
Features of CML: a formal modelling
language for Systems of Systems

J. Woodcock∗, A. Cavalcanti∗, J. Fitzgerald†, P. Larsen‡, A. Miyazawa∗, and S. Perry§

∗University of York, United Kingdom, {jim.woodcock, Ana.Cavalcanti, alvaro.miyazawa}@york.ac.uk
†Newcastle University, United Kingdom, john.fitzgerald@newcastle.ac.uk

‡Aarhus University, Denmark, pgl@iha.dk
§Atego, United Kingdom, simon.perry@atego.com

Abstract — We discuss the initial design for CML,
the first formal language specifically designed for
modelling and analysing Systems of Systems (SoSs).
It is presented through the use of an example: an
SoS of independent telephone exchanges. Its overall
behaviour is first specified as a communicating
process: a centralised telephone exchange. This de-
scription is then refined into a network of telephone
exchanges, each handling a partition of the set
of subscribers (telephone users). The refinement
is motivated by a non-functional requirement to
minimise the cabling required to connect geograph-
ically distributed subscribers, who are clustered.
The exchanges remain as independent systems with
respect to their local subscribers, whose service is
unaffected by the loss of remote exchanges.

Keywords: architecture, SysML, modelling, specifi-
cation, refinement, evolution, formal analysis, VDM,
Circus, CML, semantics, UTP, enslavement pattern.

1. Introduction

The design of products and services that exploit
Systems-of-Systems (SoS) technology is in its in-
fancy. It is hampered by the complexity caused by
the heterogeneity and independence of SoS con-
stituent systems. State-of-the-art SoS engineering
lacks models and tools to help developers make
trade-off decisions during design and evolution,
and to assist in working out and recording precise
contracts between constituents and the global SoS.
This leads to sub-optimal design and expensive
rework during integration and in service.

COMPASS (Comprehensive Modelling for Ad-
vanced Systems of Systems)1 is augmenting exist-

1COMPASS is a EU FP7 project. The COMPASS website
is www.compass-research.eu.

ing industry tools and practice with a modelling
language in which SoS architectures and contracts
can be expressed. A formal semantic foundation—
the first to be developed specifically for SoS
engineering—enables analysis of global properties.
The language and methods will be supported by
an open tools platform [1] with prototype plug-ins
for model construction, dynamic analysis by simu-
lation and test automation, static analysis by model
checking and proof, and links to an established
architectural modelling language, SysML [2]. These
strengthened foundations and tools will support
enhanced methods that help users embed this new
technology in industrial practice.

Our approach is based on CML (COMPASS
Modelling Language) with formal semantics, and
methods and tools that take advantage of this.
It uses an integration of the Systems Modelling
Language, SysML, and CML, where developers can
start if they wish from a graphical architectural view
that is readily communicated to stakeholders.

CML is founded on the well-established Cir-
cus [3] (which in turn is based on Z [4] and CSP [5])
and VDM [6] formalisms, and includes SoS-specific
aspects, such as contracts for constituent systems. A
contract is a specification that describes the assump-
tions and guarantees of a CML model, and whose
compliance is checked using refinement. A CML
model is a collection of process definitions; each
process encapsulates a state and operations written
in VDM and interacts with the environment via
synchronous communications, like in Circus. Using
CML, many different kinds of analyses can be
conducted, and some will be presentable at the
SysML level. The semantics of CML is currently
being developed using UTP [7].

In Section 2, we describe the approach to
modelling in CML; in Section 3, we describe the

CML model of our telephone exchange SoS; and in
Section 4, we draw some conclusions from the work.

2. Modelling in CML

A central notion is that of conformance between
models: one model C is correct with respect to
another model A, if every behaviour of C is also
a behaviour of A. When conformance holds, then
C must inevitably pass every test carried out with
respect to A. This notion of behavioural refinement
offers a way of defining contracts: we would like A to
be a simple presentation of all acceptable behaviours
(the contract); C can then be more ingenious about
how to implement the contract. A formal notion of
refinement allows us to check the correctness of C
against the contract defined by A.

CML can be used to model existing systems,
compose them into an SoS, define suitable contracts
for this composition, and check that the contracts
are fulfilled. In this model-based development, an
SoS specification can be traceably decomposed into
an architecture and a collection of requirements
on constituent systems expressed as contracts. The
constituent systems can then be further decomposed
or implemented by procurement of specific systems.
Other requirements can be shown to emerge as a
consequence of executing constituent systems.

The overall contract must describe the be-
havioural properties of the SoS, as well as specific
policies and constraints for coordinating constituent
systems and their workflow. It will provide global
invariants that may be inexpressible at a lower level,
and so can be used to constrain emergent behaviour.
As an example, consider an SoS that manages the
clearing system for a group of banks. A global
invariant would reconcile the amount of money
coming into the clearing system, the money moving
between banks, and the money leaving the clearing
system. This is a clear and intuitive invariant of the
global view of the system, but it is obviously not
an invariant of any individual bank.

The architectural description needs to represent
the topology of the SoS and the interactions between
the different constituent systems. These channels
may require additional properties of bandwidth,
delays, and potential faults, as well as the more
obvious behavioural protocols for correct operation.
Some SoSs will be dynamically evolving, and CML
will provide mechanisms to describe mobile channels
and mobile processes with inspiration from [8].

3. Example: Telephony System

We describe a small but realistic example using
CML. We restrict ourselves to a high-level informal
overview of the models involved, omitting formal
details and the use of SysML to document the ar-
chitecture at key phases. Although the development
described results in a homogeneous SoS, the pattern
is equally applicable to heterogeneous constituents.

A. Abstract Model

We start with a model of the functionality of an
automated telephone exchange for connecting sub-
scribers’ calls. We assume that a caller identifies the
recipient when initiating a call in a single, atomic
action. This simplifies our presentation; there is
no conceptual difficulty with separating this into
seizing a line and supplying the recipient’s identity,
and even decomposing this into dialling a number
digit by digit. Only the caller can clear a telephone
call: if a recipient tries to clear a call, then it
becomes merely suspended; if the recipient lifts the
receiver again, then the call is re-established.

The exchange is specified as a single CML
process, encapsulating a state described in VDM,
recording the status of every subscriber and every
call currently in progress. The operations on this
state are made reactive with CML’s CSP notation,
linking events to the effect on the state. The model
gives us a contract for the service provided by the
exchange, and we can augment this model with
guarantees about quality of service, such as the time
to connect a call to the engaged or ringing tone.

B. System of Systems

Subscribers are geographically distributed, but
clustered. The initial model requires extensive ca-
bling, and a non-functional requirement is to reduce
cabling costs. One way to do this is to install a
separate exchange at each cluster, and provide trunk
cabling between these exchanges. A subscriber then
makes a call to the nearest exchange; the call is ei-
ther serviced locally or routed to a remote exchange,
as appropriate. This suggests an SoS architecture
embedding instances of the simple exchange in
a suitable topology, with the addition of trunk
signalling between exchanges. This SoS can then
be shown to refine the original simple exchange.
This demonstrates that the required service is being
delivered correctly, in spite of a more elaborate
implementation. Crucially, the subscriber need not
be aware of the way that the service is implemented,

either as a single exchange, or as a collection of
exchanges with trunk signalling between them.

An emergent property of the new architecture
is its fault tolerance. It may be that a single fault
in an exchange could cause the exchange’s entire
service to be lost; but in the new architecture, the
only loss would be the telephone calls to and from
subscribers local to that exchange. This capability
also supports evolution of the system in a way that
the single, centralised model does not. An individual
exchange can be taken down and replaced while
most subscribers can continue calling each other.

C. Architectural Considerations

The exchange is implemented by decomposing
it into a number of similar exchanges, each handling
a partition of the set of subscribers. This requires a
system architecture, which is a set of structures for
reasoning about a system: it does not simply explain
how to wire up the individual constituent systems,
but rather it explains the consequences of doing so.
We want to re-use each exchange without modifi-
cation, and deduce that each exchange continues
to provide its existing service without interfering
with additional behaviour added to extend the
collective capabilities. To do this, we use a particular
architectural pattern called enslavement.

To explain this pattern, consider two systems
P and Q, where every external event of P is shared
with Q, so that P is entirely controlled by Q, but
that Q may do other things. P is then Q’s slave: P
can communicate with no one other than its master
Q. Suppose further that P uses two channels in and
out. In our example, Q has many similar slaves—
the telephone exchanges—so Q communicates with
P using channels labelled by some name, say s: the
channels would then be s.in and s.out. So there’s an
asymmetry between the two of them: Q has to be
aware of P’s identity (the use of the label s), but P
does not need to know who Q is.

We use this architectural pattern in our SoS,
where we have a collection of identical copies of
the single exchange. They differ only in the set
of subscribers they are connected to: they serve
different customers, and they do not communicate
with each other. They form an unconnected group
of systems whose behaviours are merely interleaved.
We then put a transport layer above this group.
Here, all subscribers talk to a single process, which
then relays signals from subscribers to the right
exchange slave. Similarly, when the slave responds,
its signals are relayed back to the subscriber.

In the first model, all subscriber and call
information is centralised, but this new architecture
distributes this to local exchanges, and correctness
can be proved as a refinement. This is necessary, but
does not achieve a geographical separation, since the
transport layer is a single service. So we decompose
the transport layer into a number of nodes, one
per exchange. A subscriber now connects to its
nearest local node, which either relays messages to
the local exchange or sends something to another
node to cause it to interact with its local exchange.
This is similar to trunk signalling in telephony, and
must provide the same service as the centralised de-
scription. A suitable architecture for this transport
system is to arrange the nodes in a ring, or to take
advantage of geographical considerations to arrange
them hierarchically, and we adopt the former.

In the next two sections, we use CML to
demonstrate two example scenarios: the first shows
the exchange of messages involved in a telephone
call using a single exchange. The second shows the
start of a call involving two separate exchanges.

D. Single Exchange

Suppose that Jim wants to phone Ana and
that both of these subscribers are linked to a single
telephone exchange. We assume in this example
that Jim is not engaged in any other telephone
call. He starts the call by sending a message
to the exchange: call(Jim,Ana). This and the
subsequent sequence of messages are displayed in
Figure 1, which contains a SysML sequence digram
for the entire call. Once the exchange has received
this call, it acknowledges it by replying with a
callok message. Internally, the exchange now
creates a record to keep track of the call, which is
in the connecting state, and the identity of the
subscriber to whom Jim is connecting, Ana. The
exchange also knows Ana’s state; we assume for
this example that Ana is not busy. The exchange
sends the message startringing to Ana; if Ana
had been busy, then the exchange would have
instructed Jim’s equipment to start the engaged
tone. After a while, Ana answers the call by sending
an answer message to the exchange, which then
acknowledges this and instructs Jim’s equipment
to start receiving speech packets (which are not
described in this model, as they are not part of the
telephone signalling protocol). A little while later,
Ana hangs up. As she is the recipient of the call, she
does not own it, and so hanging up suspends the call
rather than clearing it, and so Ana sends a suspend

message to the exchange, which acknowledges it. A
little while later, Ana picks up the phone again and
re-establishes the call by sending an unsuspend
message to the exchange, which again acknowledges
it. Finally, Jim hangs up, clearing the call, since he
owns it as the call initiator. This clear message
causes the exchange to delete the call record and
start a new one for Ana to register the fact that
she is still off-hook. When she eventually hangs up,
then that final fragment of the call can be deleted.

This informal description of the telephone call,
and the accompanying SysML sequence diagram,
are based on a mathematical model in CML. As well
as explaining what is going on, the model can also be
used to predict events and situations: 1) Is it ever
possible for the telephone exchange to deadlock?
2) Given the real-time properties of the various
components, what are the response and connection
times? 3) Are all connected telephone calls one-
to-one (no sharing)? 4) What happens when Jim
calls himself? 5) What happens when Ana calls him
during one of his self-obsessed calls?

We give just a flavour of the CML specification
of the exchange. It has three instance variables:

public status: map SUBS to STATUS;
public number: map SUBS to SUBS;
public subs: set of SUBS;

The status and number variables record informa-
tion for each call in progress; subs records the set
of subscribers linked to this exchange; status is
a mapping from subscribers to the status of their
calls, such as connecting, speech, or ringing,
while number is a mapping from subscribers to
subscribers. These two mappings record all neces-
sary information, so an invariant requires that they
record the same set of subscribers. In our example,
number maps Jim to Ana from the point at which
Jim initiates the call until he clears it down. The
call passes through the sequence: connecting,
ringing, speech, suspended, and speech
(again), before being deleted.

Each message received by the exchange triggers
a state operation. For example, a new call is handled
in the following way, specified in VDM:

Call (s,t: SUBS)
frame wr status, number

rd subs
pre

s in set subs and
t in set subs and
s in set free(status,number,subs)

post

status = status˜ ++ {s |-> <connecting>} and
number = number˜ ++ {s |-> t};

The Call operation takes two subscribers s and t
as parameters, and has write access to the status
and number instance variables and read access to
the subs variable. The precondition requires that
s and t belong to the set subs, which means
that they are subscribers linked to this exchange.
Additionally, the precondition requires that s is
also free. The function free returns the set of
subscribers who are neither initiators nor recipients
of calls in progress. The postcondition describes
the effect on the instance variables, which are
updated to record the new call, which is between s
and t and is in the connecting state.

The Call operation describes the changes in
the internal state of the exchange that take place
following the reception of a call message. The
reactive aspect of the operation is specified in CSP.
Here, we see the first part of the behaviour in the
definition of the Exch process:

Exch =
call?s:(s in set subs)?t:(t in set subs) ->

(if s in set free(status,number,subs)
then callok -> Call(s,t)
else callerror -> SKIP); Exch

...

A request can be received, via the call channel,
to establish a connection between two subscribers,
s and t, both of which are linked to this exchange.
Following the reception of this message, the ex-
change tests to see if s, the initiator, is actually
free. If it is, then a positive acknowledgement is
sent (callok), and the state operation Call(s,t)
(above) is invoked. Otherwise a negative acknowl-
edgement is sent (callerror). After this, the
process repeats its main loop.

E. Multiple exchanges

Figure 2 describes the interactions between par-
ticipants in an SoS of just two telephone exchanges,
using a SysML sequence chart. We assume in this
very simple instantiation there are only two clusters
of subscribers, one in York and one in Aarhus. A
subscriber in York, Jim, wants to put a call through
to a subscriber in Aarhus, Peter. Jim initiates the
call with the message call(Jim,Peter), which
the SoS receives at the York node. York detects
that this call is not to another subscriber in York,
but to someone in Aarhus. So it makes a virtual call
to Aarhus and sends a vcall message along the

mid channel to the York link. This is the process
responsible for all messages going out on the ring
from York; it can buffer messages up to some limit.
The link then forwards this message to Aarhus,
the next node in the ring. Aarhus detects that
this message is indeed destined for Aarhus, and
so takes it off the ring. Aarhus now completes
the virtual call by first adding Jim as an Aarhus
subscriber and then making a local call from Jim
to Peter. The Aarhus exchange responds with an
acknowledgement that the call is in progress. It will
not have been connected yet, since the exchange
needs to find out if Peter is free or busy, but
that will follow. In the meantime, the Aarhus node
needs to relay this acknowledgement back to Jim
in York, so it sends the acknowledgement along
its mid channel to the Aarhus link. The link then
forwards this along the ring, with the York node
recognising and intercepting the message, which can
finally be delivered to Jim.

Again, this model can be analysed to prove
various properties. Unlike the centralised single
exchange, the SoS is a distributed system and
the problems of deadlock and livelock are more
acute. For example, the links must have a bounded
amount of buffering, so what happens when buffers
fill up: does the system deadlock? Messages pass
around the ring: is it possible for a message to
be perpetually travelling? Or we could ask if the
SoS of exchanges provides the same functionality
as a single exchange would. That is, is the SoS
a refinement of the single exchange? If it is, then
it has all the properties that the single exchange
has: functionality, liveness, real-time performance,
and so on. This can be checked using a refinement
model checker. This kind of tool would explore all
the behaviours of the SoS and make sure that they
were all behaviours of the single exchange. For this
to make sense, CML provides a way of hiding certain
channel communications from view. For example,
the communications between constituent nodes are
not part of any behaviour in the single exchange.

A model checker has two very strong advan-
tages: it is a push-button, fully automatic tool; and
when the model checking fails (as is most often
the case in debugging a specification), it produces
an explicit counterexample that may be useful is
working out why the refinement does not hold. But
there is a drawback: there is a limit to the number
of behaviours that can be checked in this way, and
so the size of the CML models becomes an issue.

This can be overcome by using a symbolic model
checker that replaces specific values by symbolic
names and proceeds to check whole classes of
behaviours at once. Such tools can even check infi-
nite behaviours. An alternative to model checking
is theorem proving, which can in principle prove
properties regardless of the number of behaviours.

4. Conclusions

Our main contribution in this work is in the design
of a language specifically for modelling and reason-
ing about SoSs. It is suitable for describing both
constituent systems and the architecture needed
for composing them into an SoS. The formal basis
of this language is suitable for building powerful
analysis tools for verification and validation.

The complete development of CML—its syn-
tax, semantics, refinement technique, connection
to SysML, and tools platform—is the subject of
ongoing work in COMPASS. At the moment, given
the wealth of experience available in the use of
VDM, CSP, Circus, and their semantics in the UTP,
we are confident of the soundness of our approach.
In particular, we can rely on the mature tools of
VDM and CSP for restricted reasoning while the
CML tools are under development [1].

References

[1] J. W. Coleman, A. K. Malmos, P. G. Larsen, J. Peleska,
R. Hains, Z. Andrews, R. Payne, S. Foster, A. Miyazawa,
C. Bertolinik, and A. Didier, “COMPASS Tool Vision for
a System of Systems Collaborative Development Environ-
ment,” in The 7th International Conference on System of
System Engineering, IEEE SoSE 2012, July 2012.

[2] J. Holt and S. Perry, SysML for Systems Engineering.
IET, 2008.

[3] J. Woodcock and A. Cavalcanti, “The semantics of Cir-
cus,” in Proceedings of the 2nd International Conference
of B and Z Users on Formal Specification and Develop-
ment in Z and B, ZB ’02, (London, UK, UK), pp. 184–203,
Springer-Verlag, 2002.

[4] M. Spivey, The Z Notation – A Reference Manual (Second
Edition). Prentice-Hall International, 1992.

[5] T. Hoare, Communication Sequential Processes. Engle-
wood Cliffs, New Jersey 07632: Prentice-Hall Interna-
tional, 1985.

[6] J. S. Fitzgerald, P. G. Larsen, and M. Verhoef, “Vienna
Development Method,” Wiley Encyclopedia of Computer
Science and Engineering, 2008. edited by Benjamin Wah,
John Wiley & Sons, Inc.

[7] T. Hoare and H. Jifeng, Unifying Theories of Program-
ming. Prentice Hall, April 1998.

[8] C. B. Nielsen and P. G. Larsen, “Extending VDM-RT to
Enable the Formal Modelling of System of Systems,” in
The 7th International Conference on System of System
Engineering, IEEE SoSE 2012, July 2012.

Jim:Subscriber

«block»

:Exchange

«block»

Ana:Subscriber

«block»

call(JIm, Ana)

callok

startringing

answer

answerok

startspeech

suspend

suspendok

unsuspend

unsuspendok

clear

clearok
clear

clearok

sd Single Exchange

Figure 1. Telephone call in a single exchange.

Jim:Subscriber

«block»

York:Node

«block»

York:Link

«block»

Aarhus:Node

«block»

Aarhus:Link

«block»

Aarhus:Exchange

«block»

call(Jim, Peter)

mid.vcall

link.vcall

my.add(Jim)

my.addok

my.call

my.callok

mid.callok

link.callok

callok

sd Virtual Call

Figure 2. Virtual call.

