
Probabilistic Semantics for RoboChart

A Weakest Completion Approach

Jim Woodcock[0000−0001−7955−2702]1, Ana Cavalcanti[0000−0002−0831−1976]1,
Simon Foster[0000−0002−9889−9514]1, Alexandre Mota[0000−0003−4416−8123]2, and

Kangfeng Ye[0000−0000−0000−0000]1

1 University of York
{jim.woodcock,ana.cavalcanti,simon.foster,kangfeng.ye}@york.ac.uk

2 Federal University of Pernambuco
acm@cin.ufpe.br

Abstract. We outline a probabilistic denotational semantics for the
RoboChart language, a diagrammatic, domain-specific notation for de-
scribing robotic controllers with their hardware platforms and operating
environments. We do this using a powerful (but perhaps not so well
known) semantic technique: He, Morgan, and McIver’s weakest comple-
tion semantics, which is based on Hoare and He’s Unifying Theories
of Programming. In this approach, we do the following: (1) start with
the standard semantics for a nondeterministic programming language;
(2) propose a new probabilistic semantic domain; (3) propose a forgetful
function from the probabilistic semantic domain to the standard semantic
domain; (4) use the converse of the forgetful function to embed the stan-
dard semantic domain in the probabilistic semantic domain; (5) demon-
strate that this embedding preserves program structure; (6) define the
probabilistic choice operator. Weakest completion semantics guides the
semantic definition of new languages by building on existing semantics
and, in this case, tackling a notoriously thorny issue: the relationship
between demonic and probabilistic choice. Consistency ensures that pro-
gramming intuitions, development techniques, and proof methods can
be carried over from the standard language to the probabilistic one. We
largely follow He et al., our contribution being an explication of the tech-
nique with meticulous proofs suitable for mechanisation in Isabelle/UTP.

Keywords: RoboChart language · Robotic controllers · Statecharts · Prob-
abilistic semantics · Relational calculus · Unifying Theories of Programming
(UTP) · Weakest completion semantics

1 Introduction

Modern robotics simulators enable fast prototyping of robots, using a virtual
simulation environment as a software creation and design tool. They provide re-
alistic, computer gaming-style, 3-D rendering of robots and environments with

physics engines to animate their movements authentically in automatically gen-
erated movies. Examples of such simulators include the Virtual Robot Experi-
mentation Platform (V-REP) [54] and Webots [56].

One drawback of using these simulators as part of a principled development
process is a lack of tool interoperability, with each simulator depending on a
customised programming language or API. As a result of this, there are few
possibilities for reuse of specifications and algorithms, and software development
starts at a low-level with few abstractions. A notable exception to this is the
Robot Modeling Language, RobotML [7], which targets the design of robotic
applications, their simulation, and their deployment to multiple target execution
platforms. The motivation for RobotML is to encourage a more abstract design
process with explicit architectures, but there is no support for formal methods
for verifying properties of these designs and architectures.

The RoboStar programme is developing a framework for modelling and sim-
ulating mobile and autonomous robots [49].3 An early product of the research
is the RoboChart language, a graphical domain-specific notation with a code
generator that automatically produces mathematical models [41, 48, 42] in the
notations of Communicating Sequential Processes (CSP) [52]. This enables the
analysis of structural properties of RoboCharts: freedom from deadlock, livelock,
and nondeterminism; it also supports the verification of more general untimed
and timed properties by refinement checking [51]. RoboChart has an associated
Eclipse-based development support environment, RoboTool [40], that enables
graphical modelling and automatic generation of CSP scripts, and is integrates
CSP’s refinement model checker FDR4 [9].

RoboCalc’s RoboSim language [4] provides a second graphical notation for
developing simulations. A novel feature of RoboSim is the ability to verify simu-
lations against their abstract RoboChart models. This ensures that the combina-
tion of models, simulations, deployed controllers, and hardware platforms refine
the properties verified and validated by analysis and simulation. RoboChart and
RoboSim support real time, discrete, continuous, and probabilistic properties;
we consider only discrete probabilistic semantics in this paper. Our probabilistic
models are essentially Markov Decision Processes (MDPs).

RoboChart and RoboSim have strong mathematical foundations, but they
are also practical for industrial-strength robotic software engineering. This re-
quires that they be attractive to practising engineers, but with additional powers
to enable formal verification. The state of the art in industry is to use modelling
techniques to specify the behaviours of robot controllers, but not the robotic
hardware platform or the operating environment. Even at their most advanced,
current industrial techniques use only simple state machines without formal se-
mantics [3, 7, 47, 55]. Any abstract descriptions that are used guide simulation
development, but without any relationship between abstract descriptions and
implemented code. There is often a so-called “reality gap” between the state
machine and simulation on the one hand, and the hardware platform on the

3 The RoboStar programme includes a number of individual projects, including Robo-
Calc, which is developing a calculus of software engineering for robotic controllers.

other, and ad hoc adjustments must be made to get the robot working. It is
for this reason that we have developed RoboChart with high-fidelity modelling
capabilities, including continuous time and probabilism [42].4 There is little mo-
tivation to keep the abstract state machine in line with these changes.

RoboChart has a probabilistic choice operator, but this cannot be supported
by the translation into CSP, because the standard semantics and tools are not
probabilistic. This paper presents an approach to developing a suitable imper-
ative, reactive, probabilistic semantics for RoboChart. The method chosen to
develop this semantics is the weakest completion semantics [25] approach based
on Unifying Theories of Programming [32]. In this paper, we consider a seman-
tics for the imperative action language for RoboChart. Elsewhere, we consider
the use of this semantics to produce a sound translation from diagrams to math-
ematics, suitable for analysis by verification tools [10].

Our contribution is an explication of the weakest completion approach: a
detailed analysis of this principle for developing semantics, enabling future ap-
plication to RoboChart [42], a complex language with events, timed primitives,
rich data types, a concurrency model based on synchronous and asynchronous
communications, and shared variables. The inspiration for our work is precisely
that of He, Morgan, and McIver [25]; but it is not straightforward to take their
informal proof outlines and use them directly in a mechanical theorem prover:
they are inspirational, but essentially informal. We present an abbreviation of
our proof due to space limitations, but our proof steps are based on explicit
axioms, lemmas, theorems, and inferences.

This paper has the following structure. In Sect. 2, we describe a few elements
of the RoboChart language. In Sect. 3, we give an overview of Unifying Theo-
ries of Programming. In Sect. 4, we provide an interlude, where we discuss two
predicate transformers: weakest preconditions and weakest prespecifications. In
Sect. 5, we describe the technique of weakest completion semantics. In Sect. 6, we
present a nondeterministic probabilistic programming language and its semantic
domain. In Sect. 7, we describe the semantics of probabilistic choice and discuss
how to combine distributions. In Sect. 8, we provide a detailed example: embed-
ding nondeterministic choice in the probabilistic domain. In Sect. 9, we discuss
related work on formalising probabilistic RoboCharts. Finally, in Sect. 10, we
draw some conclusions from this research in progress and discuss future work.

2 RoboChart

We model robot controllers using RoboChart [42], a UML profile [21]. RoboChart
models are Statecharts, a diagrammatic notation for defining behaviour [23].
State machines are part of the fabric of computing, recognisable in many forms

4 The difficulty of transferring simulated experience into the real world, often called
the “reality gap” [33], is a subtle but important discrepancy between reality and
simulation that prevents simulated robotic experience from directly enabling effective
real-world performance [2].

(including, for example, Mealy and Moore automata [38]) and they are widely ac-
cepted in the embedded-software industry as a design notation. Statecharts [23]
extend these familiar diagrams with two features: hierarchy and orthogonal
regions. Hierarchy is provided by allowing states themselves to contain state
machines, where control flow resides in exactly one state: the so-called OR-
decomposition of behaviour; orthogonal regions provide a complementary AND-
decomposition, where control-flow can simultaneously reside in one position in
each orthogonal region, fully independently. This parallel decomposition can lead
to a reduction in complexity (the “conjunction as composition” paradigm [63]).
RoboChart inherits both features: it has hierarchical state machines (which en-
courage modularity and reuse) and parallelism, arising for components defined
by several state machines and for composite states, including durative actions.

In RoboChart, the behaviour of a robot is characterised by a state, in which
it may execute a particular operation and react to events from its environment.
RoboChart includes structures for describing robotic platforms and their con-
trollers, with CSP-style synchronous communication between controllers and
asynchronous communication between controllers and their hardware. It has
constructs to specify time properties: budgets and deadlines for operations and
events. Here, we consider only the probabilistic aspects of RoboChart. We iso-
late a language subset of flat nondeterministic state machines with a probabilistic
choice node.

RoboTool [40] provides a graphical editor for RoboChart models and auto-
matically generates mathematical definitions in CSP that precisely define their
behaviour. RoboTool is closely coupled with the FDR model checker [9] to anal-
yse these definitions.

We present two RoboChart models to illustrate the language. The first model
is part of the controller for a tele-operated robot used to search an arena for
evidence of a harmful chemical, using the receptor density algorithm [29]. The
RoboChart is depicted in Fig. 1, which is a screen-shot from a RoboTool session.
The robot controller uses a sensor to detect changes in the chemical composition
of air over time. It reacts to gas anomalies depending on their nature and compo-
sition: with a yellow or a red light, a siren, and a flag to mark the location. The
hardware includes a robot body, wheels, and motor, a main processor to detect
gas and accept movement commands from an operator, and a microcontroller to
manage the light, siren, and flag.

Our second example is of part of the controller for a foraging robot [57]
(the corresponding RoboChart model and the results of its analysis are available
online [50]).5 The robot has an idealised randomising device with two states that
are equally likely to occur; the device generates an outcome from a flip event in
every time step.6 The robot uses the device to decide whether to terminate or to

5 The Statechart in this example is originally due to Jansen [35], but has been rein-
terpreted here as a robotics example.

6 The semantics in this paper does not capture the real-time behaviour of RoboChart;
however, every transition in an MDP takes unit time. When we develop the real-
time probabilistic model, these two notions of time will be complementary, allowing

Fig. 1. Signalling state machine for Chemical Detector Robot (taken from [41]).

continue a particular activity (here, foraging for energy). The robot may choose
to ignore the outcome of the device. Finally, the robot considers only a limited
number of times whether to continue foraging. We call this number N and leave
it loosely defined. Our simple modelling objective is to explore different values
for N that give us a high probability of terminating.

We specify the behaviour of the device as a RoboChart model in Figure 2.
One possibility in the FORAGE state is for the flip event to occur and the robot
to remain in the FORAGE state; this models the robot ignoring the randomising
device. The other possibility is available only if the number of choices has not
been exhausted (flips < N). In this case, the robot controller proceeds to a
probabilistic choice between two equally likely alternatives. One alternative is
to move into the STOP state, which it signals with the stop event; the other
alternative is to return to the FORAGE state, signalling this with the forage event.
In both cases, the controller keeps track of the number of choices made. Note
that, if in the FORAGE state flips < N , then the behaviour is nondeterministic:
the robot controller might take either flip alternative. In the STOP state, only the
flip event is possible, with a self-loop acting as a sink. A well-formed MDP must
be free from deadlock (every state must have at least one outgoing transition),
and anyway, this transition is needed because of the requirement that flip must
occur in every time step, even when the controller has terminated.

Analysis of the generated model using Prism [36] shows that the model is
deadlock free, but that the STOP state is not always possible (the minimum
probability of finally reaching STOP is zero) because the model could stay in
the FORAGE state forever. Additionally, using experiment for N ranging from

events to be simultaneous with respect to the real-time clock, but ordered at the
MDP level: super-dense time.

Fig. 2. RoboChart model of a foraging robot.

1 to 20, we can obtain the probability of finally reaching STOP, as shown in
Figure 3. For N ≥ 6 the device will terminate with probability greater than 0.98.

3 Unifying Theories of Programming

There are tutorial introductions to UTP’s theory of designs [59, 60], CSP [6], and
the use of Galois connections to link these theories [61]. UTP embodies Hehner’s
predicative semantic paradigm [26–28], where programs are predicates [30]: a
program is identified with its meaning as a predicate, expressed pointwise. The-
ories describe the meaning of a computation as a relation between a before-state
and an after-state, and these relations form complete lattices ordered by refine-
ment. Several basic UTP theories are relevant to this paper.

1. A relational theory of a nondeterministic programming language (basically,
Dijkstra’s guarded command language (GCL)) supports reasoning about
partial correctness [32, Chap.2].

2. A theory of designs, pre- and postcondition pairs, and an associated version
of GCL supports reasoning about total correctness [32, Chap.3].

3. A theory of reactive processes with communication and concurrency [32,
Chap.8].

4. A theory of CSP, essentially a predicative version of CSP’s failures-divergences
semantics [32, Chap.8].

Fig. 3. Model checking experiment for foraging robot.

5. Circus, a combination of CSP and Z [45, 46].

UTP has been used in a wide variety of applications, from specifying and reason-
ing about difficult program features [24], to specifying the semantic interfaces in
a cyber-physical systems tool chain [12, 37].

A core concept is the embedding of the pre- and postconditions of designs
in other semantic domains. For example, the theory of reactive designs [6] is
an embedding of designs in the theory of reactive processes, which brings the
familiar techniques of assertional reasoning and design calculi to reactive pro-
gramming, allowing the creation of a reactive Hoare logic and a reactive weakest
precondition calculus.

Unification in UTP is in three dimensions:

1. Programming paradigms: comparing and combining different language fea-
tures in a coherent way.

2. Levels of abstraction: refining different design concepts.
3. Methods of presentation: moving between denotational, algebraic, and oper-

ational semantics.

There are four principal mechanisms for unification:

1. Subset embeddings, e.g., total and partial correctness (designs and rela-
tions) [58].

2. Weakest completion semantics, e.g., probabilistic and standard programs, as
explained in Sect. 5.

3. Galois connections, e.g., imperative programs and reactive processes [5, 58].
4. Parametrised theories, e.g., reactive processes and hybrid processes [15].

We have implemented UTP in the Isabelle/HOL theorem prover [43]. The re-
sulting proof tool is Isabelle/UTP [18, 16, 19, 17, 13]. Our research aim is a sound
automated theorem prover, built in Isabelle/UTP, for diagrammatic descriptions

of reactive, timed, probabilistic controllers for robotics and autonomous systems.
We note that it is not straightforward to take the informal proof outlines in [25]
and use them directly in a mechanical theorem prover. In this paper, our objec-
tive is to explicate the weakest completion semantic technique and in doing so,
to explore how to mechanise it.

4 Weakest Preconditions and Prespecifications

In this section, we review Dijkstra’s weakest precondition predicate transformer [8]
and its generalisation, the weakest prespecification [31].

A typical stage in program development is to prove that a program meets
its specification. Schematically, this is a problem in three variables: the program
and its specification, which is a precondition and a postcondition. The weakest
precondition calculus fixes two of these variables, the program and the postcon-
dition, and calculates the third, the precondition, as an extreme value.

[P ⇒ s ⇒ q ′]

= [s ⇒ P ⇒ q ′]

= [s ⇒ ∀ v ′ • P ⇒ q ′]

= [s ⇒ ¬ ∃ v ′ • P ∧ ¬ q ′]

= [s ⇒ ¬ ∃ v0 • P [v0/v ′] ∧ ¬ q0]

= [s ⇒ ¬ (P ; ¬ q)]

(This derivation is a small variation on that in [32, Chap.2].) UTP’s relational
calculus is alphabetised: names are an important part of the meaning. Where
we think that it might help, we have emphasised which names occur in each
predicate by using parameters. This also streamlines substitution.

Formally, given program P and postcondition q , the problem is to find the
weakest precondition s (in terms of P and q) such that P refines (s ⇒ q ′). P
refines S , written P w S , just in case ∀ v , v ′ • P ⇒ S , where v and v ′ denote the
before and after states. In UTP, universal closure over an alphabet is abbreviated
by brackets, so refinement is defined as [P ⇒ S].

So the predicate ¬ (P ; ¬ q) is the weakest precondition for execution of P
to guarantee postcondition q (written as P wp q). Here, P ; Q is the relational
composition of P and Q , [32, Chap.2] defined by P(s, t ′) ; Q(t , u ′) = ∃ t0 •
P(s, t0) ∧ Q(t0, u

′). Our minor generalisation accounts for its use with non-
homogeneous relations later in the paper. Note that there is a modality here,
between necessity and possibility. Compare the definition of weakest precondition
with its dual, the conjugate weakest precondition [62]: P wp q = ¬ (P wp ¬ q).

P wp q

= ¬ (P wp ¬ q)

= ¬ ¬ (P ; ¬ ¬ q)

= P ; q

= ∃ v ′ • P ∧ q ′

During the derivation of weakest precondition, we see that (P wp q) = ∀ v ′ •
P ⇒ q ′. This has universal force: every final state v ′ of the program P must
satisfy q . Its conjugate has existential force: some execution of P satisfies q .

Now we move on to a generalisation of weakest precondition: the weakest
prespecification. First, we define relational converse P˘(s, t ′) = P(s ′, t). For
example, the converse of an assignment is calculated as follows:

(x := x + 1)˘
= (x ′ = x + 1)˘
= (x = x ′ + 1)

= (x ′ = x − 1)

= x := x − 1

Weakest prespecifications generalise weakest preconditions from conditions
to relations: given specifications Y and K , find the weakest specification X (in
terms of Y and K), such that Y is refined by X ; K . We proceed in a similar
way to our previous calculation for the weakest precondition: first, isolate X on
the stronger side of the refinement relation, so that we can conclude we have a
weakest solution; then rewrite the other side of the relation so that we can use the
definition of sequential composition. Our derivation is (as far as we know) novel
in the literature. There is a strong analogy between the weakest precondition
and weakest prespecification predicate transformers; see Appendix A for further
motivation.

X ; K w Y

= { law of refinement: (P ; Q w R) = (P [x0/x ′] ∧ Q [x0/x] w R) }
X [s0/s ′] ∧ K [s0/s] w Y

= { law of refinement: (P ∧ Q w R) = (P w Q ⇒ R) }
X [s0/s ′] w K [s0/s]⇒ Y

= { change of variables: s0, s
′ 7→ s ′, s0 }

X w K [s ′, s0/s, s ′]⇒ Y [s0/s ′]

= {propositional calculus: contraposition }
X w ¬ Y [s0/s ′]⇒ ¬ K [s ′, s0/s, s ′]

= {definition of converse }
X w ¬ Y [s0/s ′]⇒ ¬ K˘[s0/s]

= {predicate calculus: narrow scope of s0 }
X w ∀ s0 • ¬ Y [s0/s ′]⇒ ¬ K˘[s0/s]

= { predicate calculus: De Morgan }
X w ¬ ∃ s0 • ¬ Y [s0/s ′] ∧ K˘[s0/s]

= { definition sequential composition }

X w ¬ (¬ Y ; K˘)

So, X must be at least as strong as ¬ (¬ Y ; K˘). We read this as “The weakest
prespecification of K through Y ”, and denote it by Y /K (the weak inverse of
the function λX • X ; K). The weakest prespecification forms one adjoint of
a Galois connection, with sequential composition as the other adjoint; that is:
(X ; K w Y) = (X w Y /K). We give an example of calculating a leading
assignment: we want to implement the assignment x := 2 as the sequential
composition (X ; x := x + 1). That is, X is the weakest prespecification of
x := x + 1 through x := 2.

x := 2/x := x + 1

= ¬ (¬ x := 2 ; (x := x + 1)˘)

= ¬ (x ′ 6= 2 ; (x ′ = x + 1)˘)

= ¬ (x ′ 6= 2 ; x = x ′ + 1)

= ¬ (∃ x0 • x0 6= 2 ∧ x0 = x ′ + 1)

= ¬ (x ′ + 1 6= 2)

= x ′ = 1

= x := 1

5 Weakest Completion Semantics

We now turn to weakest completion semantics [25], where we lift standard designs
to probabilistic designs. Our objective is to give semantics to a nondeterministic
probabilistic programming language that is consistent with a similar standard
programming language: the only difference being the presence or absence of a
probabilistic choice operator. Consistency is important to make sure that pro-
gramming intuitions, development techniques, and proof methods can be carried
over, as far as possible, from the standard language to the probabilistic one.

One way to achieve consistency is to extend the standard semantics to the
probabilistic one in a controlled way. He et al.’s work [25] develops a semantic
method to extend theories of programming automatically, as far as possible.
Their method is to make only a few explicit assumptions and then generate a
semantics by following a set of principles. They have applied their technique
to two semantics for the nondeterministic programming language: a relational
semantics and a predicate-transformer one.

He et al. propose the following procedure:

1. Start from the semantics for the nondeterministic programming language.

2. Propose a probabilistic semantic domain.

3. Propose a mapping from the probabilistic semantics to the standard seman-
tics to relate computations of probabilistic programs to computations of
standard programs.

4. Use this mapping to induce automatically an embedding of programs over
the standard semantics: the technique is to consider the weakest completion
of a sub-commuting diagram expressing refinement, rather than equality.

5. Determine its defining algebraic characteristics of the new language.

6 Probabilistic Programs

Our standard and our probabilistic programming languages have identical syn-
tax, except that the latter has the addition of a probabilistic choice operator:
P ⊕r Q . This is a choice between P with probability r , and Q with probability
1− r . The syntax of this language is given in

P ::= ⊥ abort
| II skip
| x := e assignment
| P 2 b 3 Q conditional
| P u Q nondeterminism
| P ⊕r Q probabilism
| P ; Q sequence
| µX • P(X) recursion

This nondeterministic probabilistic language is a suitable target for probabilis-
tic RoboChart [10]. The semantic domain for the language without probabilistic
choice is the UTP theory of designs. This theory allows the boolean observation
of a program starting (ok) and of it terminating (ok ′). A design with precon-
dition p(s) and postcondition R(s, s ′) is a pair of predicates (p(s) ` R(s, s ′)),
which is defined as the single relation ok ∧ p(s) ⇒ ok ′ ∧ R(s, s ′). This is a
statement of total correctness: if the program is started in a state satisfying its
precondition, then it will terminate and when it does, its postcondition will be
satisfied. The vectors of variables s, s ′ : S represent the initial and final states of
ordinary program variables, which are modelled as mappings from the names of
program variables to their values. The UTP semantics for this nondeterministic
programming language is well known [32, Chap.3].

⊥ = (false ` true)

II = (true ` s ′ = s)

x := e = (true ` s ′ = s[e/x])

P u Q = P ∨ Q

P 2 b 3 Q = (b ∧ P) ∨ (¬ b ∧ Q)

P ; Q = ∃ ok0, s0 • P [ok0, s0/ok ′, s ′] ∧ Q [ok0, s0/ok , s]

µX • P(X) =
d
{X | X w P(X) }

Next, we consider the probabilistic semantic domain. Let the state space be S .
Let the set of probabilistic distributions over S be the set of total functions to

probabilities: PROB = S → [0, 1]. The probabilities in a discrete distribution
f sum to 1: (

∑
s : S • f (s)) = 1, for f ∈ PROB .

A probabilistic design is defined as p ` Q , where the alphabet of p is {s}
and the alphabet of Q is {s, prob′}, for s ∈ S and prob′ ∈ PROB .

The relationship between standard and probabilistic programs is most easily
understood as an abstraction from the probabilistic semantic domain: a mapping
ρ that forgets the probabilities and replaces them by possibilities. We define ρ as
a design with a non-homogeneous alphabet: {ok , prob, ok ′, s ′}, where ok and ok ′

design observations about initiation and termination, prob : PROB is a discrete
probability distribution, and s ′ : S .

ρ =̂ (true ` prob(s ′) > 0)

This non-homogeneous design is a forgetful function: the probability of arriving
in state s ′ is prob(s ′); this is replaced by the possibility of arriving in that state:
prob(s ′) > 0.

Note now that P ; ρ is a standard design if P is a probabilistic design.
Using this idea, for probabilistic design P and standard design D , we con-

struct the following sub-commuting diagram

S PROB

S

P

D ρ

where P ; ρ w D . This is an inequality in three variables, two of which we
already know: D and ρ. So, we calculate P using the weakest prespecification of
D wrt ρ. The result is the weakest probabilistic design related to the standard
design D . We introduce the following definition: for any standard design D ,
define K(D) =̂ D/ρ as its embedding in the probabilistic world.

We need to prove that this embedding really does produce probabilistic de-
signs, which we do in the following theorem. For any subset X of S , define
f (X) =

∑
s : X • f (s), for any probability distribution function f . Further-

more, for any relation R with alphabet {s, s ′} (both in S), define f (R) = f ({ s ′ |
R }).7 If X and Y are disjoint sets then

(f (X ∪Y) = 1) = (f (X) = 1− f (Y))

A corollary is that

(f (R) = 1) = (f (¬ R) = 0)
7 Note that if f is a probability distribution function, then lifting f from states to a

relation on states results in an alphabetised definition: f (R) has s as a free variable (s ′

is bound by the set comprehension). If we now fix s, then we get the probability sum
for the image of s through R. Note that prob′(R) is also an alphabetised expression,
this time with alphabet {s, prob′}. Thus prob′(R) = 1, which encounter next, is a
suitable candidate for the postcondition of a probabilistic design.

Theorem 1 (Embedded standard designs are probabilistic designs).

K(p(s) ` R(s, s ′)) = (p(s) ` prob′(R) = 1)

Proof. Start by simplifying the definition of K by pushing the weakest prespeci-
fication operator into the postcondition. Note that the law we use requires that
the design is H3 healthy [32, Chap.3]: its precondition must not mention any
variables from the after-state.8 This assumption is discharged here. Our account
of this law is novel, but we do not present it in this paper.

K(p ` R)

= { definition of K}
(p ` R)/(true ` prob(s ′) > 0)

=

{
weakest design prespecification,
P ` R is H3 implies (P ` Q)/(true ` R) = (P ` Q/R)

}
p ` R/(prob(s ′) > 0)

Now show that R/(prob(s ′) > 0) = (prob′(R) = 1)

R/(prob(s ′) > 0)

= {definition weakest prespecification }
¬ (¬ R ; (prob(s ′) > 0)̆)

= { converse }
¬ (¬ R ; prob′(s) > 0)

= {definition sequential composition }
¬ (∃ s0 • ¬ R[s0/s ′] ∧ prob′(s0) > 0)

= {predicate calculus }
∀ s ′ • ¬ R ⇒ prob′(s ′) = 0

= {property of lifted probability distribution function }
prob′(¬ R) = 0

= {property of lifted probability distribution function }
prob′(R) = 1

Our next task is to prove that the embedding is a homomorphism on the
structure of standard programs. As a result, most of the algebraic laws that hold

8 This subclass of specification contracts is sometimes known as “normal” designs [22,
14]. The theory of reactive designs [6], mentioned on page 7, is not an embedding
of normal designs, since a reactive design can mention the after-value of the trace
variable in its precondition. To see this, consider the precondition in the reactive
design for the CSP process a → CHAOS . This process can diverge, but only after
an a-event. The process’s precondition records the circumstances under which the
process will not diverge: ¬ tr a 〈a〉 ≤ tr ′. In words: “Don’t press the a button, or
else we crash!”

in the standard semantic framework remain valid in the probabilistic model. We
give two example cases in the proof of the homomorphism: the embedding of
assignment (here) and nondeterminism (in Sect. 8).

Lemma 1 (Embedded assignment).

K(x := e) = (true ` prob′(s[e/x]) = 1)

Proof.

K(x := e)

= { semantics of standard assignment }
K(true ` s ′ = s[e/x])

= { theorem 1 }
true ` prob′(s ′ = s[e/x]) = 1

= { function lifted to relation: prob(R(s, s ′)) = prob({ s ′ | R(s, s ′) } }
true ` prob′({ s ′ | s ′ = s[e/x] }) = 1

= { function lifted to set: prob(X) =
∑

s : X • prob(s) }
true ` (

∑
s : { s ′ | s ′ = s[e/x] } • prob′(s)) = 1

= { set one-point rule: { x | x = e } = {e} }
true ` (

∑
s : {s[e/x]} • prob′(s)) = 1

= { singleton sum: (
∑

x : {e}) = e }
true ` prob′(s[e/x]) = 1

In the next section, we consider how to combine probability distributions in
order to support probabilistic and nondeterministic choice operators.

7 Probabilistic Choice and Combining Distributions

We start with a motivating example of combining probability distributions: ex-
pressing multiway probabilistic choice as a combination of binary probabilistic
choices. This leads us to propose a semantics for probabilistic choice in the spirit
of UTP’s parallel-by-merge operator. We consider how to decompose a proba-
bility distribution into two distributions combined by probabilistic choice. This
leads to two projection functions, one for each operand. We conclude the section
with three lemmas that will be used in the case for nondeterministic choice in
the proof of K being a homomorphism. These lemmas provide witnesses for the
decomposition required.

Consider a multiway probabilistic choice, as found in the Reactive Modules
formalism, [1] used by the probabilistic model checker Prism [36]:

α : (s := 0) + (1− (α+ β)) : (s := 1) + β : (s := 2)

Here, each assignment is labelled by a probability and these probabilities sum
to 1. How can we express this using binary probabilistic choice? One simple
solution uses two operators:

(s := 0 ⊕α/(1−β) s := 1) ⊕1−β s := 2

To show that this is a solution, note that the assignment s := 0 is chosen with
probability (1− β) × (α/(1− β)) = α; s := 2 is chosen with probability β; and
s := 1 must be chosen with the remaining probability, which is 1 − (α + β). A
slightly more complicated solution uses three operators:

(s := 0 ⊕α+β s := 1) ⊕α/(α+β) (s := 1 ⊕1−(α+β) s := 2)

Analysing probabilities once more gives us (α/(α + β)) × (α + β) for s := 0;
(1 − (α/(α + β))) × (α + β) for s := 2; and 1 − (α + β) for s := 1. Simple
arithmetic proves that we got this right.

These examples show how distributions are combined as we move the binary
operator to its multi-way cousin. In the first example, we are combining the
following two distributions:9

0.prob = {(s = 0) 7→ α/(1− β), (s = 1) 7→ 1− (α/(1− β))}
1.prob = {(s = 2) 7→ 1}

and we are combining them in the ratio given by the outermost choice operator:
1− β:

prob′

= (1− β) × 0.prob + (1− (1− β)) × 1.prob

= (1− β) × 0.prob + β × 1.prob

= (1− β) × {(s = 0) 7→ α/(1− β), (s = 1) 7→ 1− (α/(1− β))}
+ β × {(s = 2) 7→ 1}

= {(s = 0) 7→ (1− β) × (α/(1− β)), (s = 1) 7→ (1− β) × (1− (α/(1− β)))}
+ {(s = 2) 7→ β × 1}

= {(s = 0) 7→ α, (s = 1) 7→ 1− (α+ β), (s = 2) 7→ β}

To formalise this, define the merge of two distributions, 0.prob and 1.prob, to
form distribution prob′ as: Mr = (prob′ = r × 0.prob + (1 − r) × 1.prob), for
some probability ratio r . We use this in the definition of an operator inspired by
UTP’s parallel-by-merge [32, Chap.7] to combine the probability distributions
described by two postconditions:

P(prob′) ‖Mr
Q(prob′) = P(0.prob′) ∧ Q(1.prob′) ; Mr

9 The notation 0.prob and 1.prob come from the separating simulation operator in
UTP’s parallel-by-merge [32, Sect.7.2], which is being used here to combine proba-
bility distributions.

This operator may be applied equally well to a design, rather than an individual
postcondition, without any confusion.

With this operator, we now have a semantics for probabilistic choice:

P ⊕r Q = P ‖Mr
Q

The meaning of probabilistic choice is clearly compositional: if we have the
meaning of P and Q , then we can find the meaning of P ⊕r Q . But we can also
think about the decomposition of a probabilistic program into the probabilistic
choice between two subprograms. Suppose that we have two sets of states A
and B , such that A ∪ B = S and a probabilistic ratio 0 < r < 1 (to ensure
1/r and 1/(1 − r) are well defined).10 In this case we can unravel the merge of
two distributions if 0.prob(A) = 1 and 1.prob(B) = 1. To do this, we define the
projections.11

F(prob′,A,B , r) = (1/r) × ((A \ B) C prob′) + ((A ∩ B) C prob′)
G(prob′,A,B , r) = (1/(1− r)) × ((B \A) C prob′) + ((A ∩ B) C prob′)

For F(prob′,A,B , r) to be a distribution, we need its domain to sum to unity;
that is, F(prob′,A,B , r)(A) = 1. These projections satisfy our merge predicate,
and in that sense provide a joint witness.

Lemma 2 (Merge witnesses). For 0 < r < 1, F(prob′,A,B , r)(A) = 1, and
G(prob′,A,B , r)(B) = 1,

Mr [F(prob′,A,B , r),G(prob′,A,B , r)/0.prob, 1.prob]

Proof.

Mr [F(prob′,A,B , r),G(prob′,A,B , r)/0.prob, 1.prob]

= { definition of Mr }(
prob′ = r × 0.prob + (1− r) × 1.prob

)[
F(prob′,A,B , r)/0.prob
G(prob′,A,B , r)/1.prob

]
= { substitution }

prob′ = r × F(prob′,A,B , r) + (1− r) × G(prob′,A,B , r)

= { definitions of F and G }
prob′ = r × ((1/r) × ((A \ B) C prob′) + ((A ∩ B) C prob′))

+(1− r) × ((1/(1− r)) × ((B \A) C prob′) + ((A ∩ B) C prob′))

= { function scaling: x × (f + g) = x × f + x × g , arithmetic }
prob′ = ((A \ B) C prob′) + r × ((A ∩ B) C prob′)

+((B \A) C prob′) + (1− r) × ((A ∩ B) C prob′)

10 This case analysis is present in [25], although its purpose is not explained there).
11 The expression S C R is Z’s domain restriction operator [53, p.98]: the domain

restriction S C R of a relation R to a set S relates x to y if and only if R relates x
to y and x is a member of S .

= { function scaling: (x + y) × f = x × f + y × f , arithmetic }
prob′ = ((A \ B) C prob′) + ((A ∩ B) C prob′) + ((B \A) C prob′)

= { function addition: X ∩Y = ∅ ⇒ (X ∪Y) C f = (X C f) + (Y C f) }
prob′ = ((A \ B) ∪ (A ∩ B) ∪ (B \A)) C prob′

= { assumption: A ∪ B = S }
true

Now we state two lemmas that ensure that our two projections are probability
distributions that sum to unity.

Lemma 3 (Total witness 1). Let p(A \B) = α and p(A ∩B) = 1− (α+ β);
then

F(p,A,B , α/(α+ β))(A) = 1

Proof.

F(p,A,B , α/(α+ β))(A)

= { definition F }
((1/(α/(α+ β))) × ((A \ B) C p) + (A ∩ B) C p)(A)

= { arithmetic, function scaling: (f + g)(X) = f (X) + g(X) }
((α+ β)/α) × (A \ B) C p(A) + (A ∩ B) C p(A)

= { functions: X ⊆ Y ⇒ X C f (Y) = f (X) }
((α+ β)/α) × p(A \ B) + p(A ∩ B)

= { assumptions: p(A \ B) = α and p(A ∩ B) = 1− (α+ β) }
((α+ β)/α) × α+ 1− (α+ β)

= { arithmetic }
α+ β + 1− α− β

= { arithmetic }
1

Lemma 4 (Total witness 2). Let p(B \A) = β and p(A ∩ B) = 1− (α+ β);
then

G(p,A,B , α/(α+ β))(B) = 1

Proof. Similar to Lemma 3.

The main result that we want to present in this paper is stated and proved in
the next section.

8 Nondeterministic Choice

In this section, we prove the case for nondeterministic choice in the homomor-
phism theorem. Nondeterministic choice can be used in the top-down develop-

ment of a program to abstract from detail, including specific details of a prob-
abilistic choice. So K should distribute through nondeterministic choice in the
following way:

K(D0 u D1) = ∃ r : [0, 1] • (K(D0) ‖Mr
K(D1))

Refinement to a particular probabilistic choice ⊕α would then follow by strength-
ening the result, choosing α for r . In this section, we prove one half of this result,
omitting the other half only because we lack space.

The next lemma simplifies the embedding of nondeterministic choice.

Lemma 5 (Embedded nondeterministic choice).

K((p0 ` Q0) u (p1 ` Q1)) = (p0 ∧ p1 ` prob′(Q0 ∨ Q1) = 1)

Proof.

K((p0 ` Q0) u (p1 ` Q1))

=

{
designs closed under nondeterministic choice:
((p0 ` Q0) u (p1 ` Q1)) = (p0 ∧ p1 ` Q0 ∨ Q1)

}
K(p0 ∧ p1 ` Q0 ∨ Q1)

= {definition of K: K(p ` Q) = (p ` prob′(Q) = 1) }
p0 ∧ p1 ` prob′(Q0 ∨ Q1) = 1

Now we show half of our result: that the embedding is a weakening homomor-
phism for nondeterministic choice. This means that as K distributes through
nondeterminism, it produces a weaker predicate.

Theorem 2 (Nondeterminism embedding weakening).

K((p0 ` Q0) u (p1 ` Q1)) w ∃ r : [0, 1] • (K(p0 ` Q0) ‖Mr
K(p1 ` Q1))

Proof.

K((p0 ` Q0) u (p1 ` Q1))

=

{
lemma 5: embedded nondeterministic choice:
K((p0 ` Q0) u (p1 ` Q1)) = p0 ∧ p1 ` prob′(Q0 ∨ Q1) = 1

}
p0 ∧ p1 ` prob′(Q0 ∨ Q1) = 1

⇒
{
α := p(Q0 \Q1) ∧ β := p(Q1 \Q0)⇒ p(Q0 ∩Q1) = 1− (α+ β)
lemma 3: total witness 1, lemma 4: total witness 2

}
p0 ∧ p1 ` F(prob′,Q0,Q1, α/(α+ β))(Q0) = 1

∧ G(prob′,Q0,Q1, α/(α+ β))(Q1) = 1

= { lemma 2: merge witnesses }
p0 ∧ p1 ` F(prob′,Q0,Q1, α/(α+ β))(Q0) = 1

∧ G(prob′,Q0,Q1, α/(α+ β))(Q1) = 1

∧ Mα/(α+β)

[
F(prob′,A,B , α/(α+ β))/0.prob
G(prob′,A,B , α/(α+ β))/1.prob

]

=

{
existential introduction: r := α/(α+ β),
0.prob0 := F(prob′,A,B , r), 1.prob0 := G(prob′,A,B , r)

}
p0 ∧ p1 ` ∃ r : [0, 1]; 0.prob0, 1.prob0 : PROB •

0.prob0(Q0) = 1 ∧ 1.prob0(Q1) = 1
∧ Mr [0.prob0, 1.prob0/0.prob, 1.prob]

= { sequential composition }
∃ r : [0, 1] • (p0 ∧ p1 ` 0.prob′(Q0) = 1 ∧ 1.prob(Q1) = 1 ; Mr)

= {definition merge operator }
∃ r : [0, 1] • (p0 ` prob′(Q0) = 1) ‖Mr

(p1 ` prob′(Q1) = 1)

= {definition K}
∃ r : [0, 1] • (K(p0 ` Q0) ‖Mr

K(p1 ` Q1))

We omit the (easier) proof that the embedding is a strengthening homomorphism
for nondeterministic choice: as K distributes through nondeterminism we obtain
a stronger predicate.

This concludes our presentation of the semantics for the nondeterminis-
tic probabilistic programming language that serves as the textual version of
RoboChart diagrams with discrete probabilistic behaviour. We have described
the semantic domain and an embedding function from standard programs to
probabilistic ones. We have shown just two cases for the proof that the embed-
ding is a homomorphism. This has guided the definition of individual program
operators. For example, we have

K(D0 u D1) = K(D0) ∨ K(D1) ∨
∨

0<r<1(K(D0) ‖Mr
K(D1))

This definition is supported by Theorem 2 and a matching proof for the strength-
ening homomorphism (omitted in this paper). The proof identified the need for
the two special cases in the semantics of nondeterminism: r = 0 and r = 1.

9 Related Work

Jansen et al. propose a probabilistic extension to UML [34, 35]. They add to
UML’s basic Statecharts a probabilistic choice node whose out-edges are anno-
tated with probabilities. They identify interferences between Statechart tran-
sition priorities and the order of resolving nondeterministic and probabilistic
choice. Verification is performed using the Prism probabilistic model checker,
with the probabilistic logic PCTL specifying properties over Statecharts. They
describe the operational semantics of step execution. This is then embedded in
a finite Markov Decision Process specified as a probabilistic Kripke system.

Nokovic and Sekerinski [44] propose pCharts, another variation on State-
charts, but extended with timed transitions, probabilistic transitions, costs and
rewards, and state invariants. They present a translation scheme from untimed
pCharts to Markov Decision Processes (MDPs), from timed pCharts to proba-
bilistic timed automata (PTA), and from pCharts to executable C code. Every-
thing is implemented in the pState tool. MDPs are used to verify probabilistic

and nondeterministic behaviour. PTAs are used to verify additional real-time
constraints, such as the maximum or minimum probability of reaching a state
within a given time and the maximum expected time to reach that state (its
deadline). pCharts can be augmented with quantitative information for costs
and rewards for both transitions and states: priced PTAs. This permits analysis
of the maximum or minimum expected time before a transition takes place, or
the number of expected steps to reach a particular state. Translation rules deal
with hierarchy and orthogonality.

Both Jansen’s and Nokovic’s work is similar to He et al.’s [25], and therefore
ours, in constructing a conservative extension of standard Statecharts. Both of
them go further in dealing with hierarchy and orthogonality. This differs from our
work in several ways. We focus on producing a semantics that can be combined
with other UTP theories. Both Jansen and Nokovic focus on model checking,
and therefore have a closed-world assumption and restrict variables to bound
integers. We are interested in both model checking and theorem proving.

In 2004, Goldsmith reported an experiment [20] to extend the input language
for FDR2 to accept a probabilistic choice construct with added functionality, to
produce models suitable for analysis by Prism [36]. Goldsmith describes some
encouraging results, but also warns about various drawbacks in the work: the loss
of regularity in code emitted from FDR2 that would lead to Prism exploiting
symmetries in its model checking; and that the transformation scheme does not
support CSP’s full failures-divergences model. The probabilistic functionality in
FDR2 was lost when development moved to FDR3 in 2012 and remained lost
with the move to FDR4 in 2017.

Mota et al. [10] rediscovered the functionality in FDR2 (as well as legacy
copies of the tool) in their work on analysing probability in RoboChart. They
define the semantics of the RoboChart probabilistic choice operator in terms of
CSP’s probabilistic operator. They show how this augmented CSP semantics for
RoboChart can be translated into the Prism’s Reactive Modules input language
to check stochastic properties of RoboChart.

Zhao et al. [65] describe mapping rules between UML state diagrams and
probabilistic Kripke structure semantics. They present an asynchronous paral-
lel language based on discrete time Markov chains. Non-functional properties of
systems specified using PCTL, with verification provided by the Prism model
checker. Interactive theorem proving is also supported and linked to experi-
mental results. Interestingly, the mapping rules are provided as a bidirectional
transformation.

Zhang et al. [64] address the formal verification of dynamic behaviour of UML
diagrams. They automatically verify UML state machine models by translating
UML models to the input language of the PAT model checker in such a way as
to be transparent for users. They can check safety and liveness properties with
fairness assumptions using the PAT model checker [39].

10 Conclusions and Future Work

We have presented an overview of our ongoing work in giving a probabilistic
semantics to RoboChart. We have concentrated on the imperative, sequential
action language for RoboChart, using the weakest completion semantics ap-
proach. The result is a programming theory that can now be combined with
other programming paradigms, using UTP’s unification techniques explained in
Sect. 3. The next step for us is to lift the current semantics into UTP’s reactive
theory to produce a theory of reactive probabilistic designs.

We have explicated the weakest completion approach, showing how proof
outlines in [25] can be turned into near formal proofs suitable for implementa-
tion in a theorem prover. In doing this, we spent a surprising amount of time
understanding the structure of He et al.’s proof, especially the nondeterminism
case for the proof that the embedding function K is a homomorphism. This led
us to investigate the weakest prespecification operator for the design theory in
some detail, coming up with what we believe to be a novel derivation of the
operator that echoes Hoare and He’s derivation of the weakest precondition op-
erator [32]. We observe that a law quoted in the proof of this case in [25] requires
a side condition that the design to which it is applied satisfies the H3 healthiness
condition [32, Chap.3]. This is the case in the proof where it is used, but it does
raise an interesting question for our lifting the current semantics to the reactive
world. We found a small number of inconsistencies in the proof outlines, but
these have not affected the validity of the lemmas and theorems in [25].

Our future work consists of the following:

1. Complete the rest of the proof that K is a homomorphism (essentially, the
Kleisli lifting needed for sequential composition).

2. Implement our proofs in the Isabelle/UTP theorem prover [19].12

3. Lift the semantics to the reactive theory.

4. Use our semantics to verify the soundness of a translation from RoboChart
to Reactive Modules, so that Prism can be used to analyse probabilistic
RoboCharts.

5. Tackle a range of different examples using both model checking and theorem
proving to challenge our work. We have in our sights various probabilistic
robotic control algorithms.

Examples include verifying robot localisation algorithms, such as the Random
Sample Consensus algorithm Ransac that is frequently used in robotic con-
trol [11]; providing bounds for the battery life required for coverage using ran-
dom walks and arena-mapping techniques by autonomous robotic cleaners and
searchers; and verifying learning algorithms for robots in uncertain environ-
ments.

12 We have already begun work on the mechanisation of the proofs in Isabelle/UTP.
Early indications show that the meticulous detail in the hand-written proofs is very
helpful in the mechanisation.

Acknowledgements

This work was funded under EPSRC grant EP/M025756/1 on A Calculus for
Software Engineering of Mobile and Autonomous Robots, Royal Society grant
Requirements Modelling for Cyber-Physical Systems, and a Royal Academy of
Engineering Chair in Emerging Technologies. We are grateful for very helpful
feedback from the reviewers that helped us clarify the exposition of our ideas
in this paper (including the explanation of the connection between weakest pre-
condition and weakest prespecification in Appendix A). We have benefited from
discussions with Riccardo Bresciani, Andrew Butterfield, Ana Cavalcanti, Tony
Hoare, Lydia Hughes, Zhiming Liu, Alvaro Miyazawa, and Augusto Sampaio.
We are especially grateful to He Jifeng, Annabelle McIver, and Carroll Morgan
for their beautiful ideas. The work in this paper was first presented at the IFIP
WG 2.3 (Programming Methodology) meeting in York in February 2019 and
at a Royal Society/National Natural Science Foundation of China workshop at
Southwest University (Chongqing) in May 2019.

References

1. Alur, R., Henzinger, T.A.: Reactive Modules. Formal Methods in System Design
15(1), 7–48 (1999)

2. Bousmalis, K.: Closing the simulation-to-reality gap for deep robotic learning.
ai.googleblog.com/2017/10/closing-simulation-to-reality-gap-for.html

(2019), Google AI Blog

3. Brunner, S.G., Steinmetz, F., Belder, R., Dömel, A.: RAFCON: A graphical tool
for engineering complex, robotic tasks. In: 2016 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, IROS 2016, Daejeon, South Korea, 9–14
October, 2016. pp. 3283–3290 (2016)

4. Cavalcanti, A., Ribeiro, P., Miyazawa, A., Sampaio, A., Filho, M.C., Didier, A.: Ro-
boSim: Reference Manual (2019), www.cs.york.ac.uk/robostar/robosim/robosim-
reference.pdf

5. Cavalcanti, A., Sampaio, A., Woodcock, J.: Refinement of actions in Circus. Electr.
Notes Theor. Comput. Sci. 70(3), 132–162 (2002)

6. Cavalcanti, A., Woodcock, J.: A tutorial introduction to CSP in Unifying Theories
of Programming. In: Cavalcanti, A., Sampaio, A., Woodcock, J. (eds.) Refinement
Techniques in Software Engineering, First Pernambuco Summer School on Software
Engineering, PSSE 2004, Recife, Brazil, 23 November–5 December 2004, Revised
Lectures. Lecture Notes in Computer Science, vol. 3167, pp. 220–268. Springer
(2006)

7. Dhouib, S., Kchir, S., Stinckwich, S., Ziadi, T., Ziane, M.: RobotML, a domain-
specific language to design, simulate and deploy robotic applications. In: Noda,
I., Ando, N., Brugali, D., Kuffner, J.J. (eds.) Simulation, Modeling, and Pro-
gramming for Autonomous Robots—Third International Conference, SIMPAR
2012, Tsukuba, Japan, 5–8 November, 2012. Lecture Notes in Computer Science,
vol. 7628, pp. 149–160. Springer (2012)

8. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall (1976)

9. FDR: Failures-Divergences Refinement. www.cs.ox.ac.uk/projects/fdr/

10. Filho, M.S.C., Marinho, R., Mota, A., Woodcock, J.: Analysing RoboChart with
probabilities. In: Massoni, T., Mousavi, M.R. (eds.) Formal Methods: Foundations
and Applications — 21st Brazilian Symposium, SBMF 2018, Salvador, Brazil, 26–
30 November 2018. Lecture Notes in Computer Science, vol. 11254, pp. 198–214.
Springer (2018)

11. Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography. Commun.
ACM 24(6), 381–395 (1981)

12. Fitzgerald, J.S., Gamble, C., Larsen, P.G., Pierce, K., Woodcock, J.: Cyber-
physical systems design: Formal foundations, methods and integrated tool chains.
In: Gnesi, S., Plat, N. (eds.) 3rd IEEE/ACM FME Workshop on Formal Methods
in Software Engineering, FormaliSE 2015, Florence, 18 May, 2015. pp. 40–46. IEEE
Computer Society (2015)

13. Foster, S., Baxter, J., Cavalcanti, A., Miyazawa, A., Woodcock, J.: Automating
verification of state machines with reactive designs and Isabelle/UTP. In: Bae, K.,
Ölveczky, P.C. (eds.) Formal Aspects of Component Software — 15th International
Conference, FACS 2018, Pohang, South Korea, 10–12 October 2018. Lecture Notes
in Computer Science, vol. 11222, pp. 137–155. Springer (2018)

14. Foster, S., Cavalcanti, A., Canham, S., Woodcock, J., Zeyda, F.: Unifying theories
of reactive design contracts. CoRR abs/1712.10233 (2017)

15. Foster, S., Cavalcanti, A., Woodcock, J., Zeyda, F.: Unifying theories of time with
generalised reactive processes. Inf. Process. Lett. 135, 47–52 (2018)

16. Foster, S., Woodcock, J.: Unifying theories of programming in Isabelle. In: Liu,
Z., Woodcock, J., Zhu, H. (eds.) Unifying Theories of Programming and Formal
Engineering Methods — International Training School on Software Engineering,
Held at ICTAC 2013, Shanghai, 26–30 August 2013, Advanced Lectures. Lecture
Notes in Computer Science, vol. 8050, pp. 109–155. Springer (2013)

17. Foster, S., Woodcock, J.: Towards verification of cyber-physical systems with UTP
and Isabelle/HOL. In: Gibson-Robinson, T., Hopcroft, P.J., Lazic, R. (eds.) Con-
currency, Security, and Puzzles - Essays Dedicated to Andrew William Roscoe on
the Occasion of His 60th Birthday. Lecture Notes in Computer Science, vol. 10160,
pp. 39–64. Springer (2017)

18. Foster, S., Zeyda, F., Nemouchi, Y., Ribeiro, P., Wolff, B.: Isabelle/UTP: Mecha-
nised theory engineering for unifying theories of programming. Archive of Formal
Proofs (Feb 2019)

19. Foster, S., Zeyda, F., Woodcock, J.: Isabelle/UTP: A mechanised theory engineer-
ing framework. In: Naumann, D. (ed.) Unifying Theories of Programming — 5th
International Symposium, UTP 2014, Singapore, 13 May 2014, Revised Selected
Papers. Lecture Notes in Computer Science, vol. 8963, pp. 21–41. Springer (2015)

20. Goldsmith, M.: CSP: The best concurrent-system description language in the
world—probably! In: Communicating Process Architectures. pp. 227–232 (2004)

21. Group, O.M.: OMG Unified Modeling Language (OMG UML), superstructure,
version 2.4.1

22. Guttmann, W., Möller, B.: Normal design algebra. J. Log. Algebr. Program. 79(2),
144–173 (2010)

23. Harel, D.: Statecharts: A visual formalism for complex systems. Sci. Comput. Pro-
gram. 8(3), 231–274 (1987)

24. Harwood, W., Cavalcanti, A., Woodcock, J.: A theory of pointers for the UTP.
In: Fitzgerald, J.S., Haxthausen, A.E., Yenigün, H. (eds.) Theoretical Aspects of
Computing - ICTAC 2008, 5th International Colloquium, Istanbul, 1–3 September,

2008. Proceedings. Lecture Notes in Computer Science, vol. 5160, pp. 141–155.
Springer (2008)

25. He, J., Morgan, C., McIver, A.: Deriving probabilistic semantics via the ‘weakest
completion’. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004, 6th In-
ternational Conference on Formal Engineering Methods, Seattle, 8–12 November
2004. Lecture Notes in Computer Science, vol. 3308, pp. 131–145. Springer (2004)

26. Hehner, E.C.R.: Predicative programming, part I. Commun. ACM 27(2), 134–143
(1984)

27. Hehner, E.C.R.: Predicative programming, part II. Commun. ACM 27(2), 144–151
(1984)

28. Hehner, E.C.R., Gupta, L.E., Malton, A.J.: Predicative methodology. Acta Inf.
23(5), 487–505 (1986)

29. Hilder, J.A., Owens, N.D.L., Neal, M.J., Hickey, P.J., Cairns, S.N., Kilgour, D.P.A.,
Timmis, J., Tyrrell, A.M.: Chemical detection using the receptor density algorithm.
IEEE Trans. Systems, Man, and Cybernetics, Part C 42(6), 1730–1741 (2012)

30. Hoare, C.A.R.: Programs are predicates. In: FGCS. pp. 211–218 (1992)
31. Hoare, C.A.R., He, J.: The weakest prespecification. Inf. Process. Lett. 24(2), 127–

132 (1987)
32. Hoare, C.A.R., He, J.: Unifying theories of programming. Prentice Hall (1998)
33. Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: The use of simu-

lation in evolutionary robotics. In: Morán, F., Moreno, A., Merelo Guerv’os, J.J.,
Chacón, P. (eds.) Advances in Artificial Life, Third European Conference on Ar-
tificial Life, Granada, Spain, 4–6 June 1995. Lecture Notes in Computer Science,
vol. 929, pp. 704–720. Springer (1995)

34. Jansen, D.N., Hermanns, H., Katoen, J.: A probabilistic extension of UML State-
Charts. In: Damm, W., Olderog, E. (eds.) Formal Techniques in Real-Time
and Fault-Tolerant Systems, 7th International Symposium, FTRTFT 2002, Co-
sponsored by IFIP WG 2.2, Oldenburg, 9–12 September 2002. Lecture Notes in
Computer Science, vol. 2469, pp. 355–374. Springer (2002)

35. Jansen, D.: Extensions of Statecharts with probability, time, and stochastic timing.
Ph.D. thesis, University of Twente (10 2003)

36. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM: probabilistic symbolic model
checker. In: Field, T., Harrison, P.G., Bradley, J.T., Harder, U. (eds.) Computer
Performance Evaluation, Modelling Techniques and Tools 12th International Con-
ference, TOOLS 2002, London, 14–17 April 2002. Lecture Notes in Computer Sci-
ence, vol. 2324, pp. 200–204. Springer (2002)

37. Larsen, P.G., Fitzgerald, J.S., Woodcock, J., Fritzson, P., Brauer, J., Kleijn, C.,
Lecomte, T., Pfeil, M., Green, O., Basagiannis, S., Sadovykh, A.: Integrated tool
chain for model-based design of cyber-physical systems: The INTO-CPS project.
In: 2016 2nd International Workshop on Modelling, Analysis, and Control of Com-
plex CPS, CPS Data 2016, Vienna, 11 April, 2016. pp. 1–6. IEEE Computer Society
(2016)

38. Lee, E.A., Seshia, S.A.: Introduction to Embedded Systems: A Cyber-Physical
Systems Approach. The MIT Press, 2nd edn. (2016)

39. Liu, Y., Sun, J., Dong, J.S.: PAT 3: An extensible architecture for building
multi-domain model checkers. In: Dohi, T., Cukic, B. (eds.) IEEE 22nd Inter-
national Symposium on Software Reliability Engineering, ISSRE 2011, Hiroshima,
29 November–2 December 2011. pp. 190–199. IEEE Computer Society (2011)

40. Miyazawa, A.: RoboTool: RoboChart Tool Manual (2018), www.cs.york.ac.uk/-
circus/publications/techreports/reports/robotool-manual.pdf

41. Miyazawa, A., Ribeiro, P., Li, W., Cavalcanti, A., Timmis, J.: Automatic property
checking of robotic applications. In: 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems, IROS 2017, Vancouver, 24–28 September, 2017.
pp. 3869–3876 (2017)

42. Miyazawa, A., Ribeiro, P., Li, W., Cavalcanti, A., Timmis, J., Woodcock, J.:
RoboChart: modelling and verification of the functional behaviour of robotic ap-
plications. Software & Systems Modeling (Jan 2019)

43. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, Lecture Notes in Computer Science, vol. 2283. Springer (2002)

44. Nokovic, B., Sekerinski, E.: Verification and code generation for timed transitions in
pCharts. In: Desai, B.C. (ed.) International C* Conference on Computer Science &
Software Engineering, C3S2E ’14, Montreal, 3–5 August 2014. pp. 3:1–3:10. ACM
(2014)

45. Oliveira, M., Cavalcanti, A., Woodcock, J.: A denotational semantics for Circus.
Electr. Notes Theor. Comput. Sci. 187, 107–123 (2007)

46. Oliveira, M., Cavalcanti, A., Woodcock, J.: A UTP semantics for Circus. Formal
Asp. Comput. 21(1-2), 3–32 (2009)

47. Pembeci, I., Nilsson, H., Hager, G.D.: Functional reactive robotics: an exercise
in principled integration of domain-specific languages. In: Proceedings of the 4th
international ACM SIGPLAN conference on Principles and practice of declarative
programming, 6–8 October, 2002, Pittsburgh, (Affiliated with PLI 2002). pp. 168–
179 (2002)

48. Ribeiro, P., Miyazawa, A., Li, W., Cavalcanti, A., Timmis, J.: Modelling and veri-
fication of timed robotic controllers. In: Polikarpova, N., Schneider, S. (eds.) IFM
2017, Integrated Formal Methods — 13th International Conference, Turin, 20–
22 September 2017. Lecture Notes in Computer Science, vol. 10510, pp. 18–33.
Springer (2017)

49. RoboCalc: www.cs.york.ac.uk/circus/RoboCalc
50. RoboCalc Project: The foraging robot example (2019), www.cs.york.ac.uk/-

robostar/prob case studies/foraging robot
51. Roscoe, A.W.: On the expressive power of CSP refinement. Formal Asp. Comput.

17(2), 93–112 (2005)
52. Roscoe, A.W.: Understanding Concurrent Systems. Texts in Computer Science,

Springer (2010)
53. Spivey, J.: The Z Notation: A Reference Manual. Prentice-Hall., 2nd edn. (1989)
54. V-REP: Virtual Robot Experimentation Platform, User Manual, Version 3.6.1.

www.coppeliarobotics.com/helpFiles/en/importExport.htm
55. Wächter, M., Ottenhaus, S., Kröhnert, M., Vahrenkamp, N., Asfour, T.: The

ArmarX Statechart concept: Graphical programming of robot behavior. Front.
Robotics and AI (2016)

56. Webots: Reference Manual, Rel. R2019a. www.cyberbotics.com/doc/reference/
57. Winfield, A.F.T.: Foraging robots. In: Meyers, R.A. (ed.) Encyclopedia of Com-

plexity and Systems Science, pp. 3682–3700. Springer (2009)
58. Woodcock, J.: Engineering UToPiA: Formal semantics for CML. In: Jones, C.B.,

Pihlajasaari, P., Sun, J. (eds.) FM 2014: Formal Methods - 19th International
Symposium, Singapore, 12–16 May, 2014. Lecture Notes in Computer Science,
vol. 8442, pp. 22–41. Springer (2014)

59. Woodcock, J., Cavalcanti, A.: A tutorial introduction to designs in unifying theories
of programming. In: Boiten, E.A., Derrick, J., Smith, G. (eds.) Integrated Formal
Methods, 4th International Conference, IFM 2004, Canterbury, 4–7 April 2004.
Lecture Notes in Computer Science, vol. 2999, pp. 40–66. Springer (2004)

60. Woodcock, J., Foster, S.: UTP by example: Designs. In: Bowen, J.P., Liu, Z.,
Zhang, Z. (eds.) Engineering Trustworthy Software Systems — Second Interna-
tional School, SETSS 2016, Chongqing, China, 28 March – 2 April 2016, Tutorial
Lectures. Lecture Notes in Computer Science, vol. 10215, pp. 16–50 (2017)

61. Woodcock, J., Foster, S., Butterfield, A.: Heterogeneous semantics and unifying
theories. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal
Methods, Verification and Validation: Foundational Techniques — 7th Interna-
tional Symposium, ISoLA 2016, Imperial, Corfu, 1–14 October 2016, Proceedings
Part I. Lecture Notes in Computer Science, vol. 9952, pp. 374–394 (2016)

62. Woodcock, J., Morgan, C.: Refinement of state-based concurrent systems. In:
Bjørner, D., Hoare, C.A.R., Langmaack, H. (eds.) VDM ’90, VDM and Z—Formal
Methods in Software Development, Third International Symposium of VDM Eu-
rope, Kiel, 17–21 April 1990. Lecture Notes in Computer Science, vol. 428, pp.
340–351. Springer (1990)

63. Zave, P., Jackson, M.: Conjunction as composition. ACM Trans. Softw. Eng.
Methodol. 2(4), 379–411 (1993)

64. Zhang, S.J., Liu, Y.: An automatic approach to model checking UML state ma-
chines. In: Fourth International Conference on Secure Software Integration and
Reliability Improvement, SSIRI 2010, Singapore, 9–11 June 2010. pp. 1–6. IEEE
Computer Society (2010)

65. Zhao, Y., Yang, Z., Xie, J., Liu, Q.: Quantitative analysis of system based on
extended UML state diagrams and probabilistic model checking. JSW 5(7), 793–
800 (2010)

A Connecting Weakest Preconditions and
Prespecifications

Weakest preconditions and prespecifications each arise as the weakest solution of
an inequality in three variables. Both have a conjunction on the implementation
side. The inequality for the weakest precondition in stated as P w s ⇒ q , but this
is equivalent to s ∧ P w q (1). The inequality for the weakest prespecification
is stated as X ; K w Y , but this is equivalent to X [v0/v ′] ∧ K [v0/v] w Y (2).
The two inequalities have the same essential structure. Hoare & He go further
and note as a conjecture that the two predicate transformers are almost identical
when the first argument mentions only dashed variables: r ′/K = (K wp r)′.
The conjecture is easily proved.

r ′/K

= { dashing a condition: c′ = c[v ′/v] }
r [v ′/v]/K

= { definition of weakest prespecification }
¬ (¬ r [v ′/v] ; K˘)

= { definition of relational converse }
¬ (¬ r [v ′/v] ; K [v ′, v/v , v ′]))

= { definition of sequential composition }

¬ existsv0 • ¬ r [v0/v] ∧ K [v ′, v0/v , v ′])

= { propositional calculus }
¬ existsv0 • K [v ′, v0/v , v ′] ∧ ¬ r [v0/v])

= { dashing a relation: R′ = R[v ′/v] }
¬ (existsv0 • K [v , v0/v , v ′] ∧ ¬ r [v0/v])′

= { definition of relational converse }
¬ (K ; ¬ r)′

= { definition weakest precondition }
(K wp r)′

This result means that the weakest prespecification subsumes the weakest pre-
condition and so could be used to give its definition: K wp r =̂ (r ′/K)[v/v ′].

