
Safety-Critical Java Level 2: Motivations, Example
Applications and Issues

Andy Wellings
Department of Computer

Science
University of York, York, UK

Andy.Wellings@york.ac.uk

Matt Luckcuck
Department of Computer

Science
University of York, York, UK

ml881@york.ac.uk

Ana Cavalcanti
Department of Computer

Science
University of York, York, UK

ana.cavalcanti@york.ac.uk

ABSTRACT

Safety Critical Java defines three compliance levels: Level 0,
Level 1 and Level 2. Applications that can be scheduled us-
ing cyclic-executive techniques can be implemented at Level
0. Applications that can use simple analysable fixed-priority
scheduling can be implemented at Level 1. However, Level 2
also targets fixed-priority scheduling, so this cannot be used
to decide whether to use Level 1 or Level 2. The SCJ speci-
fication is clear on what constitutes a Level 2 application in
terms of its use of the defined API, but not the occasions on
which it should be used. Hence, it is not clear what appli-
cation requirements dictate a Level 2 solution. This paper
broadly classifies the features that exist only at Level 2 into
three groups: support for nested mission sequencers, support
for managed threads, including the use of the Object.wait,
Object.notify, HighResolutionTime. waitForObject and
Services.delay methods, and support for global schedul-
ing across multiple processors. In this paper we explore
the first two groups to derive possible programming require-
ments that each group of features support. We identify sev-
eral areas where the specification needs modifications in or-
der to support fully these derived requirements. These in-
clude support for terminating managed threads, the ability
to set a deadline on the transition between missions, and
augmentation of the mission sequencer concept to support
composibility of timing constraints.

Categories and Subject Descriptors

D.1.3 [Concurrent Programming]: Parallel programming;
D.2.11 [Software Architectures]: Patterns; D.4.1 [Process

Management]: Multiprocessing/multiprogramming/multi-
tasking

1. INTRODUCTION
An international effort has produced a specification for

a high-integrity real-time version of Java: Safety-Critical
Java (SCJ) [13]. SCJ is based on a subset of Java augmented

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

JTRES ’13 October 09-11, 2013, Karlsruhe, Germany

Copyright 2013 ACM 978-1-4503-2166-2 ...$15.00.

http://dx.doi.org/10.1145/2512989.2512991.

by the Real-Time Specification for Java (RTSJ) [23], which
supplements Java’s garbage-collected heap memory model
with support for memory regions [22] called memory areas.

The programming model of SCJ is based on missions,
event handlers and no-heap real-time threads (called man-
aged threads). Each mission consists of a set of periodi-
cally (PEH) and aperiodically (APEH) released event han-
dlers, and (potentially) no-heap real-time threads. A mis-
sion normally continues to execute until one of its handlers
or threads (or a peer mission) requests termination, upon
which a cleanup phase is performed and the next mission is
prepared. Mission execution is controlled by an application-
defined mission sequencer.

Additionally, SCJ restricts the RTSJ memory model to
prohibit use of the heap, and defines a policy for the use of
RTSJ’s immortal and scoped memory areas. Each compo-
nent of the programming model has an associated memory
area, whose lifetime is that of the component. An immor-
tal area holds objects throughout the lifetime of the pro-
gram: they are never deallocated. A mission scoped area is
cleared out at the end of each mission. Each release of a
handler has an associated per-release scoped memory area,
cleared out at the end of the release. Additionally, during a
release, a stack of temporary private scoped memory areas
can be used. For a thread, the execution of its associated
run method is viewed as a single release, and consequently,
is performed within its own local memory area.

The current version of SCJ defines three compliance levels
(Level 0, 1 and 2), which reflects three supported program-
ming (and execution) models1.

• A Level 0 application’s execution model is essentially a
cyclic executive. In this model, only periodic handlers
are supported and within a mission these are executed
sequentially in a precise, clock-driven timeline[12]. A
single mission sequencer is supported that allows the
sequential execution of one or more missions.

• At SCJ Level 1, missions are again executed in se-
quential order by a single mission sequencer. The
handlers now can be periodic or aperiodic, and are
executed concurrently by a priority-based scheduler;
any access to shared data has to be performed by
synchronized methods to avoid race conditions. A

1The goal is that applications conforming to each compli-
ance level should be capable of being certified to the highest
level of integrity. However, it is accepted that the effort re-
quired to certify at compliance Level 2 may be significantly
greater than at Levels 0 and 1.

notable restriction of the Level 1 programming model
is that use of Object.wait() and Object.notify() is
prohibited. The rationale for this is that Level 1 ap-
plications should be analysable using standard schedu-
lability analysis techniques for fixed-priority systems
(such as response-time analysis or rate monotonic anal-
ysis)[4]. These techniques assume that all concurrent
activities have well-defined release patterns, and that
the activities (once released) do not self-suspend for
any reason. Arbitrary use of wait ornotify methods
undermines these assumptions. Note that SCJ aperi-
odic handlers are assumed to be released sporadically
with bounded minimum inter-arrival times (although
this is not checked by the SCJ infrastructure).

• The Level 2 programming model supports a top-level
single mission sequencer. However, each mission may
create and execute additional mission sequencers con-
currently with the initial mission sequencer. Compu-
tation in a Level 2 mission can be performed by pe-
riodic and aperiodic handlers, and no-heap managed
real-time threads. Each child mission has its own mis-
sion memory, and may also create and execute other
child missions. A Level 2 application may use the
Object.wait and Object.notify methods.

It is clear that those applications that can be scheduled using
cyclic-executive techniques should be implemented at Level
0. Furthermore, applications that can use simple analysable
fixed priority scheduling should use Level 1. Hence, the
required scheduling techniques are a primary indicator of
whether or not Level 0 should be used. However, Level 2
also targets fixed priority scheduling, so this cannot be used
to determine the use of Level 1 or Level 2. Furthermore,
it is not clear what generic application-level requirements
dictate a Level 2 solution. The SCJ specification is clear on
what constitutes a Level 2 application in terms of its use of
the defined API, but not the occasions on which it should
be used.

To understand the purpose of Level 2, it is necessary to
discover the generic application-level programming require-
ments for which Level 2 functionality is necessary. In the
current version of the specification, this traceability is not
provided in the rationale for the three levels.

The following features of SCJ are only available at Level
2:

• support for nested mission sequencers;

• support for managed threads;

• support for the Object.wait; and Object.notifymeth-
ods;

• support for timeouts on waits and suspension-based
delays; and

• support for global scheduling across multiple proces-
sors.

We broadly classify these features into three groups:

• support for nested mission sequencers;

• support for managed threads: including the use of the
Object.wait, Object.notify, HighResolutionTime.

waitForObject and Services.delay methods; and

• support for global scheduling across multiple proces-
sors.

We explore the first two groups to derive possible program-
ming requirements that each group of features support. We
identify several areas where the specification needs modifi-
cations in order to support fully these derived requirements.
Support for global scheduling only at Level 2 reflects the
fact that the state of the art in multiprocessor schedulabil-
ity analysis is still advancing [7]. We will not address this
issue in this paper.

2. NESTED MISSION SEQUENCERS
The ability to construct applications comprising of nested

mission sequencers is, perhaps, the most important differ-
ence between Levels 0 or 1 and Level 2. In this section we
identify two software architecture patterns that require the
support of nested missions sequencers. We also sketch an
example for each of the patterns. We call these two pat-
terns: the Multiple-Mode Application Pattern and the Inde-
pendently Developed Subsystem Pattern.

2.1 The Multiple-Mode Application Pattern
This pattern captures the typical architecture of systems

that have to operate in multiple modes. Each mode consist
of multiple periodic and sporadic concurrent activities with
well-defined released frequencies and deadlines. In addition
to these per-mode activities, there may also be concurrent
activities that execute in all modes. Well-known schedulabil-
ity analysis can be used to guarantee the timing properties
in the steady state situations of executing in each mode.
Analysis techniques also exist for handling the transitions
between modes on a single processor [21, 16].

Architecture Components

The software architecture components that characterise this
pattern are shown in Figure 1. It shows several types of ob-
jects. Tasks represent concurrent activities; a sequencer is a
component which encapsulates several subsystems (modes)
and objects that may be required to manage those subsys-
tems. Only one subsystem is active at any one time. Subsys-
tems can consist of tasks and other objects (not shown in the
diagram). Consequently, Figure 1 illustrates an application
that consists of several tasks that execute in all modes of
the application. These tasks can request the Multiple Mode
Sequencer to change its mode of operation.

In terms of SCJ, these components can be mapped down
to mission and missions sequencers as illustrated in Figure 2.
Each sequencer is mapped to a mission sequencer. Each sub-
system within a sequencer is mapped to a mission. Control
of the missions is subsumed into the sequencer. The tasks
are mapped to SCJ schedulable objects. In this example,
there are four modes of operation; each one in each mode
is represented by a mission and the mission sequencer acts
as the mode-change controller. Figure 2 also illustrates the
use of two periodic event handlers that must be active in all
modes, and of modes that have a single periodic handler.

Example Application

An example application that can use this pattern is an ide-
alized Space Shuttle. It has several modes, each associated
with a phase of its operation, as illustrated in Figure 3.

Figure 6: Railway Systems with Multiple Subsystems

timed offset from the mission start, a notification from an-
other schedulable object (or an interrupt) or the absence of
such notification. To cope with these latter two scenarios
with Object.wait and Object.notify requires the applica-
tion designer to equate such events with mode changes and
to use the mode change pattern discussed in Section 2.1.
This would not be appropriate when there are tight jitter
constraints for the periodic activity starting.

The above discussion suggests that the Level 1 support
for periodic event handlers is not flexible enough to cope
with anything other than simple time-released periodic ac-
tivities. The introduction of managed threads at Level 2
allows these more general release patterns to be catered for,
as they allow the programmers to implement their own re-
lease mechanisms. It should be noted that managed threads
are a very simplified version of the RTSJ’s no-heap real-time
thread, with the following restrictions: there is no automatic
release mechanism (i.e., no support for waitForNextPeriod)
and there is no mechanism to add a deadline. Furthermore,
in SCJ the per-release memory area is created when the
thread starts and cleared when the thread terminates. Con-
sequently, if needed, developers have to program their own
support for more sophisticated memory management.

Consider, for example, the periodic managed thread re-
leased by software notification in Figure 7, which shows an
abstract extension of the ManagedThread class. The firstRe-
lease method (lines 19-24) is called during the mission to
indicate that the periodic activity should now start. The ab-
stract work method declared on line 36 should be overridden
to provide the functionality to be called each period. The
run method (lines 39-49) is made final and waits for the ini-
tial release before calling the work method periodically. The
example illustrates the added flexibility that is available at
Level 2; it could not be programmed at Level 1.

The generalization of a periodic activity that is released
by an event is the case where the periodic activity is released
sporadically, that is, it is released by an event. It then ex-
ecutes periodically for a certain time (either determined by
time itself or by another event), and then waits to be started

again. A good example of this type of activity is a thruster
control system (given by Wellings [23] page 235). Here, the
astronaut initiates the thruster along with a duration of the
engine “burn”. The control of the engine itself requires a
periodic activity to avoid the mechanical drift of valves.

For the same reasons as those described above for an
event-released periodic activity, the only way this release
pattern can be supported in SCJ is with managed threads
using Object.wait and Object.notify.

Consumers in a Producer-Consumer
System

Another common release pattern is where producer schedu-
lable objects generate data that must be processed by con-
sumer schedulable objects. Typically this data may come
in bursts, and the consumer should process all the data as
quickly as possible and block when there is no data avail-
able. These requirements cannot be met at Level 1, since it
does not support a queue of outstanding release events for
aperiodic event handlers. Level 2 allows this release pattern
to be programmed as managed threads.

Background Activities: Run as Fast as You Can

There are occasions where background activities are required
to run a fast as possible. There is no notion of release events
for these activities (other than their initial start). These ac-
tivities could be created using Level 1 functionality by hav-
ing an aperiodic event handler that is released once, but this
would be a misuse of this mechanism (which is essentially
there to support sporadic releases). Although there is no
negative consequence for this misuse, a managed thread is a
better abstraction to support this requirement.

3.2 Suspension-based Waiting for IO where
Busy-Waiting is Inappropriate

In many systems, a device driver will busy-wait for its
associated device input (or output) to complete. This is be-
cause the expected delay is small and context switching away
from the driver is considered inefficient. There are ways to

1 import javax.realtime .*;

2 import javax.safteycritical .*

3

4 public abstract class PeriodicThread extends ManagedThread {

5

6 public PeriodicThread(int period , int deadline ,

7 PriorityParameters priority ,

8 StorageParameters storage) {

9 super(priority , storage);

10 this.period = period;

11 this.deadline = deadline;

12 deadlineMissDetection = new DeadlineMissHandler ();

13 // Where deadline misshandler is an extension of an SCJ OneShotEventHandler

14 nextRelease = new AbsoluteTime (); // created in mission memory

15 nextDeadline = new AbsoluteTime (); // created in mission memory

16 myMission = Mission.getCurrentMission ();

17 }

18

19 public synchronized void firstRelease () {

20 notify ();

21 nextRelease = Clock.getRealtimeClock (). getTime(nextRelease);

22 nextDeadline.set(nextRelease.getMilliseconds () + deadline);

23 deadlineMissDetection.scheduleNextReleaseTime(nextDeadline);

24 }

25

26 private synchronized boolean waitFirstRelease () {

27 try { wait (); }

28 // or HighResultionTime . waitForObject (this , timeout)

29 // if a timeout is also required

30 catch(InterruptedException ie) { // mission is to be terminated

31 return false;

32 }

33 return true;

34 }

35

36 protected abstract void work ();

37 // override this to provide the function of the thread

38

39 public final void run() {

40 if (waitFirstRelease ()) {

41 while(! myMission.terminationPending ()) {

42 nextRelease.add(period ,0);

43 work ();

44 nextDeadline.add(period ,0);

45 deadlineMissDetection.scheduleNextReleaseTime(nextDeadline);

46 Services.delay(nextRelease); // waitForNextPeriod

47 }

48 }

49 }

50 private AbsoluteTime nextRelease;

51 private AbsoluteTime nextDeadline;

52 private final int period;

53 private final int deadline;

54 private DeadlineMissHandler deadlineMissDetection;

55 private Mission myMission;

56 }

Figure 7: A Periodic Schedulable Object Released by Software Notification

integrate this delay into the scheduling of the driver (see [4,
section 14.6]), however allowing the driver to delay when it
has no other activity to perform may also be appropriate.
On the other hand, when this delay is a relatively significant
amount of time, it is necessary to allow the system to sched-
ule some alternative activities. Since it is not possible to
have a suspension-based delay at Level 1, this requirement
can only be implemented at Level 2.

3.3 Encapsulation of State
Information

Another characteristic that differentiates managed thre-
ads from aperiodic or periodic event handlers is their use
of memory. An event handler has its private memory ar-
eas cleared at the end of each release, which means that
state that must persist across releases cannot be saved in
the event handler’s private memory. Outer memory areas
must be used instead. A managed thread, however, only
has its memory areas cleared when it exits its run method
(i.e., it terminates). This means that data can be stored lo-
cally and preserved over successive application-implemented
‘releases’ of the thread. Of course, the effect of these two
approaches is the same. The thread’s memory area can last
for as long as the memory area of its controlling mission,
which is where more persistent data used by an event han-
dler must be stored. However, this ability to encapsulate
state is important from a software engineering perspective.

As an example, consider several logging schedulable ob-
jects that log their local state changes into local bounded
buffers. When a buffer becomes full (which may take sev-
eral releases of its associated schedulable object), the data is
copied into a single global buffer in mission memory, which
another schedulable object uses to write the system state
changes to disk. If the logging schedulable objects are event
handlers, the local buffers cannot be stored in their per-
release memory areas, as such areas are cleared at the end of
each of their releases. They would need to be stored in mis-
sion memory itself. This would make them more widely visi-
ble than is needed. Using managed threads, the local buffers
can be stored in the per-release memory areas, as these will
not be cleared until their associated managed threads termi-
nate. Application-implemented releases, such as those pro-
grammed in Figure 7, can be augmented to use a nested
private memory area for objects that can be cleared at the
end of each application-level release. This is illustrated in
Figure 8, which just shows the augmented run method (and
an associated runnable) of lines 39-49 of Figure 7.

4. SUMMARY OF ISSUES AND

PROPOSALS
Sections 2 and 3 have explored some of the applications

requirements where the use of Level 2 functionality seems
more desirable. Here, we review the issues identified as po-
tential causes for problems, and explore whether there are
simple changes that can be made to the SCJ specification.

4.1 Managed Thread Termination
In SCJ, a managed thread terminates when it returns from

its run()method. In Section 3 we have shown the implemen-
tation of a periodic thread that is first released by software
notification. The code (see Figure 7) uses the Object.wait

method (on line 27). Of course, if the enclosing mission has a

1 Runnable R = new Runnable () {

2 public void run() { work (); }

3 };

4

5 public final void run() {

6 if (waitFirstRelease ()) {

7 while(! myMission.terminationPending ()) {

8 nextRelease.add(period ,100);

9 ManagedMemory.enterPrivateMemory(

10 privateMemorySize , R);

11 nextDeadline.add(period ,100);

12 deadlineMissDetection.

13 scheduleNextReleaseTime(nextDeadline);

14 Services.delay(nextRelease);

15 }

16 }

17 }

Figure 8: Augmented Periodic Schedulable Object

terminate mission request outstanding, then the thread may
never be released before all the other schedulable objects in
the mission have terminated.

The SCJ defines the following activities to be performed
on receipt of a mission termination request (taken from [13]):

1. disable all periodic event handlers associated with this
mission so that they will experience no further firings;

2. disable all aperiodic event handlers so that no further
firings will be honored;

3. clear the pending event (if any) for each event han-
dler so that the event handler can be effectively shut
down following completion of any event handling that
is currently active;

4. wait for all of the managed schedulable objects associ-
ated with this mission to terminate their execution;

5. invoke the ManagedSchedulable.cleanUp methods for
each of the managed schedulable objects associated
with this mission, and invoke the cleanUp method as-
sociated with this mission.

Note that this list does not require calls to the interrupt

methods of all the managed threads, which would cause all
blocked managed schedulables to wake-up with an exception
and hence expedite termination. This has to be programmed
by application using the terminationHook method. This
can be inconvenient when the mission has many schedulable
objects.

4.2 Deadlines on Mission Sequencers
In Section 2.1, the use of a mission sequencer to implement

mode change protocols has been discussed. It has been noted
that an SCJ mission sequencer is a managed event handler
and, as a consequence, it only has a priority. It does not
have any release parameters. Systems that support multiple
modes of operations often have deadlines associated with the
mode changes. Hence, at Level 2 it would be appropriate
to allow some form of deadline-miss handler to execute if
the mode change does not occur promptly. Adding aperi-
odic release parameters to mission sequencers would seem to

undermine the mission programming model particularly for
sequencers that support a single non-terminating mission.
Instead, what we propose is to provide the following new
methods in the MissionSequencer class:

1 /**

2 * As for Mission. requestTermination

3 *

4 * In addition , the SCJ infrastructure will

5 * set a timer that will fire if mission

6 * termination (including any cleanup)

7 * has not completed by the

8 * deadline. On expiry of the timer , the

9 * infrastructure will release the aperiodic

10 * event handler passed as a parameter.

11 *

12 * The timer will be canceled if it has

13 * not fired when the mission terminates .

14 */

15 @SCJAllowed(Level_1)

16 public final void

17 requestTerminationOfCurrentMission(

18 AbsoluteTime deadline ,

19 AperiodicEventHandler deadlineMiss);

20

21 /**

22 * As for Mission. requestTermination

23 *

24 * In addition , the SCJ infrastructure will

25 * set a timer that will fire if next mission

26 * has not started by the deadline.

27 * On expiry of the timer , the

28 * infrastructure will release the aperiodic

29 * event handler passed as a parameter .

30 *

31 * The timer will be canceled if it has

32 * not fired when the new mission starts.

33 *

34 * If there is no new mission , the timer is

35 * canceled when the call to getNextMission

36 * returns null.

37 */

38 @SCJAllowed(Level_1)

39 public final void

40 requestMissionChange(

41 AbsoluteTime deadline ,

42 AperiodicEventHandler deadlineMiss);

Such a facility might also be a useful addition to Level 1.
However, to call the above method from within the en-
closed mission requires the current mission sequencer to be
obtained. For programming convenience, a static method
could be supplied in the mission sequencer class:

1 @SCJAllowed(Level_1)

2 static public MissionSequencer <MissionLevel >

3 getCurrentSequencer ();

This is in line with current facilities to obtain the current
mission.

4.3 Support for Compositional Timing
Analysis

Section 2.2 has identified the role of mission sequencers as
a mechanism that can potentially support the composition
of safety-critical systems from independently developed sub-
systems (or components). Hierarchical scheduling (and its

associated schedulability analysis) is a well-established tech-
nique that facilitates composition when components have
real-time attributes (such as deadlines). Unfortunately, hi-
erarchical scheduling is neither supported by SCJ nor RTSJ.
The main reason for this is possibly the lack of support by
real-time operating system vendors.

Timing analysis for compositional real-time priority-based
systems is usually achieved using a two-stage approach. Typ-
ically only two levels in the hierarchy are considered. At
the top level, each subsystem is allocated an execution-time
server, which is given a capacity, a priority and a replen-
ishment period. Server parameters need to be carefully as-
signed to obtain good schedulability [5]. Analysis is then
performed at the top level to ensure that each server can
obtain its full capacity. The individual subsystems can then
be analyzed in isolation to determine if they can meet their
timing requirements given their allocated server’s parame-
ters. The schedulable objects within a subsystem are only
scheduled for execution (and in priority order) when their
logical server would be scheduled at the top level (and has
available capacity).

Hence, there are two aspects of hierarchical scheduling
that are needed to support composition of independently
developed subsystems. The first aspect is multi-level prior-
ities. In a two-level scheme, a mission (subsystem) is given
a priority and the managed schedulable objects within that
subsystem are also given a priority. Only when the mission’s
priority is the highest of all the“executable”missions’ priori-
ties are its associated managed schedulable objects executed
(in priority order). In SCJ this can be achieved by:

• using the priority associated with the mission sequencer
as the priority at which all its encapsulated missions
execute; and

• the spreading out of the priorities of the mission se-
quencers across the full range of priorities. If two mis-
sion sequencers (MS1 and MS2) have priorities x and
y respectively, where y > x, then all the schedulable
objects in MS1 have priorities in the range x..y − 1;
thus all schedulable objects in MS2 have priorities
greater than the schedulable objects in MS1.

The second aspect is that each mission has a CPU budget
that is consumed whenever one of its schedulable objects
is executing. It also has a period after which its budget is
replenished. When a processing group’s budget has been
totally consumed, all its associated schedulable objects are
suspended until the next replenishment occurs. In the RTSJ,
this functionality can be supported by processing group if
all the schedulable objects run on the same CPU.

One possibility is for SCJ to support the following subset
of the RTSJ ProcessingGroupParameters class

1 package javax.safetycritical;

2

3 @SCJAllowed(LEVEL_2)

4 public class ProcessingGroupParameters {

5

6 public ProcessingGroupParameters (

7 HighResolutionTime start ,

8 RelativeTime period ,

9 RelativeTime budget)

10 ...

11 }

The intention with the above class is to allow SCJ to im-
plement a simple deferrable server [20] – a more elaborate
scheme would allow other techniques such as a sporadic
server [20] to be supported. The advantage of the latter
is that it is supported by the POSIX standard.

New constructors can then be added to the MissionSe-

quencer and the Mission classes:

1 -- in the MissionSequencer class

2 @SCJAllowed(LEVEL_2)

3 public MissionSequencer (PriorityParameters pri ,

4 StorageParameters storage ,

5 ProcessingGroupParameters params ,

6 int priRange);

7

8 -- in the Mission class

9 @SCJAllowed(LEVEL_2)

10 public Mission (PriorityParameters pri ,

11 ProcessingGroupParameters params ,

12 int priRange);

In this constructor, the pri parameter indicates the lowest
priority level that any encapsulated schedulable object can
take, and pri + priRange the highest priority it can take.
With this approach, the missions encapsulated within a mis-
sion sequencer need to execute on the same processor.

5. RELATED WORK
Other efforts have been made to provide safe language

subsets for safety critical systems. MISRA C is a restricted
subset of standard C that originated in the automotive in-
dustry in 1998[14]. In 2004 the standard was updated with
a view to widening its scope as well as improving its struc-
ture, as opposed to adding many new rules. MISRA C has
gained wide popularity in aircraft and medical systems as
well as other critical software domains[9].

Several subsets of Ada have been developed since the lan-
guage was first defined. The most widely used one is SPARK
Ada, which highly restricts the amount of language features
available to the programmer. The intent is to reduce the
risk of failures resulting from errors in the program. This
is balanced by ensuring that the language has the level of
abstraction to provide the expressive power needed to hide
the details of the implementation. SPARK also acknowl-
edges the desire for safety-critical programs to be verifiable
and restricts the language with this in mind[1]. SPARK has
become one of the most popular choices for high-integrity
real-time systems.

The Ravenscar[8] profile is another subset of Ada. It aims
to aid program reliability — defined as predictable and con-
sistent functioning. The control flow of a program is divided
into two phases: initialisation and execution. All concurrent
entities are allocated in the initialisation phase and they are
started at the beginning of the execution phase. The concur-
rent entities in a Ravenscar program may only be periodic
— released at regular intervals — or sporadic — released at
irregular intervals but with minimum inter-arrival times —
aperiodic entities are not supported. These concurrent enti-
ties are scheduled by a pre-emptive priority-based scheduler.

Drawing on the restrictions of the Ravenscar profile, a
profile was created to aid the reliability of Java-based sys-
tems using the Real-Time Specification for Java (RTSJ);
Ravenscar-Java[11]. The programs written in the Ravenscar-
Java profile conform to the RTSJ standard with restrictions

to ensure the program adheres to the Ravenscar rules. Other
profiles have been proposed: for example Schoelberl et al.
[19], who also considers the possibility of missions as appli-
cation modes of operations [18].

As far as we are aware, there has been no previous work
that has considered how to represent components in SCJ.
There have been several approaches suggested for the RTSJ
– see [15] as an example and for a review of related ap-
proaches. Most of these projects either focus on the func-
tional aspects of component declaration and system compo-
sition, or they focus on the use of RTSJ memory areas.

There have been attempts to integrate the OSGi Java-
based framework with the RTSJ, but again little attention
has been given to the composition of timing constraints. The
notable exception is the work by Richardson andWellings [17],
which considers real-time admission control of components
within a Real-Time OSGi framework. They recognize the
limitation of the RTSJ’s processing groups. To achieve the
same effect as hierarchical scheduling of execution-time servers
they use a combination of processing groups, priority scal-
ing and periodic timers. Essentially each server’s priority
is represented by a range of RTSJ priorities. A component
allocated to a server must use this range when assigning pri-
orities to its schedulable objects. The cost overrun handler
that can be assigned to a processing group changes the pri-
orities of its associated schedulable objects to a background
priority. A separate periodic event handler is created whose
release coincides with the replenish period. This resets the
schedulable objects to their original priorities. Effectively,
this approach can be used to implement the sporadic-server
approach. It forms the basis of the approach that we have
proposed in Section 4.3 for SCJ.

6. CONCLUSIONS AND FUTURE WORK
SCJ Level 2 has received little public scrutiny. Most pa-

pers that address SCJ consider either Level 0 or 1. Whilst it
is clear from the SCJ specification what constitutes a Level 2
application (in terms of its use of the defined API), it is far
from clear the occasions on which Level 2 should be used.
This paper has explored some of the occasions in which ap-
plications cannot be easily implemented at Level 1 and that,
therefore, require Level 2 support. In doing so, we have
found no redundant features of Level 2. For each feature
(only available at Level 2) we can find good examples that
require use of that feature.

Unfortunately, our studies also reveals some deficiencies
in the provided Level 2 features. These are:

1. lack of convenient support for terminating managed
threads,

2. the inability to set a deadline on the transition between
missions, and

3. need to enrich the mission sequencer concept to sup-
port composibility of timing constraints.

Feature 1 is not controversial and is probably just an omis-
sion in the current specification. For feature 2, it can be
argued that this is not necessary for safety-critical systems
as static analysis should have determined whether deadlines
can be met. However, we note that the SCJ does support
detection of deadline misses on managed schedulable objects
at Levels 1 and 2. Feature 3 is, perhaps, very controversial

as it requires the monitoring of cpu-time usage. Although
this is supported by the POSIX standard via sporadic pro-
cess servers, we are not aware of any interpretation of the
approach when the threads within the process can execute
in parallel.

Our future work involves further evaluation of the extent
to which a sporadic server can be implemented using the
approach given in Section 4.3, and the development of li-
braries that support the various release patterns for man-
aged threads identified in Section 3. In another line of future
work, we will define a semantics for SCJ Level 2 programs
following the lines of the approach adopted in [25] for Level 1
programs.

Finally, although there are some prototype implementa-
tions of SCJ Level 0 and 1, we are are unaware of any Level
2 implementations. Hence it has been difficult to fully eval-
uate some of the approaches presented in this paper. Once
a Level 2 implementation is available we will undertake fur-
ther testing of the algorithms presented.

7. ACKNOWLEDGEMENTS
This research reported in this paper is funded by the UK

EPSRC under grant EP/H017461/1.

8. REFERENCES

[1] J. Barnes. High Integrity Software: The SPARK
Approach to Safety and Security. Addison-Wesley
Longman Publishing Co., Inc., 2003.

[2] A. Burmyakov, E. Bini, and E. Tovar. The generalized
multiprocessor periodic resource interface model for
hierarchical multiprocessor scheduling. In Proceedings
of the 20th International Conference on Real-Time
and Network Systems, pages 131–139. ACM, 2012.

[3] A. Burns and A. Wellings. Processing group
parameters in the Real-time Specification for Java. In
On The Move to Meaningful Internet Systems 2003:
OTM 2003 Workshops, pages 360–370. Springer, 2003.

[4] A. Burns and A. J. Wellings. Real-time systems and
programming languages: Ada 95, real-time Java, and
real-time POSIX. Addison Wesley, 2009.

[5] R. Davis, A. Burns, et al. An investigation into server
parameter selection for hierarchical fixed priority
pre-emptive systems. In 16th International Conference
on Real-Time and Network Systems (RTNS 2008),
2008.

[6] R. I. Davis and A. Burns. Hierarchical fixed priority
pre-emptive scheduling. In Real-Time Systems
Symposium, 2005. RTSS 2005. 26th IEEE
International, pages 10–pp. IEEE, 2005.

[7] R. I. Davis and A. Burns. A survey of hard real-time
scheduling for multiprocessor systems. ACM
Computing Surveys (CSUR), 43(4):35, 2011.

[8] B. Dobbing and A. Burns. The Ravenscar Ttasking
Profile for High Integrity Real-Time Programs. Ada
Lett., XVIII(6):1–6, 1998.

[9] L. Hatton. Safer language subsets: an overview and a
case history, MISRA C. Information and Software
Technology, 46(7):465 – 472, 2004.

[10] J. Hunt and K. Nilsen. Safety-Critical Java: The
mission approach. In M. T. Higuera-Toledano and
A. J. Wellings, editors, Distributed, Embedded and

Real-time Java Systems, pages 199–233. Springer US,
2012.

[11] J Kwon. Ravenscar-Java: Java Technology for High
Integrity Real-Time Systems. PhD thesis, The
University of York, 2006.

[12] C. D. Locke. Software architecture for hard real-time
applications: cyclic executives vs. fixed priority
executives. Real-Time Systems, 4(1):37–53, 1992.

[13] D. Locke, B. S. Andersen, B. Brosgol, M. Fulton,
T. Henties, J. J. Hunt, J. O. Nielsen, K. Nilsen,
M. Schoeberl, J. Tokar, J. Vitek, and A. Wellings.
Safety critical java specification, version 0.95.
Technical report, 6 December 2012.

[14] MIRA. Misra, 1998.

[15] A. Plsek, F. Loiret, and M. Malohlava.
Component-oriented development for Real-Time Java.
In M. T. Higuera-Toledano and A. J. Wellings,
editors, Distributed, Embedded and Real-time Java
Systems, pages 265–292. Springer US, 2012.

[16] J. Real and A. Crespo. Mode change protocols for
real-time systems: A survey and a new proposal.
Real-Time Systems, 26(2):161–197, 2004.

[17] T. Richardson and A. Wellings. RT-OSGi: Integrating
the OSGi framework with the Real-Time Specification
for Java. In M. T. Higuera-Toledano and A. J.
Wellings, editors, Distributed, Embedded and Real-time
Java Systems, pages 293–322. Springer US, 2012.

[18] M. Schoeberl. Mission modes for safety critical Java.
In Proceedings of the 5th IFIP WG 10.2 international
conference on Software technologies for embedded and
ubiquitous systems, SEUS’07, pages 105–113, Berlin,
Heidelberg, 2007. Springer-Verlag.

[19] M. Schoeberl, H. Søndergaard, B. Thomsen, and A. P.
Ravn. A profile for safety critical Java. In ISORC,
pages 94–101. IEEE Computer Society, 2007.

[20] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task
scheduling for hard-real-time systems. Real-Time
Systems, 1(1):27–60, 1989.

[21] K. W. Tindell, A. Burns, and A. J. Wellings. Mode
changes in priority preemptively scheduled systems. In
Real-Time Systems Symposium, 1992, pages 100–109.
IEEE, 1992.

[22] M. Tofte and J.-P. Talpin. Region-based memory
management. Information and Computation,
132(2):109–176, 1997.

[23] A. Wellings. Concurrent and Real-Time Programming
in Java. John Wiley & Sons, 2004.

[24] A. Wellings and M. Kim. Processing group parameters
in the Real-time Specification for Java. In Proceedings
of the 6th international workshop on Java technologies
for real-time and embedded systems, pages 3–9. ACM,
2008.

[25] F. Zeyda, A. L. C. Cavalcanti, and A. Wellings. The
Safety-Critical Java Mission Model: a formal account.
In International Conference on Formal Engineering
Methods, Lecture Notes in Computer Science, 2011.

