
Mobile CSP

Jim Woodcock
∗
, Andy Wellings, and Ana Cavalcanti

Department of Computer Science

University of York

Abstract. We describe an extension of imperative CSP with primitives
to declare new event names and to exchange them by message passing
between processes. We give examples in Mobile CSP to motivate the lan-
guage design, and describe its semantic domain, based on the standard
failures-divergences model for CSP, but also recording a dynamic event
alphabet. The traces component is identical to the separation logic se-
mantics of Hoare & O’Hearn. Our novel contribution is a semantics for
mobile channels in CSP, described in Unifying Theories of Program-
ming, that supports: compositionality with other language paradigms;
channel faults, nondeterminism, deadlock, and livelock; multi-way syn-
chronisation; and many-to-many channels. We compare and contrast our
semantics with other approaches, including the π-calculus, and consider
implementation issues. As well as modelling reconfigurable systems, our
extension to CSP provides semantics for techniques such as dynamic
class-loading and the full use of dynamic dispatching and delegation.

1 Introduction and Overview

Model-driven systems engineering is gaining popularity in large-scale industrial
applications; it relies for its success on modelling languages that provide efficient
domain-specific abstractions for design, analysis, and implementation. There is
no single modelling language that can cover every aspect of a significant system,
let alone the complexities of systems of systems or cyber-physical systems. Ad-
equate modelling techniques must inevitably involve heterogeneous semantics,
and this raises the scientific question of how to fit these different semantics to-
gether: the model integration problem [15]. Our approach to understanding the
integration of models with diverse semantics is to study the different paradigms
in isolation and then find ways of composing them. We are not looking for a
unified language to encompass all language paradigms, but rather we seek to
unify theories to explain how they fit together and complement each other. This
is the research agenda of Unifying Theories of Programming (UTP) [12].

In this paper, we explore the paradigm of reconfigurable systems and pro-
grams, where we model interaction between system components (and even be-
tween systems themselves) by message passing along channels that form a flexible
topology that changes over time. We describe an extension of CSP [11, 22] with
∗
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primitives to declare new event names and to exchange them in messages over
channels. Our semantics is an extended predicative form of the standard failures-
divergences semantic model for CSP, enhanced with imperative programming
features [12]. The traces component of this model is identical to the concurrent
separation logic semantics proposed earlier by Hoare & O’Hearn [13]. The novel
contribution of our work is a semantics in UTP that supports the following:

1. Compositionality with other language paradigms. A key feature of UTP is
the ability to combine different language features using Galois connections.

2. Formalisation of channel faults, nondeterminism, deadlock, livelock, multi-
way synchronisation. and many-to-many channels.

We start the paper in Sect. 2 by recalling the principal features of CSP and
of the π-calculus, its process-algebraic cousin with mobile channels. In Sect. 3,
we list a series of examples of increasing complexity that display the use of
mobile channels in modelling. Having motivated the use of mobility, we define
our semantic domain in Unifying Theories of Programming in Sect. 4, and give
the semantics of four key operators in Sect. 5: value and channel communications,
the creation of new channels, and parallel composition. In Sect. 6, we describe
the implementation in Java of an architectural pattern that uses mobile channels.
We conclude the paper by describing related and future work in Sects 7 and 8.

2 CSP

CSP is a formal language for describing patterns of interaction in concurrent sys-
tems [11, 22]; it is a process algebra based on message passing via channels. It has
formed the basis of the following languages: occam, the native programming lan-
guage for the inmos transputer microprocessors [32], and occam-π, its extension
with mobile processes and data [36]; Ada’s rendezvous mechanism [14]; JCSP,
the CSP library for Java [35]; PyCSP, the CSP library for Python [1]; Scala, the
strongly typed functional programming language [20], with its message-passing
semantics and Communicating Scala Objects; the Circus family of specifica-
tion and refinement languages [38, 39], including OhCircus [5], SlottedCircus [3],
CircusTime [27], and TravellingCircus [30, 31]; CML, the COMPASS Modelling
Language [41, 37]; CSP‖B and Mobile CSP‖B [33, 26, 34]; CSP-OZ and CSP#,
stateful, object-oriented versions of the language [10, 29]; rCOS, the component
modelling language [16]; and Ptolemy, the embedded systems modelling lan-
guage [28]. The main elements of CSP are described in Tab. 1.

Different aspects of semantics, such as determinism, nondeterminism, live-
lock, timing, and fairness, are dealt with in a hierarchy of semantic models,
all based on refinement as inverse behavioural inclusion: every implementa-
tion behaviour must be specified. A powerful refinement model-checker for CSP,
FDR3 [19], supports the language and a basic extension to timed systems.

The π-calculus [18] differs significantly from CSP in permitting channel names
to be communicated along the channels themselves, and in this way it is able
to describe concurrent computations whose network configurations may change



prefix a → P input c?x → P(x )
output c!e → P internal choice P u Q
external choice P 2 Q sequence P ; Q
parallel P ‖ Q abstraction P \ S
recursion µX • F (X ) deadlock STOP
termination SKIP divergence CHAOS

Table 1. The main elements of CSP.

during the computation. As well as treating channel names as first-class citizens,
the π-calculus has a further primitive, (νx )P , that allows for the creation of a
new name allocated as a constant within P . An axiom, known as scope extrusion,

(ν x )P | Q = (ν x )(P | Q) if x is not a free name of Q

describes how the scope of a bound name x may be extruded, as would be
necessary before an action outputting the name x from P to Q .

In CSP, channel communications are events, and input and output commands
are merely abbreviations for choices over event synchronisations:

c?x : T → P(x ) =̂ 2 x : T • c.x → P(x ) c!e → Q =̂ c.e → Q

So a theory of mobile events underpins a theory of mobile channels. In this
paper, we propose an extension of imperative CSP with mobile events; this
language supports MobileCircus, an extension of the Circus modelling language.
Both language extensions are based on a natural notion of refinement of failures-
divergences, which distinguishes them from the π-calculus.

3 Motivation and Examples

One of the main areas underpinned by research in formal methods is software for
high-integrity and safety-critical systems. For example, recent work on a subset
of Java for safety-critical systems (SCJ) is based on the programming model
being defined in SCJ-Circus [6, 42, 7, 8], which is an extension to Circus whose
semantics is defined using UTP. Together with formal models of the SCJ virtual
machine, this allows the full semantics of an SCJ application to be defined [9].

SCJ is conservative in order to comply with guidelines for certification, such
as DO-178C [25]; however, within the SCJ development team, there is the recog-
nition that high-integrity software is generally becoming progressively more com-
plex. To this end, they define different compliance levels. The most expressive
programming model is supported at Level 2 compliance, and the SCJ team accept
that certification of Level 2 applications requires significantly more effort and
evidence than at Level 0 or Level 1 compliance. Even the Level 2 programming
model is unable to exploit fully the power of the Java programming language due
to the concerns over the ability to produce convincing certification evidence for



programs that support dynamic class-loading, potentially across a network. It
is also anticipated that some certification authorities may limit the use of other
Java features to constrain the amount of dynamic dispatching and delegation
that can occur in object-oriented programming languages (although the recent
work in DO-178C shows that such techniques are becoming more accepted [25]).

The examples in this section illustrate some of the more dynamic behaviour
that programs can exhibit, for which concise and intuitive formal models are
required. The extension to CSP proposed in this paper provides semantics for
techniques such as dynamic class-loading and the full use of dynamic dispatching
and delegation. This can then be used in supporting evidence to allow certifica-
tion of more complex systems to be considered in the future.

Example 1 (Frequent Flyer). Meyer gives an example of dynamic binding in
Eiffel [17]: a person who is in a frequent flyer programme connects to a server with
their membership number; they receive in reply a connection to another server
according to their membership level: Blue, Silver , or Gold , and connections are
made over the corresponding mobile channels blue, silver , and gold .

FFConnect = connect?p : MemberNo →
if p ∈ Blue then service!blue → SKIP
else if p ∈ Silver then service!silver → SKIP
else if p ∈ Gold then service!gold → SKIP
else STOP

The process FFConnect serves a one-shot transaction. It waits for a membership
number p input on the connect channel; it then analyses the value of p, and
returns an appropriate channel name on the service channel. The code is a
specification of the implementation in Eiffel that uses dynamic binding. �

Example 2 (Airline Check-in). An airline check-in system behaves as follows.
The system consists of a collection of passengers, a clerk who assigns passengers
to check-in desks, and the employees at the desks themselves. The behaviour of
a passenger who wants to travel to a particular destination is as follows:

Passenger(dest) = new p • checkin!(p, dest)→ p?bc → P(bc)

The passenger generates a fresh channel p for the visit to a desk, and then
communicates that channel and the destination over the checkin channel to the
clerk. The passenger then waits to receive a boarding card over channel p. The
clerk receives the channel name and destination from a passenger and then waits
for a desk to become free, which is signalled on the next channel with a channel
name cd . The passenger then goes and does something else (P(bc)).

Clerk = checkin?(p, d)→ next?cd → cd !(p, d)→ Clerk

The clerk then uses cd to inform the desk about the next passenger and their
destination. Desk(i) describes the behaviour of an airline representative. The
representative generates the fresh channel name cd and sends it over the next



channel for use by the clerk. The representative then waits to receive a commu-
nication on cd that tells them of the next passenger and their destination. The
transaction is finalised by a reply on the passenger’s channel p giving details of
the boarding card bcard(d).

Desk(i) = newcd • next !cd → cd?(p, d)→ p!bcard(d)→ Desk(i)

The system is then given by

CheckIn =
(
||| i : Desks • Desk(i)

)
‖ Clerk ‖

(
||| d : Today • Passenger(d)

)
Today ’s destinations is a bag, with one destination for each passenger. �

In contrast to the previous example, this system does not involve dynamic bind-
ing as in OO languages, but instead a kind of dynamic binding of resources.

In occam-π, processes exchange the ends of channels [36]; as we see below,
our theory is more powerful than this and involves mobile events. In spite of this,
it is useful to describe a process’s use of a channel in terms of the read-end or the
write-end, and this usage can be checked syntactically. The following example
uses Mobile CSP to model a simple two-place buffer using mobile channel ends.
Of course, the obvious implementation would involve a single process using a
linked-list data structure programmed using pointers. This may not be appro-
priate in a system with distributed memory, where a pointer in one memory
space would have to address memory in another space.

Example 3 (Two-place Buffer). A user wants to read and write to a two-place
buffer, and to do this, the user holds the input end of the write channel and
the output end of the read channel. The buffer is made of two parallel processes
connected by two channels, chw and chr . Between them, the two buffer processes
hold the output end of the write channel and the input end of the read channel,
and they swap ownership between themselves on the chw and chr channels,
respectively. The state-transition for the buffer is pictured in Fig. 1, where the
starting state has the left-hand process holding the buffer’s ends of the write
and read channels. The behaviour is:

D0(w , r) = w?x → chw !w → D1(x , r)
D1(x , r) = r !x → chr !r → D2 2 chw?→ D2(x ,w , r)

D2 = chw?w → D4(w)
D3(x ,w , r) = r !x → chr !r → D4(w)

D4(w) = chr?r → D0(w , r) 2 w?x → D5(x ,w , r)
D5(x ) = chr?r → D1(x , r)

The buffer has some invariant properties: where the buffer contains two elements
or none (even parity), both ends reside in the same half of the buffer; where there
is just a single element, the two channel ends reside in different halves, with the
read end in the element’s half. �
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Fig. 1. STD for one-place buffer with mobile channel ends.

Example 4 (Ring Buffer). We can generalise Ex. 3 to an n-place ring buffer.
Each cell in the buffer behaves as follows:

Cell(i) = ring .i?(c?)→ c?x → ring .(i + 1mod n)!(c?)→
ring .i?(d !)→ d !x → ring .(i + 1mod n)!(d !)→ Cell(i)

The cell starts by receiving the input end of a channel c? over the channel ring .i ;
it then uses channel c to input a value x , which it buffers. The cell passes the
channel end c? on to the next cell in the ring; it does this by using the channel
ring .(i +1modn). The cell waits for the output end of another channel d !, which
it receives again on channel ring .i . It then outputs the value x , which it has been
buffering, on channel d , before passing the channel end d ! to the next cell in the
ring using ring .(i + 1mod n). Every cell is identical, starting with receiving the
input end of a channel from its neighbour; so how does the buffer start being
useful? The answer is to use one of the cells (it might as well be Cell(0)) in
process S (in?, out !). This process waits for the first input on the in channel,
then passes the channel on to Cell(1); it then waits to output its buffered value,
passing the output channel on to Cell(1); it then behaves like Cell(0). In this
way, the channel ends get into the ring.

S (in?, out !) = in?x → ring .1!(in?)→ out !x → ring .1!(out !)→ Cell(0)

The ring is then constructed from the cells, treating Cell(0) to its initialisation:

CellBuffer(n) = S (in?, out?) ‖ ‖ i : 1 . . n − 1 • Cell(i)

Process D in the previous example is simply a special case of this definition. �

Example 5 (Sieve of Eratosthenes). Primes models the Sieve of Eratosthenes
and generates prime numbers on the channel c; it is composed initially of just
two processes, one that generates natural numbers, and one that sifts them to



A event alphabet physical and logical capabilities
ok , ok ′ : B stability freedom from divergence

wait ,wait ′ : B quiescence waiting for interaction
tr , tr ′ : A∗ trace history of interaction

ref , ref ′ : PA refusals set events refused during wait
v , v ′ program variables imperative state

Table 2. Alphabet for CSP processes.

remove composite numbers:

Primes(c) = new d • Nats(2, d) ‖ Sift(d , c)

Nats(n, d) = d !n → Nats(n + 1, d)

The process Sift spawns a series of filters, each removing composites:

Sift(in, out) = new d • in?p → out !p → Filter(p, in, d) ‖ Sift(d , out)

Filter(p, in, out) = µX • in?x → (out !x → X C x mod p 6= 0 B X )

The mobile channels are used to build an unbounded process structure: we can
start Primes as a prime number server in some larger system, knowing that it
will run indefinitely (well, until the underlying resources required for channels are
exhausted). The obvious alternative implementation is to declare a sufficiently
large number of channels in advance, and then to use these one by one. The
difference between these approaches is similar to lazy versus eager evaluation in
functional programming, and the advantages are the same. �

4 Semantic Domain

Hoare & He give the semantic domain for CSP in UTP [12, Chap. 8] (see also [40,
4] for tutorial introductions). In their semantics, each process is represented by
an alphabetised predicate arranged in a lattice ordered by refinement, which is
defined as universally closed inverse implication. The alphabet describes the ob-
servations that can be made of processes, and these are summarised in Tab. 2.
Each predicate in the lattice is actually a relation between a before-state (ok ,
wait , tr , ref , and v) and an after-state (ok ′, wait ′, tr ′, ref ′, and v ′); the al-
phabet A is a constant. Membership of the lattice is defined by the fixed-points
of five functions representing healthiness conditions, and these are summarised
in Tab. 3. The predicates in this lattice can also be expressed as R-healthy
precondition-postcondition pairs: “reactive designs” [21] (where R is the compo-
sition of R1 to R3). The precondition describes the conditions under which the
process does not diverge, while the postcondition describes its failures.

Now we can define the semantic domain for mobile CSP. The obvious idea is
to make the alphabet a dynamic variable; however, a moment’s thought shows
this is inadequate because of compositionality: we need the dynamic alphabet’s



never undo R1 P = P ∧ (tr ≤ tr ′)

ignore history R2 P(tr , tr ′) = u s • P(s, s a (tr ′ − tr))

wait! R3 P = (IIR C wait B P)
diverge CSP1 (¬ ok ∧ tr ≤ tr ′) ∨ P

ok ′-monotonicity CSP2 P ; J

IIR =̂ (¬ ok ∧ tr ≤ tr ′) ∨ (ok ′ ∧ (tr ′ = tr) ∧ · · · ∧ (v ′ = v))
J =̂ (ok ⇒ ok ′) ∧ (wait ′ = wait) ∧ (tr ′ = tr) ∧ (refr ′ = ref ) ∧ (v ′ = v)

Table 3. Healthiness conditions for CSP processes.

history when we come to compose the traces of two parallel processes. For exam-
ple, consider the process that executes an event a and then enters a state with
alphabet {a, b}. What can we say about the alphabet before the a event? It
certainly must include a itself, but what about b? We need to know the answer
in order to know whether the process has right of veto over b in any composition.
A better strategy is to record a process’s alphabet before and after each event.

Definition 1 (Dynamic Alphabetised Traces (DATs)). A DAT is non-
empty and alternates alphabets and events, starting with an alphabet:

DAT ε =̂ { s | #s ∈ Odd ∧ odds(s) ∈ (PΣ)∗ ∧ evens(s) ∈ (Σ ∪ {ε})∗ }

The silent event ε is used below to define the new and dispose commands that
manipulate a process’s alphabet. �

Example 6 (Dynamic Alphabetised Traces). The following are all valid DATs

〈{b}〉 〈{b}, b, {a, b}〉 〈{b}, b, {a, b}, a, {a, b}〉

(Here, Odd is the set of odd integers; odd(s) is the sequence of s’s odd-indexed
elements; and even(s) is the sequence of s’s even-indexed elements. �

We can now express some simple properties over DAT traces:

– start, owning c: 〈{c}〉
– acquire event c: 〈· · · , {a, b}, a, {a, b, c}, · · ·〉
– release event c: 〈· · · , {a, b, c}, a, {a, b}, · · ·〉

Mobile processes satisfy two healthiness conditions on their DAT, tr .

Definition 2 (Ownership). A mobile process can engage in an event only if
it has already acquired it, but not released it.

M1 P = P ∧ (∀ s : PΣ; e : Σ • 〈s, e〉 ∈ ran tr ′ ⇒ e ∈ s )

This is defined using a monotonic idempotent healthiness condition. �



Definition 3 (Refusalship). A mobile process can refuse only those events it
has acquired.

M2 P = P ∧ ref ′ ⊆ last tr ′

Again, this is enforced by a monotonic idempotent healthiness condition. �

The two healthiness conditions commute. The reactive healthiness conditions
must hold, but with R2 for (Even C tr) and (Even C tr ′), (the operator C is
domain restriction of a function). R2(P) ensures compositionality by insisting
that P does not depend on particular values for tr . In the sequence P ; Q , the
final alphabet in the trace of P must match the initial alphabet of Q . Finally,
concatenation between dynamic alphabet traces is a partial function:

last t = head u ⇒ t y u = t a (tail u)

The M healthiness conditions commute with the R healthiness conditions.

5 Semantics of Operators

In this section, space allows us to give the semantics for a few key constructs. We
do this in the style of reactive designs [21], as described in Sect. 4. The definition
of a UTP design with precondition P and postcondition Q is [12]:

P ` Q =̂ (ok ∧ P ⇒ ok ′ ∧ Q)

That is, if the design is started in a stable state (ok) and the precondition is true
(P), then it must reach a stable state (ok ′) and when it does so, the postcondition
will be true (Q). This is a statement of total correctness.

5.1 Event Prefixes (Value + Channel)

The semantics of an event-prefixed process, a → SKIP , depends on whether
the event a is the communication of a channel name. If it is not, then the UTP
semantics is similar to that in standard CSP [12]:

Definition 4 (Event Prefix (Value)).

M ◦ R (a ∈ last tr ` tr ′ = tr ∧ a /∈ ref ′ C wait ′ B tr ′ = tr a 〈a, last tr〉)

The precondition requires that a is in the current alphabet, the last entry of the
trace preceding execution of the process (last tr); the precondition in standard
CSP is simply true. Since tr is a DAT, it ends with an alphabet, so last tr is well
defined. The postcondition has a small difference too: if the process terminates,
then 〈a, last tr〉 is appended to the trace (y is not needed here); the current
alphabet is unchanged by this kind of event. If the event a is not in the current
alphabet, then the design aborts and the process diverges: this is a channel fault.

Now consider c?n → SKIP , which inputs channel name n over c.



Definition 5 (Event Prefix (Channel Name)).

M ◦ R
(

c.n ∈ last tr
` tr ′ = tr ∧ c.n /∈ ref ′ C wait ′ B tr ′ = tr a 〈c.n, (last tr) ∪ {|n|}〉

)
The difference is the expansion of the alphabet with {|n|}, which is the set of all
events communicable over n. Outputting a name is complementary.

5.2 New and Dispose

In UTP, a block-structured declaration var x • P is semantically equivalent to
the predicate var x ; P ; end x , where the beginning and end of the scope
of x are treated separately [12, Chap. 2]. We adopt a similar approach to the
block-structured allocation of fresh channels new c • P , and deal separately
with the allocation and disposal of a channel: new c ; P ; dispose c.

Definition 6 (New Channel). For fresh c,

new c ; P =̂ M ◦ R( true ` ¬ wait ′ ∧ tr ′ = tr a 〈ε, (last tr) ∪ {|c|}〉 )

Definition 7 (Dispose Channel).

dispose c ; P =̂ M ◦ R( true ` ¬ wait ∧ tr ′ = tr a 〈ε, (head tr ′) \ {|c|}〉 )

Example 7 (Channel Allocation). Consider the Desk(i) process in Ex. 2:

new cd • next !cd → cd?(p, d)→ p!bcard(d)→ Desk(i)

The process must initially own the next channel’s events: {|next |}; these events
are all channel name communications. Here is an example trace:

〈 {|next |},
ε, {|next |} ∪ {|cd |},

next .cd , {|next |} ∪ {|cd |},
cd .(p, d), {|next |} ∪ {|cd |} ∪ {|p|},

p.bcard(d), {|next |} ∪ {|cd |} ∪ {|p|},
ε, {|next |} ∪ {|p|} 〉

In this trace, cd is a fresh channel name; p is bound to a channel name input as
part of the pair on the cd channel. Notice how we automatically dispose of cd
at the end of the process; however, there is no automatic disposal of the channel
denoted by p. A better definition for the process would tidy this up:

new cd • next !cd → cd?(p, d)→ p!bcard(d)→ dispose p; Desk(i)

Here, the events of whichever channel is denoted by p are removed from the
alphabet when the scope of the channel variable p ends. �



5.3 Parallel Composition

In UTP, parallel composition uses the parallel-by-merge semantic pattern taken
from Hoare & He’s UTP semantics for ACP, CCS, and CSP [12]: two processes
have their overlapping alphabets separated by renaming; they are then run in
parallel producing two states, which are then merged to give the meaning of the
composition. We need to specify only the merge for DAT traces.

Definition 8 (Parallel Merge). Define a “catset” operator that concatenates
its left-hand sequence operand with every sequence in its right-hand set operand:

s ∗a T =̂ { u : T • s a u }

We use this operator to define the parallel composition of two DAT traces:

〈s〉a xs ‖ 〈t〉a ys =̂ 〈s ∪ t〉 ∗aN (s, xs, t , ys)

N (s, 〈〉, t , ys) = {ys}

N (s, xs, t , 〈〉) = {xs}

N (s, 〈x 〉a xs, t , 〈y〉a ys) =

if x = y 6= ε then 〈x 〉 ∗a (xs ‖ ys)
else ( if x /∈ t then 〈x 〉 ∗a (xs ‖ 〈t , y〉a ys) )

∪ ( if y /∈ s then 〈y〉 ∗a (〈s, x 〉a xs ‖ ys) )

Silent events occur independently: if two parallel processes each allocate a new
channel, then there is no synchronisation of the two new commands. It is easily
shown by induction that the merge operator is closed on DAT traces. �

Example 8 (Parallel Merge). Consider the two Mobile CSP processes: P = a →
SKIP and Q = get .a → a → SKIP .

P ’s behaviour includes the following trace: 〈{a}, a, {a}〉; Q ’s behaviour in-
cludes 〈{get .a}, get .a, {get .a, a}, a, {get .a, a}〉. The parallel composition of the
two traces describes two behaviours: the first has P executing a before Q gets
hold of a (〈{get .a, a}, a, {get .a, a}, get .a, {get .a, a}〉; the second has P executing
a afterwards Q (〈{get .a, a}, get .a, {get .a, a}, a, {get .a, a}〉. In the first trace, P
executes a independently; in the second trace P and Q synchronise on a. �

6 Implementation

The ring buffer described in Ex. 4 can be implemented in pure CSP:

Imp(i) = ring .i?c → chan.c?x → ring .((i + 1)mod n)!c →
ring .i?d → chan.d !x → ring .((i + 1)mod n)!d → Imp(i)

Here, we simulate mobile channels by passing around tokens so that the end of
a channel can be used only by the process that holds the token for that channel
end, whilst those processes without a token do not block. We use a token for the



package mobileCode;
public interface ServerInterface {

public void useService(String parameters);
}

Fig. 2. ServerInterface.java

public enum MembershipLevel {Blue, Silver, Gold}
public class Broker {

// directory of servers implemented via a Java Map
public ServerInterface lookUpService(MembershipLevel l) {

ServerInterface server;
// lookup server
return server;

}
public synchronized void register(ServiceProvider serverThread,

MembershipLevel level) {
// save details in map

}
}

Fig. 3. MembershipLevel.java

relevant channel name to index an array of channels chan; interleaving is needed
to share the channel ends (see [11] on shared resources).

Examples 1 and 2 use the broker architectural pattern [2], suitable for dis-
tributed systems where clients invoke remote services, but are unconcerned with
the details of remote communication. In systems engineering, there are many
practical reasons to adopt a distributed architecture. The system may need to
take advantage of multiple processors or a cluster of low-cost computers. Cer-
tain software may be available only on specific computers, or provided by third
parties and available on the cloud. The broker pattern can hide many of these
implementation issues by encapsulating required services into a separate layer.

Example 9 (Broker Pattern). In SCJ, the broker pattern is an application that
requires dynamic dispatching through interfaces, as illustrated in Fig. 2. The
broker itself simply maintains a directory of service providers. In Ex. 1, there are
three service providers for Blue, Silver and Gold membership levels, as shown in
Fig. 3. These register with the broker via a synchronised method. To simplify the
example, assume that the system runs on a multiprocessor server, and the service
providers have their own resources allocated. The application is encapsulated in
an SCJ mission (subsystem) and the service providers are managed threads that
implement the service interface, as shown in Fig. 4. The threads are Java daemon
threads, terminating automatically. Finally, the clients are also managed threads



public class ServiceProvider extends ManagedThread implements ServerInterface {
@Override
public void useService(String s) {

// add to queue of requests
// wait until search has been performed
return;

}
@Override
public void run() {

broker.register(this, level);
while (true) {

// perform services while needed
}

}
public ServiceProvider(Broker b, MembershipLevel l) {

super();
this.broker = b;
this.level = l;
this.setDaemon(true);

}
private Broker broker;
private MembershipLevel level;

}

Fig. 4. ServiceProvider.java

that are assigned a particular membership level when created (Fig. 5). To analyse
an program with the broker pattern requires all possible classes implementing
ServiceInterface to provide equivalent functionality. For a large system, where
the same broker is used to provide the interface between many service providers
and clients, this may be difficult to guarantee and to provide evidence that each
service provider is being used in the correct context. �

The broker acts as a messenger: locating an appropriate server; forward-
ing requests to that server, possibly marshalling data; and transmitting results
to the client, possibly demarshalling data. Clients are applications that access
servers, and they call the remote service by forwarding requests to the broker
and receiving responses or exceptions in reply. Widely used broker patterns in-
clude OMG’s CORBA standard, Microsoft’s Active X, and the World-Wide Web,
where browsers act as brokers and servers act as service providers.

7 Related Work

Our traces component is essentially the same as that of Hoare & O’Hearn [13];
they explore the unification of CSL (concurrent separation logic) and CSP by



public class Client extends ManagedThread {
private Broker broker;
private MembershipLevel level;
public Client(Broker b, MembershipLevel l) {

broker = b; level = l;
}
@Override
public void run() {

// code for client
ServerInterface myProvider = broker.lookUpService(level);
myProvider.useService(params);

}
private String params;

}

Fig. 5. Client.java

adding temporal separation to CSL and mobile channels to CSP, restricting
to the traces model, excluding nondeterminism, deadlock, and livelock. Their
interest lies in point-to-point communication, using ideas from separation logic
to reason about exclusive use of channel ends, used as in occam-π [36]. Processes
that send a channel end automatically relinquish ownership. This differs from
our work, where channels may have many ends and ownership must be handled
explicitly. Actually, the structure of a trace is slightly different: instead of simple
events, they allow sets of events, giving a semantics for true concurrency and
having no need for ε. Their work, with its deliberate restrictions, leads to a very
simple notion of event composition using point-wise disjoint union.

Roscoe discusses a version of CSP with mobility [24, Sect. 20.3], so that all
processes that do not presently have the right to use a particular action always
accept the event and never change their state when the event occurs. This is
the same as our route to implementation in Sect. 6. He has shown how a full
semantics of the π-calculus can be given in CSP [23]: for each π-calculus agent,
there is a CSP process that models it accurately.

In Mobile CSP‖B [34], controllers can work with different machines during
execution. Controllers can exchange machines between each other by exchanging
machine references and manage concurrent state updates. This work goes further
than the current paper and the references cited in this section by dealing with
the fusion of concurrency, communication, state, and channel mobility.

8 Conclusions and Future Work

This paper has explored a semantics for mobile CSP for specifying and verifying
safety-critical code. It permits the use of dynamic programming features, such
as the use of the broker architectural and programming pattern, in a controlled



fashion so that evidence for assurance can be collected and relied upon. The
work started as a contribution to occam-π; more recently, it has contributed
to Safety-Critical Java and on reasoning about systems of systems and cyber-
physical systems. The work is still at an early stage, and there are plenty of
directions for future work. We will give a complete account of the operators of
mobile CSP and extend this to MobileCircus. We need to prove closure of all these
operators with respect to R and M, and perhaps devise additional healthiness
conditions. We have hinted at the possibility of translating mobile CSP into plain
CSP; we need to record a Galois connection between the two and use it as the
basis of a translator. Finally, since our intention is to verify system architectures
and programs, we will devise a Hoare logic for Mobile CSP and prove it sound.
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