
RoboCert: Property Specification in Robotics

Matt Windsor1[0000−0003−1285−0080] and Ana Cavalcanti1[0000−0002−0831−1976]

University of York, Department of Computer Science, Deramore Lane, Heslington,
York, YO10 5GH, UK {matt.windsor,ana.cavalcanti}@york.ac.uk

Abstract. RoboStar is a toolkit for model-based development using a
domain-specific notation, RoboChart, with enriched UML-like state ma-
chines and a custom component model. We present RoboCert: a novel no-
tation, based on UML sequence diagrams, which facilitates the specifica-
tion of properties over RoboChart components. With RoboCert, we can
express properties of a robotic system in a user-friendly, idiomatic man-
ner. RoboCert specifications can be existential or universal, include tim-
ing notions such as deadlines and budgets, and both safety and liveness
properties. Our work is faithful to UML where it can be, but presents sig-
nificant extensions to fit the robotics application needs. RoboCert comes
with tooling support for modelling and verification by model checking,
and formal semantics in tock -CSP, the discrete-time variant of CSP.

Keywords: RoboChart · Timed properties · CSP · sequence diagrams

1 Introduction

Mobile and autonomous robots are becoming common among us. While such
systems come in many shapes and sizes, from vacuum cleaners to UAVs, each
requires a degree of trust from users. A faulty robot risks mission or safety
failures, causing reputational damage, financial loss, or injury to humans.

Software and hardware engineering for trustworthy robotic systems is, there-
fore, a key research topic. One approach, embodied by RoboChart [13] and its
associated notations, combines model-driven development and formal methods.
RoboChart provides practitioners with intuitive, graphical notations that have
a well-defined meaning rooted in a formal semantics.

While RoboChart is well-established, with many successful case studies1,
its support for property specification is incomplete. Its assertion language is a
thin layer atop the formalisms targeted by the RoboChart semantics—the CSP
process algebra and the PCTL probabilistic logic—; users must be experts in
those formalisms. We seek high-level notations resembling those already used by
practitioners, which they can use with minimal adaptation to their workflows.

We introduce RoboCert, a notation for property specification over RoboChart
models. RoboCert exposes a dialect of the sequence, or interaction, diagram
notation provided by the Unified Modelling Language (UML) [5]. UML is a

1 https://robostar.cs.york.ac.uk/case_studies/

2 M. Windsor and Ana Cavalcanti

widely known and supported, if loosely defined, set of notations for describing
software behaviour; as such, it meets our criteria for familiarity and intuition.

Our key contributions are a formal metamodel and semantics for RoboCert.
Novelty comes from our treatment of time properties, both as novel constructs
in RoboCert diagrams, and in its semantics, based on the tock -CSP dialect of
CSP [14, 2]. Timing properties are important for robotic systems, and so any
useful property language must elegantly capture notions of delay and deadlock.

Section 2 outlines related work. Section 3 is a brief introduction to RoboChart.
Section 4 introduces RoboCert through examples. Section 5 explores the well-
formedness conditions and formal semantics of RoboCert in tock -CSP. Section 6
presents tool support currently available. Finally, section 7 gives conclusions.

2 Related work

Before outlining RoboCert, we discuss existing work in the relevant fields.
Lindoso et al. [11] have adapted UML activity diagrams as a property no-

tation for RoboChart. Their work has both a semantics in CSP and graphical
tooling. That work, however, focus on internal, as opposed to visible like in Robo-
Cert, behaviour of state machines, and does not yet consider time. Sequence and
activity diagrams complement each other, and so our work is complementary.
Since they are concerned with refinement checking, unsurprisingly, some of their
constructs (any and until) have analogues in RoboCert.

The main stream work on sequence diagrams is that of UML, which overlaps
with work on the Message Sequence Charts standard [16]. Offshoots from these
works pursue specific goals. Live Sequence Charts [4] (LSC) extend MSC to pro-
vide modalities for liveness analysis. Property Sequence Charts [1] (PSC) recast
parts of UML and MSC, alongside novel constructs for constraining message
chaining. In RoboCert, like in LSC, we have facilities to define universal and
existential properties. We have a notion similar to the constrained intraMSGs
of PSC in RoboCert (our ‘until’ construct). Importantly, in terms of notation,
what is novel in RoboCert are the explicit constructs to deal with time, and the
specific combination of constructors to support refinement-based compositional
reasoning about models of robotic systems.

STAIRS is a sequence-diagram refinement process [8] based on a trace-pair
semantics of UML. In contrast, we use refinement to compare a RoboCert dia-
gram to a RoboChart design, not different sequence diagrams. This is, of course,
a possibility, given the nature of refinement reasoning. The notion of refinement
in STAIRS, however, is different: it allows for addition of behaviours for incre-
mental development of diagrams. RoboCert refinement captures safety, liveness,
reduction of nondeterminism, and timing preservation. Like STAIRS, RoboCert
defines two forms of choice: internal and external. Timed STAIRS [7] extends
STAIRS to consider UML timing constraints, which can specify budgets, like in
RoboCert. In its semantics, events are time stamped.

Micskei andWaeselynck [12] surveyed the formal semantics for UML sequence
diagrams available in 2011. They explored variants of the set of trace-pairs ap-

RoboCert: Property Specification in Robotics 3

Fig. 1. The Foraging module.

proach of UML, as well as other denotational and operational semantics. This
comparison shows that different use cases and interpretations have given rise
to different semantics. Two of them are concerned with refinement: that for
STAIRS, and [6], where refinement is inclusion of languages defined by input-
enabled automata for a collection of sequence diagrams. None of the works com-
pared provides a reactive semantics for refinement based on a process algebra.

Closest to our work are those in Lima et al. [10, 9]. They provide a process
algebraic semantics to SysML and UML sequence diagrams, not including any
time constructs. In contrast, RoboCert has constructs to define core properties
of a timed system: time budgets, deadlines, and timeouts. RoboCert also adopts
a component model (similar to that of RoboChart). There is a notion of robotic
platform, system, and controller, as well as state machine. Messages correspond
to events, operations, and variables that represent services of a robotic platform
or other robotic components. A RoboCert sequence diagram is defined in the
context of a specific component of a robotic system: the whole system, its sets
of controllers, an individual controller, a set of timed state machines that define
the behaviour of a controller, or, finally, a single machine.

3 RoboChart

RoboChart [13] is a notation for the design of robotic control software. It provides
domain-specific constructs, such as the notion of service-based robotic platforms
that abstract over the robotic hardware. Another key feature is its discrete time
constructs for specification of deadlines, delays, and time-outs.

A RoboChart model consists of several diagrams arranged in a hierarchy
proceeding from the top-level module to individual controllers, each in turn con-
taining state machines. Another diagram captures the robotic platform. Commu-
nications with the platform are asynchronous, reflecting their typical reification
as sensors in the robot hardware. Communications between state machines are
always synchronous; communications between controllers may be of either sort.

As a running example, we use the foraging robot of Buchanan et al. [3], which
searches for items to store in a ‘nest’ location; it can transfer items to nearby
robots and avoid obstacles. Figure 1 shows Foraging, the top-level module for our
example. The platform block, ForagingRP, exposes four events to the software

4 M. Windsor and Ana Cavalcanti

Fig. 2. The robotic platform and the interfaces it provides.

(depicted by boxes and arrows). One (obstacle) signals to the ObstacleAvoidance
controller that an obstacle is in the way. The others (collected , stored , and
transferred) inform the ForagingC controller of the status of the items.

Figure 2 shows the robotic platform, ForagingRP. ForagingRP exposes the
aforementioned events as well as three provided interfaces (P). Each (MovementI,
GraspI, and RState) exposes operations (O), constants (π), and shared variables
(X) for use by the software. For instance, the platform provides a move operation
for setting linear and angular speed set-points. It then exposes the current speeds
as variables lspeed and aspeed. A constant nest provides the fixed nest location.
These elements abstract over actuators, sensors, and aspects of the environment.

Figure 3 depicts the controllers, and how they can both require (R) and
locally define (i) interfaces. Both controllers contain state machines: ForagingC
does so by reference to other diagrams, omitted here for space reasons, while
ObstacleAvoidance directly contains Avoid. The complete example is available2, as
well as many other case studies and RoboChart’s reference manual and tutorial.

The behaviour of Avoid, after transitioning from the initial state i , is a cycle
of Waiting for an event obstacle , then Turning, then stopping the turn once
complete. Both behaviours are described by calls to move on the platform.

Avoid makes use of RoboChart time primitives. The marker #T on the
obstacle transition resets a clock T. Subsequently, since (T) gets the number
of discrete time units observed since the reset; this information forms part of
a condition (in square brackets) which guards the transition back to Waiting.
These primitives form a time-based check for the completion of the turn.

In RoboChart, state machines within a controller operate in parallel with
one another, as do controllers within a module. This permits the modelling of
multiple separate computational resources, threads, and other such constructs.
Sequence diagrams, as a notation for capturing communications between parallel
entities, capture these rich scenarios well. They are presented next.

4 RoboCert sequence diagrams

In this section, we present the main novel features of RoboCert sequence dia-
grams (or interactions, in UML terminology) via examples of properties of the
foraging robot. A metamodel can be found in its draft report [17], and formal
2 robostar.cs.york.ac.uk

RoboCert: Property Specification in Robotics 5

Fig. 3. The ForagingC and ObstacleAvoidance controllers.

semantics is discussed in Section 5. RoboCert also includes the controlled En-
glish, presented in [13, 15] and omitted here, that can be used to define core
properties (such as deadlock and livelock freedom) of RoboChart models.

A key characteristic of RoboCert compared to UML is that it adheres to the
RoboChart component model. A RoboCert sequence diagram has a target : the
RoboChart model element being constrained by the diagram. Each diagram also
has a world : the environment of components residing above the target in the
component hierarchy. Each component is represented in a RoboCert diagram by
a vertical lifeline, with the vertical axis loosely representing the passage of time.

RoboCert sequence diagrams show traces of messages among components and
the world, and associated time restrictions. Communications are represented by
arrows between lifelines, with block-based control flow (parallelism, choice, and
so on) depicted by boxes surrounding lifelines and relevant messages.

RoboCert sequence diagrams can capture existential (stating some expected
behaviours of the system) or universal (capturing all expected behaviours) prop-
erties [4]. We can check whether a target conforms to a sequence diagram ac-
cording to two semantic models. In the ‘traces’ model, we only check trace-set
inclusion, treating the passage of time as a trace event and ignoring liveness. In
the ‘timed’ model, we require conformance in terms of liveness, and that timing
properties in both specification and model are fully compliant.

6 M. Windsor and Ana Cavalcanti

Fig. 4. An existential property containing timing features.

〈〈 target 〉〉

sd : state machine Avoid : turnTurn

event obstacle

op move(0, any)

wait(1)

op move(0, 0)

0

0

Component targets. There are two types of target: component and collection
targets. Sequence diagrams for components capture black-box specifications of
the behaviour of a component with respect to its world: they capture only the side
of the communications visible to the target. Figure 4 shows a sequence diagram
called turnTurn for an existential property whose target is the state machine
Avoid. Every diagram is given in a box; on its top left-hand corner, the label sd
includes the name of the target and the name of the diagram. In a component
diagram, as in this example, there is a single lifeline, labelled 〈〈 target 〉〉. The
world is represented by the box enclosing the diagram. Figure 4 captures a trace
starting with the (input) event obstacle , from the world to the target.

Diagrams with module targets show messages between the control software
represented by the module and its robotic platform. Diagrams with controller
targets depict controller interactions with the platform and other controllers.
Finally, the world for state machine and operation diagrams includes other ma-
chines in the same controller, the other controllers, and the platform.

Time. As well as the UML constructs for loops, parallel composition, optional-
ity, and alternative choice, RoboCert has constructs for capturing timing prop-
erties: deadlines, time budgets, and timeouts. The deadline fragment constrains
the amount of time units that can pass on a lifeline. The wait occurrence pauses
a lifeline for a given amount of time units, to define time budgets.

The diagram in Figure 4 depicts traces that start with the event obstacle
followed by an immediate (taking 0 time units) call to move(0, any), with ar-
guments 0 and any other value, effecting a turn. Afterwards, we have a time
budget (wait) of one time unit, and an immediate move call stopping the turn.

To specify a timeout, we use wait in conjunction with until , presented next.

Until. Another RoboCert extension to UML is until fragments, useful to define
partial specifications, which characterise sets of traces, rather than single traces,
of universal properties. These fragments permit the passage of time and exchange
of any messages in a given set until some occurrence inside the body takes effect.
(They are related to UML the concepts ‘strict’ and ‘ignore’.)

Figure 5 shows a diagram targeting the Avoid state machine. Its first until
fragment states that any messages can be exchanged (∗) until the event obstacle

RoboCert: Property Specification in Robotics 7

Fig. 5. A universal property of the obstacle avoidance logic.

〈〈 target 〉〉

sd : state machine Avoid : whenObstacleTurn

any(∗) until

any(∗ \Move) until

any(∗) until

event obstacle

0 op move(0, any)

occurs. Afterwards, a series of messages can be exchanged immediately (with
deadline 0) until a turn: a call to move(0, turnSpeed). Other calls to move, in
the set Move, whose definition we omit, are excluded in the until via ∗\Move.
We define named sets such as Move outside of the diagrams, to allow reuse.

The last until fragment wraps a deadlock occurrence (–). This construct
specifies that a lifeline has stopped making progress. Wrapping it in an until
has the effect of allowing messages from the until set to occur indefinitely; this
is the RoboCert idiom for encoding a universal diagram over partial traces.

A third use of until is to wrap a wait occurrence to define a timeout. This
permits messages in the set until the time specified by the wait has passed.

Temperature. An extension we make to UML is the hot and cold modality
for messages. On reaching a hot message, a model that satisfies the specified
property must be willing to accept the message at any time. By default, messages
are cold; the model is able to refuse these for any length of time.

Mandatory choice. As well as the UML alt fragment, RoboCert uses the xalt
fragment. Informally, alt is a provisional choice where the model can decide
which alternatives are available; xalt is a mandatory choice where the environ-
ment has full say and the model must accept all such choices.

The constructs hot and xalt add support to specify liveness aspects of a
property. We can verify such a property by using the timed model.

Collections. Collection targets are defined by a component (module or con-
troller), and reveal the internal representation of that component as a collection
of subcomponents. In this case, the world remains the same as if the diagram
had the corresponding component target, but each lifeline now maps to a dis-
tinct subcomponent; the target itself is not tangible here. We can observe both
messages between the subcomponents and the world as well as messages from
one subcomponent to another. Like in UML, the component lifelines produced
by such subcomponents act in parallel except where connected by such messages.

8 M. Windsor and Ana Cavalcanti

Fig. 6. Existential property of obstacle avoidance in parallel with the main logic.

〈〈 component 〉〉 ObstacleAvoidance 〈〈 component 〉〉 ForagingC

sd : components of module Foraging : collection

op Explore()

event collected

event obstacle

op move(0, any)

Figure 6 gives an example over Foraging, describing traces that interleave
activities of ObstacleAvoidance with those of ForagingC. First ForagingC calls the
operation Explore() of the world (platform). Inputs are then provided to the
controllers by the world via events obstacle and collected The parallelism of
the diagram means that Figure 6 admits traces where collected occurs before
obstacle . Finally, ObstacleAvoidance calls move with arguments 0 and any.

Other features. Features not shown here for brevity and pragmatism include: a
subset of the RoboChart expression language to define arguments and bounds;
variables within interactions, with the possibility of capturing event and opera-
tion arguments to variables and using them within expressions; loop; and par.

5 Well-formedness and semantics

We now present well-formedness conditions and a semantics for RoboCert.

5.1 Well-formedness

To have a well-defined meaning, a sequence diagram must satisfy multiple well-
formedness conditions. As expected, it must be well-typed and well-scoped ac-
cording to standard rules, not discussed here. In addition, the referenced elements
of RoboChart must comply with RoboChart well-formedness conditions.

Fragments are the main elements of sequence diagrams. They consist of occur-
rences (points on the vertical time axis, on which elements such as messages,
deadlocks, and waits are located), and combined fragments (which implement
control flow over other fragments), such as deadline, until , opt, for example.

Compound fragments contain one or more blocks of nested fragments; we call
these their operands. Operands may have a guard, which must be true for the
operand to be considered. By default, an operand’s guard is always: a tautology.
There are two other guard types: a Boolean expression, or otherwise (the negated
disjunction of the guards of all operands in the fragment).

The following well-formedness conditions apply to fragments.

RoboCert: Property Specification in Robotics 9

F1 The operand of an opt or loop must not have an otherwise guard. Since this
guard is the negated disjunction of all other guards, and these fragments only
have one operand, the otherwise guard would always be false.

F2 At most one operand of alt, xalt, and par can have an otherwise guard.
Since this guard is the negated disjunction of all other guards, the two such
guards would induce an ambiguous recursive definition.

F3 A alt, xalt, or par must not have an operand with an always guard and one
with otherwise. The former would make the latter implicitly false.

F4 A deadline, deadlock, or wait must not be on a world actor. The world does
not form a lifeline, so the fragment would not constrain anything.

F5 An until must not contain another until . Since the operand of an until
defines the interrupting condition for the arbitrary occurrences of the allowed
messages, it makes no sense for that condition to be an until itself.

Messages correspond to events, operation calls, and assignments to variables of
the associated RoboChart model. In general terms, their use must be compatible
with the RoboChart model. For example, the operation calls must have the right
number of arguments of the right type. More interestingly, the source and target
of an event message must be a component that defines that event, and the
there must be a connection between them associating these events. The specific
conditions in this category are listed in the report.

The semantics of diagrams defined next is for well-formed diagrams.

5.2 Semantics

RoboCert supports verification by refinement. Given the nature of robotic appli-
cations, namely concurrent reactive timed systems, we use tock -CSP, a discrete-
time version of CSP to define the RoboCert formal semantics. Like in CSP,
systems, their components, and properties are defined in tock -CSP as processes.
These define patterns of interaction via atomic and instantaneous events, with
the special event tock used to mark the passage of time. Table 1 enumerates the
operators we use, which behave as per Baxter et al. [2], where a denotational
semantics for tock -CSP, and an encoding for model checking are provided.

Diagrams. The diagram semantics is a parallel composition of lifeline processes,
as well as a process for handling until fragments. This reflects the UML semantics
of weak sequencing on occurrences across lifelines; the separate until process lets
us step out of this parallelism when inside an until fragment. Figure 7 presents
the tock -CSP process turnTurn defined by the diagram rule applied to Figure 4.

A diagram process, such as turnTurn, is defined by an iterated parallelism (‖)
over its set of actors: just target in the example, abbreviated to t . It composes
processes lifeline(a), for each actor a, synchronising on the intersection of their
sets of events alpha(a). In our example, we have just one process lifeline(t).

A lifeline(a) process is defined as a sequence (o9) of processes representing
the fragments of the lifeline, followed by a process term → Skip, which uses the
event term to flag termination. This event is internal to RoboCert, and so we

10 M. Windsor and Ana Cavalcanti

Operator Meaning Operator Meaning

tock event representing discrete
passage of time

Skip termination

Stop timed deadlock; refuses all
events except tock

TChaos(s) timed chaos; permits any
event in s, tock, or deadlock

StopU timelock; refuses all events
including tock

P I n deadline; permit at most n
tocks to pass within P

wait n wait for n tocks to pass e → P timed event prefixing
g & P guard (if g then P else Stop) µP • f (P) recursive process definition
P 4 Q interrupt P u Q internal choice
P 2 Q external choice P o

9 Q sequential composition
P ||| Q interleaving parallel P |[a]|Q generalised parallel

‖ x : a • α ◦ P indexed alphabetised parallel P vm Q refined-by (under model m)
Table 1. The tock -CSP operators used in our semantics

turnTurn =
(
‖ a : {t} • alpha(a) ◦ lifeline(a)

)
\ {term}

alpha(t) = ctl ∪ {Avoid :: obstacle.in} ∪ {x ∈ R • Avoid :: moveCall .0.x}

lifeline(t) = (µ x • (Avoid :: obstacle.in → Skip) u tock→ x)

o
9 ((µ x • (Avoid :: moveCall .0?x → Skip) u tock→ x) I 0)

o
9 wait 1

o
9 ((µ x • (Avoid :: moveCall .0.0→ Skip) u tock→ x) I 0)

o
9 term → Skip

Fig. 7. Semantics of turnTurn in tock -CSP – let t stand for 〈〈 target 〉〉

hide it at the top level using \ {term}. In turnTurn, the only lifeline has four
fragments: an occurrence fragment including obstacle , a deadline fragment (with
the call move(0,any)), another occurrence fragment with the wait, and a final
deadline fragment. Accordingly, we have four fragment processes in lifeline(t).

For fragments with a cold message, we have a process that makes repeated
internal choices as to whether engage in the event representing the message or
allow time to pass (tock). For example, the obstacle fragment is defined by a
recursive process (µ x) whose body makes an internal choice (u). The first option
is to engage in the event Avoid :: obstacle.in representing the input obstacle of
the machine Avoid and terminate (Skip). The alternative choice engages in tock
and recurses (x). For a fragment with a hot message, the process engages in the
event representing the message and terminates. There is no choice or recursion.

A deadline fragment has an operand: a list of fragments under a guard. Its
semantics is a process defined by applying the tock -CSP deadline operator (I)
to the process for the operand. The semantics of an operand is a guarded process

RoboCert: Property Specification in Robotics 11

whenObstacleTurn =
((
‖ a : {t} • alpha(a) ◦ lifeline(a)

)
|[ctl]| until

)
\ ctl

lifeline(t) = (sync.0.in → sync.0.out → Skip) o
9 (sync.1.in → sync.1.out → Skip) o

9

(sync.2.in → sync.2.out → Skip) o
9 term → Skip

until = µ x • (term → Skip)

2 (sync.0.in → (TChaos(Events) 4 Avoid :: obstacle.in)→ sync.0.out → x)

2 . . .

Fig. 8. Semantics of whenObstacleTurn in tock -CSP

defined by a sequence of fragment processes. In the deadline fragments of our ex-
ample, the operands are occurrence fragments. The semantics of a wait fragment
is direct, since wait is also a primitive of tock -CSP to model time budget.

For diagrams with until fragments, the lifelines must coordinate so that
each is aware of when the fragments start and end. We consider a diagram with
lifelines a, b, and c, a fragment any (m) until: a� b : event e, and, below it,
a fragment c�w : op o(). While messages in m are being exchanged, c cannot
progress past the until fragment to the op o() call. At the same time, that call
becomes available as soon as event e occurs, even though c is not involved in
that event. So, an until fragment affects all lifelines of a diagram.

To capture this semantics, we add a process to handle the bodies of until
fragments, placing it in parallel with the lifeline processes. We synchronise life-
lines with this process to effect the until fragments.

To illustrate, Figure 8 sketches the tock -CSP translation of Figure 5. The se-
quence process whenObstacleTurn composes the parallelism of the lifeline pro-
cesses in parallel with a new process until synchronising on the events in the
hidden channel set ctl . We define ctl = {term} ∪ sync, where sync is a set of
events representing synchronisation induced by until : there is a pair of events
for each until fragment. Each event is of the form sync.i .d , where i is the
index of an until , and d is an in or out direction with respect to the until
block. For any (m) until: a� b : event e in the example above, there is a pair
sync.i .in, sync.i .out where i is the index of the until fragment in the diagram.
In Figure 8, we have sync.0.in and sync.0.out capturing entering and exiting
the fragment any (∗) until : w� t : event obstacle, and similar pairs (sync.1.in,
sync.2.in) and (sync.2.out , sync.2.out) for the next two fragments.

The until process is a recursion that offers either to acknowledge the termi-
nation of the lifeline processes and then terminates itself (term → Skip) or to
handle any of the three until fragments in Figure 5 (we show one of the choices
in Figure 8). Each fragment choice is over an event on sync representing enter-
ing the fragment, followed by timed chaos (TChaos) on the events named in the
fragment. (TChaos) captures the ability to perform any of the given events, con-
suming any amount of time or deadlocking. This can be interrupted (4) by the

12 M. Windsor and Ana Cavalcanti

Rule Definition

[[−]]S For a diagram named s, with body b = 〈b1, . . . , bn〉:

[[sequence s actors a1, . . . , an b]]S ,((
‖ a : lines(a1, . . . , an) • alpha(a) ◦ lifeline(a)

)
|[ctl]| [[b]]U

)
\ ctl

where alpha(a) = α(a, b); lifeline(a) = [[b1]]F{a}
o
9 . . . o

9 [[bn]]
F
{a}; and

until = [[untils(b)]]U.
[[−]]U For a list 〈f1, . . . fn〉 of until fragments:

[[〈f1, . . . fn〉]]U , µ x • (term → Skip) 2 [[f1]]ux 2 . . . 2 [[fn]]ux
[[−]]u For a single until fragment inside the until process:

[[any in x until p]]ux , sync.isync(u).in → (TChaos([[x]]MS) 4 [[p]]PU)→

sync.isync(u).out → x

[[−]]F By case analysis on types of fragment:

[[alt x1 else x2 else . . . xn end]]Fa , [[x1]]P u [[x2]]P u . . . u [[xn]]P

[[xalt x1 else x2 else . . . xn end]]Fa , [[x1]]P 2 [[x2]]P 2 . . . 2 [[xn]]P

[[opt x end]]Fa , [[alt x else [always] nothing end]]Fa

[[deadline (x) on o]]Fa , if o ∈ a then ([[o]]O I [[x]]E) else [[o]]O

[[o]]Fa , if a ∩A(o) = ∅ then Skip else [[o]]O (occurrence fragments)

[[u]]Fa , sync.isync(u).in → sync.isync(u).out → Skip (until fragments)

[[−]]O Messages are omitted here for brevity.

[[deadlock on a]]O , Stop [[wait(x) on a]]O , wait [[x]]E

Table 2. Selected semantic rules for RoboCert

trigger given in the fragment. Upon completion of a fragment, the process then
engages in another sync event representing exiting the fragment, and recursing.

The sync communications synchronise with the lifeline processes. In our ex-
ample, we only have until fragments; therefore, each fragment is modelled by a
process that engages in a pair of sync events corresponding to the appropriate
fragment in until . These pairs effect the handing-over of control from lifelines to
the until fragment, then the hand-back once it is finished. All lifeline processes
synchronise on all sync events, so that they all handover control to until .

Table 2 presents selected rewrite rules, from RoboCert to tock -CSP, defining
the semantics of diagrams as we have just illustrated. Grey font denotes metan-
otation; standard mathematical (italics) font denotes tock -CSP target notation.

RoboCert: Property Specification in Robotics 13

Rule [[−]]
S expands a diagram s with actors a1 to an . With lines(a1, . . . , an)

we get the set of all actors except the world. The set α(a, b) is the alphabet of an
actor a within the fragment list b. For Figure 6, if o stands for ObstacleAvoidance,
f for ForagingC, w for world, and b for the body of collection , then

α(o, b) = ctl ∪ {w� o : event obstacle} ∪ {x ∈ R • o�w : op move(0, x)}

The definition of lifeline(a) expands, per actor, to the sequential composition
of the fragment rule [[−]]

F for each fragment in b. That rule takes an actor set;
some sequence elements only appear on the lifeline process if they relate to one
of the actors in the set. Usually, the set contains only the actor of the lifeline
being defined; the exception is when we expand fragments inside an until .

Let untils(b) extract from fragment list b all untils nested in the list. For
example, untils over the body of the diagram in fig. 5 yields:

〈 any in (∗) until : w� t : event obstacle,
any in (∗ \Moves) until: t�w : op move(0, any),
any in (∗) until : deadlock on t〉

Rule [[−]]
U builds the process composing until fragment bodies, as extracted

by untils. Inside a recursive process µ x , we produce first the termination ac-
knowledgement term → Skip, then add, in parallel composition, one application
of the sub-rule [[f]]ux for every fragment f in the list. This rule, in turn, produces
the timed chaos over the message set of f , interrupted by the expansion of the
trigger of f . This uses a rule [[−]]

P for fragment operands, which we omit for
brevity. Each fragment expansion then ends in a recursive call to x .

Rule [[−]]
F gives the semantics of fragments. As mentioned, this rule takes

as an extra argument the set of actors for which we are expanding the fragment
semantics. For alt, we combine the semantics of the branches using internal
choice. The semantics for xalt is identical, but uses external choice. As in UML,
opt equates to an alt where one branch is the body and another is empty.

For deadline fragments, we lift the operand into the tock -CSP deadline op-
erator if, and only if, its bound actor is one of the ones we are considering.
Otherwise, we pass through the operand semantics unchanged.

For until fragments, we synchronise with the until process. To do so, we
find the correct sync.i channel using isync, then emitting sync.i .in followed by
sync.i .out . While the fragment body is not used in this rule, it will execute
sequentially on the until process once all lifelines synchronise on sync.i .in.

We elide productions for loop and par in [[−]]
F. The semantics for loop

resembles the standard UML semantics; that is, no synchronisation between
iterations. Furthermore, the semantics for par is similar to that of Lima et al.

Occurrences at fragment position whose relevant actors include any of the
actors given to [[−]]F map to their occurrence semantics. Otherwise, they become
Skip. In the rule, A(e) refers to the relevant actors for e: the actor bound in any
on clause on e; the endpoints if e is a message; or U for any other e.

14 M. Windsor and Ana Cavalcanti

Finally, [[−]]
O is the semantic rule for occurrences. Both deadlock and wait

map to their tock -CSP equivalents.3 We omit the production for messages here,
as it just delegates to the rule [[−]]

M for messages with one caveat: it applies the
previously mentioned recursive-process transformation when messages are cold.

While the full RoboCert semantics is available in [17], we elide some semantic
rules for brevity, as well as the productions mentioned previously. We omit [[−]]

E

(expressions) as it is largely similar to its equivalent in the RoboChart semantics;
the RoboChart semantics is fully defined in [13]. We also omit [[−]]

MS (message
sets), as it directly maps to set operations.

We omit the rule for messages ([[−]]
M), as it follows that of the analogous

RoboChart constructs. The semantics of op messages is that of RoboChart calls;
the semantics of event messages is that of RoboChart communications. Instances
of any become CSP inputs. For example, we translate the messages in fig. 6 as:

[[f � w: op Explore()]]M , ForagingC :: ExploreCall

[[w � o: event obstacle]]M , ObstacleAvoidance :: obstacle.in

[[w � f : event collected]]M , ForagingC :: collected .in

[[o � w: op move(0, any)]]M , ObstacleAvoidance :: moveCall .0?x

6 Tool support

RoboCert has tool support in the form of RoboTool Eclipse plug-ins4. It adopts a
textual encoding of RoboCert diagrams loosely based on the Mermaid5 markup
language. The tool reifies the well formedness rules and semantics in section 5.

Listing 1.1 shows the encoding of the diagram in Figure 4. In RoboTool,
sequence diagrams are included in a specification group that has a name, and
defines a target, possibly instantiating some of its constants. This is optional,
but for successful verification by model checking, all constants need to have a
value. In our example, the group is SAvoid. The target stanza defines the group’s
target as Foraging. Each set to line fixes constants of Foraging.

A specification group also allows the definitions of (short)names for the actors
such as targets, worlds, and components up-front for later use in the diagrams.
In our example, we define names T and W for the target and the world.

In the sequence turnTurn, each occurrence inhabits its own line, with mes-
sage occurrences denoting the source and target actors using the � syntax.
Occurrences and fragments over particular actors have an ‘on X’ construct. A
full syntax of RoboCert, while omitted here, is available in the report.

Listing 1.1 has two assertions: a core property (deadlock freedom) and a se-
quence property. In the latter, is not observed marks the property as existential

3 Nondeterministic waits, taking range expressions, are planned for future revisions.
4 https://github.com/UoY-RoboStar/robocert-evaluation
5 https://mermaid-js.github.io

RoboCert: Property Specification in Robotics 15

Listing 1.1. A RoboCert script textually encoding the sequence in fig. 4

specification group SAvoid
target = state machine ObstacleAvoidance::Avoid with

turnRadius, turnSpeed set to 2
actors = { target as T, world as W }
sequence turnTurn
actors T and W
W�T: event obstacle
deadline(0) on T: T�W: op move(0, any)
wait(1) on T
deadline(0) on T: T�W: op move(0, 0)

assertion Df : target of SAvoid is deadlock−free
assertion Tt : SAvoid::turnTurn is not observed in the traces model

(and negated, as we expect this property not to hold). To check universal spec-
ifications, we can use does not hold or holds. Also, traces states that we are
interested in traces refinement; for the liveness proofs, we can use timed.

RoboTool compiles scripts such as those above into CSP-M scripts using the
semantic rules in Section 5. Before compilation may proceed, RoboTool performs
syntax checking, scope analysis, and the verification of healthiness conditions.

The RoboTool implementation validates our rules. Each rule is implemented
separately, by its own method, and, apart from the fact that the rules are func-
tional, and the implementation uses an imperative language, there is a one-to-one
correspondence between the rule definitions and code.

The output of the RoboCert plug-in uses the RoboTool output for the tar-
gets, either directly (for component targets) or with composition to reflect the
top-level structure of the component (for collection targets). We can therefore
use the RoboTool verification facilities to model check properties against the
automatically generated semantics of the actual artefacts.

7 Conclusions

This paper has introduced a domain-specific property language for robotics based
on UML sequence diagrams, but significantly enriched to deal with compositional
reasoning and time properties. This language enriches the RoboStar model-based
framework, and, in particular, supports the specification and verification by re-
finement of properties of design models written in RoboChart. We have shown
that sequences capture flows of events and operations in RoboChart models in
a natural way. We have also shown how the diagrams map onto tock -CSP.

Our work complements that of Lindoso et al.’s [11] on activity diagrams for
RoboChart models. We will expand support in RoboTool to integrate descrip-
tions of sequence and activity diagrams. In addition, we note that our graphical

16 M. Windsor and Ana Cavalcanti

notation is consistent and follows from the metamodel, but the diagrams here
were manually produced. We need a tool for automatic diagram production.

A goal of RoboCert is to be a unified toolbox for property specification of
RoboStar models. As such, we want to expand its notation set beyond core prop-
erties, sequence diagrams, and CSP. The RoboStar notations allow for parallel
modelling of both robotic software and hardware, with the goal of co-verification.
Extending RoboCert to express hybrid properties over both (discrete, logical)
software and (continuous, physical) hardware behaviour is in our plans.

References
1. Autili, M., Inverardi, P., Pelliccione, P.: Graphical scenarios for specifying temporal

properties: An automated approach. Autom. Softw. Eng. 14, 293–340 (09 2007).
2. Baxter, J., Ribeiro, P., Cavalcanti, A.L.C.: Sound reasoning in tock-CSP. Acta

Informatica (2021). https://doi.org/10.1007/s00236-020-00394-3, online April 2021
3. Buchanan, E., Pomfret, A., Timmis, J.: Dynamic Task Partitioning for Foraging

Robot Swarms. In Swarm Intelligence. pp. 113–124. Springer (2016)
4. Damm, W., Harel, D.: LSCs: Breathing Life into Message Sequence Charts. Formal

Methods Syst. Des. 19(1), 45–80 (2001).
5. OMG Unified Modeling Language. Standard, Object Management Group (Dec

2017), https://www.omg.org/spec/UML/2.5.1/PDF
6. Grosu, R., Smolka, S.A.: Safety-liveness semantics for UML 2.0 sequence diagrams.

In: 5th ACSD. pp. 6–14 (2005)
7. Haugen, Ø., Husa, K.E., Runde, R.K., Stølen, K.: Why timed sequence diagrams

require three-event semantics. In Scenarios: Models, Transformations and Tools.
pp. 1–25. Springer (2005)

8. Haugen, Ø., Stølen, K.: STAIRS – Steps To Analyze Interactions with Refinement
Semantics. In «UML» 2003 - The Unified Modeling Language. Modeling Languages
and Applications. pp. 388–402. Springer (2003)

9. Jacobs, J., Simpson, A.C.: On a process algebraic representation of sequence dia-
grams. In: SEFM. LNCS, vol. 8938, pp. 71–85. Springer (2014)

10. Lima, L., Iyoda, J., Sampaio, A.: A Formal Semantics for Sequence Diagrams and a
Strategy for System Analysis. In: MODELSWARD pp. 317–324. SciTePress (2014).

11. Lindoso, W., Nogueira, S.C., Domingues, R., Lima, L.: Visual Specification of Prop-
erties for Robotic Designs. In Formal Methods: Foundations and Applications. pp.
34–52. Springer (2021)

12. Micskei, Z., Waeselynck, H.: The many meanings of uml 2 sequence diagrams: A
survey. Softw. Syst. Model. 10(4), 489–514 (Oct 2011).

13. Miyazawa, A., Ribeiro, P., Li, W., Cavalcanti, A., Timmis, J., Woodcock, J.:
RoboChart: modelling and verification of the functional behaviour of robotic ap-
plications. Software & Systems Modeling 18(5), 3097–3149 (2019).

14. Roscoe, A.W.: Understanding Concurrent Systems. Texts in Computer Science,
Springer (2011)

15. Ye, K., Cavalcanti, A.L.C., Foster, S., Miyazawa, A., Woodcock, J.C.P.: Probabilis-
tic modelling and verification using RoboChart and PRISM. Software and Systems
Modeling (2021).

16. Message Sequence Chart (MSC). Standard, ITU-T (Feb 2011), https://www.itu.
int/rec/T-REC-Z.120-201102-I/en

17. RoboCert Reference Manual. Report, RoboStar (May 2022), https://robostar.
cs.york.ac.uk/publications/reports/robocert.pdf

