

∀ u : CIRCUS UNIVERSE •
InstCircusTheory u =

StrengthenTheory (InstCSPTheory u, {C1 , C2 , C3})

Instantiation is performed by strengthening a corresponding instance of the UTP
theory of CSP. Instantiation is defined only if a suitable universe is provided;
here, it must be one from the set CIRCUS UNIVERSE . The instantiation func-
tion easily allows us to define the set CIRCUS THEORY containing all possible
instantiations of Circus theories: it is the range of InstCircusTheory .

We can now define the subset of alphabetised predicates that characterise
valid Circus actions and processes: all predicates that belong to some instantia-
tion of a Circus theory. They satisfy the healthiness conditions of Circus and all
subordinate UTP theories i.e. those for CSP, reactive processes, and relations.

Z

CIRCUS ACTION =̂

{p : ALPHA PREDICATE |
(∃ th : CIRCUS THEORY • p ∈ TheoryPredicates th)}

The semantics of a Circus process is given by hiding the state components in its
main action. Therefore, models of processes are actions whose alphabets include
only the auxiliary variables okay , wait , tr and ref , and their dashed counterparts.
The definition is obtained by further restricting CIRCUS ACTION .

Z

CIRCUS PROCESS =̂

{p : CIRCUS ACTION | AlphabetP p = ALPHABET OWTR}

This concludes the presentation of the core definitions that support instantia-
tion of Circus theories. In defining the operators on Circus actions, we reuse the
definitions of [16], but adapt them to take into consideration universes where
required. An example is the function that encodes Skip, which takes a universe

as a parameter: the universe of the state components of the process.
Z

SkipC : WF SkipC → CIRCUS ACTION

∀ u : WF SkipC •
SkipC u = R (TrueP u `D TReqTR′ ∧P (¬P WAIT ′) ∧P ΠR u)

Skip is defined in terms of applying R, the healthiness condition for reactive
processes, to a design that determines the behaviour of the action. The design has
a true precondition TrueP u, meaning that it never diverges. The postcondition
specifies that Skip immediately terminates: the only observable behaviour is that
Skip is not in an intermediate state (¬P WAIT ′) while the trace is not altered
(TReqTR′ encodes the predicate tr = tr ′). The relational Skip ΠR u on the
state universe u ensures that the state variables are not changed. The rôle of
WF SkipC is to restrict the domain of the function as to require homogeneous
universes that must only mention state variables but not auxiliary ones.

A second example is the function →C which encodes prefixing of Circus ac-
tions. Prefixing is used, for example, in the InitFib action of the Fib process.

Z

→C : WF PREFIXINGC → CIRCUS ACTION

∀ n : CHANNEL NAME ; e : EXPRESSION ; p : CIRCUS ACTION |
((n, e), p) ∈ WF PREFIXINGC •

(n, e) →C p = R (TrueP p.2 `D
(do C (p.2 , n, e)) ∧P

(ΠR (p.2 	U ALPHABET OWTR))) ;C p

Prefixing requires a channel name n, an expression e whose value is output on the
channel, and the prefixed action predicate p. WF PREFIXINGC captures the
restriction on the arguments that the free variables in e must be contained in the
universe of the predicate to ensures evaluation of e is well-defined. The operator
is specified by sequentially composing a reactive process with p that carries out
the communication and then terminates. This process as before is specified by
applying R to a design. The true precondition of the design indicates again the
absence of divergence, and the postcondition makes use of a function doC (u, n, e)
being the encoding of the predicate

(tr = tr ′ ∧ (n, e) 6∈ ref ′) / WAIT ′ . tr ′ = tr a 〈(n, e)〉.

The reactive behaviour is thus to be initially (tr = tr ′) in a waiting state refusing
all events other than (n, e), and to terminate when the process has engaged in
the communication event (n, e). The conjunction with Skip on the universe of
the state components, obtained by removing the auxiliary variables from the
universe of p, ensures that values of state variables remain unchanged.

The presence of universes results in many places in additional restrictions
on the domains of semantic functions characterising the various UTP theory

operators of Circus and subordinate theories. In the lower-level theory of alpha-
betised predicates and relations (utp-alpha and utp-rel), binary operators such
as conjunction, disjunction, and so on are defined for predicate pairs whose uni-
verses are compatible, but not necessarily the same. This enables us to combine
predicates from different theories. In specific theories, we require the arguments
of operators in most cases to be of the same theory instance. Consequently,
we need new definitions describing such argument restrictions. For example,
WF CIRCUS ACTION PAIR is the set of all predicate pairs for which there
exists a Circus theory to which both predicates belong. It is used, for instance,
as the domain of action operators modelling internal and external choice.

The amendments to definitions were mainly motivated by the need to prove
properties and laws, and, as a minimal requirement, to ensure well-definedness of
the underlying function applications. We did not try and identify the strongest
condition for sensibly applying operators, but one which is consistent without
incurring too heavy a burden on proofs. This is justified by assuming that pro-
cesses and actions are well typed. If proofs later require stronger restrictions, we
will tighten the domain definitions appropriately.

Besides we specify operators in a way that allows us to infer easily that their
application yields a predicate within the correct UTP theory: we restrict their
range to CIRCUS ACTION . The proof of this is pushed into the consistency
theorem for the definition (see Section 5), and closure properties follow trivially
from operator definitions and need not be separately formulated as theorems.

4 Encoding of Circus Programs

In this section we illustrate how we use the semantic encoding of Circus described
in the previous section to encode the Fib process given in Fig. 1. The ProofPower
theory source for all definitions presented here and elsewhere in the paper can
be downloaded from http://www.cs.york.ac.uk/circus/tp/tools.html.

To accommodate the ProofPower-Z definitions, we create a new ProofPower
theory utp-fib as a child of utp-circus. We begin by creating definitions that
introduce channel names, state components and local variables. For our example,
we use an axiomatic definition to declare a name out : CHANNEL NAME
for the out channel. CHANNEL NAME provides an inexhaustible supply of
names (elements from the NAME type) to represent channel identifiers. This
set is disjoint from Z VAR NAME which contains names of Z schemas as well
as local variables and state components. We declare all the names used in the
process description to be of type Z VAR NAME .

Z

x , x ′, y , y ′ : Z VAR NAME

x ′ = dash x ∧ y ′ = dash y ∧ distinct 〈x , y〉

When introducing new variables, it is important to ensure they are mutually
distinct from any existing ones that may be used in the same predicate. We

http://www.cs.york.ac.uk/circus/tp/tools.html

achieve this by virtue of a predicate distinct on sequences of names which holds
true for all injective sequences. Since the dash function modelling decoration is
injective too, it is sufficient to enforce uniqueness of the undashed names. By
selecting names from Z VAR NAME we already ensure that they are distinct
from any of the auxiliary variables for Circus actions. We introduce the local
variables exactly in the same way as illustrated in the above definition.

Next, we instantiate the Circus theory for the main and auxiliary actions. To
do so we define the universe of the main action. It is as follows in our example.

Z

FIB UNIVERSE : CIRCUS UNIVERSE

AlphabetU FIB UNIVERSE = FIB ALPHABET ∧
typeof (x , FIB UNIVERSE) = INT VAL ∧
typeof (y , FIB UNIVERSE) = INT VAL

FIB ALPHABET is the set containing both the auxiliary and state variables.
Since universes which are selected from CIRCUS UNIVERSE already ensure
that auxiliary variables are typed correctly, the only type constraints to be for-
mulated here are the ones restricting the state variables.

We are now able to define the UTP theories for the actions of Fib. It is not
just one UTP theory that is used to model them, since actions like OutFibState
mention extra variables apart from the state components. We need a theory
instance for each possible extension of FIB UNIVERSE .

Z

FIB THEORY =̂

{u : CIRCUS UNIVERSE |
CompatibleU (u, FIB UNIVERSE) • InstCircusTheory u}

Intuitively, this definition constructs the family of all instances of the Circus
theory that have a universe which at least contains the state components of Fib,
and imposes the correct type constraints on them. We recall that two universes
are compatible if they agree on the types of their shared variables.

The main benefit of FIB THEORY is that it permits us to state (or verify)
that actions such as InitFib, OutFib, and so on, are characterised by predicates
that belong to one of the Circus theories for the Fib process, encapsulating health-
iness conditions as well as type constraints on the state components. For this we
define the set FIB ACTION which contains all such predicates characterising
valid actions in the context of Fib.

Z

FIB ACTION =̂
⋃

(TheoryPredicates (|FIB THEORY |))

It is simply the union of all predicates of UTP theories in FIB THEORY . A
more specific action of Fib is its main action, because it only has the auxiliary
variables and state components in the universe. We include another definition
FIB MAIN ACTION , comprising the potential predicates for main actions.

We now turn to encoding the actions actually used in Fib. We first look at the
ones which are defined through Z operation schemas. Considering, for example,
the action InitFibState, the corresponding schema [FibState ′ | x′ = 1 ∧ y′ = 1]
has to be lifted to become a Circus action, and a valid predicate of a Circus theory
in FIB THEORY . The schema itself is encoded by a relational predicate over
the universe that contains its components x′ and y′ with the right type.

The semantic function SchemaExpC performs this lifting; it takes a relational
predicate and an instance of VAR DECLS encapsulating the declaration of the
schema components. The universe of the predicate has to be compatible with
the variable declarations. The latter are encoded by a pair of sequences: the first
component listing the variable names, and the second, their types.

Z

Fib InitFibState VAR DECLS =̂

(〈x , y , x ′, y ′〉, 〈INT TYPE , INT TYPE , INT TYPE , INT TYPE〉)

Types are represented as values (elements of VALUE). Here, INT TYPE is the
set of integer values. The encoding of InitFibState is as follows.

Z

Fib InitFibState : FIB ACTION

Fib InitFibState =

SchemaExpC (Fib InitFibState VAR DECLS ,

(=P (CreateU {x ′ 7→INT VAL}, x ′, Val(Int(1)))) ∧P

(=P (CreateU {y ′ 7→INT VAL}, y ′, Val(Int(1)))))

In the above =P is the semantic function used to construct alphabetised pred-
icates for equalities between variables and expressions. It needs to be provided
with a universe, namely that of the resulting relation. For this purpose, CreateU

ad-hocly creates a universe from a set of name/type pairs.
Notably, the universe of the schema predicate has x′ and y′ in its alphabet,

since ∧P merges the universes of the constituent predicates. The universe of
the schema itself comprises x, y, x′, and y′. Finally, the predicate defined by
SchemaExpC additionally includes in its universe the auxiliary variables and
fulfils the healthiness conditions for Circus actions. This illustrates how predicates
of different UTP theories coexist in the same definition.

By introducing Fib InitFibState as an element of FIB ACTION we ensure
that irrespective of how we define it, that is, using Circus operators or plain
predicate connectives, it has to characterise a valid action of Fib. This is effec-
tively discharged by the consistency proof of the axiomatic definition generated
by ProofPower-Z. Fib InitFibState 6∈ FIB ACTION would result in a contra-
diction and hence the existential proof to fail.

The encoding of schemas that include extra components, besides those of
the state, like Fib OutFibState for instance, is similar. To simplify the encoding
of the schema predicate, we define a universe Fib OutFibState UNIV (used by
all three equalities) containing exactly the variables of the schema. A function
UnivFromVAR DECLS defines the conversion of a VAR DECL to an element

of UNIVERSE ; we omit its definition and that of Fib OutFibState UNIV itself.
Z

Fib OutFibState : FIB ACTION

Fib OutFibState =

SchemaExpC (Fib OutFibState VAR DECLS ,

(=P (Fib OutFibState UNIV , x ′, Var(y))) ∧P

(=P (Fib OutFibState UNIV , y ′, Fun2 ((+V), Var(x), Var(y)))) ∧P

(=P (Fib OutFibState UNIV , next ′, Fun2 ((+V), Var(x), Var(y)))))

Terms such as Var(y) and Fun2((+V),Var(x),Var(y)) encode expressions in
the semantics, here y and x+y. The shriek, which introduces an output variable
in the operation schema, is generally translated into a corresponding pair of
variables to render the alphabet of the action homogeneous. The same applies
to input variables decorated with a question mark should they occur.

Not all encoded actions are required to be equipped with an action-specific
universe. Examples of actions that do not require a universe are InitFib and
OutFib; the encoding of the latter is given below.

Z

Fib OutFib : FIB ACTION

Fib OutFib =

µC (λ X : CIRCUS ACTION •
varC (next , Fib OutFibState ;C (out , Var(next)) →C X))

Here, the universe of the sequential composition is inferred from its arguments,
Fib OutFibState and out !next → X. This case again illustrates how predicates
of different UTP theories coexist in the same ProofPower definitional scope. The
body of the variable block is an action whose universe includes the extra variables
next and next ′, which are concealed by the varC construct. Hence the universe
of Fib OutFib only comprises the auxiliary variables and the state variables.

Crucially, we could indeed have another variable block declaring next within
the same predicate but with a different type. In the original work [15] such would
not have been possible since type constraints are globally attached to variable
names. Above, the types of next and next ′ are deduced from the universe of the
underlying relation of the body of the variable block. Thus the association of
types and variable names takes place upon construction of the predicate and, in
fact, is local with respect to the encoded predicate, and thus not static.

Z

Fib MainAction : FIB MAIN ACTION

Fib MainAction = Fib InitFib ;C Fib OutFib

Again this action does not require a universe as it is inferred by ;C from those of
Fib InitFib and Fib OutFib. Since Fib MainAction is declared to be an element

of FIB MAIN ACTION , that universe has to be FIB UNIVERSE , though.
Fib MainAction does not truly characterise the process as such since it still

contains the state components in its universe. Since these are local to the process
they should be hidden it its semantic description. This is achieved by the operator
beginC endC . Utilising it we obtain the following definition for the process Fib.

Z

Fib Process : CIRCUS PROCESS

Fib Process = beginC Fib MainAction endC

The set CIRCUS PROCESS defined in utp-circus contains all predicates of the
Circus theory obtained by instantiation with a minimal universe; this is the
universe which only comprises auxiliary variables, but no state components.

In this section we have demonstrated how particular Circus processes can
be encoded using our embedding of the UTP theory of Circus. It is possible
to automate all steps involved, and that is the next step in our work agenda.
The encoding requires that type information is deduced prior to translation
and consequently exploited in the construction of universes; this can be easily
achieved using the Circus type checker [17,7]. In the next section we will examine
how properties of the encoded process may be formulated and proved.

5 Reasoning about Circus Specifications

In our investigation so far, we have considered two primary possibilities in which
mechanical reasoning about Circus processes may be exploited. First, the encod-
ing strategy which was informally presented in the previous section gives rise
to a number of consistency proof obligations that establish the soundness of
the encoding. ProofPower-Z is capable of generating the proof obligations au-
tomatically, and more importantly prevents axiomatic definitions from being
unconditionally used unless their respective consistency theorem has been dis-
charged. The second possibility is to carry out refinement proofs of actions and
processes. We address these two opportunities separately in this section.

5.1 Soundness of Process Encodings

Most of our encoding is based on functions that are defined using Z axiomatic
descriptions. In general, an axiomatic description introducing a new global con-
stant DefName is of the following form, where S is a set and P a predicate.

Z

DefName : S

P(DefName)

The notation P (DefName) highlights that DefName is assumed to be free in P .

Consistency proofs ensure that there exists some element DefName ∈ S for
which the predicate P (DefName) holds. If this is not true, we would be able
to conclude false from the axiom of the definition allowing us to prove any-
thing. The corresponding consistency proof obligation hence establishes that
∃ DefName : T • DefName ∈ S ∧ P . In Z, arbitrary sets S can be used in
declarations (of constants), but their types do not include any constraints em-
bodied in these sets. For example, if we declare a function f of type A 7→ B,
where A and B are given sets, then the type of f is P(A × B); the functional
property is a constraint on f , rather than part of its type. A process called nor-
malisation provides axiomatic descriptions whose declarations define types, and
all constraints are given in the predicate. Assuming that the axiomatic descrip-
tion initially is not normalised, T , instead of S, is the actual type of DefName
after normalisation. The given proof obligation is not exactly how ProofPower
expresses the consistency goal when first generated. For brevity we omit the less
concise ProofPower goal since it can be easily reduced to this one.

All encoded actions of a process are of the general form below.
Z

ActionName : PROC ACTION

ActionName = ActionExpr

ActionName is the name of the action. PROC ACTION is the set of predi-
cates of the instances of the UTP Circus theory that have a universe compatible
with the state components declaration; for Fib, this is FIB ACTION . Finally,
ActionExpr is the alphabetised predicate that models the action defined by ap-
plying the functions for Circus operators in our encoding. The consistency proof
obligations for action encodings are, therefore, always of the following form.

∃ ActionName : P (NAME ↔ VALUE) × P (NAME ↔ VALUE) •
ActionName ∈ PROC ACTION ∧ ActionName = ActionExpr

Proving this subgoal is achieved by providing an existential witness for the
quantified variable ActionName. From the shape of the predicate it is apparent
that there can only be one choice of witness that possibly render it true; that
is precisely ActionExpr — the right hand side of the action definition. Using
ActionExpr as a witness, the consistency proof reduces to merely showing that
ActionExpr ∈ PROC ACTION which verifies the encoded action belongs to the
set of valid actions for the process; it thus is guaranteed to fulfil the healthiness
conditions of Circus, and possesses a permissible alphabet that includes the state
components and imposes the correct type constraints on them.

To give a concrete example, we consider the consistency proof for InitFib.
Z

Fib InitFib : FIB ACTION

Fib InitFib = (out , Val(Int(1))) →C (out , Val(Int(1))) →C Fib InitFibState

As previously explained, (c, e) →C p encodes the prefixing operator outputting

the value of e on channel c, and Val(Int(1)) simply encodes the expression 1.
Fib InitFibState refers to the encoding of the InitFibState action presented in
Section 4. The proof obligation which hence needs to be discharged is

(out , Val(Int(1))) →C (out , Val(Int(1))) →C Fib InitFibState ∈ FIB ACTION

We establish the truth of this goal in essence by exploiting closure properties
of the operators. The base case Fib InitFibState ∈ FIB ACTION we, notably,
get from its definition as it follows from Fib InitFibState : FIB ACTION in the
declaration of the encoding of the InitFibState schema action. It is verified by
the consistency proof of that definition.

In general, the suggested proof strategy relying on closure laws is symp-
tomatic for any consistency proof that arises from the action encodings. (Up
to the point where we have to show ActionExpr ∈ FIB ACTION all steps are
very easily automated.) The core part of the proof requires nevertheless more
sophisticated mechanisms (but we claim that it can be automated too!).

More specifically, after unfolding the definition of FIB ACTION , another
witness needs to be provided to supply the universe of the Circus theory of
which the action is deemed to be a member. FIB UNIVERSE can be directly
used in this instance since InitFib does not include any extra variables. If it
did, typing information can be used to determine the right universe. The proof
reduces then to showing that the given predicate belongs to the set of predicates
of the Circus theory InstCircusTheory FIB UNIVERSE . The general closure of
Circus operators establishes that the defined action is a member of some Circus
theory instance, and properties of universes of the applied operators establish
that it is exactly the theory under consideration.

As a concluding remark, it is worth noting that we are not constrained to use
exclusively Circus operators in defining actions. For example, we may use plain
predicative constructs instead if we desire, reflecting the unified view of any com-
putation being a predicate in the UTP. An advantage of the discussed approach
is that soundness is established irrespective of the specific way of representing
actions, but automation of the proof may only be feasible if closure theorems
are available for the underlying operators. If not, the alternative approach is to
show membership to the theory of Circus by explicitly proving the predicate is
a fixed point of the healthiness functions; due to the complexity of this proof in
particular for Circus theory instances this normally requires human interaction.

5.2 Action and Process Refinement

Refinement is uniformly characterised by (universal) reverse implication in the
UTP; consequently it is a property of alphabetised predicates and therefore
can be established independently of any particular UTP theory membership. A
simple proof approach involves unfolding theory-specific operators in terms of
their underlying lower-level relational and predicative operator definitions.

Although in principle feasible, this is not a practical approach which lends
itself easily for proof automation, in particular if we deal with more complex op-
erator definitions such as parallelism or interleaving of Circus actions. To manage

the complexity of refinement proofs involving Circus action and process predi-
cates, we have pursued two alternative approaches.

The first approach is to formulate and prove a collection of algebraic re-
finement and equality laws applying in situations where the predicates are of a
certain form. In practice, the provisos that need to be established for application
of the laws are (a) memberships to some Circus theory, and (b) other restrictions
guarding the application of the law which are usually syntactic. The purpose
of the provisos in (a) is to guarantee that applications of functions for theory-
specific operators are well defined. For example, the following law establishes
distribution of Circus guarded actions through conjunctions of their guards.

` ∀ g1 , g2 : CIRCUS CONDITION ; p : CIRCUS ACTION |
(g1 , p) ∈ WF GuardC ∧ (g2 , p) ∈ WF GuardC •

(g1 ∨P g2) &C p = (g1 &C p) 	C (g2 &C p)

WF GuardC is the domain of the function that encodes the guarded action
construct, namely (g &C p); it is restricted to guards and actions on the same
universe. The symbol 	C denotes external choice.

If we apply laws like the above to actions a of Fib, we obtain the proof obliga-
tion a ∈ CIRCUS ACTION from the stronger condition a ∈ FIB ACTION ; the
definition of the actions allows us to discharge such proof obligations directly. If,
however, we apply laws to sub-expressions, membership to CIRCUS ACTION
has to be shown and depends on the particular sub-expression.

The alphabetised predicates of a UTP theory are not characterised syntacti-
cally, but by the healthiness conditions of the corresponding theory, and indeed
we do not embed the syntax of the operators in our encoding. Therefore, there
is no generic theorem that can be formulated to establish membership of arbi-
trary predicates to particular theories based on their syntax. Instead, we tackle
this problem using specialised, high-level recursive tactics. The tactics selectively
apply the closure theorems for the various Circus operators, and then proceed
recursively on the generated subgoals. Similarly, the definition of laws often re-
quire the universes of the involved predicates to be compatible, giving rise to
proof obligations asserting compatibility of the underlying universes.

Refinement laws can be equality laws as the above, or genuine refinements.
ProofPower facilitates the rewriting of terms through the application of equality
laws using its in-built rewrite and conversion mechanisms. On the other hand,
we also want to be able to replace sub-expressions of a predicate if the law
is not an identity but genuine refinement. In this case, however, we have to
justify the application of the law by monotonicity of operators with respect to
refinement. This, once again, is a process which cannot be encapsulated by a
single theorem but needs to be performed by high-level tactics, guided by the
structure of Circus actions. Monotonicity also gives rise to a second approach to
establish action refinement which in particular exploits the monotonicity of R,
the healthiness function for reactive designs.

The underlying idea is to express both actions of a refinement A1 v A2 as
applications of R, so that the proof reduces to R(P1 ` Q1) v R(P2 ` Q2) which,
because of monotonicity, is implied by P1 ` Q1 v P2 ` Q2, and in turn can

be reduced to P1 ⇒ P2 and (P1 ∧ Q2) ⇒ Q1. The semantic definition of the
Circus operators supports this approach by expressing most operators in terms
of applying R to some design. The uniformity fosters automation.

To illustrate this approach in the context of Fib, we consider the refinement
Fib InitFibState v Fib InitFibState Ref where Fib InitFibState Ref is the as-
signment x, y := 1, 1. Its encoding is shown below.

Z

Fib InitFibState Ref : FIB ACTION

Fib InitFibState Ref =

AssignC (FIB UNIVERSE , 〈x , y〉, 〈Val(Int(1)), Val(Int(1))〉)

After rewriting the definitions of Fib InitFibState and Fib InitFibState Ref ,
the initial refinement goal is expressed as follows.

ProofPower Output

(∗ ?` ∗) pZSchemaExpC (Fib InitFibState VAR DECLS ,

(=P (Fib InitFibState UNIV , x ′, Val (Int 1))) ∧P

(=P (Fib InitFibState UNIV , y ′, Val (Int 1))))

v AssignC (FIB UNIVERSE , 〈x , y〉, 〈Val (Int 1), Val (Int 1)〉)q

Unfolding the semantic functions for Circus operators then yields the following.
ProofPower Output

pZ(∗ ?` ∗) R (∃P (ran Fib InitFibState VAR DECLS .1 ∩ dashed ,

(=P (Fib InitFibState UNIV , x ′, Val (Int 1)) ∧P

=P (Fib InitFibState UNIV , y ′, Val (Int 1))) ⊕P ...)

`D
((=P (Fib InitFibState UNIV , x ′, Val (Int 1)) ∧P

=P (Fib InitFibState UNIV , y ′, Val (Int 1))) ⊕P ...) ∧P

TReqTR′ ∧P ¬P WAIT ′ ∧P ΠR (...)))

v
R (TrueP FIB UNIVERSE

`D AssignR (FIB UNIVERSE , 〈x , y〉, 〈Val (Int 1), Val (Int 1)〉) ∧P

TReqTR′ ∧P ¬P WAIT ′)q

Upon closer inspection we see that both sides of the refinement were rewritten
into expressions of the form R(P `D Q). The precondition of the first design orig-
inates from calculating the precondition of the corresponding schema, hence the
existential quantification over the dashed variables of the schema corresponding
to ran Fib InitFibState VAR DECLS .1 ∩ dashed. The postcondition is simply
the predicate of the schema with some additional conjuncts to correctly render
the behaviour of the defined reactive process.

The formulas in place of the ellipses have been omitted; their purpose is
merely to make some adjustments in order to homogenise universes in cases
where the universe of the schema predicate is non-homogeneous. The right hand
of the refinement corresponds to the definition of Circus assignment; the underly-

ing design has a true precondition since assignment always terminates, and the
postcondition conjoins the relational assignment with the predicates tr = tr ′

and ¬ wait ′, again to appropriately establish the reactive behaviour.
A sketch of the proof first verifies that the precondition of the second de-

sign is TrueP FIB UNIVERSE . The fact that the preconditions have different
universes does not compromise the proof since the universes are compatible. In
general, we use laws within the lower-level theories of relations and plain pred-
icates, or otherwise unfold the operators further into the underlying semantic
model of alphabetised predicates. Regarding the postcondition, the approach is
similar. Here, this requires some rewriting of the AssignR operator which results
in unfolding it into a predicate resembling the postcondition of the first design.
A minor simplification is proving that ΠR (...) above has no effect.

Process Refinement Process refinement is simply a special case of action
refinement where the involved (process) actions only contain auxiliary variables,
hence we do not need a special treatment here. An alternative way of establishing
process refinement is by reducing it to action refinement of the respective main
actions providing their state variables are disjoint; this can be formulated as a
theorem and effectively exploited in proofs.

In summary there are at least three different conceptual approaches towards
proving Circus action refinement which operate on different semantic levels, and
vary in terms of the effort that has to be invested. The most convenient is, not
surprisingly, to work at the most abstract level — that is the level of high-level
algebraic laws. Whether this is possible in specific cases depends on how spe-
cialised the conjecture is. The difference between previous work, which encoded
Circus mostly for the sake of proving general laws, and our present work is that
we cannot consider proofs as static entities that have to be established once and
for all. Instead we need to provide generic means that automate all aspects of a
proof not requiring human interaction so that the user may solely focus on those
aspects which are difficult or beyond automation.

6 Conclusions

We have illustrated, by example, how a modified version of Oliveira’s mechani-
sation of the UTP, including its embedding of the Circus language can be used to
encode particular Circus specifications. The encoding is uniform and transparent,
and automatically produces consistency proof obligations which guarantee the
soundness of encoded programs on a per case basis. Although we did not present
a formal translation strategy, the principles we outlined are indeed generalisable
to semantically encode arbitrary Circus specifications using our extension of the
mechanised Circus semantics. We have also discussed issues regarding the refine-
ment proof of actions and processes, in particular in the light of automation. The
latter is important to affirm feasibility for the development of scalable techniques
and industrial tools using our extended mechanisation to verify the correctness
of realistic, safety-critical systems. A good example of this is the ClawZ sys-
tem [1] which has been successfully used in the formal verification of non-trivial

control systems in the avionics sector.
To solve the problem of predicates from different UTP theories being present

in the same ProofPower theory scope (or even in the same definition), we for-
malised and integrated the notions of UTP theory and typing universes in the
semantic model. Revisiting one of the motivating examples given in the intro-
duction, the following predicate

(var next • next := 1 ;P) u (var next • next := true ;Q)

declares different types for next in the branches of the choice, namely N and B.
Whereas in the original work such predicates could not be represented since the
type of next would have to be statically (and globally) identified with either N
or B, our encoding of the predicate creates a suitable universe for each of the
bodies of the variable blocks in which the type of next is dynamically bound.
The type information for next is erased by the var blocks, which hide next by
contracting the universes; thus no clashes arise in the overall encoding.

An alternative approach to solve the above problem is to eliminate conflicting
uses of variables with clashing types through renaming. This would, however,
still require the facility to constrain the type of the variable. A main restriction
of the original encoding is the inability to take into account typing constraints
in the general theory of relations. Constraints introduced a posteriori are, un-
like our definitions, not automatically checked in ProofPower-Z for consistency.
In addition, elimination of naming clashes would complicate the translation of
Circus syntax into its semantic characterisation making it more susceptible to
errors, and produce less readable and tractable encodings. Another challenge
with this approach is to ensure uniqueness of names across separate translations
in order to be able to combine them without interference on a semantic level.
Even more generally, we could think of a shallow embedding of alphabetised
predicates themselves. This, however, could be problematic because they do not
naturally map to predicates of the host logic (HOL) carrying more information,
namely, an alphabet and associated types.

What became clear though in attempting proofs for particular refinements
is that even for simple conjectures as the one considered in Section 5, the theo-
rems incidentally become very large to a point where they are not manageable
anymore. Our experience suggests that it is crucial to interleave certain simpli-
fication steps for alphabets and universes with steps performing a deeper un-
folding (rewriting) of functions representing operators. The simplifications can
in many cases eliminate operator invocations exploiting certain theorems. As an
example, the alphabet of a conjunction may be rewritten as the union of the al-
phabets of the conjuncts. We are currently experimenting with the development
of simplification tactics for automating the rewrite of semantic functions.

Related Work Closely related work is Nuka’s mechanisation of the alphabe-
tised relation calculus and UTP [11,12]. It presents a deep semantic embedding of
alphabetised predicates and core operators mechanised in ProofPower-Z. Nuka’s
semantic model shares commonalities with ours in that predicates are repre-
sented as sets of bindings which themselves are partial functions from names to
values. It mostly differs in that no type information is attached to predicates. The

lack of type information prevents it, for example, from proving type-dependant
properties such as ¬ (okay = TRUE) ⇔ okay = FALSE 1. Furthermore, to our
knowledge Nuka’s embedding has not been used so far in proving properties of
particular UTP specifications; doing so would be interesting, in particular to
investigate possible ramifications of its untyped view.

In [3,2] Camilleri reports on a mechanisation of the CSP traces and failure-
divergence model in HOL. Its primary focus is on proving standard CSP laws
that are valid within the two semantic models, and another concern is to deeply
encode the syntax of CSP. In these publications, however, similarly no account
is given on how the mechanisation performs in proving particular CSP process
refinements. An alternative embedding of the CSP traces model into PVS is pre-
sented in [5] where the authors additionally illustrate its application in verifying
robustness properties of an authentication protocol. In doing so they realise the
need for specific proof tactics (strategies in PVS) to conduct the proof at a
more abstract level, and the scope for proof automation via tactics driven by
the structure of proof goals. This coincides with our experience.

In [8] Groves et al. report on a tactic-driven tool implemented in Prolog
that aids in performing program derivation in Morgan’s refinement calculus [10].
The tool is illustrated by applying it to the example of a simple sorting al-
gorithm. Interestingly, the authors postulate a hierarchy of refinement tactics
which categorises them into “derived rules”, “goal-directed rules” and high-level
“strategies”, corresponding to different levels of automation at which subsequent
refinements are constructed. We currently do not consider the automation of re-
finement proofs at a comparably high level, but the experience gained in this
work could ultimately be useful when tackling similar goals in the future.

Future Work Future work will focus on two primary aspects. First, the
translation of Circus processes such as Fib into the semantic encoding shall be
automated. There is no fundamental reason why this may not be possible, how-
ever the automation would need to type check the specification in order to infer
the necessary information to construct universes of predicates and actions where
needed. In [13] a step into this direction is made by defining a set of formal
translation rules. The aim will be to extend and recast these in the light of the
informal strategy we propose, and thereby formalise the translation.

A second important area for future work is the development of tools assisting
refinement proofs. We already explained the usefulness of powerful ProofPower
tactics for this purpose, but in certain cases a proof mostly consists of the appli-
cation of high-level algebraic refinement laws. In this case, the ArcAngelC tactic
language provides a more abstract and expressive notation for specifying tactics
for Circus refinements [14]. It is a tactic language that supports backtracking
through angelic choice, and is in this aspect superior to ProofPower’s tactic
language which does not entail backtracking. We have already developed a pro-
totype implementation of ArcAngelC in ProofPower-Z giving some encouraging
results; subsequent publications will report on this work.

1 Note that this does not invalidate the law of the excluded middle in the relational
algebra of Nuka’s encoding; okay = TRUE ∨ ¬ (okay = TRUE) is still provable.

Acknowledgements We would like to thank Marcel Oliveira for useful discus-
sions and feedback on our revisions to his original mechanisation of the UTP,
as well as the anonymous referees for their suggestions. We also is acknowledge
EPSRC for funding this work under research grant EP/E025366/1.

References

1. M. Adams and P. Clayton. ClawZ: Cost-Effective Formal Verification of Control
Systems. In Formal Methods and Software Engineering, volume 3785 of Lecture
Notes in Computer Science, pages 465–479. Springer, October 2005.

2. A. Camilleri. A Higher Order Logic Mechanisation of the CSP Failure-Divergence
Semantics. Technical Report HPL-90-194, HP Laboratories, September 1990.

3. A. Camilleri. Mechanizing csp trace theory in higher order logic. IEEE Transac-
tions on Software Engeneering, 16(9):993–1004, 1990.

4. A. Cavalcanti, A. Sampaio, and J. Woodcock. A Refinement Strategy for Circus.
Formal Aspects of Computing, 15(2–3):146–181, November 2003.

5. B. Dutertre and Steve Schneider. Using a PVS embedding of CSP to verify au-
thentication protocols. In Theorem Proving in Higher Order Logics, volume 1275
of Lecture Notes in Computer Science, pages 121–136. Springer, August 1997.

6. L. Freitas, A. Cavalcanti, and Woodcock J. Taking Our Own Medicine: Applying
the Refinement Calculus to State-Rich Refinement Model Checking. In Zhiming
Liu and Jifeng He, editors, Formal Methods and Software Engineering, 8th Inter-
national Conference on Formal Engineering Methods, ICFEM 2006, volume 4260
of Lecture Notes in Computer Science, pages 697–716. Springer, November 2006.

7. L. Freitas, J. Woodcock, and A. Cavalcanti. An Architecture for Circus Tools. In
SBMF 2007: Brazilian Symp. on Formal Methods, pages 6–21, August 2007.

8. L. Groves, R. Nickson, and M. Utting. A Tactic Driven Refinement Tool. In 5th
Refinement Workshop, pages 272–297. Springer, January 1992.

9. C. A. R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice Hall
Series in Computer Science. Prentice Hall, February 1998.

10. C. Morgan. Programming from Specifications. Prentice-Hall International Series
In Computer Science. Prentice Hall, 1998.

11. G. Nuka and J. Woodcock. Mechanising the Alphabetised Relational Calculus.
Electronic Notes in Theoretical Computer Science, 95:209–225, May 2004.

12. G. Nuka and J. Woodcock. Mechanising a Unifying Theory. In Unifying Theories
of Programming, First International Symposium, volume 4010 of Lecture Notes in
Computer Science, pages 217–235. Springer, February 2006.

13. M. Oliveira. Formal Derivation of State-Rich Reactive Programs using Circus. PhD
thesis, Department of Computer Science, University of York, UK, 2005.

14. M. Oliveira and A. Cavalcanti. ArcAngelC: a Refinement Tactic Language for
Circus. Electronic Notes in Theoretical Computer Science, 214:203–229, June 2008.

15. M. Oliveira, A. Cavalcanti, and J. Woodcock. Unifying Theories in ProofPower-Z.
In Unifying Theories of Programming, volume 4010 of Lecture Notes in Computer
Science, pages 123–140, February 2006.

16. M. Oliveira, A. Cavalcanti, and J. Woodcock. A UTP semantics for Circus. Formal
Aspects of Computing, Online First, 2007.

17. M. Xavier, A. Cavalcanti, and A. Sampaio. Type Checking Circus Specifications.
In SBMF 2006: Brazilian Symposium on Formal Methods, pages 105–120, 2006.

18. F. Zeyda and A. Cavalcanti. Mechanical Reasoning about Families of UTP Theo-
ries. In SBMF 2008: Brazilian Symp. on Formal Methods, pages 145–160, 2008.

