The Semantics of Circus

Jim Woodcock! and Ana Cavalcanti?

! Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford, UK
Jim.Woodcock@comlab.ox.ac.uk
? Universidade Federal de Pernambuco/Centro de Informética
P.O. Box 7851, 50740-540 Recife PE, Brazil

alcc@cin.ufpe.br

Abstract. Circusis a concurrent language for refinement; it is a unifica-
tion of imperative CSP, Z, and the refinement calculus. We describe the
language of Circus and the formalisation of its model in Hoare & He’s
unifying theories of programming.

1 Introduction

An important research agenda in software engineering is the integration of lan-
guages and techniques that have proved themselves successful in specific aspects
of software development. In particular, there has been interest for many years in
combining state-based and behavioural formalisms [36]. There are several pro-
posals for combining Z [4, 26] with process algebras [15,19, 23]. With Circus [32],
we also want a calculational method of program development as those of [2,21,
22]; a similar calculus has been proposed for Z [7].

Circus is a unified programming language containing Z and CSP constructs,
specification statements, and guarded commands [9]. It includes assignments,
conditionals, and loops, and the reactive behaviour of communication, paral-
lelism, and choice. All existing combinations of Z with a process algebra model
concurrent programs as communicating abstract data types, but we do not in-
sist on identifying events with operations that change the state. The result is a
general programming language suitable for developing concurrent programs.

Imperative refinement calculi are normally given predicate transformers se-
mantics; however, theories of refinement for CSP are based on the failures-
divergences model [15, 23]. A connection between weakest preconditions and CSP
does exist [20], and a sound and complete theory of refinement has been devel-
oped based on it [36]. We use the unifying theory of [16], where both state and
communication aspects of concurrent systems are integrated in a state-based
failures-divergences model. This leads to a simple and elegant definition of re-
finement and makes a good underpinning for a refinement calculus. Our goals
are: ease of use for those familiar with Z and CSP; encapsulation of the model;
and the possibility of reusing existing theories, techniques, and tools.

In the next section we give an overview of the structure of Circus specifications
and define its syntax. Section 3 provides a brief introduction to unifying theories

Program == CircusParagraph™

CircusParagraph = Paragraph
| ChannelDefinition | ChanSetDefinition | ProcDefinition

ChannelDefinition ::= channel CDeclaration

CDeclaration
SCDeclaration

SCDeclaration | SCDeclaration; CDeclaration
N* | Nt : Expression | Schema-Exp

ChanSetDefinition

chanset N == CSExpression

JOI4NTHIN

CSExpression U CSExpression | CSExpression N CSExpression
CSExpression \ CSExpression

CSExpression

ProcDefinition process N = Process

Process begin PParagraph™ e Action end | N

Process; Process | Process O Process | Process M Process
Process || CSExpression || Process | Process || Process
Process \ CSExpression

Declaration ® Process | Process| Expression™ |

Process[N* := N*]

Declaration e Process | Process(Expression™)
[N*]Process | Process[Expression™]

Fig. 1. Circus syntax

of programming before, in Section 4, we give the formal semantics of Circus.
Finally, in Section 5 we discuss related and future work.

2 Circus

As with 7 specifications, Circus programs are sequences of paragraphs: besides
the Z paragraphs, we have channel and channel set definitions, and process
definitions. In Figures 1 and 2 we present the specification of the Circus syntax.
We use an extended BNF notation, where SC* and SC* represent a possibly
empty list and a comma-separated list of elements of the syntactic category SC.
The syntactic category N is that of the valid Z identifiers. The definition for the
7 constructs in the syntactic categories called Paragraph, Schema-Exp, Predicate,
and Expression can be found in [26]. In Figure 3, as a simple example, we present
a process that generates the Fibonacci sequence; more substantial examples of
the use of Circus can be found in [32, 33].

Processes communicate with each other and the environment by means of
channels, whose definitions declare the types of the values that are communicated
through them. For the Fibonacci generator, we need to declare the channel out

PParagraph ::=Paragraph | N = Action
Action ::=Schema-Exp | CSPActionExp | Command

CSPActionExp ::=Skip | Stop | Chaos
| Communication — Action | Predicate & Action
| Action; Action | Action O Action | Action I Action
| Action || CSExpression]| Action | Action || Action
| Action \ CSExpression | pN e Action
| Declaration e Action | Action(Expression™)
Communication::=N CParameter™
CParameter :=7N | 7N : Predicate | ! Expression | . Expression

Command :=N": [Predicate, Predicate] | N* := Expression™
| if GuardedActions fi
| var Declaration e Action | con Declaration e Action

GuardedActions::=Predicate — Action | Predicate — Action O GuardedActions

Fig. 2. Circus syntax

through which the Fibonacci sequence is output.
channel out : N

Channel declarations may be grouped in schemas. For conciseness, we can define
channel sets to be used as arguments to the parallelism and hiding operators.
The definition of a process gives its name and its specification: state and
behaviour. An explicit process specification like that of Fib is a Z specification
interspersed with action definitions: the state is defined as in Z and the behaviour
is defined by a distinguished nameless action at the end. Typically, this action is
defined in terms of other actions previously defined in the process specification.
In our example, the state contains two components: 2 and y of type N. A proof-
obligation requires us to prove that the invariant is not false; in this case and in
most cases it is simple. The main action is the CSP sequence InitFib; OutFib.
An action can be a schema that specifies an operation over the process state,
a command of Dijkstra’s language of guarded commands, or formed using CSP
operators. We also have specification statements as in Morgan’s calculus [21], and
logical constants. The action InitFib is defined using the prefixing operator: it
outputs 1 twice through out and then behaves like the initialisation InitFibState.
In OutFib, firstly, a local variable is declared; secondly, the next Fibonacci
number is calculated and the state is appropriately updated by OutFibState;
thirdly, the number is output; and finally, OutFib proceeds recursively. The vari-
able next is referred to in QutFibState as next!. Unlike in Z, we interchangeably
use dashes and shrieks to decorate after-state variables. Our choice in the exam-
ple emphasises that next is a local variable. The following simpler definition of

process F'ib = begin
FibState = [z,y : N

InitFibState = [FibState’ | 2’ = y' = 1]
InitFib = out!l — out!l — InitFibState

OutFibState = [AFibState; next! : N | next! =y =z +y Az’ = y]
OutFib = p X e var next : N o OutFibState; out'nert — X

e InitFib; OutFib

end

Fig. 3. Fibonacci generator

OubF'ib is possible, though.

OutFibState = [AFibState | y' =z +y ANz’ = y]
OutFib = p X e out!(z + y) = OutFibState; X

If, however, an implicit specification of the output is needed, the previous style
should be adopted.

As actions, processes can also be combined using CSP operators. The state of
the combination encompasses those of the operands, and the behaviour is given
by combining the main actions of the operands with the used operator. As an
example, consider Fib || Fib. Its state comprises two copies of the state compo-
nents of Fib; renaming is used to avoid clashes. As the interleaving operator is
used, two Fibonacci sequences are merged arbitrarily through out.

The Circus indexing operator is novel: the process i : T ©® P behaves like
P, but operates on different channels. Each communication over a channel c is
turned into a communication of a pair over a channel c_i. The first element of the
pair is 7, and the second is the value originally communicated. The declaration of
¢—i is implicit. The index 4 in 4 : T® P is a parameter; the process (i : T@ P)|e]
communicates pairs as explained above, but the first element of the pairs is e: the
index.

For example, suppose we want to generate two Fibonacci sequences, but
we want to identify the generator of each element. We consider the process
i : {1,2} ® Fib. It outputs through channel out_i the pairs (i,1), (i,1), (i,2),
(i,3), (4,5), and so on, where in each case 4 is either 1 or 2. The process
(i : {1,2} ® Fib)|1] produces pairs through out_i whose first elements are 1; sim-
ilarly for (¢ : {1,2} ® Fib)|2]. Finally, (¢ : {1,2} ©@ Fib)|1] ||| (i : {1,2} © Fib)|2]
produces an arbitrary merge of the two sequences of pairs: the first element of
the pair identifies the generator and the second is a Fibonacci number.

In CSP, indexing is achieved by renaming since a communication of the value
2 over c is just an event name c.2. In Circus, this is not the case and we need
to handle channel names and types separately. The reason for this distinction is
the need for strong typing of communications in the spirit of Z.

The process Ploldc := newc] is similar to P, but communicates through the
channel newc where P would communicate through oldc. The declaration of
newc, if necessary, is implicit.

Parametrisation of processes is similar to indexing, but is not related to
channels. It declares extra variables, the parameters, which are available in the
specification of the process. Instantiation fixes the value of these variables. The
Z facility for defining generic paragraphs is extended to processes in Circus.
In [X]P, the generic parameter X is introduced to be used in P as a type.
Instantiation can be explicit as in P[N] or inferred from the context.

The CSP recursion and prefixing operators are not available for processes.
Since there is no notion of a global state, communication is handled by actions.
It is also not clear that recursive definitions of processes are useful.

3 Unifying Theories of Programming

In Hoare & He’s unifying theory of programming [16], the theory of relations
is used as a unifying basis for the science of programming across many dif-
ferent computational paradigms. Programs, designs, and specifications are all
interpreted as relations between an initial observation and a subsequent (inter-
mediate or final) observation of the behaviour of a device executing a program.

In their unification, different theories share common ideas: sequence is re-
lational composition; the conditional is a simple Boolean connective; nondeter-
minism is disjunction; and parallelism is a restricted form of conjunction. The
miracle of the refinement calculus is the empty relation and abortion is the
universal relation. Making assertions conditional-aborts brings all of assertional
reasoning within the scope of the theory. Both correctness and refinement are
interpreted as inclusion of relations, and all the laws of a relational calculus are
valid for reasoning about correctness in all theories and in all languages.

Particular design calculi and programming languages are differentiated by
their alphabet, signature, and healthiness conditions. The alphabet of a theory
gives names for a range of external observations of program behaviour. By con-
vention, the name of an initial observation is undecorated, but the name of a
similar observation taken subsequently is decorated with a dash. This allows a
relation to be expressed as in Z by its characteristic predicate. The signature
provides syntax for denoting the objects of the theory. It names the relations
corresponding to primitive operations directly, and provides operators for com-
bining them. The healthiness conditions select the objects of a sub-theory from
those of a more expressive theory in which it is embedded. Thus programs form
a subset of designs, and designs form a subset of specifications.

The alphabet of each theory contains variables to describe all aspects of pro-
gram behaviour that are considered relevant. In a purely procedural paradigm,
these stand for the initial and final values of the global variables accessed and up-
dated by a program block. Some variables are ezternal, because they are globally
shared with the real world in which the program operates, and so they cannot be
declared locally. The first example is the Boolean variable okay: it means that

the system has been properly started in a stable state; okay’' means subsequent
stabilisation in an observable state. This permits a description of programs that
fail due to nonterminating loops or recursion.

In a theory of reactive processes, the variable ¢r records past interactions
between a process and its environment; and the Boolean variable wait distin-
guishes the intermediate observations of waiting states from final observations
of termination. During a wait, the process can refuse to participate in certain
events offered by the environment; these are specified by the variable ref.

The signature of a theory varies in accordance with its intended use, whether
in specification, in design, or in programming. A specification language has the
least restricted signature. Design calculi successively remove unimplementable
operators, starting with negation; all operators are then monotonic, and recur-
sion can safely be introduced as a fixed-point operator. In the programming
language, only implementable operations are left.

A healthiness condition distinguishes feasible descriptions of reality from in-
feasible ones. By a suitable restriction of signature, design languages satisfy many
healthiness conditions, and programming languages satisfy even more. Hoare &
He have shown [16] that all healthiness conditions of interest may be expressed
in the form P = ¢(P), where ¢ is an idempotent function mapping all relations
to the healthy ones of a particular theory. These idempotents link higher-level
designs to lower-level implementations.

The laws of CSP are not true for all predicates over the observational vari-
ables; there are eight healthiness conditions for CSP processes: three characterise
reactive processes in general; two constrain reactive processes to be CSP ones;
and a further three are more specific still. The first healthiness condition for a
reactive process (R1) is that its execution can never undo any event that has
already been performed. The second healthiness condition (R2) requires that
a reactive process’s behaviour is oblivious of what has gone before. The third
healthiness condition (R3) is designed to make sequential composition work as
intended. Suppose that we have the sequential composition of two processes P;
and P,. When P; terminates, the value of wait' is false; therefore, P,’s value of
wait is also false, and control passes from P; to P». On the other hand, if P;
is still waiting for interaction with its environment, then its value of wait’ and
Py’s value of wait are both true; in this case, P» must leave the state unchanged.
Of course, this is sensitive to the previous process’s stability: if activated when
okay is false, then its only guarantee is to extend the trace.

R is the set of reactive processes, which satisfy these first three healthiness
conditions. An interesting subset of R satisfies two additional conditions. The
first (CSP1) states that, if a process has not started, then we can make no
prediction about its behaviour. The second (CSP2) states that we cannot require
a process to abort; this is characterised by the monotonicity of the okay’ variable.

CSP is the set of reactive processes that satisfy these two healthiness condi-
tions. Further healthiness conditions are required to capture the standard theory
of CSP; each of them is given as a simple unit law. The first (CSP3) requires
that a CSP process does not depend on the initial value of the ref variable

when wait is false. Of course, when wait is true, then it must behave as required
by R3. The second (CSP4) requires that the ref’ variable is irrelevant after
termination. The third (CSP5) requires that refusal sets must be subset-closed.

4 The Model of Circus

Our model for a Circus program is a Z specification that describes processes and
actions as relations. The model of a process is itself a Z specification, and the
model of an action is a schema.

4.1 Channel environment

We use the Z mathematical notation as a meta-language. The semantics of a
process depends on the channels in scope. These are recorded in an environment:

ChanEnv == ChanName +> Expression

The given set ChanName contains the channel names. The channel environment
associates a channel name to its type.

The semantic function [[_]]CD : ChannelDefinition ++ ChanEnv gives the mean-
ing of channel definitions as channel environments recording their declarations.
Untyped channels, used as synchronisation events, and are given the type Sync,
a given set. For conciseness, we omit the definition of [_]“”, which can be found
in [31] along with a few other definitions also omitted from this paper.

A channel is not a value in our model and so we cannot define a set of
channels. In a Circus program, channel sets are used to abbreviate process ex-
pressions like parallelism and hiding. We assume that these process expressions
are expanded by replacing references to channel sets with the set of channels it
defines. The channel set definitions can then be eliminated.

4.2 Process environment

A process definition may refer to other processes previously defined and so we
also need a process environment that associates process names to their models:

ProcEnv == seq(ProcName x ZSpecification)

The given set ProcName contains the valid process names, and ZSpecification is
the syntactic category of Z specifications. We use sequences because the order
in which processes are declared is relevant: we cannot refer to a process before
its definition. This is a restriction inherited from 7 that can be lifted by tools,
as long as they guarantee that there is an appropriate order to present the
specification. The Z specification corresponding to a whole program includes
those corresponding to the individual processes in the order that they appear.
A process definition enriches the environment by associating a process name
to the Z specification corresponding to the declared process. Moreover, if the

process specification involves indexing or channel renaming, new channel names
are implicitly declared. The semantic function [_]7” gives the meaning of a
process definition as a process environment that records just the single process
it declares, and a channel environment recording the new channels it introduces.

[L17" : ProcDefinition + ChanEnv + ProcEnv + (ChanEnv x ProcEnv)

[process N = P]]pry p=1let Ps == [[P]]Pfy pe (Ps.1,{((N,Ps.2)))

The semantics Ps of P is taken in the current channel and process environments;
it is a pair containing a channel environment and a Z specification. The seman-
tics of the process definition includes the channel environment and a process
environment that associates N to the Z specification. The function [[_]]73 gives
the meaning of processes and is defined later on.

4.3 Programs

A program’s meaning is given by [[_]]PROQ : Program -» ZSpecification. The

model of a Circus program is its Z paragraphs and the model of its processes.
More precisely, the specification starts with the following four paragraphs. First,
we define a boolean type Bool as a free type with two constants: False and True;
we use variables of this type as predicates, for simplicity. The second paragraph
declares the given sets Sync and Event; the former is the type of the synchronisa-
tion events, and the latter includes the possible communications of the program.

The third paragraph specifies the components that comprise the state of a
process, in addition to the user state components. These are the variables of the
unifying theory model and the additional trace variable, which records the events
that occurred since the last observation. Our processes do not have an alphabet
as in [16]; instead we consider the alphabetised parallel operator of [23].

ProcessState = [trace, tr : seq Event; ref : P Fvent; okay, wait : Bool]

Changes to the process state are constrained as specified in the fourth para-
graph: valid process observations increase the trace.

ProcessStateObs = [AProcessState | tr prefix tr' A trace’ = tr' — tr]

The remaining paragraphs are determined by [[prog]]CPARL () ¢. This is the
semantics of the list of paragraphs that compose the program itself.

4.4 Paragraphs

A Circus paragraph can contribute to the semantics of the whole program by
extending the Z specification, and the channel and process environments.

[[_]]CPAR : CircusParagraph + ChanEnv + ProcEnv -+
(ZSpecification x ChanEnv x ProcEnv)

For a Z paragraph Zp, the definition of [[_]]CPAR adds Zp to the Z specification

as it is, and does not affect the channel or the process environment.

12p]PA% ~ p = (tc Zp, . p)

Slight changes to the Z paragraph may be needed because of schemas with un-
typed components, which are assumed to be synchronisation event declarations.
The function ¢c, when applied to a schema that declares such components, yields
the schema obtained by declaring the types of these components to be Sync.

A channel definition cd gives rise to a few paragraphs in the Z specification
and enriches the channel environment.

[ed]7*% 5 p=let ' == [cd]°” o (eventsy', v &', p)

The environment 4’ records the channels declared in cd. For each channel ¢
recorded to have type T different from Sync in 7', we have that events ' yields
an axiomatic description that declares ¢ to be an injective function from T to
Event. If T is Sync, then c is declared to be itself an event. These constants and
injective functions are Fvent constructors.

A process definition pd determines a Z specification of its model, and enriches
the process environment and possibly the channel environment as well.

[pd“"*% ~ p =let pds == [[pd]"" v p o ((pds.21).2,7 @ pds.1, p & pds.2)

The semantics of pd is a pair pds containing the channel environment that records
the channels pd (implicitly) declares, and a process environment that records
the process defined by pd. The Z specification corresponding to the process is
the second element of the pair in the first and unique position of the process
environment, which is itself the second element of pds.

The function [[_]]CPARC maps lists of paragraphs to Z specifications whose
paragraphs are obtained from the Circus paragraphs as specified by [[_]]CPAR.

We eliminate repeated names used across different process definitions by
prefixing each name with the name of the process in which it is declared. Also,
in the model of a process, where several schemas are defined, their names should
be fresh. Below, we leave this assumption implicit.

4.5 Processes

The semantic function [[_]]73 gives the meaning of a process declaration as a pair
containing a channel environment and a Z specification.

[]7 : Process -» ChanEnv + ProcEnv - (ChanEnv x ZSpecification)

For a process name N, the semantics is the current channel environment and
modelOf N in p, which is the Z specification associated to N in p.

For an explicit process specification begin ppl ¢ A end, the semantics is a Z
specification containing the following paragraphs: ProcObs, a schema describing
the observations that may be made of the process; the Z paragraphs as they are,

except for those that are schemas that define operations as these are actions;
and, for each action, a schema constraining the process observations. In order
to define ProcObs we specify a schema State that defines the process state. It
includes the components of the schema ProcessState previously defined and those
of the state defined in ppl, which we assume to be named UserState.

State = UserState N\ ProcessState

The state of a Circus process in our model includes the components of the state
in its specification, which we refer to as user state, and the observation variables
of the unifying theory. A process observation corresponds to a state change.

ProcObs = AUserState N ProcStateObs

As we explain later on, the state can be extended by the declaration of extra
variables. Therefore, we actually consider a family of schemas ProcObs(USt); for
a schema reference USt that defines the user state, ProcObs(USt) is the schema
defined as ProcObs above, except that it includes AUSt, instead of A UserState.

4.6 Actions

To each action N = A corresponds a schema named N. It is determined by the
function [[_]]A which takes as arguments the current channel environment and
the name of the schema that defines the user state.

[_]"* : Action + ChanEnv - N + Schema-Exp

The main action is nameless; the schema corresponding to it is given a fresh
name. This schema is also determined by the function [[_]]A.

We distinguish three cases in the definition of the behaviour of an action: the
normal case, the case in which the previous operation diverged, and the case in
which the previous operation has not terminated.

[A]"y USt = [A]™Y~y USt v Diverge(USt) v Wait(USt)
The function [_]™*V characterises the normal behaviour of an action.

L] : Action + ChanEnv + N - Schema-Exp

It is defined by induction below. The family of schemas Diverge(USt) charac-
terise the behaviour of an action in the presence of divergence.

Diverge(USt) = [ProcObs | - okay |

Divergence is characterised by the fact that okay is false; the only guarantee is
that trace can only be extended: a restriction enforced by ProcessStateObs. For
Wait(USt) we have the following definition.

Wait(USt) = [Z ProcObs(USt) | okay A wait]

The waiting state occurs when both okay and wait are true: there is no diver-

gence, but the previous action has not terminated; the state does not change.
The normal case of the actions behaviour is characterised by the schema below.

Normal(USt) = [ProcObs(USt) | okay A — wait]

In this case, there is no divergence and the previous action has terminated.

Schema Expressions For a schema expression SEzp, we have the following.
[[SEwp]]AN’y USt = SEzp A OpNormal V OpDiverge

OpNormal describes when SEzp is activated in a state that satisfies its precon-
dition; the trace is not modified and okay and wait do not change: the operation
terminates successfully.

OpNormal = [Normal(USt) | trace’ = () A okay’ A — wait']
If the precondition of SExzp is not satisfied, the action diverges.
OpDiverge = [Normal(USt); SEzp V — SExp | - pre SExp A = okay']

We include SExp V — SExp to put input and output variables in scope. In the
sequel, we define the normal behaviour of the actions.

CSP Expressions The definition of the normal behaviour of Skip is as follows.
[Skip] ™~y USt = [Normal(USt) A ZUSt | trace’ = {) A okay' A — wait']

The user state is not changed, the trace is also not changed, and it terminates.

For Stop, we have a similar definition, but deadlock is characterised by the fact

that wait' is true. For Chaos, we require — okay, which characterises divergence.
Sequencing is defined in terms of a function sequence on ProcObs(USt).

__[[A; B]"¥~ USt
Normal(USt)

0 ProcObs(USt) = 0([[A]]A7 USt) sequence 0([[3]]“47 USt)

The function sequence takes two process observations and returns the process
observation that characterises their sequential composition.

_sequence— : ProcObs(USt) x ProcObs(USt) + ProcObs(USt)

Ya,b,c: ProcObs(USt) | ¢ = a sequence b <
before ¢ = before a A after a = before b A after b = after ¢

The sequential composition is well-defined only if the final state of the first
process is equal to the initial state of the second. The functions before and after
project the initial and the final state out of a process observation. If a diverges,

then we have that — a.okay’ and consequently — b.okay. So, if b satisfies the
healthiness condition CSP1, then the composite a sequence b diverges. Similarly,
if a is waiting, then we have a.wait’ and so b.wait. So, if b satisfies the healthiness
condition R3, then a sequence b waits.

We specify a communication as a process observation Comm(USt). Its oc-
currence is an event characterised by a channel name and a communicated value;
in our model, this is an element of Event. The process observation Comm(USt)
takes as input the set of events accFEvents? that can take place, and outputs the
event e! that actually takes place. We can make observations at two stages of the
communication. The first is when the communication has not yet taken place.

— CommWaiting(USt)
Normal(USt)
accEvents? : P Event
ZUSt

trace’ = () N\ accEvents? Nref' =0 A okay' A wait’

The trace is not extended, the acceptable events are not refused, and the user
state is not changed. We can also observe a communication after it has occurred.

— CommDone(USt)
Normal(USt)
accEvents? : P Event

e! : Event
= USt

e! € accEvents? A trace’ = {(e!) A okay' N — wait'

The trace is extended with a possible event; the user state is not changed.

Comm(USt) = CommWaiting(USt) Vv CommDone(USt) V
Diverge(USt) Vv Wait(USt)

A communication is actually a more primitive concept than a prefixing, which
is the sequential composition of a communication and an action. For a prefixing
clv — A, we have the following semantics.

_[elv — A]Y Y USE
Normal(USt)

Joc : Comm(USt) | oc.accEvents? = {c(v)} o
0 ProcObs(USt) = (procObsC' oc) sequence 0([[A]]A'y USt)

The only possible communication is ¢(v). The function procObsC projects out
the components of a communication that form a process observation. The se-
mantics of c.v = A and ¢ — A can be defined in a similar way. For ¢7z — A
the definition is different as ¢?xz introduces the variable z in scope for A.

The action p & A is enabled only if the p condition holds, in which case, the
semantics is that of A; otherwise it behaves as Stop.

The behaviour of an external choice A O B can be observed in two points.
Before the choice is made, the trace is empty, the process is waiting, and the user
state has not been changed. The refusal set is characterised by the restrictions
of both A and B: an event is refused only if it is refused by both A and B.

_ ExtChoice Wait(USt)
Normal (USt)
ZUSt

trace’ = () N okay' A wait’ A [[A]]A’y USt A [[B]]A’y USt

If a choice has been made, then either the trace is not empty or the process has
diverged or it is not waiting. The behaviour is either that of A or that of B.

_ ExtChoiceNotWait(USt)
Normal(USt)

(trace’ # () V = okay' V = wait’) A ([A]"'y USt v [B]'y USt)

[A O B]"W~ USt = ExtChoiceWait(USt) V ExtChoiceNot Wait(USt)

The internal choice is given simply by disjunction.
We define the semantics of parallelism as shown below.

_[A[C] B~ USt
Normal(USt)

dtracea, traceb : seq Event; refa, refb : P Event;
okaya, okayb, waita, waith : Bool e
([[A]]A7 USt)[tracea, refa, okaya, waita/trace’ , ref', okay', wait'] A
([[B]]A’y USt)[traced, refb, okayb, waith/trace’ , ref’, okay', wait'] A
trace’ € tracea || traceb sync ([C]y) A
ref' = (refa U refb) N [CTvy U (refa N refb) \ [CTy A
okay' = okaya N okayb
wait' = waita V waith

We include the schemas that define the semantics of A and B. These actions
start in the same state, so their restrictions on the initial state are conjoined.
We rename the individual final state components to use in the definition of the
parallel composition.

An event can be refused by the parallel composition if either A or B can refuse
it and they have to synchronise on it, or rather, it is in the synchronisation set
C. This set is denoted above by [C]y and includes all events that represent

communications over a channel in C' according to its type definition in . If an
event is not in this synchronisation set, then it can only be refused if both A and
B can refuse it. The parallel composition diverges if either A or B does, and it
terminates when both A and B do. The trace is the combination of the traces
of A and B where events in the channel set determined by C are synchronised.
The definition of the _ || _sync_ operator can be found in [23]. The definition of
interleaving is similar to that of parallelism.
The semantics of hiding is as follows.

_[A\ Ty USt
Normal(USt)

Jtracep : seq Event; refp : P Event o
[[A]]A7 USt[tracep, refp/trace’, ref'] A
trace’ = tracep | (Event \ [Cy)
refp = ref' U ([C]v)

The traces and refusals of A \ C are determined in terms of those of A: we have
to eliminate all events that represented communications through the channels
in C from the trace and from the refusals. In order to deal adequately with the
semantics of hiding, we need to have infinite sequences in our model, as suggested
n [16]. We leave the complications of this as a future work for now.

The definition of the semantics of a recursive action u X e A is standard.
We must observe, however, that the action A may use X as an action and, as
such, is regarded as a function from actions to actions. For clarity, we refer to
this action as F'(X).

[X e F(X)]"Vy USt
Normal(USt)

0 ProcObs(USt) € \U{a : SProcess(USt) | a C [F(O)] v USt(a)}

In this context, a process is represented as a set of process observations that sat-
isfies the healthiness conditions of CSP. The definition of the set SProcess(USt)
of such processes can be found in [31].

We use the semantic function [_]”, which gives the semantics of a function
on actions as a function on process observations.

[_]” : (Action — Action) - ChanEnv + SchemaName
—+ (ProcObs(USt) — ProcObs(USt))

The function [F(_)]” v USt can be defined in terms of [[_]]A as follows.
[F ()] USt : ProcObs(USt) — ProcObs(USt)

V po : ProcObs(USt) e let 8([X[y USt) == po e
I[F(X)]™y USt e f po = 6ProcObs(USt)

According to the definition of [_]*, to determine [F(X)]"~ USt, we need to

know #([X[y USt). This is specified above as the argument of [F(_)]” v USt.
For example, consider p X e out!2 — X, in an environment « in which out
is a channel of type integer. The function [out!2 — _]” ~ USt is as follows.

[out!2 — _]” ~ USt : ProcObs(USt) — ProcObs(USt)
Y po : ProcObs(USt) e 3 Output e f po = 8 ProcObs(USt)

The schema Output is defined according to the semantics of out!2 — X.

_ Qutput
Normal (USt)

Joc : Comm(USt) | oc.accEvents? = {out(2)} e
0 ProcObs(USt) = (procObsC oc) sequence po

The semantics of X, which is required in the specification of Output is taken to
be po. The calculation of the semantics of other recursive actions, which apply
to X operators whose semantics are given in terms of [X]]A'y USt instead of
([X]]Afy USt), requires more effort. We need to manipulate the definition of
[F(X)]™~ USt to express it in terms of 8([X]*y USt).

A parametrised action D e A declares extra variables that can be used in
A. We regard them as immutable state components whose values are fixed by
initialisation. The semantics of D e A is that of A taken in the extended state. For
an instantiation A(e), we define the initial value of the extra state components
in the semantics of A to be e and hide them.

Commands The behaviour of a specification statement z : [pre, post] is highly
dependent on whether its precondition holds or not. If it does, then the postcon-
dition must be established and the operation must terminate successfully, but
the trace is not affected and only the variables z in the frame can be changed.

[z : [pre, post]]**¥ v USt
ProcObs(USt)

Normal(USt) A pre =
post A trace' = () A okay’ A = wait' A aUSt' \ 2’ = aUSt \ z

We decorate the list of variables = to obtain the list of corresponding dashed
variables. In an abuse of notation we use z and z’ as sets to define the set of
user state components that cannot be changed: all (aUSt) but those in z. The
conjunction of equalities aUSt' \ ' = aUSt \ = enforces this restriction.

If the precondition holds, but the postcondition cannot be established (under
the given circumstances), then we have an infeasible (miraculous) operation. In
such a circumstance, the predicate of the above schema is false. Therefore, the
semantics of z : [pre, post] is a partial relation.

The semantics of the assignment z := e is rather simple. This action does not
change the trace and, since we assume the expressions are always well-defined,
it does not diverge and terminates. Of course, it sets the final value of z to e.
The semantics of the conditional is also standard.

The semantics of variable declaration is given by existential quantification.

[var z: T e AN~ USt = 3z,z' : T o [A]"'y zUSt(USt)

The semantics of the action in the scope of the variable block is taken in the
extended user state xUSt(USt) that includes z. The semantics of constant dec-
laration is similar, but given by universal quantification.

4.7 Process expressions

For the binary operators op, the semantics of P op) can be given in terms of
an explicit process specification.

P op () = begin
State = P.State A Q.State
P.PPar 1 Q.State
Q.PPar 1 P.State
e P.Act op Q.Act

end

The schemas P.State and @.State are the schemas that define the user state of
P and Q). The state of P op @ conjoins the states of P and (); we assume that
name clashes are avoided through renaming.

We also refer to P.PPar and @).PPar, which are the process paragraphs that
compose the definitions of P and @, except P.State and ().State and the main
actions. These are all included in P op (). We must notice, however, that the
schemas in P.PPar that specify an operation on P.State are not by themselves
actions in P op @; we need to lift them to act on the extended state defined by
State. This is the aim of the operator 1, which simply conjoins each such schema
with = ().State: actions of P are not supposed to affect the state components
that are inherited from (). Similar comments apply to the actions in @).PPar.

The specification of the action that defines the behaviour of P op) combines
those that specify the behaviour of P and @, P.Act and Q.Act, using op. We
observe that P.Act (Q.Act) operates on the part of the user state that is due to
P (@) and cannot change the components that are originally part of the ¢ (P)
state. It does not refer to them directly or indirectly, except through schema
actions which have been conjoined with = @Q.State (5 P.State).

The semantics of a hiding expression P \ C is even simpler. The process
paragraphs of P are included as they are; only the main action is modified to
include the hiding.

The indexed process ¢ : 7' ® P implicitly declares channels c¢_i, for each
channel ¢ used in P. Its semantics, therefore, affects the channel environment.

[i:ToP])" vp=lety =={c:usedPec_irs Tx~yc}e
[i: T o (Ple: (used P) o c_i])]” (&) p

The environment 7' records the channels implicitly declared. The set used P in-
cludes the channels used in P. For each such channel ¢, 4’ records a channel c¢_i
which communicate pairs of values: the index and whatever value was commu-
nicated originally. The semantics of i : T ® P is that of a parametrised process
taken in the extended channel environment that includes 7'. The parameter is
the index, and the process P[c : (used P) e c_i]) is that obtained from P by
changing all the references to a used channel ¢ by a reference to the channel c_i.
Communications through these channels are also changed so that the index ¢ is
also communicated. The generalisation of this and the previous definition for an
arbitrary indexed process D ® P whose indexes are declared by D is lengthy, but
straightforward. The semantics of instantiation is given by substitution.

The semantics of renaming is given mainly by substitution on the process
definition. In a parametrisation, the parameters are regarded as loose constants.
The channel environment in the pair defined by [D e P]|” v p s that in [P]” 7 p.
The Z specification is also that in [[P]]P v p, preceded by an axiomatic description
that introduces D. The instantiation of parametrised processes has the same
definition of instantiation of indexed processes: substitution.

The semantics of a generic process [X]P is given by a rewriting of the Z
specification denoted by P: each of its paragraphs is turned into a similar generic
paragraph with parameter X ; the channel environment is the same. Instantiation
P[E] of a generic process P is defined by the instantiation of all definitions in
the Z specification corresponding to P.

5 Conclusions

This paper presents a unified language for specifying, designing, and program-
ming concurrent systems; it combines Z and CSP in a way suitable for refinement.
Fischer reports [11] a survey of related work in combining Z and process alge-
bras: Z and CCS in [14,28]; Z with CSP in [10,24]; and CSP with Object-Z [5]
in [10]. The major objective of Circus is to provide a theory of refinement and
an associated calculus. Nothing in the style of a calculus has been proposed.

Combinations of Object-Z and CSP have been given a failures-divergences
model for Object-Z classes [25,12]; data refinement has been briefly explored
for such a combination, but no refinement laws have been proposed. Abstract
data types have been given behavioural semantics in the failures model [34].
In [6], refinement rules have been proposed to support the development of Java
programs, but no semantic model has been provided.

An early paper [17] presents a state-based semantics for a subset of occam in
a style similar to ours, using predicates over failures and a stability /termination.

The subset includes Stop, Skip, assignment, communication, conditional, loop,
sequence, alternation, and variable declarations. The semantics of parallelism is
left as an exercise.

Our semantic definitions are based on those in [16]. We believe, however,
that we have provided an accessible presentation of the theory of imperative
communicating programs. In doing so, the use of Z as an elegant notation to
define relations was very appropriate. It also means that we can make use of
tools like Z/Eves [18] to analyse and validate our definitions. Currently, we are
encoding our semantics in Z/Eves. It is our plan to prove that all the healthiness
conditions hold for our semantic definitions.

We are linking tools for Z and CSP through the unifying theory: we are using
FDR [13] and Z/Eves for analysing different aspects of Circus specifications.
We are also building a tool that calculates the Z specification corresponding to
a Circus program, producing a specification that is suitable for analysis using
Z/Eves.

A new language needs demonstrations of its usefulness; an implementation in
the form of tools for analysis and development; and additional theory to underpin
and extend. We are considering case studies and examples including the steam
boiler control system [1, 3, 33, 30], an IP-packet firewall [35], a smart-card system
for electronic finance [27], and a railway signalling application [29].

We are already considering the extension of Circus to include the operators
of Timed CSP [8]. The resulting language is expected to be adequate to the
specification of data, behavioural, and timing aspects of real-time systems. We
intend to define its model by extending the unifying theory of programming to
cover aspects of time. In order to solve the difficulty with the semantics of the
hiding operator, we also plan to extend our model to allow infinite traces [23].

Our main goal, however, is the proposal and proof of refinement laws for Cir-
cus. We want data refinement rules, and rules that allows the stepwise refinement
to code in a calculational way.

Acknowledgments

We would like to thank Augusto Sampaio for his many suggestions on our work.
Ana Cavalcanti is partly supported by CNPq, grant 520763/98-0. Jim Woodcock
gratefully acknowledges the support of CNPq and the University of Oxford for
his visit to the Federal University of Pernambuco.

References

1. J. R. Abrial, E. Borger, and J. Langmaack, editors. Formal Methods for Industrial
Application, volume 1165 of Lecture Notes in Computer Science. Springer Verlag,
1996.

2. R. J. R. Back and J. Wright. Refinement Calculus: A Systematic Introduction.
Graduate Texts in Computer Science. Springer-Verlag, 1998.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. J. C. Bauer. Specification for a software program for a boiler water content monitor

and control system. Technical report, Institute of Risk Research, University of
Waterloo, 1993.

S. M. Brien and J. E. Nicholls. Z Base Standard, Version 1.0. Technical Monograph
TM-PRG-107, Oxford University Computing Laboratory, Oxford - UK, November
1992.

D. Carrington, D. Duke, R. Duke, P. King, G. A. Rose, and G. Smith. Object-Z: An
Object-oriented Extension to Z. Formal Description Techniques, II (FORTE’89),
pages 281 — 296, 1990.

A. L. C. Cavalcanti and A. C. A. Sampaio. From CSP-OZ to Java with Pro-
cesses (Extended Version). Technical report, Centro de Informética/UFPE, 2001.
Available at http://www.cin.ufpe.br/~1mf.

A. L. C. Cavalcanti and J. C. P. Woodcock. ZRC - A Refinement Calculus for Z.
Formal Aspects of Computing, 10(3):267 — 289, 1999.

J. Davies. Specification and Proof in Real-time CSP. Cambridge University Press,
1993.

E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

C. Fischer. CSP-OZ: A combination of Object-Z and CSP. In H. Bowmann and
J. Derrick, editors, Formal Methods for Open Object-Based Distributed Systems
(FMOODS’97), volume 2, pages 423 — 438. Chapman & Hall, 1997.

C. Fischer. How to Combine Z with a Process Algebra. In J. Bowen, A. Fett,
and M. Hinchey, editors, ZUM’98: The Z Formal Specification Notation. Springer-
Verlag, 1998.

C. Fischer. Combination and Implementation of Processes and Data: from CSP-OZ
to Java. PhD thesis, Fachbereich Informatik Universitat Oldenburg, 2000.
Formal Systems (Europe) Ltd. FDR: User Manual and Tutorial, version 2.28,
1999.

A. J. Galloway. Integrated Formal Methods with Richer Methodological Profiles for
the Development of Multi-perspective Systems. PhD thesis, University of Teeside,
School of Computing and Mathematics, 1996.

C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall International,
1985.

C. A. R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice-Hall,
1998.

C. A. R. Hoare and A. W. Roscoe. Programs as executable predicates. In Pro-
ceedings of the International Conference on Fifth Generation Computer Systems
1984 (FGCS’84), pages 220-228, Tokyo, Japan, November 1984. Institute for New
Generation Computer Technology.

I. Meisels. Software Manual for Windows Z/EVES Version 2.1. ORA Canada,
2000. TR-97-5505-04g.

R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

C. C. Morgan. Of wp and csp. In W. H. J. Feijen, A. J. M. van Gasteren, D. Gries,
and J. Misra, editors, Beauty is our business: a birthday salute to Edsger W. Di-
jkstra. Springer, 1990.

C. C. Morgan. Programming from Specifications. Prentice-Hall, 2nd edition, 1994.
J. M. Morris. A Theoretical Basis for Stepwise Refinement and the Programming
Calculus. Science of Computer Programming, 9(3):287 — 306, 1987.

A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall Series in
Computer Science. Prentice-Hall, 1998.

24

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

A. W. Roscoe, J. C. P. Woodcock, and L. Wulf. Non-interference through Deter-
minism. In D. Gollmann, editor, ESORICS 9/, volume 1214 of Lecture Notes in
Computer Science, pages 33 — 54. Springer-Verlag, 1994.

G. Smith. A Semantic Integration of Object-Z and CSP for the Specification of
Concurrent Systems Specified in Object-Z and CSP. In C. B. Jones J. Fitzgerald
and P. Lucas, editors, Proceedings of FME’97, volume 1313 of Lecture Notes in
Computer Science, pages 62 — 81. Springer-Verlag, 1997.

J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, 2nd edition,
1992.

S. Stepney, D. Cooper, and J. C. P. Woodcock. An Electronic Purse: Specifica-
tion, Refinement, and Proof. Technical Monograph PRG-126, Oxford University
Computing Laboratory, 2000.

K. Taguchi and K. Araki. The State-based CCS Semantics for Concurrent Z
Specification. In M. Hinchey and Shaoying Liu, editors, International Conference
on Formal Engineering Methods, pages 283 — 292. IEEE, 1997.

J. C. P. Woodcock. Montigel’s Dwarf, a treatment of the dwarf-signal problem
using CSP/FDR. In Proceedings of the 5th FMERail Workshop, Toulouse, France,
September 1999.

J. C. P. Woodcock and A. L. C. Cavalcanti. A Circus steam boiler: using the
unifying theory of Z and CSP. Technical report, Oxford University Computing
Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD UK, July 2001.

J. C. P. Woodcock and A. L. C. Cavalcanti. Circus: a concurrent refinement lan-
guage. Technical report, Oxford University Computing Laboratory, Wolfson Build-
ing, Parks Road, Oxford OX1 3QD UK, July 2001.

J. C. P. Woodcock and A. L. C. Cavalcanti. A concurrent language for refinement.
In Andrew Butterfield and Claus Pahl, editors, IWFM’01: 5th Irish Workshop
in Formal Methods. Computer Science Department, Trinity College Dublin, July
2001.

J. C. P. Woodcock and A. L. C. Cavalcanti. The steam boiler in a unified theory of
Z and CSP. In 8th Asia-Pacific Software Engineering Conference (APSEC 2001),
2001.

J. C. P. Woodcock, J. Davies, and C. Bolton. Abstract Data Types and Processes.
In J. Davies, A. W. Roscoe, and J. C. P. Woodcock, editors, Millenial Perspec-
tives in Computer Science, Proceedings of the 1999 Oxford-Microsoft Symposium
in honour of Sir Tony Hoare, pages 391 — 405. Palgrave, 2000.

J. C. P. Woodcock and Alistair McEwan. Specifying a Handel-C program in the
Unifying Theory. In Proceedings of the Workshop on Parallel Programming, Las
Vegas, November 1999.

J. C. P. Woodcock and C. C. Morgan. Refinement of state-based concurrent sys-
tems. In D. Bjgrner, C. A. R. Hoare, and H. Langmaack, editors, VDM’90: VDM
and Z—Formal Methods in Software Development, number 428 in LNCS, pages
340-351. Springer, 1990.

