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Abstract. Circus is a combination of Z, CSP, and the refinement cal-
culus, and is based on Hoare & He’s Unifying Theories of Programming.
A model checker is being constructed for the language to conduct refine-
ment checking in the style of FDR, but supported by theorem proving for
reasoning about the complex states and data types that arise from the
use of Z. FDR deals with bounded labelled transition systems (LTSs),
but the Circus model checker manipulates LTSs with possibly infinite
inscriptions on arcs and in nodes, and so, in general, the success or fail-
ure of a refinement check depends on interaction with a theorem prover.
An LTS is generated from a source text using an operational interpreta-
tion of Circus; we present a Structured Operational Semantics for Circus,
including both its process-algebraic and state-rich features.

1 Introduction

Circus [31, 32, 1, 23, 2, 3] is a state-rich process algebra based on Z [11, 33] and
CSP [21], with a refinement calculus for deriving implementations from their
specifications. Current work involves constructing a tool-set for supporting the
language, including a theorem prover and a model checker. The development
of the model checker is inspired by FDR, the model checker for CSP [19, 5];
however, a significant and novel aspect of the Circus model checker is the need
to address the state-rich aspects of the language. The resulting procedure is
refinement checking supported by theorem proving.

In its internal computations, FDR uses finite, labelled transition systems that
are derived from source texts using the operational semantics of CSP. In order
to construct the Circus model checker, we first need to explore the operational
semantics of the language, including those state-based features not found in CSP.
This leads to transition systems where the diagram is finite, but where the arcs
and nodes may carry inscriptions involving infinite data types. This operational
semantics must be proved congruent to the denotational semantics of Circus,
which is different from the set-based presentation of the failures-divergences
model used for CSP: it uses the unifying theories of programming (UTP) [10].

We present a Plotkin-style Structured Operational Semantics [17] for Circus,
also based on UTP and using Z as a metalanguage [33], hence knowledge of
Z is assumed. The operational semantics is inspired by the implementation of



CSPM [24] in FDR [5], but has been adapted and extended to accommodate the
state-rich features of Circus. The underlying automata theory and its properties
have been formalised using the Z/Eves theorem prover [14].

In the next section, we give a brief overview of Circus and the UTP. Fol-
lowing this, we present the operational semantics for basic actions, declarations,
synchronisation, schema expression, external choice, and interleaving; other op-
erators are omitted for lack of space. In our final section, we discuss our results,
put them in context, and look forward to future work.

2 Circus and the UTP

Circus is a forum for exploring the combination of process algebra and model-
based abstract data types, and it is distinguished from similar combinations [4,
26] by being based firmly on the notion of refinement. Thus, the process algebra
used is CSP and data types are specified in Z, since failure-divergences refine-
ment and schema structuring have both proved their usefulness in describing
industrial-scale development. Current experience is showing that when the re-
finement calculus is extended to include the operators of the process algebra,
then its use also scales up to address large-scale architectural issues.

Unifying Theories of Programming [10] provides a single theoretical frame-
work, based on an alphabetised relational calculus, that can be used for unifica-
tion of many programming language paradigms. A theory in UTP is composed of
an alphabet of names, a signature of language constructs, and a set of healthiness
conditions. Programs, designs, and specifications are all interpreted as relations
between an initial and an intermediate or final observation of behaviour. The
following programming theories have all been modelled in the UTP: imperative,
reactive, parallel, higher-order, and declarative [10, 30]; object oriented [6–8];
real-time [27]; and mobility [28, 29].

The semantics of Circus is defined in the UTP, where Z and the refinement
calculus inhabit the theory of designs (pre-post specifications), and where CSP
is the embedding of designs in the theory of reactive processes. Thus, everything
that one might write in Z, CSP, or the refinement calculus may be freely mixed
in a Circus specification. This is in contrast with other approaches, where the
appropriate Z, VDM, or B specification is interpreted as a communicating ab-
stract data type [4, 26]. The result is a rigid system architecture, which has its
advantages: the abstract data type and the process algebra remain orthogonal
throughout development, and so can be analysed separately using existing tools.
It also has its disadvantages: every program that can be developed will have to
adopt this architecture, and clearly many desirable programs do not.

A Circus program consists of a network of processes, each with encapsulated
data and channels for communication and synchronisation. Within a process,
there is a rich state with its attendant operations and process-algebraic behav-
iours, called actions; a distinguished main action defines the behaviour of the
process. An action has no encapsulated data: it operates on a data space shared



with other actions inside the same process. Parallel composition defines parti-
tions to avoid the usual problems of reasoning about shared data.

In the UTP denotational semantics, four kinds of observations may be made
of Circus actions: (i) the wait variable distinguishes intermediate states from final
ones; (ii) the okay variable distinguishes terminating states from non-terminating
ones; (iii) the tr variables records the trace of past events; and (iv) the ref
variable describes a set of events that are being refused by the process while it
waits. For example, if a process has been started in a state where the events a and
b have already occurred (in that order), and the process is waiting to perform
the event c (but not a or b), then the following observations will hold: okay ∧
¬ wait ∧ okay ′ ∧ wait ′ ∧ tr ′ = tr = 〈a, b〉 ∧ ref ′ ⊆ {a, b}. The components of
the process state also appear in the alphabet.

Circus programs satisfy all the healthiness conditions for CSP processes found
in [10], many of which are familiar from the failures-divergences semantics of
CSP [9, 21, 25], and they form a complete lattice ordered by reverse implication.
Thus, a process S is refined by another process I with the same alphabet S v I ,
providing that [S ⇐ I ], where the brackets denote universal closure. In this
paper, we provide an operational semantics for Circus actions.

3 Transition Relation

We define a transition relation capturing the operational semantics of Circus.
An earlier abstract version has been formally mechanised in detail using the
Z/Eves theorem prover [22]. All definitions and proof scripts that have guided
our implementations are available from [34]. We introduce names, and well-
formed Z expressions and predicates: Name, ZExpr , ZPred . Values and types
are made from Z expressions: Value == ZExpr , and Type == PZExpr .

As usual, our transition relation connects one node to another using an arc;
so it is a tertiary relation: P(Node × Arc × Node). The arcs in our relation are
labelled with sets of events, and correspond to a communication permitted by a
channel type definition; events range over the set Σ, and are channel-name/value
pairs: Σ == Name × Value and Arc == PΣ. These sets may be infinite. An
empty arc represents a silent transition: either successful termination or internal
progress. This is in contrast to the operational semantics of CSPM , where two
special events are used for silent transitions: X (tick) and τ (tau). The former
represents successful termination, whereas the latter represents internal progress.
Deadlock in CSPM is represented by lack of available events, and divergence is
represented by an infinite sequence of τ ’s (a τ -loop in the automaton).

Nodes are configuration/environment pairs. The former contains the process’s
state and the action yet to be executed; the latter contains various declarations.
The state St =̂ ASt ∧ USt contains both observational of the UTP ASt and the
process state USt . In the following definition, Boolean ::= t | f .

ASt =̂ [ okay ,wait : Boolean; tr : seq Σ ]

Refusals are not explicitly recorded; instead, they may be deduced from the
outgoing arcs from each node. The schema Obs =̂ [ ∆St | tr prefix tr ′ ] defines



all allowed observations between before and after states during the evaluation
of the semantics; its invariant requires that no process can change the history of
past events (a healthiness condition).

As said above, a configuration comprises a state and an action that remains
to be executed: Config == St × Action, where

Action ::= Ω | Skip | Stop | Chaos | N | µ X • A | let LocalEnv • A
| var x : T • A | c → A | c!v → A | c?x : P → A | c?x : P!e → A
| A ; B | SExpr | g & A | A u B | A 2 B | A \ hs | A ||[ns0 | ns1 ]||B
| A |[ ns0 | cs | ns1 ]| B

Following ideas from CSPM tools [18, 5], we have included an action Ω to denote
a final configuration; it is not part of the user’s syntax.

The declaration environment contains the names of channels, variables, ac-
tions, and unused names, which partition the given set of names.

Env
chs, vars, acts, fresh : PName
cType, vType : Name 7 7→ Type
aCtx : Name 7 7→ Action

〈chs, vars, acts, fresh〉 partition Name
dom cType = chs ∧ dom vType = vars ∧ dom aCtx = acts

Now we can define a node as a pair: Node == Config × Env .
The declared type of a channel or variable name is determined by the func-

tions cType and vType, respectively. The function aCtx records the syntax that
is associated with an action name. Environments are updated to include new
declarations; we give only the function for adding new channel declarations.

cDecl : Env × Name × Type 7→ Env

dom cDecl =
= {Env ; N : Name; T : Type | N ∈ fresh • (θEnv ,N ,T ) }

∀Env ; N : Name; T : Type; A : Action | N ∈ fresh •
cDecl(θEnv ,N ,T )

= θEnv [cType := (cType ⊕ {N 7→ T }), fresh := (fresh \ {N })]
In Z/Eves’ syntax, substitution of expressions for variables is denoted by “:=”, so
the function updates exactly two components: cType and fresh. More generally,
we give the semantics of a theta expression θS [x := e] within a predicate P
using existential quantification and standard renaming, provided y is fresh and
e has the same type as x .

P (θS [x := e]) ≡ ∃ y : { e } • P(θS [y/x ])

We define a transition system only for certain configurations: stable states
are those in which okay is true (Stable =̂ [St | okay = t ]); and normal states
are stable states in which wait is false (Normal =̂ [Stable | wait = f ]).



Two key functions in the definition of the operational semantics are enabled ,
which gives the set of enabled arcs for a node, and arcStep, which returns the
set of nodes that can be reached from a given node by following a given arc.
These functions are defined piecewise over the syntax of Circus actions. Their
domains are defined as the nodes where the states are in normal configurations;
the domain of arcStep insists that we are interested in stepping only through
arcs that are enabled.

enabled : Node 7 7→ PArc
arcStep : Node × Arc 7 7→ PNode

dom enabled = {A : Action; Normal ; Env • ((θSt , A), θEnv) }
dom arcStep = {A : Action; a : Arc; Normal ; Env |

a ∈ enabled((θSt , A), θEnv) • (((θSt , A), θEnv), a) }
These functions abstractly define a general theory of automata, where the edges
are sets of events (arcs) and the configurations are nodes. Therefore, the op-
erational semantics of Circus is given in terms of these semantic functions for
each available operator in the BNF syntax. As mentioned before, this is close to
the operational semantics of CSPM in FDR, where similar semantic functions
named inits and after are defined.

There is a relationship between these two functions. The domain of arcStep
is a relation (a set of pairs), which may be lifted to a set-valued function using
relational image. This function is almost exactly enabled : we have to remove all
pairs that arcStep would have mapped to the empty set, since these pairs can
have no enabled arcs.

∀n : Node • enabled(n) = (dom(arcStep −B {∅}))(| {n} |)
The following well-formedness theorem is proved as a consequence of this rela-
tionship, and each definition below is proved to respect it.

Theorem 1 (Well-formedness). An arc a is enabled in node n formed by an
action A in a stable before state (θSt [okay := t ]) and an environment (θEnv)
exactly when it is possible to reach at least one target node through n via a.

∀ St ; Env ; A : Action; a : Arc; n : Node •
n = ((θSt , A), θEnv) ∧ okay = t ⇒ a ∈ enabled n ⇔ arcStep(n, a) 6= ∅

If the process diverges, the well-formedness theorem is no longer guaranteed.
We have proved this theorem for our underlying abstract automata theory,

which is important for the implicit relationship between refusals sets and enabled .
An observation is stable whenever it has started (okay), and has not diverged

(okay ′). Valid observations are those where the trace history has been preserved
(tr prefix tr ′), as well as the state invariant. An observation is normal whenever
its before state is normal and the after state is stable.

StableObs =̂ Obs ∧ ∆Stable
NormalObs =̂ StableObs ∧ Normal

A stable observation can make progress initially (okay ∧ ¬ wait), reach a stable



valid observation in an after state (okay ′ ∧ wait ′ ∧ tr prefix tr ′), but nothing is
known about its termination yet (wait ′ is unconstrained).

In the following sections, we define enabled and arcStep for a representative
subset of Circus actions.

4 Basic Actions

Skip has only one possible behaviour—termination—so it has exactly one tran-
sition.

∀Normal ; Env • enabled((θSt , Skip), θEnv) = { ∅ }

A Terminating observation is normal with wait ′ false. Silent termination does
not change tr . Read-only observations are normal.

Terminating =̂ [NormalObs | wait ′ = f ]
SilentlyTerminating =̂ [Terminating | tr ′ = tr ]
ReadOnly =̂ [NormalObs | Ξ USt ]

Since the initial state in the semantics of Skip is normal, the empty arc leads to
a final configuration with action Ω in an after state that silently terminates.

∀Normal ; Env •
arcStep(((θSt ,Skip), θEnv), ∅)

= {SilentlyTerminating ; ReadOnly • ((θSt ′, Ω), θEnv) }

For the final configuration (θSt ,Ω) from a normal before state we have that

∀Normal ; Env • enabled((θSt , Ω), θEnv) = ∅

and since enabled gives the empty set of arcs, so the domain of arcStep for Ω
is also empty. Finally, we observe the difference between an empty set being
enabled , and enabled returning a singleton set containing just the empty set.
The former is related to termination or internal progress; the latter is a final
configuration with no outgoing arcs.

Stop represents a final action (Ω) in a waiting after state, where neither com-
munication nor user state updates have happened. Waiting defines read-only ob-
servations where the after state is waiting for interaction (wait ′). SilentlyWaiting
defines waiting observations where no communication has taken place.

Waiting =̂ [ReadOnly | wait ′ = t ]
SilentlyWaiting =̂ [Waiting | tr ′ = tr ]

Like Skip, the definition of Stop also uses a silent transition through an empty



arc; the final state is given by SilentlyWaiting with the original environment.

∀Normal ; Env • enabled((θSt , Stop), θEnv) = {∅}
∀Normal ; Env •

arcStep(((θSt ,Stop), θEnv), ∅) = {SilentlyWaiting • ((θSt ′, Ω), θEnv) }
A deadlocked configuration accepts nothing, whereas a waiting configuration can
progress whenever some arc becomes enabled . FDR has a similar representation.

Chaos has every possible behaviour, and this is represented as the power set
of Σ.

∀Normal ; Env • enabled((θSt , Chaos), θEnv) = P Σ

An observation is unpredictable whenever we move from a normal before state
to an after state where only the minimal constraints hold. Leaving the value of
okay ′ unconstrained allows the possibility of divergence.

UnpredictableObs =̂ Normal ∧ Obs

The behaviour after any transition is not entirely arbitrary, even in the presence
of divergence: the state invariant will continue to hold and the trace will not be
corrupted (the minimal constraints). In the semantics of Chaos, each arc leads
back to Chaos in an after state with these two constraints.

∀Normal ; Env ; a : Arc •
arcStep(((θSt ,Chaos), θEnv), a)

= {UnpredictableObs • ((θSt ′, Chaos), θEnv) }
Thus, divergence is characterised by an unstable after state (okay ′ false) that
might occur after an unpredictable observation. This is different from FDR,
where divergence is recorded as a τ -loop in the transition system. These loops are
detected by restricting the transition system to τ events, and then calculating the
transitive closure [19], where the standard implementation is depth-first search
(DFS). Research on a parallel version of FDR using graph pruning to detect
divergence is under development [13].

An interesting side-effect of using the UTP characterisation of divergence
might give an important performance improvement for the implementation of
divergence detection, because no DFS is needed. Instead, a more efficient search
such as parallel variations of breadth-first search (BFS) are being analysed. The
outcome of this investigation and the parallel implementation of other model-
checking algorithms are left as future work.

5 Channel declarations

Channel declarations are not permitted in Circus actions, but instead, they are
evaluated during the contextual analysis that builds the initial environment. We
define the syntax for declaration of channels and actions using a free-type Decl .

Decl ::= channel N : T | channel N | N =̂ A

Next, the function declare is defined; it updates an original environment with a



given declaration of a channel.

declare : Env × Decl 7→ Env

dom declare = {Env ; D : Decl ; N : Name | N ∈ fresh • (θEnv ,D) }
This function is partial, since some declarations might not be well-formed. Unlike
in CSP, Circus channels are strongly typed; thus, a channel declaration includes
the new channel name with its declared type in the given environment; it is
defined using the function cDecl defined in Section 3.

∀Env ; N : Name; T : Type •
declare(θEnv , channel N : T) = cDecl(θEnv ,N ,T )

Events are formed from a channel name and a communicated value; but for
synchronisation events, where no value is communicated, we define a special
value Synch: it cannot be referred to by the user. Synchronisation channels are
included in environments with the given name and the singleton type {Synch }.

∀Env ; N : Name • declare(θEnv , channel N) = cDecl(θEnv ,N , {Synch})
This allows a homogeneous declaration of channel types in the environment.

6 Input Prefixing: c?x : P → A

The enabled arcs of input prefixing contains events formed by the channel name
and all values allowed by the declared channel type filtered by predicate P.

∀Normal ; Env •
enabled((θSt , c?x : P → A), θEnv) = { { v : cType c | P = t • (c, v) } }

The transition for a synchronisation is defined using the schema Communicating ,
which requires that: (i) the before and after states are normal; (ii) the state
invariant and the trace history are maintained; (iii) no modifications happen
in the user state; (iv) the set of possible synchronisations includes the one in
question; and (v) the after state trace is extended with the synchronisation
event. Progressing =̂ [ReadOnly | wait ′ = f ] specifies (i)–(iii). The declaration
of available events on input variable given?, and the selection of an event using
output variable e! from given? specify (iv). The extension of tr specifies (v).

Communicating =̂
[Progressing ; given? : Arc; e! : Σ | e! ∈ given? ∧ tr ′ = tr a 〈e!〉 ]

These two definitions can now be used in the clause for arcStep.

∀Normal ; Env •
let allowed == { v : cType c | P = t • (c, v) } •

arcStep(((θSt , c?x : P → A), θEnv), allowed)
= {Communicating [given? := allowed ] •

let lEnv == ((x, ran allowed), second e!) •
((θSt ′, (let lEnv • A)), θEnv) }

The state is updated according to the Communicating schema where the given



events are those allowed; however, the communicated value must be available for
the evaluation of the following action A. This is achieved by introducing a new
local variable x implicitly declared through the special syntax (let lEnv • A),
where the type is just that of c. Its value is that communicated: second e!.

The evaluation of the local environment for input communication is similar to
that for variable declarations. The only difference is that the implicitly declared
variable x must have a value from the communication that just took place.

∀Normal ; Env •
enabled( ( θSt , ( let IEnv == ((x, T), v) • A ) ), θEnv )

= enabled((θSt , A), vDecl(θEnv , x, T))

The function vDecl extends the environment to include x ; its definition is omitted
for lack of space. For arcStep, we do something similar. We enrich the state in
order to evaluate the action; removing the local variable from the environment
afterwards ensures that the scope is indeed local. This is achieved using vRemove.

∀Normal ; Env ; a : Arc •
arcStep(((θSt , (let IEnv == ((x,T), v) • A)), θEnv), a)
= let ExtSt =̂ [ x, x′ : T | x′ = x = v ] •

{A′ : Action; UnpredictableObs; Env ′ |
((θSt ′,A′), θEnv ′) ∈

arcStep(((θ(St ∧ ExtSt), A), vDecl(θEnv , x, T)), a) •
((θ(St ′ \ (x, x′)), (let lEnv == ((x, T), x′) • A′),

vRemove(θEnv ′, x)) }
Schemas cannot be written in let clauses as shown above. For clarity, we have
used this notation, but in Z/Eves ExtSt has to be defined separately. In calcu-
lating the semantics of a Circus program, this results in a proliferation of small
schemas that need to be introduced, and nested scope has to be eliminated in
advance. This does not lead to problems when reasoning about the semantics.

7 Schema Expression: SExpr

Successful evaluation of schema expressions is represented with a silent transition
via an empty arc enabled ; however, as schema expressions can diverge if executed
outside their preconditions, we allow any arc to be enabled.

∀Normal ; Env •
enabled((θSt , SExpr), θEnv) = P Σ

Provided the precondition holds, a schema expression successfully terminates
silently performing the operation in the user state. This leads to a final config-
uration that is terminating on the same environment.

∀Normal ; Env | pre SExpr •
arcStep(((θSt ,SExpr), θEnv), ∅)

= {SilentlyTerminating | SExpr • ((θSt ′,Ω), θEnv) }
When the precondition does not hold, evaluation of schema expressions leads to



an after state with unpredictable observations, where the only guarantees are
that the state invariant holds, and the trace history is not forgotten.

∀Normal ; Env ; a : Arc | ¬ pre SExpr •
arcStep(((θSt ,SExpr), θEnv), a)

= {UnpredictableObs • ((θSt ′, SExpr), θEnv) }

There is an implicit contextual analysis assumed on the unpredictable case. In
order to calculate pre SExpr, both input (?) and output (!) variables on the
schema expression must be in context in the given environment.

8 External Choice: A 2 B

External choice has the arcs of both actions initially enabled. This includes empty
arcs meaning either internal progress or termination, and visible communication
on nonempty arcs.

∀Normal ; Env ; A, B : Action •
enabled((θSt , A 2 B), θEnv)

= enabled((θSt , A), θEnv) ∪ enabled((θSt ,B), θEnv)

External choice is rather complex with respect to progress on the transition
system. Intuitively, there are many cases to consider: visible communication,
silent termination, internal progress, and the possibility of deadlock or divergence
on either action, and deadlock on both actions. We analyse the cases separately.

Firstly, visible communication (tr ′ 6= tr) happens only when a prefixing is
communicating. This communication represents the choice being resolved; it is
formally defined by the schema Choosing as a normal observation that changes
the trace. That is, from a normal before state (okay ∧ ¬ wait) it reaches a
stable after state (okay ′) with valid observations (tr prefix tr ′), where the trace
has been extended (tr ′ 6= tr).

Choosing =̂ [NormalObs | tr ′ 6= tr ]

Whenever a visible communication happens, the choice is resolved to the follow-
ing action that arises from either A or B. A first definition for arcStep, considering
the case in which A is chosen, is as follows.

∀Normal ; Env ; a : Arc •
arcStep(((θSt ,A 2 B), θEnv), a)

= {C : Action; Choosing |
((θSt ′,C ), θEnv) ∈ arcStep(((θSt , A), θEnv), a) •

((θSt ′,C ), θEnv) }∪

That is, from a normal before state, A leads to C on a stable after state according
to the schema Choosing on the same environment.



Silent termination on either action also resolves the choice. The difference is
that silent termination always leads to the final action Ω.

{Terminating | ((θSt ′, Ω), θEnv) ∈ arcStep(((θSt , A), θEnv), a) •
((θSt ′,Ω), θEnv) }∪

This models the fact that termination cannot be refused. It is a direct conse-
quence of the denotational semantics of Circus. This approach is also taken in
Roscoe’s CSP [21] and FDR [24, 5]. Alternatively, Hoare’s CSP [9] forbids the
choice of termination in an external choice, and Schneider’s CSP [25] requires
cooperation with the external environment when termination is offered in an
external choice.

Now we consider internal progress in either action, say A again. Action
(A 2 B) leads to (A′ 2 B) in an after state that is ready for further progress
(A′ 6= Ω), provided that A leads to A′ in an after state as defined by the schema
SilentlyProgressing =̂ [Progressing | tr ′ = tr ].

{A′ : Action; SilentlyProgressing |
A′ 6= Ω ∧ ((θSt ′,A′), θEnv) ∈ arcStep(((θSt , A), θEnv), a) •

((θSt ′,A′ 2 B), θEnv) }∪
Internal (silent) progress happens on the resolution of internal choice, evaluation
of variable declaration, action call, and so forth. Additionally, although after
states observed due to internal progress are the same as those observed due
to successful termination, the ambiguity is cleared because we insist that A′ is
different from final action Ω.

The possibility of deadlock in either action is defined next. Whenever action
A leads to action A′ in an after state that is silently waiting, deadlock might
occur if the enabled arcs of A′ is the empty set because A′ is refusing every
possible event.

{A′ : Action; SilentlyWaiting |
((θSt ′,A′), θEnv) ∈ arcStep(((θSt ,A), θEnv), a) •

((θSt ′,A′ 2 B), θEnv) }∪
Whenever either action is already deadlocked (Stop 2 B), the choice is resolved
to the remaining action, since the deadlocked action will have no arcs enabled
(arcStep on the right-hand side is empty, and so the result is also empty). Of
course, when both actions of the choice are deadlocked, so is the external choice.

Next, we need to consider divergence in either action, say A once more. If
A leads to A′ on an unpredictable after state, the external choice might be
divergent; the result is A′ in a possibly divergent state.

{A′ : Action; UnpredictableObs |
((θSt ′,A′), θEnv) ∈ arcStep(((θSt ,A), θEnv), a) •

((θSt ′,A′), θEnv) }
Putting all these cases together for both actions of the choice, we get the complete
definition for arcStep of external choice.



9 Interleaving: A ||[ns0 | ns1 ]|| B

Interleaving synchronises only on successful termination. In our semantics, suc-
cessful termination happens whenever we reach a final configuration with Ω in
an after state according to the observations of Terminating . An empty arc repre-
sents termination. Therefore, this is the only place where the original refusals (or
acceptances) sets need to be readjusted. An empty arc can be allowed initially
only if both actions are willing to terminate successfully. One possibility for the
semantics is similar to that used in CSPM [24].

∀Normal ; Env •
enabled((θSt , A ||[ns0 | ns1 ]||B), θEnv)

= (enabled((θSt ,A), θEnv) ∪ enabled((θSt , B), θEnv)) \ { ∅ }
∪ enabled((θSt , A), θEnv) ∩ enabled((θSt , B), θEnv) ∩ { ∅ }

However, since an enabled empty arc also represents other transitions such as
internal progress, this would wrongly enforce synchronisation in this case as well.

We cannot exploit the observational variables, as we do not yet know the
possible after states of the enabling configuration for either action. Instead, the
differentiation of these cases must be in the arcStep function. Soundness is guar-
anteed by the well-formedness theorem.

a ∈ enabled((θSt , A), θEnv) ⇔ arcStep(((θSt , A), θEnv), a) 6= ∅

Therefore, the enabled arcs of interleaving are those enabled on either action,
and the distinction on distributed termination is left to arcStep.

∀Normal ; Env ; A, B : Action •
enabled((θSt , A ||[ns0 | ns1 ]||B), θEnv) =

enabled((θSt , A), θEnv) ∪ enabled((θSt , B), θEnv)

In the case of distributed termination, both A and B reach Ω through an empty
arc in a final configuration with Terminating observations.

∀Normal ; Env ; a : Arc •
arcStep(((θSt ,A ||[ns0 | ns1 ]||B), θEnv), a)

= {Terminating |
((θSt ′,Ω), θEnv) ∈ (arcStep(((θSt ,A), θEnv), ∅)

∩ arcStep(((θSt , B), θEnv), ∅) ) •
((θSt ′,Ω), θEnv) }

In the absence of divergence, an enabled event is accepted by (A ||[ns0 | ns1 ]||B)
whenever it is accepted by either A or B. We define the schema Interleaving0,
which describes the observations allowed when A makes its independent progress;
the schema Interleaving1 is defined similarly. We need three versions of the



state: (i) the before state shared by both actions and the resulting interleaving;
(ii) the after state of the action being evaluated independently; and (iii) the after
state of the interleaving.

Interleaving0
UnpredictableObs
UnpredictableObs[okay0/okay ′,wait0/wait ′, tr0/tr ′, userVars0/userVars ′]
ns? : PName

okay ′ = okay0 ∧ wait ′ = wait0 ∧ tr ′ = tr0
θUSt ′ = θUSt

UnpredictableObs describes valid observations (tr prefix tr ′) from a normal before
state (okay ∧ ¬ wait), where either divergence (¬ okay ′), visible communication
(tr ′ 6= tr), internal progress (¬ wait ′ ∧ tr ′ = tr ∧ Ξ USt), or waiting (wait ′ ∧
tr ′ = tr ∧ Ξ USt) are possible on the after sate.

After state variables of A are 0-subscripted to distinguish them from the after
state variables of the interleaving. In Interleaving1, we use 1 as a subscript to
distinguish the after state.

We have the case where independent progress is made on one action (say
A). Action (A ||[ns0 | ns1 ]||B) reaches (A′ ||[ns0 | ns1 ]||B) whenever A leads to A′

through the arc a.

∀Normal ; Env ; a : Arc •
arcStep(((θSt ,A ||[ns0 | ns1 ]||B), θEnv), a)

= {A′ : Action; Interleaving0[ns0/ns?] |
((θSt0,A′), θEnv) ∈ arcStep(((θSt ,A), θEnv), a) •

((θSt ′,A′ ||[ns0 | ns1 ]||B ), θEnv) }

The effect on the after state of the interleaving is defined according to observa-
tions allowed by the Interleaving schema with appropriate substitution for the
input name set.

10 Discussion

Our Circus model checker will permit the checking of certain kinds of infinite
state processes using an algorithm inspired by FDR. We require the LTS to
have a finite diagram bounded in size, but inscriptions on the nodes and arcs
can involve infinite states and transitions. To see how our operational semantics
compresses the graph of an LTS, consider the following two examples.

The process c?x : N → SKIP communicates a natural number and then
terminates: the CSPM LTS branches infinitely; the Circus LTS has just a single
arc to a node that is followed by termination.

The CSPM process P(i) = a!i → P(i+1) outputs the natural numbers, start-



ing at i . The parametrised process P(0) has an infinite number of nodes, each in-
dexed with a natural number, and a long thin LTS with transitions between suc-
cessor nodes. The state-based process var i := 0 • ( µX • a!i → i := i + 1; X )
has the same behaviour, but without the infinite graph. ¿From its start node,
the declaration enriches the environment with the variable i . From this node,
there is a single transition labelled with the set of events { i : N • a.i }, followed
by two transitions in sequence representing the assignment and recursive call.
This makes a total of four nodes and four transitions. Both processes can be
written in Circus, but the state-based style encourages the second.

The Circus model-checking algorithm tries to establish similarity between two
LTSs: an implementation and its putative specification. It can confirm refinement
or generate counterexamples for systems with modest data types, but in general
it requires the proof of verification conditions to distinguish the outcome of
model checking attempts and to compute counterexamples.

The verification conditions may be easily decidable, as would be the case
when the programs involved are data independent in the sense of Lazić and
Roscoe [21]. Other programs give rise to infinite state machines, but with bounded
arcs, like the data flow example in [9]. In such cases, certain checks can be made
with economical effort. For example, freedom from deadlock can be checked us-
ing the LTS, with the possibly infinite nodes giving rise to verification conditions
that all partial functions have been applied within their domains (Z/Eves’ do-
main checks [22]), which can be made automatic when appropriate preconditions
are present in the Z specification.

Most model checking attempts fail, as a user debugs both the specification
and the implementation, and we envisage a similar pattern with our tool. At
first, many verification conditions are generated, which the user must scrutinise
and judge. As the cycle of attempts continues, a pattern emerges, and similar
verification conditions are generated in individual attempts. It is now worth-
while developing an appropriate theory and tuning its automation so that the
stable set of verification conditions are discharged mechanically. New verifica-
tion conditions appear in subsequent attempts, and most are dealt with by the
theory. In this way, as the debugging converges to a correct refinement, the level
of automation converges with it.

One of our guiding principles is to take our own medicine in building the
tool, and so to develop crucial parts of the program using formal specification
and refinement. Indeed, the formal model in UTP makes precise the connec-
tion between model checking and theorem proving, and this use of formalism
is important for credibility as well as for soundness. The operational semantics
presented in this paper is one of the departure points for the formal derivation
of the algorithms used in the tool. Publication gives an opportunity for pub-
lic scrutiny of the tool’s development, as well as making its specification and
algorithms available for other tool builders.

Our operational semantics is inspired by that for CSPM used in FDR. Our
most important contribution is the treatment of infinite constructions such as
schema expressions and other state-related features of Circus. Our operational



and denotational semantics are presented in a uniform theoretical framework,
making their proof of congruence much easier. Finally, the two operational se-
mantics differ in various details, particularly to do with silent transitions, dis-
tributed termination, and divergence.

The two functions enabled and arcStep are used to define a transition relation
between configurations (states and action pairs) (s,P) → (t ,Q). As described
in [10], this may be interpreted as saying that an implementation that is re-
quired to execute P in state s is permitted to execute the shorter action Q in
state t . This gives us an independent correctness criterion for the operational
semantics: (s ; P) must be refined by (t ; Q), where (s ; P) is the program P
started in state s. In this context, the state is represented by an assignemnt.

We have used the Z/Eves theorem prover to analyse the soundness of our
description by proving refinement using the denotational semantics. This check
for soundness is not yet complete, since there is no mature version of UTP
embedded in a theorem prover yet. Nevertheless, research on this front is well
advanced: the works in [15, 16] describe deep embeddings of the UTP in the
theorem provers Z/Eves [14] and ProofPowerZ [12]. Eventually, this will enable
us to mechanise the proof of the correctness of all of our operational semantics
with respect to Circus’s denotational semantics.
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