
Refinement in Circus

Augusto Sampaio1, Jim Woodcock2, and Ana Cavalcanti1

1 Centro de Informática/UFPE
Recife PE Brazil

2 University of Kent
Canterbury England - UK

Abstract. We describe refinement in Circus, a concurrent specification
language that integrates imperative CSP, Z, and the refinement calculus.
Each Circus process has a state and accompanying actions that define
both the internal state transitions and the changes in control flow that
occur during execution. We define the meaning of refinement of processes
and their actions, and propose a sound data refinement technique for
process refinement. Refinement laws for CSP and Z are directly relevant
and applicable to Circus, but our focus here is on new laws for processes
that integrate state and control. We give some new results about the
distribution of data refinement through the combinators of CSP. We
illustrate our ideas with the development of a distributed system of co-
operating processes from a centralised specification.

Keywords: Z, CSP, distribution, unifying theories of programming.

1 Introduction

A recent, interesting, and challenging trend in computing is the combination of
theories and tools. One important topic in this research context is language inte-
gration, with the major objective of addressing the several facets (data, control,
time) of realistic software engineering problems.

In particular, much work has been done in combining Z [20] and process alge-
bras, including CSP [7]; Fischer gives a survey of some of this research [4]. Such
a combination has obvious advantages: Z is useful for describing rich information
structures in a state, and process algebra is useful for describing the behavioural
patterns of communication and synchronisation. Some interesting work has been
undertaken, but very little has been accomplished in terms of understanding the
formal development of programs starting from such mixed specifications.

Circus [17] combines Z and CSP, and includes specification constructs usually
found in refinement calculi (as, for instance, in [10]) and Dijkstra’s language of
guarded commands [3]. As a result, Circus is a unified programming language
for presenting specifications, designs, and programs. Specifications are based on
the use of Z constructs and specification statements. These constructs can be
combined with executable commands, like assignments, conditionals, and loops;
reactive behaviour, including communication, parallelism, and choice, is defined
with the use of CSP constructs. All existing combinations of Z with a process

algebra model concurrent programs as communicating abstract data types, but
we do not insist on identifying events with operations on the state. The result is
a general programming language adequate for developing concurrent programs.

There are several complex issues to be considered in the integration of lan-
guages: syntax, semantics, proof theory, development methods, structuring tech-
niques, and reuse, among others. Circus already has a well-defined syntax and a
formal semantics [17, 19] based on unifying theories of programming [8], together
with case studies that illustrate its expressive power [18].

The central aim of this paper is to describe a development method for Circus,
based on refinement. A refinement calculus for Circus should clearly extend sim-
ilar work for CSP [15] and Z [2], since Circus integrates these two languages. In
addition, however, new laws are necessary to deal directly with Circus processes,
which combine state and control behaviour. The focus of this paper is on de-
scribing some of these new laws for processes.

We propose a refinement strategy whose typical starting point is a centralised
specification of an application. In the development process, we move towards a
distributed solution. The strategy is supported by two families of laws that allow
the incremental splitting of Circus processes using parallelism. The overall ap-
proach is illustrated by a case study that, although simple, is interesting enough
to demonstrate the proposed strategy in all its relevant details.

In the next section, we present Circus: its syntax and semantics. Our main
results are in sections 3 and 4, where we present the notions of refinement ap-
propriate for Circus and refinement laws. In Section 5, we present a case study,
and conclude in Section 6 with a discussion of related and future work.

2 Circus

A Circus program is a sequence of paragraphs: a Z paragraph, a channel defini-
tion, a channel set definition, or a process definition. In Figure 1 we present the
BNF description of the syntax of Circus. CircusPar∗ is a possibly empty list of
elements of the syntactic category CircusPar of Circus paragraphs; similarly for
PPar∗. We use N+ for a comma-separated list of Z identifiers (elements of N),
and similarly for Exp+. The syntactic categories Par, Schema-Exp, Exp, Pred, and
Decl include the Z paragraphs, schema expressions, expressions, predicates, and
declarations defined in [16]. The syntactic category CSExp of channel set expres-
sions contains the empty set of channels {| |}, channel enumerations enclosed in
{| and |}, and expressions involving the usual set operators.

To illustrate the use of Circus, we give a specification of a simple bounded
reactive buffer that is used to store natural numbers. The maximum size of the
buffer is a positive constant.

maxbuff : N1

Inputs and outputs are taken from two different channels.

channel input , output : N

2

Program ::= CircusPar∗

CircusPar ::= Par | channel CDecl | chanset N == CSExp |
| process N =̂ Proc

CDecl ::= SimpleCDecl | SimpleCDecl; CDecl
SimpleCDecl ::= N+ | N+ : Exp | Schema-Exp

Proc ::= begin PPar∗ • Action end | N | Proc; Proc | Proc � Proc
| Proc � Proc | Proc |[CSExp]| Proc | Proc ||| Proc | Proc \ CSExp
| Decl � Proc | Proc�Exp+� | Process[N+ := N+]
| Decl • Proc | Proc(Exp+) | [N+]Proc | Proc[Exp+]

PPar ::= Par | N =̂ Action

Action ::= Schema-Exp | CSPAction | Command

CSPAction ::= Skip | Stop | Chaos | Comm → Action | Pred & Action
| Action; Action | Action � Action | Action � Action
| Action |[CSExp]| Action | Action ||| Action
| Action \ CSExp | µ N • Action | Decl • Action | Action(Exp+)

Comm ::= N CParameter∗

CParameter ::= ? N | ? N : Predicate | !Expression | . Expression

Command ::= N+ : [Pred, Pred] | N+ := Exp+

| if GActions fi | var Decl • Action | con Decl • Action

GActions ::= Pred → Action | Pred → Action � GActions

Fig. 1. Circus syntax

The basic form of process definition describes the process’s state and operations,
as in a Z specification. In Circus, we use process paragraphs; the operations are
called “actions” and can be specified using schemas, CSP operators, and guarded
commands. The nameless action at the end of a process description defines its
behaviour; we refer to this action as the “main action” of the process.

In our example, we have a process Buffer , whose state components are the
contents of the buffer and its size.

process Buffer =̂ begin

BufferState =̂ [buff : seq N; size : 1 . . maxbuff | size = #buff ≤ maxbuff]

Initially, the buffer is empty.

BufferInit =̂ [BufferState ′ | buff ′ = 〈〉 ∧ size ′ = 0]

Input is possible if there is space in the buffer; the input element is appended to
the bounded sequence and the size incremented.

3

InputCmd
ΔBufferState
x? : N

size < maxbuff ∧ buff ′ = buff � 〈x?〉 ∧ size ′ = size + 1

Input =̂ size < maxbuff & input?x → InputCmd

The Output action is enabled providing the buffer is not empty. It outputs the
head of the buffer, giving the fifo discipline, and updates the size accordingly.

OutputCmd
ΔBufferState

size > 0
buff ′ = tail buff ∧ size ′ = size − 1

Output =̂ size > 0 & output !(head buff) → OutputCmd

Finally, the main action initialises the Buffer and repeatedly offers the choice of
input and output.

• BufferInit ; μX • (Input � Output); X

end

The guards guarantee that Input is available only if the buffer is not full, and
Output , only if the buffer is not empty.

CSP operators can also be applied to processes: their states are conjoined
and their main actions are combined using the operator applied. An unusual
operator available in Circus is indexing: a process as i : T � P behaves like P ,
but uses different channels. For each channel c of P , we have a fresh channel c i
that communicates pairs of values: the first element is the index, a value of type
T , and the second element is the value originally communicated through c. The
instantiation (i : T � P)�e	 behaves like P , but the first element of the pairs
communicated is the value of the index expression e.

We also have a renaming operator in Circus. For example, in P [oldc := newc],
the communications of P through channel oldc are done through the channel
newc instead. An example of the use of the indexing and renaming operators is
found in our case study (Section 5).

The semantics of Circus [19,?] is based on unifying theories of program-
ming [8]: an alphabetised relational model for imperative programming, concur-
rency, and communication. In our work, Z is the concrete syntax for the relational
model, so that a Circus program denotes a Z specification. Each process corre-
sponds to a part of that specification characterised by a state definition. Actions
are modelled as operations over this state.

4

In the unifying theory, distinguished variables are used to describe relevant
observations. In the semantics of Circus, these variables comprise the state com-
ponents of a process denotation. In addition to the state components in the
process specification, there are components to model behaviour: stability from
divergence (okay), termination (wait), a history of interaction with the environ-
ment (tr), and a set of events that can be refused (ref). This is a state-based,
failures-divergences model, with embedded imperative features.

To illustrate the unifying theory, we give a description of the semantics of
the simple prefixing operator. Consider the process P = a → Skip; we explain
P ’s behaviour by case analysis on the observational variables okay and wait .

Suppose that okay is false; in this case, P has been activated in the final state
of a process that is diverging. Divergence is a left-zero for sequential composition,
so the only thing that P can guarantee is that it leaves the final value of tr as
an extension of its initial value: tr prefix tr ′.

Suppose instead that okay is true and so P ’s predecessor is not diverging.
There are two cases to consider: the predecessor may or may not have terminated;
this is described by the observation wait . Suppose that wait is true and so the
predecessor has not terminated, then P has no effect on the observations.

Suppose instead that wait is false and so the predecessor has terminated.
There are two possible states: P itself may or may not have terminated. Sup-
pose that wait ′ is true and so P has not terminated. P must leave the trace tr
unchanged, but it must not be refusing the event a: tr ′ = tr ∧ a /∈ ref ′.

Finally, suppose that wait ′ is false and so P has terminated. P must have
added the event a to the trace: tr ′ = tr � 〈a〉. The final value of the refusal set is
irrelevant, since P has now terminated and can do nothing further. In all these
okay cases, the state variables are left unchanged and P doesn’t diverge.

3 Refinement notions

In the unifying theory, refinement is expressed as implication; that is, an im-
plementation P satisfies a specification S , providing that [P ⇒ S], where the
square brackets denote universal quantification over the alphabet, which must
be the same for both implementation and specification. In Circus, this notion is
used to formalise the situation when one action B refines another A (�A).

Definition 1 (Action refinement). Suppose that A and B are actions on
the same state space. Action A is refined by action B if, and only if, every
observation of B is permitted by A as well: A �A B iff [B ⇒ A]. �

The state of a process is encapsulated; therefore, when refining a process we
may change the local state if we wish. In the standard theory of data refine-
ment [11], this possibility is handled by regarding the states as existing in local
blocks. In Circus, as a result of hiding the details of the states of two processes P
and Q , we are left with two main actions with a common alphabet; this allows us
to define process refinement in terms of action refinement of local blocks (�P).

Let P .st ,P .init , and P .act denote the local state, initialisation, and main
action of a process P , respectively.

5

Definition 2 (Process refinement). We define P �P Q to mean that process
P is refined by process Q if, and only if,

(∃P .st ; P .st ′ • P .init ∧ P .act) �A (∃Q .st ; Q .st ′ • Q .init ∧ Q .act) �

The techniques of data refinement are well-known for proving the correctness of
a development step involving local blocks. They require the formalisation of a
link between abstract and concrete states, usually referred to as as forwards and
backwards simulations [6, 9, 20]. A well-established result is that the completeness
of data refinement requires both techniques; however, in this paper, we restrict
ourselves to the most widely-used technique of forwards simulation, and leave
backwards simulation as a topic for further work.

Definition 3 (Forwards simulation). A forwards simulation between actions
A and B of processes P and Q is a relation R satisfying

1. (initialisation) [∀Q .st • Q .init ⇒ (∃P .st • P .init ∧ R)]
2. (correctness) [∀P .st ; Q .st ; Q .st ′ • R ∧ B ⇒ (∃P .st ′ • R′ ∧ A)]

A forwards simulation between P and Q is a forwards simulation between their
main actions. �

In this definition, there is no applicability requirement concerning preconditions,
as would usually be found in the definition of forwards simulation. This is because
the semantics of actions are total.

The next theorem ensures that, if we provide a forwards simulation between
processes P and Q , then we can substitute Q for occurrences of P in a program.

Theorem 1 (Forwards simulation is sound). Whenever a forwards simu-
lation exists between two processes P and Q, we also have that P �P Q.

Proof

∃Q .st ; Q .st ′ • Q .init ∧ Q .act
⇒ ∃P .st ; Q .st ; Q .st ′ • P .init ∧ R ∧ Q .act [initialisation]
⇒ ∃P .st ; P .st ′; Q .st ; Q .st ′ • P .init ∧ R ∧ R′ ∧ P .act [correctness]
⇒ ∃P .st ; P .st ′ • P .init ∧ P .act [schema calculus]

�

We still need, however, support for the proof that a particular relation R is a
forwards simulation.

Definition 3 imposes proof obligations related to the main actions of the
processes. To support a calculational approach and the reuse of well-established
techniques, it is useful to be able to prove simulation for primitive actions and
rely on distribution properties through the action combinators. More specifically,
we want to be able to be assured of the existence of a simulation by discharging
proof obligations for schema expressions, as in Z, but keeping the structure of
the main action. This is the approach supported by the following theorems.

First of all, data refinement leaves Skip, Stop, and Chaos unchanged. If an
action is described by a schema, then the familiar proof obligations of Z apply.

6

Theorem 2 (Forwards simulation of schema expressions). The following
are sufficient conditions for the forwards simulation of schema expressions.

1. (applicability) [∀P .st ; Q .st • R ∧ pre PSExp ⇒ pre QSExp]

2. (correctness)
[∀P .st ; Q .st ; Q .st ′ •

R ∧ pre PSExp ∧ QSExp ⇒ (∃P .st ′ • R′ ∧ PSExp)

]

Proof From the semantics of schema expressions. �

Results exist about the distribution of data refinement through the com-
binators of sequential programming languages [11, 12], and some of these have
been re-expressed in the unifying theory [8]. More interesting is the distribution
through the combinators of CSP; in this paper, we have space for demonstrating
a few cases: sequential composition, prefixing, and concurrency.

Theorem 3 (Data refinement distributes through sequential composi-
tion). Suppose that R is a forwards simulation between A1 and B1 and between
A2 and B2, then R is also a forwards simulation between A1; A2 and B1; B2.

Proof

R(P .st ,Q .st) ∧ (B1(Q .st ,Q .st ′); B2(Q .st ,Q .st ′))
⇔ ∃Q .st0 • R(P .st ,Q .st) ∧ B1(Q .st ,Q .st0) ∧ B2(Q .st0,Q .st ′)

[sequential composition]
⇒ ∃P .st0,Q .st0 • R(P .st0,Q .st0) ∧ A1(P .st ,P .st0) ∧ B2(Q .st0,Q .st ′)

[assumption]
⇒ ∃P .st0,P .st ′ • R(P .st ′,Q .st ′) ∧ A1(P .st ,P .st0) ∧ A2(P .st0,P .st ′)

[assumption]
⇔ ∃P .st ′ • R(P .st ′,Q .st ′) ∧ (A1(P .st ,P .st ′); A2(P .st ,P .st ′))

[sequential composition]

�

The proof of the last theorem is given in the relational calculus; the proof in the
schema calculus is rather longer.

We consider the simple prefixing action c.pxp → Skip, where c is a channel
name and pxp is an expression in terms of the abstract state denoting a commu-
nicable value on that channel. The abstract description of the event c.pxp must
be transformed into a concrete description c.qxp of the same event. Externally,
the same value is communicated; it is the description in terms of the internal
state that has to change in a data refinement.

The correctness of replacing pxp by qxp may be explained by considering an
expression as an interrogation of the state; that is, [ΞP .st ; o! : V | o! = pxp].
The assumption in the following theorem is then a consequence of the simulation
of these interrogations: pxp and qxp are equal, modulo R.

7

Theorem 4 (Data refinement distributes through simple prefixing).
Suppose that pxp and qxp are expressions in terms of the states P .st and Q .st
of processes P and Q, respectively, and that R is a forwards simulation between
these processes. If the expressions are equal, modulo R,

∀P .st ; Q .st • R ⇒ pxp = qxp

then we have that the relation R is also a forwards simulation between the simple
prefixed actions c.pxp → Skip and c.qxp → Skip.
Proof

R ∧ (c.qxp → Skip)
⇔ R ∧ ((x ′ = x ∧ okay ′ ∧

(Id � wait � (tr ′ = tr ∧ c.qxp /∈ ref ′ � wait ′ � tr ′ = tr � 〈c.qxp〉)))
� okay � tr prefix tr ′) [definition]

⇔ R ∧ ((x ′ = x ∧ okay ′ ∧
(Id � wait � (tr ′ = tr ∧ c.pxp /∈ ref ′ � wait ′ � tr ′ = tr � 〈c.pxp〉)))
� okay � tr prefix tr ′) [assumption]

⇔ ∃P .st ′ •
R′ ∧ ((nx ′ = x ∧ okay ′ ∧
(Id � wait � (tr ′ = tr ∧ c.pxp /∈ ref ′ � wait ′ � tr ′ = tr � 〈c.pxp〉)))
� okay � tr prefix tr ′) [existential introduction]

⇔ ∃P .st ′ • R′ ∧ (c.pxp → Skip) [definition]

�

Prefixing is defined in terms of sequential composition and simple prefixing.

Corollary 1 (Data Refinement distributes through prefixing). Suppose
that pxp and qxp are expressions in terms of the states P .st and Q .st of processes
P and Q, and that R is a forwards simulation between these processes and their
actions A and B. If the expressions are equal, modulo R, then R is a forwards
simulation between the actions c!pxp → A and c!qxp → B.

Proof Directly from Theorems 3 and 4. �

The parallel composition A1 |[C]| A2 describes two actions synchronising on
events in the set C . The resulting action is formed by merging the observations
and conjoining the state changes. The traces are merged to produce a trace where
the events in C occur synchronously. An event is refused if either component
refuses it, divergence arises if either component diverges, and termination occurs
when both components terminate. To achieve distribution of data refinement
through parallelism, we must show its effect on the conjunction of state changes.

The assumptions for distributing data refinement through concurrency re-
quire that we can partition the state space in a particular way to avoid inter-
ference, so that A1 has precedence in one partition, and A2 has precedence in

8

the other. More formally, there is a sub-space S of the abstract state such that
A1 � S ′ ⇒ A2 � S ′. (Here, A1 � S ′ is the projection of A1 onto the variables of
S ′; the complementary operation is A1 \ S ′, which is A1 with the variables of S ′

hidden.) In other words, every result that A1 can produce in S ′ is acceptable to
A2. Furthermore, every result that A2 can produce in the complement of S ′ is
acceptable to A1; that is, A2 \ S ′ ⇒ A1 \ S ′. In general, this allows each action
to make compatible changes in the other’s partition. Furthermore, the simula-
tion R must respect the same noninterference properties between A1 and A2, so
that, for example, (A1 � S ′) o

9 R ⇒ (A2 � S ′) o
9 R. Moreover, R must respect the

partition by identifying a corresponding region T in the concrete state space.

Theorem 5 (Data Refinement distributes through concurrency). Sup-
pose that R is a forwards simulation between A1 and B1 and between A2 and
B2. Furthermore, suppose that the after-variables can be partitioned as follows:

A1 � S ′ ⇒ A2 � S ′

A2 \ S ′ ⇒ A1 \ S ′

(A1 � S ′) o
9 R ⇒ (A2 � S ′) o

9 R
(A2 \ S ′) o

9 R ⇒ (A1 \ S ′) o
9 R

(A1 � S ′) o
9 R = (A1

o
9 R) � T ′

(A1 \ S ′) o
9 R = (A1

o
9 R) \ T ′

(A2 � S ′) o
9 R = (A2

o
9 R) � T ′

(A2 \ S ′) o
9 R = (A2

o
9 R) \ T ′

Then R is also a forwards simulation between A1 |[C]| A2 and B1 |[C]| B2.

Proof Our result follows directly from the schema calculus and our assumptions.

R o
9 (B1 ∧ B2)

⇒ (R o
9 B1) ∧ (R o

9 B2) [schema calculus]
⇒ (A1

o
9 R) ∧ (A2

o
9 R) [hypothesis]

⇔ (((A1
o
9 R) � T ′) ∨ ((A1

o
9 R) \ T ′)) ∧ (((A2

o
9 R) � T ′) ∨ ((A2

o
9 R) \ T ′))

[T ′ and its complement partition the state space]
⇔ (((A1

o
9 R) � T ′) ∧ ((A2

o
9 R) � T ′)) ∨ (((A1

o
9 R) \ T ′) ∧ ((A2

o
9 R) \ T ′))

[schema calculus]
⇔ ((A1 � S ′) o

9 R) ∨ ((A2 \ S ′) o
9 R) [assumption]

⇔ ((A1 � S ′) ∨ (A2 \ S ′)) o
9 R [schema calculus]

⇔ (((A1 � S ′) ∧ (A2 � S ′)) ∨ ((A1 \ S ′) ∧ (A2 \ S ′))) o
9 R [assumption]

⇔ (((A1 � S ′) ∨ (A1 \ S ′)) ∧ ((A2 � S ′) ∨ (A2 \ S ′))) o
9 R [schema calculus]

⇔ (A1 ∧ A2) o
9 R [S ′ and its complement partition the state space]

�

The next result ensures that algorithmically refining an action (Definition 1)
is a proper way of refining the process as a whole, justifying the use of action
refinements in developments. As usual, we must prove the initialisation and
applicability theorems.

Theorem 6 (Feasible refinement). Suppose we have have a process P with
actions A and B. If A �A B, then the identity is a forwards simulation between

9

A and B, provided P satisfies the Z initialisation theorem and its schema actions
are feasible.

Proof Direct from definitions. �

The results just presented are applied in the case study in Section 5.

4 Refinement laws

Both laws of CSP and laws of Z, for which we have a refinement calculus [2], are
relevant to our work; nevertheless, our focus here are on the laws of processes.
Our approach to the refinement of Circus specifications is guided by the pro-
gressive and incremental distribution of a specification originally centralised.
Surprisingly, perhaps, such a strategy can be supported by simple laws that
allow the splitting of processes. Here we present two families of refinement laws.

4.1 Process splitting

The first family of laws, called process splitting, applies to processes whose state
components can be partitioned in such a way that each partition has its own set
of process paragraphs. The result is three processes: each of the first two include
a partition of the state and the corresponding paragraphs, and the third process
has the same behaviour as the original one.

Let pd stand for the process declaration below, where we use Q .pps and
R.pps to stand for the process paragraphs of the processes Q and R; and F for
an arbitrary context (function on processes). This is the general form of processes
to which the process split laws apply.

process P =̂ begin
State =̂ Q .st ∧ R.st
Q .pps ↑ R.st
R.pps ↑ Q .st
• F (Q .act ,R.act)

end

The state of P is defined as the conjunction of two other state schemas: Q .st
and R.st . The actions of P are Q .pps ↑ R.st and R.pps ↑ Q .st , which handle
the partitions of the state separately. In Q .pps ↑ R.st , each schema expression
in Q .pps is conjoined with ΞR.st . This means that these process paragraphs do
not change the state components of R.st ; similarly for R.pps ↑ Q .st .

Let qd and rd stand for the declarations of the processes Q and R, determined
by Q .st , Q .ppS , and Q .act , and R.st , R.pps , and R.act , respectively. We can
formulate our family of laws as follows.

10

Law 1 (Process splitting)

pd = (process P =̂ F (Q .act ,R.act))

provided Q .pps and R.pps are disjoint with respect to R.st and Q .st. �

We say that two sets of process paragraphs pps and pps ′ are disjoint with respect
to states s and s ′ if, and only if, pps = pps ↑ s ′ and pps ′ = pps ′ ↑ s , and no
command nor CSP action expression in pps refers to components of s ′ or to
paragraph names in pps ′; further, no command nor CSP action expression in
pps ′ refers to components of s or to paragraph names in pps .

4.2 Process indexing

The second family of laws applies to processes defined using the promotion tech-
nique of Z. Broadly, the technique is based on defining the specification of an
abstract data type (with its operations) and then using this as the type of the
elements of a more elaborate data structure (like sets, sequences, maps, etc.).

By convention, the basic (element) type is referred to as local, whereas the
collection is called global. When the local type is completely encapsulated (as
an abstract data type) in the global type, we say that the promotion is free;
otherwise it is called constrained [20]. Here we are concerned solely with free
promotions.

The proposed family of laws refines a specification structured using a free
promotion to an indexed family of processes, each one representing an element
of the local type.

One of the contributions of this work is to extend the Z technique of promo-
tion to Circus actions. Below we give an inductive definition of the relevant pro-
motion patterns; where L stands for the local process, G for the global process,
and Promotion for the promotion schema.

For simplicity, we assume that the global state is a function f from elements
of an arbitrary type Range to elements of the local state; so, a local element is
identified in the global state as f (i). Promotion of schema expressions is as in Z.

promote(SExp) =̂ ∃ΔL.st • SExp ∧ Promotion

The promotion of Skip, Stop, and Chaos leaves them unchanged.

promote(A) =̂ A, forA ∈ { Skip,Stop,Chaos }

To promote a communication c.e, we need to communicate an extra value: the
identifier of the value e in the collection. Therefore, for each channel c, there is
a corresponding promoted channel pc that communicates a pair formed by the
identifier and the value. The latter may also need to be promoted, as it may
include references to elements of the local state.

promote(c.e → A) =̂ pc.promote(e) → promote(A)

11

Promotion for expressions is defined below; for the other forms of prefixing, the
definition is similar. Promotion distributes through the other action operators.
For a guarded action, we need to promote the guard. Promotion of predicates
has an inductive definition based on promotion of expressions. For parallelism
and hiding, the channels are replaced with corresponding promoted channels.

If a variable x is not local state component, it does not need to be changed.

promote(x) =̂ x , provided x is not a component ofL.st

If it is, then we need to access it through the global state.

promote(x) =̂ f (i).x , if x is a component ofL.st

Finally, promotion distributes through the expression operators; the simple but
lengthy definition is omitted. If the local state includes components x , y, and z ,
for instance, a promoted assignment like f (i).x := e is an abbreviation for

f := f ⊕ {i : Range; l : L.st | l .x = e ∧ l .y = f (i).y ∧ l .z = f (i).z}

Promotion of multiple assignments may lead to aliasing if more than one compo-
nent of the local state is being updated. For example, promotion of x , y := 2, 3
leads to f (i).x , f (i).y := 2, 3. A specification statement with a frame containing
x and y is also problematic. We assume that actions like these are not used.

Let pd stand for the following process declaration. The family of process
indexing laws applies to processes of this form.

process P =̂ begin
State =̂ [f : Range �→ L.st | pred]
L.actionk ↑ State
L.act =̂ μX • F (L.actionk); X
Promotion =̂

[ΔL.st ; ΔState; i? : Range |
i? ∈ dom f ∧ θL.st = f (i?) ∧ f ′ = f ⊕ {i? �→ θL.st ′}]

actionk =̂ promote(L.actionk)
• (μX • F (actionk); X)

end

As discussed before, the global state component is a function from Range to a
local state L.st . Actions L.actionk over the local state do not affect the global
state. The main local action L.act is defined recursively, as is the main global
action. Both have the same structure, but the former uses the actions L.actionk

on the local states, and the latter, the corresponding promoted actions actionk .
There is a promoted action actionk for every local action L.actionk . We note that
for each channel c used by the actionk , the corresponding promoted action uses a
corresponding promoted channel pc. A topic for further work is the generalisation
of the process indexing family of laws in terms of the data structure used in the
global state and the main action of both the local and the global states.

12

Consider also the indexed process IL below.

process IL =̂ i : Range � L[c i := pc]

The process i : Range � L acts on indexed channels c i , where L acts on a
channel c. Like the promoted channels pc used in P , they communicate pairs of
values: the index and the original value. Above, we rename each channel c i to
pc. In this way, we can use IL in the refinement of P .

The family of laws for process indexing is as follows.

Law 2 (Process indexing)

pd = process P =̂ ||| i : Range � IL�i	

provided L.pps and pps are disjoint with respect to L.st and State. �

Here, the local state is available through the indexed processes IL. Due to inter-
leaving, there is no interference among the individual elements of the collection.

5 Refining the reactive buffer

In this section, we develop an implementation for the bounded reactive buffer
abstract specification presented in Section 2. The structure of the final imple-
mentation is a ring of cells with a central controller and a cached head. Broadly,
the refinement progresses as follows: after a standard data refinement, we de-
compose the original process into a controller and a centralised ring (Law 1);
through a second data refinement step, the centralised ring is redesigned as a
promotion of individual ring cells. Finally, we apply Law 2 to decompose the
ring process into the interleaving of ring cell, each one storing a single value.

5.1 A centralised ring buffer

Our first development step is a data refinement, in which we introduce a cache
and a ring to represent the internal state of the process Buffer . When the buffer
is non-empty, the cache stores the head of the buffer. In a circular array, the
two ends are considered to be joined. We maintain two indexes into this array: a
bottom and a top, to delimit the relevant values. This part of the array is a
concrete representation of the tail of the original bounded buffer.

This step can be justified applying Theorems 2 and 3, Corollary 1, and other
similar theorems. For conciseness we omit the details of this data refinement
which is very much like a standard Z data refinement. The resulting state is as
follows. Its definition is partitioned because we aim at applying Law 1.

process CBuffer =̂ begin

13

ControllerState
size : 0 . . maxbuff
cache : N

ringsize : 0 . . maxring; top, bot : 1 . . maxring

ringsize = max{0, size − 1}
ringsize mod maxring = (top − bot) mod maxring

RingState =̂ [ring : seq N | #ring = maxring]

BufferState =̂ ControllerState ∧ RingState

The constant maxring, defined as maxbuff −1, gives the bound for the ring. There
is a subtle situation when the bottom and the top indexes coincide; in this case it
is not possible to distinguish whether the ring has reached its maximum storage
capacity or whether it is empty. As a consequence, we need to keep a separate
record of the number of values stored in the ring.

The structure of the main action is exactly that used in the abstract speci-
fication in Section 2. The primitive actions, however, are changed to act on the
concrete state.

5.2 Isolate access to the ring component

According to Theorem 6, we can also refine the individual actions of the Buffer .
Indeed, in our second and third development steps we refine these actions with
the aim of obtaining two independent sets of paragraphs. One set of paragraphs
accesses exclusively the ring and is, in the next step, promoted into an indepen-
dent process. The other set of paragraphs accesses the remaining components,
and is, also in the next step, turned into a controller process which remains
unchanged up to the end of the development.

In some circumstances, this partitioning of the state space is not direct.
For example, the StoreInput operation updates both top and ring. Splitting it
into two operations is not immediate, because the operation that is concerned
with updating the ring needs the input value (x?) and the current value of
top. The main design tool to solve such data dependencies is introduction of
communication. We need two new channels, as follows.

channel write, read : (1 . . maxring) × N

These channels are hidden in the Buffer design and implementation.
The first set of paragraphs has ControllerState as its state space, whilst

preserving RingState. The initialisation is for an empty buffer.

ControllerInit =̂ [ControllerState ′ | size ′ = 0 ∧ bot ′ = 1 ∧ top′ = 1]

In the case the buffer is empty, an input is cached. The ring indexes do not
change and the buffer now contains a single item.

14

CacheInput
ΔControllerState
ΞRingState
x? : N

size = 0
size ′ = 1 ∧ cache ′ = x?
bot ′ = bot ∧ top′ = top

If the buffer is not empty, the cache is not changed; the indexes and the size of
the ring are updated, but the ring itself is not changed.

StoreInputController
ΔControllerState
ΞRingState
x? : N

0 < size < maxbuff
size ′ = size + 1 ∧ cache ′ = cache
bot ′ = bot ∧ top′ = (top mod maxring) + 1

The action below gets the new input and, if necessary, sends it to the ring using
channel write.

InputController =̂
size < maxbuff & input?x →

size = 0 & CacheInput
�

size > 0 & write.top!x → StoreInputController

The extra value communicated through write identifies the position in which the
input is to be stored in the ring.

The handling of outputs by the controller can be specified in a similar way.
For conciseness, we omit the definition of the action OutputController . The be-
haviour of the controller is as follows.

ControllerAction =̂ ControllerInit ;
μX • (InputController � OutputController); X

After initialisation, inputs and outputs are offered repeatedly, whenever possible.
The second set of paragraphs has as its state space RingState, whilst pre-

serving ControllerState. The next action stores a value in the ring.

StoreRingCmd
ΔRingState
ΞControllerState
i? : 1 . . maxring
x? : N

ring ′ = ring ⊕ {i? �→ x?}

15

Although all state components are in scope, we confine the direct access to
RingSate and receive the current value of top through the write internal channel.

StoreRing =̂ write?i?x → StoreRingCmd

To send the value stored at a given position of the ring requires no state change.

NewCacheRing =̂ read?i !ring[i] → Skip

In its main action, the ring repeatedly offers the external choice between StoreRing
and NewCacheRing actions.

RingAction =̂ μX • (StoreRing � NewCacheRing); X

The control behaviour of the process Buffer is given by the parallel execution of
the controller and the ring, hiding the internal channels.

• (ControllerAction |[{| write, read , |}]| RingAction) \ {| write, read |}
end

This is actually a significant refinement step, but it involves no change of data
representation. To prove that it is valid, we need to compare the above main
action to that of the data refined buffer, which was obtained by data refining
the actions BufferInit , Input , and Output presented in the previous section. We
could appeal to Definition 1, but the purpose is not to prove such obligations
directly from the semantics of actions. Rather, the relevant tools are the algebraic
laws of CSP (adapted for actions); however, they are not our concern here, as
we concentrate on laws which relate processes.

5.3 Split centralised buffer into a controller and a ring

As a result of the previous development step, the process Buffer has two dis-
joint sets of paragraphs with respect to ControllerState and RingState. There-
fore, with an application of Law 1, Buffer can be split into two independent
processes: a controller and a ring process .

We call the first process Controller ; its paragraphs include ControllerState,
ControllerInit , CacheInput , StoreInputController , InputController , those that
define OutputController , and ControllerAction. The latter is the main action.
The second process, Ring, includes RingState, StoreRingCmd , StoreRing, New -
CacheRing, and RingAction, which is the main action. The main action of Buffer
is the basis for its new definition.

process Buffer =̂ (Controller |[{| write, read |}]| Ring) \ {| write, read |}

This step is a direct application of Law 1.

16

5.4 The ring process as a promotion of ring cells

In this step, we introduce the concept of a ring cell as an abstract data type
and restructure the process Ring as a promotion of ring cells. The ring cells
communicate over channels rd and wrt .

channel rd ,wrt : N

process Ring =̂ begin

A ring cell is required to store only a natural number; the ring is simply a
sequence of cells.

CellState =̂ [val : N]

RingState =̂ [ring : seqCellState | #ring = maxring]

There are two actions on the ring cell state. Read merely outputs val .

Read =̂ rd !val → Skip

The Write action updates val .

CellWrite =̂ [ΔCellState; x? : N | val ′ = x?]

Write =̂ wrt?x → CellWrite

The ring cell allows either Read or Write actions.

RingCellController =̂ μX • (Read � Write); X

The promotion schema relates the local state of ring cells with the sequence of
cells. The relevant ring cell in the collection is that indexed by i?.

Promotion
ΔCellState
ΔRingState
i? : 1 . . maxring

θCellState = ring[i?]
ring ′ = ring ⊕ {i? �→ θCellState ′}

StoreRingCmd is defined as a promotion of CellWrite, in a standard way.

StoreRingCmd =̂ ∃CellState • CellWrite ∧ Promotion

The StoreRing action is not touched. It is a prefixing involving the action
StoreRingCmd , which has already been promoted. The values it communicates
are not in the local state, and so are not affect by promotion.

StoreRing =̂ write?i?x → StoreRingCmd

17

If we consider that the promotion of the channel wrt is the channel write, then
StoreRing is the result of promoting Write.

The NewCacheRing action is defined by promoting Read in a similar way.

NewCacheRing =̂ read?i !ring[i] → Skip

The promotion of rd is read . Promoting val we get ring[i].
The main action of the promoted ring is defined by the same CSP expression

as the original process.

RingAction =̂ μX • (StoreRing � NewCacheRing); X

• RingAction

end

The actions involved, however, have been promoted. This step can be justified
by a simulation relating the sequence of cells to the sequence of natural numbers.

5.5 A distributed cached-head ring buffer

This is the final step of the development process, where each ring cell is imple-
mented as an independent Circus process as the result of an application of Law 2
to Ring. We observe that a sequence is a special case of a partial function, which
is the kind of global component actually considered in the presentation of Law 2.

A process RingCell is defined to include the paragraphs CellState, Read ,
CellWrite, Write, and RingCellController as the main action. An indexed ring
cell is defined as follows.

process IRCell =̂ (i : 1 . . maxring � RingCell)[rd i ,wrt i := read ,write]

The indexed process operates on the channels rd i and wrt i , which have type
(1 . .maxring)×N. We rename them to read and write, respectively. The indexed
ring cell behaves like a ring cell, except that the communications rd !val and
wrt?x are replaced by read .i !val and write.i?x .

The ring is constructed by interleaving the indexed ring cells.

process Ring =̂ ||| i : 1 . . maxring � IRCell�i	
There is no interaction between the ring’s cells, so the definition is appropriate
as a refinement of a sequence. This results from a direct application of Law 2.

6 Related and future work

In this paper, we outlined a process for developing distributed implementations
from centralised Circus specifications. Although the application domain is concur-
rent programming, the process is similar in spirit to the development techniques
used for sequential programming.

18

We gave a semantic definition of refinement and a forwards simulation rule for
proving refinements correct. We presented laws for distributing data refinement
through some of the combinators of CSP and laws for splitting processes. These
laws are new contributions. In particular, we single out Law 2, which establishes
a connection (original to our knowledge) between the Z promotion technique (for
sequential programming) and the indexed interleaving of the promoted elements,
which are processes in Circus. Expressing this law has required a generalisation
of promotion of schemas to promotion of actions.

Previous work in this area includes that of Back [1], who has applied the re-
finement calculus to the stepwise development of parallel and reactive programs.
In his work, action systems are used as the basic program model: they may be
regarded as sequential programs, but they can be implemented as parallel pro-
grams. Back’s parallel refinement uses techniques originally developed for the
sequential refinement calculus. Our work differs in that it is based on concepts
taken from CSP, rather than action systems.

The assumptions in Theorem 5 require freedom from interference between
two parallel actions in a manner that is essentially the same as a free promotion
in Z [20]. In the work of Owicki and Gries [13, 14], noninterference also plays
an important rôle. Their theory extends Hoare’s deductive system for partial
correctness of sequential programs [5] by adding parallelism in the form of co-
blocks, synchronisation, mutual exclusion, and wait statements. In their method,
processes are considered in isolation and a proof of sequential correctness is
obtained. These proofs must then be shown to be free from interference: no wait
statement or assignment outside a wait statement in one process interferes with
the proof of any other. The specification of the parallel program is then the
conjunction of the preconditions and the postconditions of the components.

In their later work, the use of critical regions reduces much of the burden of
the proofs of interference freedom. An invariant is required for each shared vari-
able, and proofs of invariance replace proofs of noninterference. The difference
between our notion of interference and that in the Owicki-Gries work is that we
are interested in a design pattern that guarantees noninterference; the design
pattern (promotion) is introduced by data refinement.

Our current work includes a weakest precondition semantics for Circus, and
the indications are that this leads to simpler proofs for the soundness of the
laws of refinement. We have already shown that the notion of refinement in
this predicate transformer model is equivalent to that in the unifying theory. We
shall continue to explore this matter. We also intend to address the completeness
of data refinement by considering backwards simulation. Finally, adaptation of
algebraic laws of CSP for actions is required to allow us to justify the refinement
steps in detail, leading to a refinement calculus for Circus.

Acknowledgements

This work is partially supported by the EPSRC grant GR/R43211/01 on “Re-
finement calculi for sequential and concurrent programs” and by QinetiQ. The

19

work of Ana Cavalcanti and Augusto Sampaio is partially supported by CNPq:
grants 520763/98-0 and 521039/95-9. The work of Jim Woodcock is partially
supported by QinetiQ. We are grateful to Arthur Hughes for his suggestions.

References

1. R. J. R. Back. Refinement of parallel and reactive programs. In Proceedings of the
Summer School on Program Design Calculi, Lecture Notes in Computer Science.
Springer-Verlag, 1992.

2. A. L. C. Cavalcanti and J. C. P. Woodcock. ZRC—A Refinement Calculus for Z.
Formal Aspects of Computing, 10(3):267—289, 1999.

3. E. W. Dijkstra. Guarded commands, nondeterminacy and the formal derivation
of programs. Communication of the ACM, 18:453 – 457, 1975.

4. C. Fischer. How to Combine Z with a Process Algebra. In J. Bowen, A. Fett,
and M. Hinchey, editors, ZUM’98: The Z Formal Specification Notation. Springer-
Verlag, 1998.

5. C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Communications
of the ACM, 12:576 – 580, 1969.

6. C. A. R. Hoare. Proof of Correctness of Data Representations. Acta Informatica,
1:271—281, 1972.

7. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall International,
1985.

8. C. A. R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice-Hall,
1998.

9. He Jifeng, C. A. R. Hoare, and J. W. Sanders. Data Refinement Refined. In
G. Goos and H. Hartmants, editors, ESOP’86 European Symposium on Program-
ming, volume 213 of Lecture Notes in Computer Science, pages 187—196, 1986.

10. C. C. Morgan. Programming from Specifications. Prentice-Hall, 2nd edition, 1994.
11. C. C. Morgan and P. H. B. Gardiner. Data Refinement by Calculation. Acta

Informatica, 27(6):481—503, 1990.
12. J. M. Morris. A Theoretical Basis for Stepwise Refinement and the Programming

Calculus. Science of Computer Programming, 9(3):287 – 306, 1987.
13. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs I.

Acta Informatica, 6:319 – 340, 1976.
14. S. Owicki and D. Gries. Verifying properties of parallel programs: an axiomatic

approach . Communications of the ACM, 19(5):279 – 285, 1976.
15. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall Series in

Computer Science. Prentice-Hall, 1998.
16. J. M. Spivey. The Z Notation: A Reference Manual. 2nd. Prentice-Hall, 1992.
17. J. C. P. Woodcock and A. L. C. Cavalcanti. A Concurrent Language for Refine-

ment. In A. Butterfield and C. Pahl, editors, IWFM’01: 5th Irish Workshop in
Formal Methods, BCS Electronic Workshops in Computing, Dublin, Ireland, July
2001.

18. J. C. P. Woodcock and A. L. C. Cavalcanti. The steam boiler in a unified theory of
Z and CSP. In 8th Asia-Pacific Software Engineering Conference (APSEC 2001).
IEEE Press, 2001.

19. J. C. P. Woodcock and A. L. C. Cavalcanti. The Semantics of Circus. In D. Bert,
J. P. Bowen, M. C. Henson, and K. Robinson, editors, ZB 2002: Formal Specifi-
cation and Development in Z and B, volume 2272 of Lecture Notes in Computer
Science, pages 184 – 203. Springer-Verlag, 2002.

20

20. J. C. P. Woodcock and J. Davies. Using Z—Specification, Refinement, and Proof.
Prentice-Hall, 1996.

21

