
Programming Simple Reactive Systems in Ada:
Premature Program Termination

A.J. Wellings, A. Burns, A.L.C. Cavalcanti and N.K. Singh
Department of Computer Science, University of York

Heslington, York YO10 5GH, UK
(andy.wellings, alan.burns, ana.cavalcanti, neeraj.singh)@york.ac.uk

Abstract

Reactive systems are systems that respond to stimuli from the environment within the time constraints imposed by the
environment. This paper identifies an ease-of-use issue with Ada for developing small reactive systems. The problem is that
Ada defines program termination solely in terms of whether all tasks have terminated. There are some advantages in adopting
a purely interrupt-driven design in the implementation of small reactive system. With such programs, there are no tasks other
than the environment task, which typically terminates when it finishes executing the main program. We argue that this is not
the expected behaviour. To avoid this unexpected premature program termination, this paper proposes simple changes to the
program termination conditions in the language so that the environment task of an active partition terminates when (1) all its
dependent tasks have terminated, (2) the partition has no active timing events, and (3) no handlers are attached to interrupts
that are to be serviced by the partition. However, this would be a non-backward compatible change, and some programs
that currently terminate would not terminate with the new rules if they still have attached interrupt handlers or outstanding
timing events.

1 Introduction

Reactive systems respond to stimuli from the environment within the time constraints imposed by the environment [3].
Hence they are typically event-triggered systems where the absence of an expected event can also be considered as an event
itself (a timeout event). In this short paper, we illustrate an ease-of-use problem when programming small reactive systems
in Ada.

Simple designs of a reactive system are based on (centralised) state information that is manipulated by atomic operations.
In these cases, the kernel of the system is typically implemented as a deterministic automaton. Given a set of available
inputs (or events), the automaton selects a transition that can be performed and executes the associated code implementing
an atomic operation; it is then ready for its next reaction – this is illustrated in Figure 1. More complex reactive systems may
be structured hierarchically and allow parallel or distributed execution of operations. Esterel [2] is a language that targets
the implementation of potentially complex reactive systems. Here, however, we are concerned with single processor systems
that are usually embedded. Our motivating example has been that of a cardiac pacemaker [4].

2 Reactive Systems and Ada

In embedded Ada applications, interaction with the environment is via interrupt handling and the various timeout mech-
anisms supported by the language. With systems for which environmental events must be polled, Ada supports abstractions
that allow periodic tasks to be implemented, or periodic timing events to be generated. Here, we propose to use a combi-
nation of the Ada interrupt handling facility and the Ada.Real T ime.T iming Events package to implement deterministic
automata, which in turn can be used to support simple reactive applications. Hence, we are interested in applications for
which there are no tasks, other than the environment task that executes the main program.

Deterministic
Automaton

Interrupts

Timeouts

Outputs

Figure 1. A Simple Reactive System

Protected object

Interrupt
handling procedures

Timing Event
 handling procedures

State variable

Time event variable

Figure 2. The Implementation of a Simple Reactive System in Ada

Our proposed approach is to encapsulate all the procedures for handling interrupts and timing events within the same
library-level protected object, as illustrated in Figure 2. The advantages of this approach (for small systems) are:

• All event-handling procedures execute atomically with respect to one another – this is guaranteed by the language’s
semantics for protected objects.

• The worst-case execution time needed to respond to each event is well defined – there can be no preemptions (hence,
no cache refills during execution, etc) and the code to be executed is clearly identifiable from the procedure that handles
the event.

• The response time for each event is predictable – there can be no preemptions and protected procedures cannot self
suspend for any reason.

There are, perhaps, two disadvantages of this implementation model.

1. Interrupts that are unable to be delivered are assumed to be queued by the hardware – this is usually the case and
certainly required for a reactive system that must keep up with the environment.

2. It is not possible to control the order of handling when multiple events are available – this is inevitable when interrupts
come in from various sources; typically the hardware priority of the device will determine the order in which the
processor processes the outstanding interrupts. Of course, if events are being polled for, the order of polling will allow
some control. More significantly, there is no order specified for the servicing of timing events that occur at the same
time.

These disadvantages may not be relevant for (many) applications. In the next section, we consider a significant case study
where these issues do not pose a serious problem.

3 An Illustrative Example

In this section we summarise an Ada implementation of our motivating example. A full description of the Cardiac Pace-
maker is given in [4] along with details of the implementation in Safety Critical Java and Ravenscar Ada.

Time Intervals Purpose Time in
milliseconds

Length of a P wave
(TP)

Time during which intrinsic
atrium activity must be sensed

110

Duration of pulse
(Tpulse)

the time for which the pulse
current must be maintained

1

Length of a QRS
complex (TQRS)

Time during which intrinsic
ventricular activity must be
sensed

100

Atrioventricular in-
terval (AVI)

Provides time for ventricle to
fill following an atrial contrac-
tion

150

Ventriculoatrial in-
terval (VAI)

Ensures an atrial pulse follow-
ing a ventricular pulse

850

Postventricular
atrial refractory
(PVARP)

Ensures atrium doesn’t falsely
sense ventricular activity

350

Mode Switching In-
terval (MSI)

Time between two atrial
events used to change modes

500

Table 1. Example Timing Intervals in a Single Heart Beat

A pacemaker system is a small electronic device that helps the heart to maintain a regular beat. The conventional pace-
makers serve two major functions: pacing and sensing. The pacemaker’s actuator paces by the delivery of a short, intense
electrical pulse into the heart. The pacemaker sensor uses the same electrode to detect the intrinsic activity of the heart. So,
the pacemaker’s pacing and sensing activities are dependent on the behavior of the heart.

Essentially, the pacemaker monitors (senses) the intrinsic activity of the heart and in the absence of such activity forces
the heart to beat by the delivery of the electric current (pacing). The sensing and pacing activities can be performed in both
chambers of the heart (atrial and ventricle). The control requirements can be complex, and it is beyond the scope of this paper
to consider them in detail (see [4]).

Fig. 3 depicts the scenarios for sensing and pacing activities. The Ventriculoatrial Interval (VAI) is the maximum time
the pacemaker should wait after sensing ventricle activity (either intrinsic or paced) for some indication of intrinsic activity
in the atrium. If none is present, the pacemaker should pace in the atrial chamber. The Atrioventricular Interval (AVI) is
the maximum time the pacemaker should wait after sensing atrial activity (either intrinsic or paced) for some indication of
intrinsic activity in the ventricles. If none is present then the pacemaker should pace in the ventricle chamber. After every
pace in the ventricle chamber, there is some sensed activity in the atrial, but this is not true intrinsic heart activity and should
be ignored. The Postventricular Atrial Refractory Period (PVARP) indicates the length of time that such activity should be
ignored. Sensed atrial activity is called a P wave, and sensed ventricular activity is called a QRS complex. A T wave follows
a QRS complex and represents the recovery of the ventricles. A P wave is sensed when the amplitude of the signal is greater
than a threshold Pth for Tp time units. Similarly, a QRS complex is detected when the amplitude of the signal is greater than
a threshold QRSth for TQRS time units. For safety, it is imperative to ensure that pulsing does not occur during a T wave.

There are four possible scenarios for pacing and sensing activities, which are given in Fig. 3.

• Scenario A – shows a situation in which the pacemaker paces after standard time intervals (VAI and AVI) in both
chambers. This is the reaction when no intrinsic heart activity is detected.

• Scenario B – shows a situation in which the pacemaker paces in the atrial chamber after VAI, while the ventricular
pacing is inhibited due to a sensing of intrinsic activity from the ventricle.

• Scenario C – shows a situation in which intrinsic atria activity is sensed, pacing inhibited in the atrial chamber but
occurs in the ventricular chamber after AVI (due to a lack of intrinsic ventricular activity).

• Scenario D – represents the case where both pacing activities are inhibited due to a sensing of intrinsic activities in
both chambers.

Table 1 summarises the main timing requirements for a particular pacemaker, and Figure 4 illustrates the basic require-
ments that must be met. The required pacing activities are not regular enough to be controlled by a periodic activity. They
are essentially aperiodic and time-triggered depending on the presence or absence of intrinsic heart activity. There are no
interrupts generated other than that needed to support Ada’s timing events.

There are clearly several software architectures that could be adopted. Here we use Ada’s timing events to control both
the sensing and pacing activities as this eliminates the needs for tasks and, therefore, reduces the size of the Ada run-time

Atrial
Sense

Ventricle
Sense

time

(D)

Atrial
Sense

Ventricle
Pace

time

(C)

Ventricle
Sense

Atrial
Pace

time

(B)

Atrial
Pace

Ventricle
Pace

time

(A)

AVI

VAI

LRI

PVARP

P

Q

R

S

T

Figure 3. Example Pacing Scenarios

Time goes left to right, and a flat line indicates no heart activity. A spike above the lines indicates intrinsic
activity and a spike below the line indicates activity as a result of the action of the pacemaker. A rounded spike
indicates activity in the atrial and a sharp spike indicates activity in the ventricle.

Wait
PVARP

Atrium
Sensed

Set VAI
Countdown

Timer

VAI
Expired

Pace
Atrium

Set AVI
Countdown

Timer

Ventricle
Sensed

AVI
Expired

Pace
Ventricle

no

yes

no

yes

yes

no yes

No

Figure 4. The Required Pacing Cycle

Atrium_Pace_On

Atrium_Pace_Off

Ventricle_Pace_On

Ventricle_Pace_Off

PVARP_Timeout

No

No

No

No

Turn current on

Turn current off
Set Watdog
Time = AVI

Action = Ventricle_Pace_On

Yes

Yes

Turn current on

Turn current off

Cancel SensorReading alarm
Set Watdog

Time = Tpulse
Action = Ventricle_Pace_Off

Set Watdog
Time = TPulse

Action = Atrium_Pace_Off

Set Watdog
Time = PVARP

Action = PVARP_Timeout

Intrinsic attrium
activity detected

Set Watchdog
Time = AVI

Action = Ventricle_Pace_On
Reading = Ventricle

Set Watchdog
Time = VAI

Action = Atrium_Pace_On
Reading = Atrium

Set Sensor_Reading alarm

Yes

Yes

Yes Yes

No

Watchdog timer
expires

Yes

Sensor Reading
Atrium

Intrinsic attrium
activity detected

Set Watchdog
Time = AVI

Action = Ventricle_Pace_On
Reading = Ventricle

No

No, then sensor reading
Alarm expires

Yes Yes Set Sensor_Reading alarm

No

Intrinsic ventricle
activity detected

Set Watdog
Time = PVARP

Action = PVARP_Timeout

No, then sensor reading
 in ventricle

Yes

Set Sensor_Reading alarmNo

Figure 5. Cardiac Pacemaker Architecture in Ada

support needed. There are two main timing events: the first (Watchdog) is used to detect the absence of intrinsics activities
and to control the pacing current, and the second (Sensor Readings) is used to initiate the reading of sensors. A single
protected object (Timer) is used for encapsulating the handlers for these timing events.

The details of the Ada approach are shown in Figure 5. The algorithm follows closely that given in Figure 4 which
informally defines the requirements. The protected object code is given below. The full code for the application be found at
http://www.cs.york.ac.uk/circus/hijac/case.html.

with Ada.Real_Time.Timing_Events; use Ada.Real_Time.Timing_Events;
with System; use System;
package Timers is
type Sensor is (Atrium, Ventricle);
protected Timer is

pragma Priority(Priority’Last);
procedure Atrium_Pace_On(E : in out Timing_Event);
procedure Atrium_Pace_Off(E : in out Timing_Event);
procedure Ventricle_Pace_On(E : in out Timing_Event);
procedure Ventricle_Pace_Off(E : in out Timing_Event);
procedure PVARP_Countdown(E : in out Timing_Event);
procedure Sensor_Read(E : in out Timing_Event);

private
Reading : Sensor := Atrium;
IntrinsicV_Sensed : Boolean := False;

end Timer;

General_Timeouts : Timing_Event;
Sensor_Readings : Timing_Event;

end Timers;

-- various with and use clauses

package body Timers is

protected body Timer is
procedure Atrium_Pace_On(E : in out Timing_Event) is
begin

Pace_A_On; -- turns pace current on
Set_Handler(General_Timeouts, Clock+Pulse_Duration, Atrium_Pace_Off’Access);

end;

procedure Atrium_Pace_Off(E : in out Timing_Event) is
begin

Pace_A_Off; -- turns pace current off
Set_Handler(General_Timeouts, Clock+AVI, Ventricle_Pace_On’Access);
Reading := Ventricle;

end;

procedure Ventricle_Pace_On(E : in out Timing_Event) is
Set : Boolean;

begin
Pace_V_On; -- turns pace current on
if IntrinsicV_Sensed then
IntrinsicV_Sensed := False;

end if;
Cancel_Handler(Sensor_Readings, Set);
pragma assert(Set);
Set_Handler(General_Timeouts, Clock+Pulse_Duration , Ventricle_Pace_Off’Access);

end;

procedure Ventricle_Pace_Off(E : in out Timing_Event) is
begin

Pace_V_Off; -- turns pace current off
Set_Handler(General_Timeouts, Clock+PVARP , PVARP_Countdown’Access);
Reading := Atrium;

end;

procedure PVARP_Countdown(E : in out Timing_Event) is
res : Float;

begin
res := Read_Atrium_Data; -- measure intrinsic activity
if res > 0.3 then

-- Intrinsic activity sensed in atrium;
Set_Handler(General_Timeouts, Clock+AVI, Ventricle_Pace_On’Access);
Reading := Ventricle;

else
Reading := Atrium;
Set_Handler(General_Timeouts, Clock+VAI, Atrium_Pace_On’Access);

end if;
Set_Handler(Sensor_Readings, Sensor_Period, Sensor_Read’Access);

end;

procedure Sensor_Read(E : in out Timing_Event) is
res : Float;

begin

if Reading = Atrium then
res := Read_Atrium_Data;
if res > 0.3 then

-- Intrinsic activity sensed in Atrium
Set_Handler(General_Timeouts, Clock+AVI, Ventricle_Pace_On’Access);
Reading := Ventricle;

end if;
Set_Handler(Timers.Sensor_Readings, Sensor_Period, Timer.Sensor_Read’Access);

else -- reading ventricle
res := Read_Ventricle_Data;
if res >= 0.9 then

-- Intrinsic activity sensed in ventricle;
Set_Handler(General_Timeouts, Clock+PVARP , PVARP_Countdown’Access);
Reading := Atrium;
IntrinsicV_Sensed := True;

else
IntrinsicV_Sensed := False;
Set_Handler(Timers.Sensor_Readings, Sensor_Period, Timer.Sensor_Read’Access);

end if;
end if;

end Sensor_Read;
end Timer;

end Timers;

The main program sets up the first timing event. From that point on, every timing event handler will set up at least one other
timing event.

-- with clauses omitted
procedure Pacemaker is --DDDR
begin
Set_Handler(Timers.Sensor_Readings, Clock+PVARP, Timer.Sensor_Read’Access); -- sets initial event

end Pacemaker;

The resulting program design is efficient, with handlers only executing when control is needed. (We observe, however,
that there is a problem with this solution, which we discuss in the next section.) The handlers for timing events in Ada are
called from the Ada run-time clock interrupt handling code. Hence, no Ada tasks are actually required. As all code is run
at interrupt-level, it is imperative to keep the handling code as simple and as short as possible so that the computation can
be completed before another timing event needs to be set. The Atrium Pace On, Atrium Pace Off, Ventricle -
Pace Off and PVARP Timeout handlers are mutually exclusive events. Hence the requirements are for:

• Atrium Pace On to be completed before the pulse duration (Tpulse) has expired (1 millisecond – see Table 1) when
Atrium Pace Off needs to be called. The code in the handler is simply one actuator operation and the setting of
one timing event.

• Atrium Pace Off to be completed within safety margins for the the pulse duration (and before the AVI (150 mil-
liseconds)). The code in the handler is simply one actuator operation and the setting of one timing event.

• Ventricle Pace On to be completed before the pulse duration (Tpulse) has expired (1 millisecond – see Table 1)
when Ventricle Pace Off needs to be called. The code in the handler is simply one actuator operation and the
setting of one timing event and the canceling of another.

• Ventricle Pace Off to be completed within safety margins for the the pulse duration (and before the PVARP
duration (350 milliseconds)). The code in the handler is simply one actuator operation and the setting of one timing
event.

• PVARP Timeout to be completed before the VAI duration (850 milliseconds). The maximum code in the handler is
simply one sensor operation and the setting of two timing event.

The sensor reading handlers are similarly simple, mainly consisting of one sensor reading operation and at most two settings
of timing events. The asynchronous relationship between the watchdog and sensor-reading timing events means that it is
possible for one event to want to fire whilst the other event is being handled. Hence, the response time of each handler must
include an interference time equal to the maximum handling timing of the other event.

4 The Premature Termination of Simple Reactive Programs in Ada

The implementation of our motivating example, as presented so far, does not work. This is because the program terminates
immediately the main program finishes executing; there are no tasks to keep the program alive. Hence, we had to add an
delay in the main procedure to keep the program alive, as illustrated below. (The alternative is to introduce a low priority idle
task, or to call Suspend Until True on a suspension object.)

-- with clauses omitted
procedure Pacemaker is --DDDR
begin
Set_Handler(Timers.Sensor_Readings, Clock+PVARP, Timer.Sensor_Read’Access); -- sets initial event

while True loop
null;
delay until clock + Milliseconds(50000);

end loop;
end Pacemaker;

This is clearly not very elegant. The reason is that the Ada programming language specification defines the following.

The execution of a program consists of the execution of a set of partitions. Further details are implementation
defined. The execution of a partition starts with the execution of its environment task, ends when the environment
task terminates, and includes the executions of all tasks of the partition. The execution of the (implicit) task body
of the environment task acts as a master for all other tasks created as part of the execution of the partition. When
the environment task completes (normally or abnormally), it waits for the termination of all such tasks, and then
finalizes any remaining objects of the partition. (Ada Reference Manual Section 10.2 Program Execution).

On a single processor system, a program is considered to be a single active partition that terminates when its environment
task terminates. Hence, when the environment task finishes executing the main program, it checks to see if there are any
active tasks. If there are not, the program terminates.

Modifying Ada Program Termination Rules

In order to ensure that unexpected terminations of programs do not occur, the Ada language specification would need to
be changed so that:

The environment task of an active partition terminates when all its dependent tasks have terminated and the
partition has no active timing events and there are no handlers attached to interrupts that are to be serviced by
the partition.

This would require all interrupt handlers to be attached dynamically rather than via the static use of the Attach Handler
pragma. Alternatively, the language could be modified to allow dynamic detaching of a static handler. For the Ravenscar
profile, where programs are not meant to terminate and additional pragma could be used to indicate that there are no tasks in
the program.

With this new rule, our implementation described in the previous section would be correct. However, such a change
would not formally be backward compatible. Some programs that currently terminate would not terminate with the new
rules if they still have outstanding timing events or attached interrupt handlers. Arguably, a program that terminate with an
outstanding timing event has a dormant fault – it is almost the equivalent of mixing the terminate and a delay alternatives in
a select statement (only at the program level rather than the task level). For interrupt handling, the current rules generate a
race condition between the interrupts being handled and the program terminating. The new rules, however, could lead to the
case where handlers are attached but all interrupts have been disabled. This would be equivalent of writing a program that
deadlocks.

5 Conclusions

This paper has identified an ease-of-use issue with Ada for developing small reactive systems. The issue is that Ada
defines program termination solely in terms of whether all tasks (application and environment) have terminated. There are

some advantages in implementing small reactive systems as being interrupt driven – be they timing interrupts or other device
interrupts. With such programs, there are no tasks other than the environment task, which typically terminates when it
finishes executing the main program. This is not the expected behaviour. While the work-arounds are simple, they are a little
inelegant.

To avoid this unexpected premature program termination, it is necessary to change the program termination conditions
in the language so that the environment task of an active partition terminates when all its dependent tasks have terminated
and the partition has no active timing events and no handlers that are attached to interrupts that are to be serviced by the
partition. It is interesting to note that the initial version of the Real-Time Specification for Java had a similar problem with
the way it specified program termination[1]. There, all asynchronous event handlers attached to environment-generated
events (happenings in the RTSJ terminology) were treated as daemon Java threads. This resulted in purely reactive programs
suffering from premature termination.

The paper has also illustrated that for time-driven reactive programs, the order of servicing timing events is undefined
when more than one event is due at the same time. Most implementation probably service them in a FIFO order. There may
be some merit is allowing a priority to be assigned each event. Also, allowing periodic timing events to be specified would
remove the need to continually reset them.

Acknowledgements

The authors are grateful for Johan Nielsen for pointing up the backward incompatibility of our proposals, and for suggest-
ing the use of suspension objects as another work-around.

References

[1] Greg Bollella, James Gosling, Benjamin Brosgol, P. Dibble, S. Furr, and M. Turnbull. The Real-Time Specification for
Java. Java Series. Addison-Wesley, June 2000.

[2] F. Boussinot and R. de Simone. The Esterel language. Proceedings of the IEEE, 79(9):1293 –1304, sept 1991.

[3] Nicolas Halbwachs. Synchronous Programming of Reactive Systems. Kluwer Academic Publishers, 1993.

[4] N.K. Singh, A.J. Wellings, and A.L.C. Cavalcanti. The cardiac pacemaker case study and its implementation in Safety-
Critical Java and Ravenscar Ada. In Proceedings of the 10th International Workshop on Java Technologies for Real-time
and Embedded Systems - JTRES 2012., 2012.

