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ABSTRACT
The cardiac pacemaker has emerged as a case study for evaluat-
ing the effectiveness of techniques for the verification and design
of embedded systems with complex control requirements. This
paper reports on the experiences of using this case study to eval-
uate the concurrency model of two programming language sub-
sets that target safety-critical systems development: Safety-Critical
Java (SCJ), a subset of the Real-Time Specification for Java, and
Ravenscar Ada, a subset of the real-time support provided by Ada
2005. Our conclusions are that for SCJ, the lack of explicit support
for watch-dog timers results in a software architecture where the
time at which significant events occur must be saved, and polling
must be used to detect their absence. Although this results in a less
efficient system, the scheduling implications for the resulting soft-
ware architecture are clear. In contrast, Ravenscar Ada’s support
for primitive timing events allow the construction of a highly op-
timized reactive solution. However, the timing properties of this
solution are a little more complex to determine. Furthermore, the
Ada solution requires a redundant task in order to prevent the pro-
gram from terminating prematurely.

1. INTRODUCTION
Over the last decade, several Grand Challenges for Computing

Research [12] have been set up as a means to encourage the re-
search community to work together towards common goals that
are agreed to be valuable and achievable by a team effort within
a predicted timescale. One such challenge is the Verification Grand
Challenge [11] whose goal is to improve the state of the art in soft-
ware verification. The pacemaker specification [22] has been pro-
posed as a pilot project for this challenge [25, 18]. It requires all
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system aspects, including hardware requirements and safety issues,
to be considered.

The cardiac pacemaker is also a good example for evaluating the
expressive power of a high-integrity real-time programming lan-
guage, as it is a complex embedded real-time system. A pacemaker
controls the heart rhythm through sensing and pacing operations;
it has several operating modes, which are selected by the doctors.
Some smart pacemakers automatically switch from one operating
mode into another according to the patient’s needs. Sensors and ac-
tuators are the two main components, which are used to sense and
pace during restricted time intervals in both the heart’s atrium and
ventricular chambers. These sensors and actuators have time con-
straints, which are the most important requirements and the most
difficult aspect to implement. The pacemaker is essentially a reac-
tive system and its complexity comes from having to respond to the
absence of intrinsic heart activity.

In this paper, we present our development of the software to sup-
port several complex operating modes using Safety-Critical Java
(SCJ) [17] – the proposed safety-critical subset of the Real-Time
Specification for Java (RTSJ)[5]. Our goal is both to evaluate the
expressive power of the language and to provide an additional case
study for those interested in programming safety critical systems
(see [15, 9, 1] for related SCJ case studies).

Although the software is complex in its control requirements, it
has limited demand for dynamic data; consequently we are evalu-
ating the concurrency and timing models supported by SCJ, rather
than its support for dynamic memory management. For the pur-
poses of comparison, we also consider how the same software can
be implemented in Ravenscar Ada [4] (the safety-critical subset of
the tasking model of Ada 2005). This is a language that has been
widely adopted in safety-critical applications.

Much of the literature related to the cardiac pacemaker develop-
ment focuses on the formal semantics to verify the system prop-
erties. Macedo et al. [18] have developed a distributed real-time
model of a cardiac pacemaker using the formal notation VDM.
They have modeled a subset of the pacemaker functionalities. Tuan
et al. [23] have proposed a formal model of the pacemaker based on
its behaviour including the communication with the external envi-
ronment. They have designed a real-time model using timed exten-
sions of CSP and used the model checker Process Analysis Toolkit
(PAT) in order to verify critical properties, such as deadlock free-
ness and heart rate limits.

In another study, Manna et al. [19] have shown a simple pace-
maker implementation. Gomes et al. [8] have presented a formal
specification of a cardiac pacemaker using the Z modeling lan-
guage; they have covered the sequential model (given in Macedo et
al. [18]) and provided a means to execute the model using a trans-
lation of the Z model into Perfect Developer. A detailed formali-



sation of the electrode pacemaker is presented by Mery et al. [21].
The model has been developed in an incremental way using refine-
ments in the Event-B modelling language. They have also produced
the code in various languages [20] from the validated formal spec-
ification of the cardiac pacemaker.

In all of the above approaches, any resulting programs (when
given) consist of mainly code fragments with little consideration of
how they are incorporated into a software architecture or how the
components are scheduled to meet the required timing constraints.
To our knowledge there has been no previous implementation of the
pacemaker software in SCJ or Ada that considers the full software
architecture.

It is beyond the scope of this paper to present an introduction to
Safety-Critical Java or the Ravenscar subset of Ada 2005. The ini-
tial draft of the SCJ specification can be found in [17]. SCJ supports
the notion of missions; a good introduction to this is given by Hunt
and Nilsen [13]. The concurrency model is based on event han-
dlers – see Wellings and Kim [24] for a rationale for this approach.
Ravenscar Ada is a highly restricted subset of the full Ada concur-
rency and real-time models; see Burns [4] for the initial specifica-
tion, and Burns and Wellings [3] for full consideration.

This paper is organized as follows. Section 2 presents a basic
overview of the cardiac pacemaker and discusses its complex con-
trol requirements along with the required time constraints. Section
3 then presents the design and implementation of the SCJ soft-
ware. SCJ does not provide full support for reactive system de-
velopment, and this constrains the type of programs that can be
designed. Ravenscar Ada, in contrast, does support the full time-
triggered programming model. This leads to a different style for
our Ada solution, presented in Section 4. Finally, Section 5 presents
conclusions and future work.

2. CARDIAC PACEMAKERS
A pacemaker system is a small electronic device that helps the

heart to maintain a regular beat. In this study, the pacemaker is
treated as an embedded system operating in an environment con-
taining the heart. The conventional pacemakers serve two major
functions, namely pacing and sensing. The pacemaker’s actuator
paces by the delivery of a short, intense electrical pulse into the
heart. However, the pacemaker sensor uses the same electrode to
detect the intrinsic activity of the heart. So, the pacemaker’s pacing
and sensing activities are dependent on the behavior of the heart.
We first review the heart system that interacts with the pacemaker
(Section 2.1) and then consider elements of the pacemaker system
itself (Section 2.2) along with its operating modes (Section 2.3).
We conclude this section by discussing the control requirements.

2.1 The Heart System
The heart consists of four chambers (see Fig. 1): right atrial, right

ventricle, left atrial and left ventricle, which contract and relax pe-
riodically. The heart’s mechanical system (the pump) requires at
the very least impulses from the electrical system. An electrical
stimulus is generated by the sinus node, which is a small mass of
specialized tissue located in the right atrium of the heart. This elec-
trical stimulus travels down through the conduction pathways and
causes the heart’s chambers to contract and pump out blood. Each
contraction of the ventricles represents one heartbeat. The atria
contract for a fraction of a second before the ventricles, so their
blood empties into the ventricles before the ventricles contract.

An artificial pacemaker is implanted to assist the heart in case
of an arrhythmia condition in order to control the heart rate. Ar-
rhythmias are due to cardiac problems producing abnormal heart

Figure 1: Heart or Natural Pacemaker (taken from
http://media.summitmedicalgroup.com/media/db/relayhealth-
images/nodes.jpg)

rhythms. An irregularity of the heartbeat can be bradycardia or
tachycardia. Bradycardia indicates that the heart rate falls below
the expected level, while tachycardia occurs when the heart rate
goes above the expected level of the heart rate. An artificial pace-
maker can restore synchrony between the atria and ventricles and
can be used to treat bradycardia [2, 10].



Chambers Chambers Response to Rate
Paced Sensed Sensing Modulation
O-None O-None O-None R-Rate
A-Atrium A-Atrium T-Triggered Modulation
V-Ventricle V-Ventricle I-Inhibited
D-Dual(A+V) D-Dual(A+V) D-Dual(T+I)

Table 1: Operating Modes

2.2 The Pacemaker System
The basic elements of the pacemaker system [2, 6] are:

1. Leads: One or more flexible coiled metal wires, normally
two, that transmit electrical signals between the heart and the
pacemaker. The same lead incorporate sensors, which are
able to detect the intrinsic heart activity.

2. The Pacemaker Generator: This is both the power source
and the brain of the artificial pacing and sensing systems. It
contains an implanted battery and a controller.

3. Device Controller-Monitor (DCM) or Programmer: An
external unit that interacts with the pacemaker device using
a wireless connection. It consists of a hardware platform and
the pacemaker application software.

4. Accelerometer (Rate Modulation Sensor): An electrome-
chanical device inside the pacemaker that measures the body
motion and acceleration of a body in order to allow modu-
lated pacing. In the rate adaptive mode, a cardiac pacemaker
automatically calculates the desire rate of the heart through
the physical activities of the patient[16]. The rate modulation
sensor is used to capture these physical activities and adjust
the timing requirements for pacing.

The specification document [22] of our case study describes all
possible operating modes that are controlled by the different pro-
grammable parameters of the pacemaker. All the programmable
parameters are related to the real-time and action-reaction con-
straints that are used to regulate the heart rate.

Fig 2 depicts a basic block diagram of the cardiac pacemaker
and shows the sensors and actuators that will be monitored and
controlled in the design presented in the remainder of this paper.

2.3 Operating Modes
In order to understand the pacemaker specification [22], it is nec-

essary to comprehend the coding system that is used to describe a
pacemaker’s activities and requirements [28] (see Table-1). This is
a code of five letters of which the first four are most often used.
The code provides a description of the pacemaker pacing and sens-
ing functions. The first letter of the code indicates which chambers
are being paced; the second letter indicates which chambers are
being sensed; the third letter of the code indicates the response to
sensing; and the final letter, which is optional, indicates the pres-
ence of rate modulation in response to the physical activity mea-
sured by the accelerometer. “X” is a wildcard used to denote any
letter (i.e. “O”, “A”, “V” or “D”). Triggered (T ) refers to deliv-
ery of a pacing stimulus and Inhibited (I) refers to an inhibition
from further pacing after sensing of an intrinsic activity from the
heart chambers. Hence a mode DDDR, for example, indicates that
the pacemaker is pacing in both (Dual) chambers, sensing in both
(Dual) chambers, responding by triggering and inhibition (Dual)
and modulates its activity according to physical activity of the pa-
tient (Rate).

MICROCHIP
PIC

Processor

Atrial Pacing
Pulse Generator

Atrial 
Heartbeat Sensor 

Ventrical
Heartbeat Sensor 

Ventrical Pacing
Pulse Generator 

Rate Modulation 
Sensor

Figure 2: Cardiac Pacemaker Sensors and Actuators

2.4 Pacemaker Control Requirements
In this paper, we report our experience of developing an auto-

matic mode switching algorithm of the cardiac pacemaker. Par-
ticularly, we consider two of the more complex operating modes
(DDDR and DDIR) for automatic switching. The basic algorithm
of both operating modes are the same. Therefore, this section presents
only the control requirement of the DDDR operating mode. As ex-
plained above, the DDDR mode is a rate adaptive operating mode
of the pacemaker, where the sensors sense intrinsic activities from
both chambers and the actuators discharge electrical pulse in both
chambers.

Fig. 3 depicts the scenarios for sensing and pacing activities [2].
The Ventriculoatrial interval (VAI) is the maximum time the pace-
maker should wait after sensing ventricle activity (either intrinsic
or paced) for some indication of intrinsic activity in the atrium.
If none is present, the pacemaker should pace in the atrial cham-
ber. The Atrioventricular Interval (AVI) is the maximum time the
pacemaker should wait after sensing atrial activity (either intrin-
sic or paced) for some indication of intrinsic activity in the ven-
tricles. If none is present then the pacemaker should pace in the
ventricle chamber. After every pace in the ventricle, there is some
sensed activity in the atrial, but this is not true intrinsic heart activ-
ity and should be ignored. The Postventricular atrial refractory pe-
riod (PVARP) indicates the length of time that such activity should
be ignored. Sensed atrial activity is called a P wave, and sensed
ventricular activity is called a QRS complex. A T wave follows a
QRS complex and represents the recovery of the ventricles. A P
wave is sensed when the amplitude of the signal is greater than a
threshold Pth for Tp time units. Similarly, a QRS complex is de-
tected when the amplitude of the signal is greater than a threshold
QRSth for TQRS time units. For safety, it is imperative to ensure
that pulsing does not occur during a T wave.

There are four possible scenarios for pacing and sensing activi-
ties, which are given in Fig. 3.

• Scenario A – shows a situation in which the pacemaker paces
after a standard time interval in both chambers. This is the
reaction when no intrinsic heart activity is detected.

• Scenario B – shows a situation in which the pacemaker paces
in the atrial chamber after a standard interval, while the ven-
tricular pacing is inhibited due to a sensing of intrinsic activ-
ity from the ventricle.

• Scenario C – shows a situation in which intrinsic atria ac-
tivity is sensed, pacing inhibited in the atrial chamber but
occurs in the ventricular chamber after AVI (due to a lack of
intrinsic ventricular activity).

• Scenario D – represents the case where both pacing activities
are inhibited due to a sensing of intrinsic activities in both
chambers.

The DDIR mode differs from DDDR only in the case of scenario
C. In this situation, the intrinsic atrial activity occurs before the
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Time goes left to right, and a flat line indicates no heart activity. A spike above the lines indicates intrinsic activity and a spike
below the line indicates activity as a result of the action of the pacemaker. A rounded spike indicates activity in the atrial and a
sharp spike indicates activity in the ventricle.



Time Intervals Purpose Time in
milliseconds

Length of a P wave
(TP )

Time during which intrinsic
atrium activity must be sensed

110

Duration of pulse
(Tpulse)

the time for which the pulse
current must be maintained

1

Length of a QRS
complex (TQRS )

Time during which intrinsic
ventricular activity must be
sensed

100

Atrioventricular in-
terval (AVI)

Provides time for ventricle to
fill following an atrial contrac-
tion

150

Ventriculoatrial in-
terval (VAI)

Ensures an atrial pulse follow-
ing a ventricular pulse

850

Postventricular
atrial refractory
(PVARP)

Ensures atrium doesn’t falsely
sense ventricular activity

350

Mode Switching In-
terval (MSI)

Time between two atrial
events used to change modes

500

Table 2: Example Timing Intervals in a Single Heart Beat

VAI timeout. So the next AVI timeout started at that point and the
ventricle sensor is allowed to sense ventricle activity only in the
AVI period. In the DDIR mode, the next AVI timeout does not
start until the full VAI period has expired, but the ventricle sensor
is allowed to sense ventricle activity after intrinsic activity occurs
in the atria chamber.

Fig. 4 gives a flow chart for the basic required operations of
the DDDR mode. This gives an informal description of the re-
quirements for the pacemaker operating in the DDDR mode. If a
ventricle pulse has just been delivered, the pacemaker watches the
atrial channel for a spontaneous P wave (intrinsic activity in the
atrium). If the VAI times out, the pacer delivers a pacing pulse
to the atrium; otherwise, the atrial output is inhibited. The pace-
maker now watches the ventricle for a spontaneous QRS complex
wave (indicating intrinsic activity in the ventricle). If it is detected,
the ventricular pace is inhibited, otherwise the pacemaker delivers
a pacing pulse. If the accelerometer detects a change in the pa-
tient’s activity level, it changes the VAI timeout to compensate –
thus speeding up or slowing down the heart beat.

The operating mode of the pacemaker changes under the follow-
ing conditions [7, 14].

From DDDR to DDIR – if the time between two atrial events is
less than some threshold, the Mode Switching Interval, on X
consecutive occasions.

DDIR to DDDR – if the time between two atrial events is greater
than the same threshold on Y consecutive occasions.

In this paper, we will use the times shown in Table 2 for the
intervals of the pacemaker operating modes.

3. THE DESIGN OF THE SCJ SOFTWARE
Section 2.4 has illustrated the complexity of the required con-

trol requirements, and in particular the various changing time con-
straints (even without considering the impact of rate modulation).
Consider the irregular heart beat illustrated in Figure 5. It shows
that the required pacing activities are not regular enough to be con-
trolled by a periodic activity. They are essentially aperiodic and
time-triggered in the presence or absence of intrinsic heart activity.

Unfortunately, SCJ has limited support for a time-triggered pro-
gramming model: only periodic activities, and no explicit support
for a general timeout facility (that can be used to implement watch-
dog timers). SCJ is a subset of the Real-time Specification for Java
(RTSJ), but does not support the RTSJ’s one-shot timers, so these

cannot be used to deal with the varying timeouts. One of the main
recommendations from this study is that the SCJ should support a
version of the RTSJ’s one-shot timers – see section 5.

The intrinsic heart activities are also aperiodic in nature, and in
SCJ must be polled for – as the pacemaker does not support report
intrinsic activities via interrupts. Hence sensors will be monitored
by periodic activities and pacers controlled by aperiodic activities.

The software architecture we have adopted is one where each
SCJ operating mode is encapsulated in an SCJ mission which is
comprised of several managed asynchronous event handlers. The
periodic event handlers continually monitor the sensors and record
the times at which significant heart activities occur. The handlers
then detect the absence of intrinsic heart contractions and initiate
the required artificial stimulus via SCJ’s event-triggered aperiodic
handlers. The program structure is illustrated in Fig. 6 – for each
hardware sensor or actuator, there is an SCJ asynchronous event
handler monitoring or controlling its activity.. The detailed flow
charts for the functionality of the SCJ event handlers are shown in
Figures 7 and 8. The code is available from http://www.cs.
york.ac.uk/circus/hijac/case.html.

Table 2 summarizes the timing requirements for a pacemaker
whose upper rate limit (the number of beats per minute of the heart)
is required to be 120. Given that the time during which a P wave
can be detected is 110 milliseconds, the period of the atrium sensor
must be 55 milliseconds to ensure a P wave will not be missed. For
simplicity, we use an implicit deadline model – that is, the deadline
is equal to the period). Similarly, the period (and deadline) of the
ventricular sensor must be 50 milliseconds. The aperiodic pacers
are released by the sensors when intrinsic activity is not detected
within the AVI and VAI durations. For safety, it is imperative to
ensure that pulsing does not occur during a P wave.

In order to determine the appropriate times to initiate the pac-
ing activities, the algorithm maintains the last time that activity
occurred in both the atrium and the ventricle chambers. This ac-
tivity is either intrinsic heart activity or induced activity as a result
of pacing. Figure 7 shows the atrium sensor and pacer algorithms
in detail. The atrium sensor does not read the physical sensor dur-
ing the PVARP interval following ventricular activity or once the
atrium activity has occurred. If intrinsic atrium activity is not de-
tected during the VAI following the last ventricular activity then the
pacer handler is released. Once released, the pacer handler ensures
no recent atrium activity before initiating the pacing stimulus. Note
that the time saved is for the initiation of the pacing current.

The structure of the ventricular sensor and pacer handlers is sim-
ilar and given in detail in Figure 8. There are two additional points
to make. Firstly, the test in the ventricle pacer ensures that no stim-
ulus is initiation when a P wave might be occurring. Second, the
algorithm checks to see whether a mode change should occur. If
it finds a mode change is necessary, then it requests mission termi-
nation. Note that as the pacer will have already been released, the
pacing will occur before the mission is terminated.

In both pacing algorithms, a "sleep” has been introduced in order
to control the duration of the pacing current. The duration of the
current is patient-dependent and might be significantly less than 2
milliseconds. In this case, a spinning delay can be used (the SCJ
nanoSpin method) instead.

3.1 Handling Multiple Operating Modes
The software for many pacemakers is designed to operate in a

single mode only. However, there are situations where there are
requirements to switch between compatible modes. The example
given in this paper is for switching between the DDDR and the
DDIR modes. The heart is a robust systems and hence most of
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the deadlines given in the paper are soft rather than hard deadlines.
Nevertheless, significant jitter of pulse activities or spurious pulses
will inevitably lead to discomfort for the patient. Switching be-
tween the pacemaker’s operating modes is one situation where jitter
may be introduced.

There are essentially two ways in which mode changes can be
handled in the SCJ implementation depending on the how the tim-
ing requirements are to be met during the mode switch.

1. Treat each mode as a separate SCJ mission and have the mis-
sion sequencer alternate between modes. The requirement
for mode switch can be detected by the atrium sensor which
can then request the termination of the current mission (as
suggested in the previous subsection). The time of the last
significant heart events can be maintained in immortal mem-
ory and these can be used to ensure the appropriate continuity
of pacing and sensing activities. However, if the time taken
for an SCJ implementation to terminate one mission and start
the next is too long this may lead to patient discomfort. This
might be increasing disconcerting if mode switching is very
frequent. The main advantage of keeping the modes separate
is that it maintains a clear distinction between the function-
ality of each mode.

2. Combine all the modes functionality into a single mission.
This would reduce the potential lack of control during a mis-
sion change but may increase the complexity of the code –
particularly if the functionality requirement is significantly
different between modes.

For the two modes, given in this paper, the difference is minor
and only involves when a timeout should be reset. In this situ-
ation, maintaining a clear separation may not be worth the over-
heads of mission termination and restart. So, we adopt solution 1
above in the code present in http://www.cs.york.ac.uk/
circus/hijac/case.html

Scheduling Model
The architecture depicted in Figures 6 to 8 has a simple scheduling
model. The sensors are periodic and have a worst-case execution
time equal to the longest path through the code. Their deadlines are
equal to their period. The pacers are sporadic and have a minimum
inter-arrival time determined by the AVI and VAI times. Again
their worst-case execution times are simple to determine. How-
ever, the “sleeps” introduced to control the pacing currents must
be accounted for when determining their response times, as should
any local drift introduced by using a relative rather than an absolute
delay.

The priority ordering of the sensor handlers can be based on rate
monotonic priority ordering. The aperiodic (sporadic) handlers are
given high priorities to reduce the jitter on pulse activities.

4. RAVENSCAR ADA
The design of the SCJ software architecture for the pacemaker

is driven by the lack of one-shot timers in the SCJ specification.
Ravenscar Ada, in contrast to SCJ, does support the full time-trig-
gered programming model by providing a primitive timing-events
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mechanism, which can be used to construct both periodic handlers
and watch-dog timers. It is possible to adopt the same approach
for a Ravenscar Ada solution as that adopted for SCJ: the sensors
would be periodic Ada tasks, and the pacers would also be tasks
waiting on an entry of a protected object for its release event. How-
ever, here we illustrate that with the use of a watchdog timer, a
more optimized solution can be found, and one that requires very
little run-time support. The focus is just on a simple DDD pace-
maker with no rate modulation, although rate modulation is easy to
implement.

The Ada solution (also found at http://www.cs.york.ac.
uk/circus/hijac/case.html) more closely follows the ap-

proach shown in Figure 4 and uses Ada’s timing events to control
both the sensing and pacing activities. There are two main timing
events: the first (Watchdog) is used to detect the absence of in-
trinsics activities and to control the pacing current, and the second
(Sensor_Readings) is used to initiate the reading of sensor. A
single protected object (Timer) is used for encapsulating the han-
dlers for these timing events. This use of a single protected object
removes the potential for race conditions to occur in the software.

The resulting program design is more efficient than its SCJ coun-
terpart, with handlers only executing when control is needed. How-
ever, the structure of the solution is a little more complex. Further-
more, Ada requires that at least one task be present in the system to
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prevent program termination.
The details of the Ada solution are shown in Figure 9.

Scheduling Model
The handlers for timing events in Ada are called from the Ada run-
time clock interrupt handling code. Hence, no Ada tasks are actu-
ally required. However, the Ada language designers did not envis-
age pure time-triggered systems being implemented in Ada using
just timing events. Hence the program termination rules are de-
fined in terms of tasks. Consequently, it is necessary to introduce a
dummy task in order to keep the program alive.

The pacemaker is a reactive system, and the solution adopted is
similar to what might be expected from a synchronous program-
ming language such as Esterel. As all code is run at interrupt-
level, it is imperative to keep the handling code as simple and as
short as possible so that the computation can be completed before
another timing event needs to be set. The Atrium_Pace_On,
Atrium_Pace_Off, Ventricle_Pace_Off and PVARP_-
Timeout handlers are mutually exclusive events. Hence the re-
quirements are for:

• Atrium_Pace_On to be completed before the pulse dura-
tion (Tpulse) has expired (1 millisecond – see Table 2) when
Atrium_Pace_Off needs to be called. The code in the
handler is simply one actuator operation and the setting of
one timing event.

• Atrium_Pace_Off to be completed within safety mar-
gins for the the pulse duration (and before the AVI (150 mil-
liseconds)). The code in the handler is simply one actuator
operation and the setting of one timing event.

• Ventricle_Pace_On to be completed before the pulse
duration (Tpulse) has expired (1 millisecond – see Table 2)
when Ventricle_Pace_Off needs to be called. The
code in the handler is simply one actuator operation and the
setting of one timing event and the canceling of another.

• Ventricle_Pace_Off to be completed within safety mar-
gins for the the pulse duration (and before the PVARP dura-
tion (250 milliseconds)). The code in the handler is simply
one actuator operation and the setting of one timing event.
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Figure 9: Cardiac Pacemaker Architecture in Ada

• PVARP_Timeoutto be completed before the VAI duration
(850 milliseconds). The maximum code in the handler is
simply one sensor operation and the setting of two timing
event.

The sensor reading handlers are similarly simple, mainly consisting
of one sensor reading operation and at most two settings of timing
events. The asynchronous relationship between the watchdog and
sensor-reading timing events means that it is possible for one event
to want to fire whilst the other event is being handled. Hence, the
response time of each handler must include a blocking time equal
to the maximum handling timing of the other event.

5. CONCLUSION AND FUTURE WORK
In this paper we have considered the design and implementation

of a cardiac pacemaker in both Safety-Critical Java and the Raven-
scar Profile for Ada. Our contributions are as follows:

1. The identification of a realistic case study whose control re-
quirements are complex and do not conveniently fit the es-

sentially periodic programming paradigms that are encapsu-
lated by SCJ’s and Ravenscar Ada’s task model. Since SCJ is
an emergent technology, there are currently very few studies
available in the public domain. We are aware only of those
in [15, 9, 1].

2. A discussion of the repercussions of the current draft release
of the SCJ specification ([17]) not providing explicit support
for watchdog timers.

Their absence constrains the possible software architectures
that can be produced. The approach adopted here is to record
the time by which significant events must occur, and then
poll periodically to detect their absence. As a result of this
work, the final release of the SCJ will contain support for
one-shot timers. This will allow a wider range of solutions
to be considered, including one similar to the Ada solution
presented in this paper.

3. The identification of an “ease of use” issue with using Raven-
scar Ada to implement purely reactive systems. We use two



timers: the first is essentially a watchdog timer and the sec-
ond is used to constrain the periods during which the sensors
should be read.

The Ada designers clearly have not considered the full im-
plications of using only timing events to implement reactive
systems, as the program termination rules are specified in
terms of tasks. As a consequence, it was necessary to in-
clude a dummy task into our system to avoid premature ter-
mination. Whilst this is an easy work-around, it is rather
inelegant. We intend to raise this problem at the next Inter-
national Workshop on Real-Time Ada Issues, where prob-
lems with the language are often discussed before solutions
are proposed.

The algorithms in this paper have been implemented and tested
with a simulator along with an RTSJ version that make use of
one-shot timers. The basic algorithms that available at http:
//www.cs.york.ac.uk/circus/hijac/case.html. In
future, we plan to perform formal verification of the cardiac pace-
maker models using Circus [26, 27], and investigate the refinement
of these Circus models into SCJ.
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