
Object-Orientation in the UTP

Thiago Santos1, Ana Cavalcanti2, and Augusto Sampaio1

1 Centre of Informatics, Federal University of Pernambuco
P.O. Box 7851, 50732-970 Recife-PE, Brazil

2 Department of Computer Science, University of York,
Heslington York, YO10 5DD, United Kingdom

Abstract. In this paper, we study object-oriented programming con-
cepts present in languages like Java and C++ in the framework of the
Unifying Theories of Programming (UTP). This work shows how sub-
typing, data inheritance, (mutually) recursive methods, and dynamic
binding can be described in the UTP by combining and extending the
theories of designs and higher-order procedures. A distinguishing feature
of our approach is modularity: following the style of the UTP, we deal
with each concept in isolation; this makes our theory convenient to model
integrated languages that include constructs from several paradigms.

1 Introduction

Since object-oriented languages have been widely used to develop software for
different domains of application, there has been a strong need to understand
and describe the meaning of object-oriented programs. Approaches like opera-
tional [1, 2], denotational [3], and algebraic semantics [4, 5] have been used to
describe languages and how their concepts are related.

In the Unifying Theories of Programming (UTP) [6], Hoare and He establish
a framework to allow reasoning about different programming paradigms using a
relational calculus. In this paper, we describe in the UTP a subset of the object-
oriented programming concepts found in languages like Java and C++. Our
theory is an extension of the theories of designs and higher-order procedures.

In [7], we can find a description in the UTP of an object-oriented (OO)
language that handles pointers and visibility mechanisms, among other OO fea-
tures. The authors also present a set of rules related to refinement. However,
(mutually) recursive methods are not described explicitly. Another example of
an OO language described in UTP is presented in [8], where the semantics of
TCOZ [9, 10], a language that combines processes, classes and time, is defined.

We target general object-oriented concepts, rather than any specific language.
We introduce concepts of OO languages progressively and in isolation. We cover
subtyping, single inheritance, dynamic binding, and (mutual) recursion, assum-
ing a copy semantics. By introducing these features independently we provide a
general theory of object-orientation that can be combined with other UTP the-
ories in the usual way. In particular, our long-term goal is to define a combined
theory for reactive, object-oriented designs, and use it to give a semantics to

OhCircus [11]. This is an object-oriented extension of Circus [12], a combination
of Z [13] and CSP [14] whose semantics is based on the UTP.

In our theory, a class declaration is not a single block, as usual in object-
oriented languages. We have separated constructs to declare a class and its im-
mediate superclass, to declare an attribute, and to declare a method.

Example 1. Consider a simple banking system; we define a class Account , and
its attributes and methods as follows:

class Account ;
att Account id : Z, balance : Z;
meth Account credit = (val x : Z • self.balance := self.balance + x)

The declarations of the attributes and methods are independent, and combined
in sequence. In particular, the declarations of the attributes and methods have
to indicate their classes. We show that this approach simplifies the semantics,
and makes the treatment of (mutual) recursion straightforward, as it should be.

It is well-known that, in the semantics of an object-oriented language, the
types of the variables play a central role due to subtyping and dynamic bind-
ing [15]. In our theory, we have a collection of observational variables that are
used to model declarations. They record important typing information and are
used in the semantics of commands. We also drop the assumption that expres-
sions are total; this is not realistic for object-oriented languages due to the
possibility of attempts to access attributes and methods of a “null object” (that
is, “null pointer exceptions”). As a consequence, we have to characterize well-
defined expressions, and extend the semantics of assignments and conditionals.

Method names are also part of the alphabet of our theory. Their values
are parametrised programs [16]. Their treatment follows the approach originally
proposed in [17], and adopted in [15] to handle methods. It is also the approach
followed in the UTP for higher-order procedures.

Dynamic binding is reflected in the value of a method variable. It is a condi-
tional that checks the type of the target object and determines the right program
that defines the behaviour of the method in each case. In this way, we capture
dynamic binding in isolation. This follows the style adopted in an algebraic se-
mantics for object-orientation [5].

This paper is organized as follows. In Section 2, we introduce the alphabet
of our theory: observational variables related to the OO concepts of subtyping,
inheritance and dynamic binding. In Section 3, we define class, attribute and
method declaration. In Section 4, we review the concept of variables, to include
type information explicitly. In Section 5, we describe well-definedness rules for
expressions and the meaning of object creation, type test, type cast and attribute
access. In Section 6, we review the semantics of commands emphasizing method
call. Finally, in Section 7, we discuss related and future work.

2 Observational Variables

In addition to the programming variables and their dashed counterparts, and to
ok and ok ′ from the theory of designs, our theory includes two new observational
variables: one to record the subclass relation; and another to record the types of
attributes associated to a given class. For classes, we introduce:

Γcls : name 7→ name

This is a mapping from class names to the corresponding name of their immediate
superclasses. This observational variable allows us to introduce new types other
than the primitive ones: booleans (B) and integers (Z).

Our second observational variable holds information about the attributes of
each class and their types:

Γatt : name 7→ {name 7→ type}

This is a mapping from a class name to a description of its attributes, which
maps each attribute name to its type; type stands for any primitive type, or any
name in dom Γcls .

The method names are also part of the alphabet of our theory. Their values
are parametrised programs (pds • p), where pds is a list of parameter declara-
tions, and p is a program: the body of the parametrised program, which uses
the parameters. Value (val), result (res), and value-result (valres) parameters
are allowed. The notation pds stands for any parameter declaration list, possibly
including the three parameter passing mechanisms. For example, val x : X ;
res y : Y ; valres z : Z , is a valid instance of pds, where x , y , and z are vari-
able names and X , Y , and Z are types. The function types applied to a list of
parameter declarations returns the parameter types as a set. For example, types
applied to the previous example yields {X ,Y ,Z}.

In bodies of the values of the observational variables named after methods
nested conditionals with each branch representing the meaning of a method
redefinition. For instance, considering that C is a subclass of B , which itself is
a subclass of A, and that m is a parameterless method defined in A (with body
ma), and redefined in both B and C (with bodies mb and mc), the m value is:

valres self : Object •
mc � self is C � (mb � self is B � (ma � self is A �⊥))

Based on the type of the current object (self) the nested conditional allows
selection of the more specialized version of m. When m is not defined for a given
class, then the behaviour of a call to m with an object of this class as a target is
unpredictable (⊥). The condition self is N , for a class name N , checks whether
the value of self is an object of class N , or one of its subclasses. This is why the
type of the object held by self is tested from the more specialized subclass to
the less specialized one in the class hierarchy.

Finally, for each programming variable x , besides x itself, and x ′, we include
in the alphabet two more observational variables (xt and xt ′) to record the

declared type of x . This is potentially different from the actual (runtime) type
of the value of x , which can be an object of a subclass of the type recorded in
xt , when this is a class.

Object-oriented features such as attribute overriding, variable shading, and
the use of super or related notations (to refer to elements of a superclass) are
not considered here because they are only syntactic abbreviations that can be
easily eliminated by preprocessing. We also consider that the names of classes,
attributes, methods (except for method overriding), local variables and parame-
ters are different. This allows us to write simpler predicates while not imposing
any relevant practical limitation.

3 Declarations

In this section we provide the meaning, as designs, for class, attribute and
method declarations.

3.1 Classes

As mentioned before, our aim is to add each feature of object-orientation in
isolation. In this direction, a class declaration introduces just a new type, without
any attribute or method. We use the notation of designs in the UTP to define
each feature. The declaration class A, explained in the sequel, stands for the
design:

class A =df

(
A 6= Object∧
A /∈ dom Γcls

)
`

(
Γ ′

cls = Γcls ∪ {A 7→ Object}∧
w ′ = w

)
where w = inα(class A) \ {Γcls}.

By default, every class has as parent a special class named Object , which has no
attributes or methods. It cannot be redeclared, so the precondition of the design
above requires A to be different from Object . It also requires A to be a new
class name: not in the domain of Γcls . The postcondition of the design specifies
that the declaration includes A in Γcls with Object recorded as its immediate
superclass. It also specifies that no other observational variable w is modified.
In the UTP, inα(class A) is the input alphabet of the program class A, which
includes all undashed observational variables of its alphabet. For the declaration
class A extends B , we have:

class A extends B =df

A 6= Object ∧
A /∈ dom Γcls ∧
B ∈ dom Γcls

 `
(

Γ ′
cls = Γcls ∪ {A 7→ B}∧

w ′ = w

)

where w = inα(class A extends B) \ {Γcls}.

This introduces a record of class A with B as immediate superclass in Γcls . The
class B needs to have been previously declared.

Using Γcls , we can define the subtyping relation A � B , which holds if, and
only if, both types are defined in Γcls and A is associated to B in the reflexive and
transitive closure of Γcls , or if both types are equal and primitive. The inclusion
of primitive types into the subtyping relation allows us to simplify definitions.

A � B ≡ (A ∈ dom Γcls ∧ (A,B) ∈ Γ ∗
cls(| {A} |)) ∨ (A ∈ {B, Z} ∧A = B)

Example 2. Consider again a simple banking application, with classes Account ,
which depicts an account of a bank, BAccount , an extension of Account to
hold bonus information, Contact , to hold traditional contact information, and
EContact , an extension of Contact to hold electronic contact information. The
meaning of the sequence of declarations of these classes is the design below.

class Account ;
class BAccount extends Account ;
class Contact ;
class EContact extends Contact

≡

Account 6= Object ∧Account /∈ dom Γcls `
Γ ′

cls = Γcls ∪ {Account 7→ Object};
BAccount 6= Object ∧ BAccount /∈ dom Γcls ∧Account ∈ dom Γcls `

Γ ′
cls = Γcls ∪ {BAccount 7→ Account};

Contact 6= Object ∧ Contact /∈ dom Γcls `
Γ ′

cls = Γcls ∪ {Contact 7→ Object};
EContact 6= Object ∧ EContact /∈ dom Γcls ∧ Contact ∈ dom Γcls `

Γ ′
cls = Γcls ∪ {EContact 7→ Contact}

The meaning of sequence in our theory is the same as that in the UTP.

3.2 Attributes

We can introduce attributes in Γatt for those classes already in Γcls . All attributes
are public. To introduce an attribute x of type T in class A we use the design:

att A x : T =dfA ∈ dom Γcls∧
x /∈ dom

⋃
{Γatt(N) | N ∈ dom Γatt}∧

T ∈ {B, Z} ∪ dom Γcls

 `
(

A /∈ dom Γatt∧
Γ ′

att = Γatt ∪ {A 7→ {x 7→ T}}

)
∨(

A ∈ dom Γatt∧
Γ ′

att = Γatt ⊕ {A 7→ (Γatt(A) ∪ {x 7→ T})}

)
 ∧ w ′ = w

where w = inα(att A x : T) \ {Γatt}.

If we try to declare an attribute of a class that has not been declared previously,
with a name that was already used, or of a type that is not primitive or present
in dom Γcls , the declaration fails.

We can declare several attributes simultaneously, with the obvious meaning.

att A x : T , y : U , . . . ≡ att A x : T ; att A y : U ; . . .
att A x : T ,B y : U , . . . ≡ att A x : T ; att B y : U ; . . .

Our notation allows interleaving concerning the order of class, attribute and
method declaration. For example, the sequence below is allowed.

class A; att A x : Z; class B extends A; att A y : B; att B z : A

In this case, the attribute y of the class A is declared after the declaration of the
class B . In fact, if we have recursive classes, the required order of the declaration
is different from that adopted in languages where classes are blocks. For example,
if a class A has an attribute x whose type is a subclass B of A, then the following
order of declaration is required.

class A; class B extends A; att A x : B

Transforming the class-based declarations of an object-oriented language into
an appropriate sequence of class and attribute declarations is a simple task.
For methods, similar considerations apply; mutual recursion, however, is further
discussed in the Section 6.4.

Example 3. This example adds some attributes to the classes of Example 2.

att Account id : Z, balance : Z, contact : C ;
att BAccount bonus : Z;
att Contact phone : Z;
att EContact icq : Z

≡

Account ∈ dom Γcls ∧ id /∈ dom
⋃
{Γatt(N) | N ∈ dom Γatt}∧

Z ∈ {B, Z} ∪ dom Γcls `
(

Account /∈ dom Γatt∧
Γ ′

att = Γatt ∪ {Account 7→ {id 7→ Z}}

)
∨(

Account ∈ dom Γatt∧
Γ ′

att = Γatt ⊕ {Account 7→ (Γatt(Account) ∪ {id 7→ Z})}

)

; Account ∈ dom Γcls ∧ balance /∈ dom
⋃
{Γatt(N) | N ∈ dom Γatt} ∧ . . .

We apply the design definition of attribute declaration to each element of the
sequence, starting with the attribute id , and ending with icq .

For a given class N we define C(N) to be a mapping that records all the
attributes of N , including those declared in its superclasses. We define C(N) in
terms of Γcls , and Γatt .

C(N) =
⋃

Γatt(| {Γ+
cls(| {N } |) ∪ {N }} \ {Object} |)

In words, C(N) contains all the attribute definitions of all classes related to N
by the closure of the superclass relation, and N itself.

3.3 Methods

For a method declaration to succeed, the class to which it is associated must have
been introduced before, and all formal parameters, passed as value (val), result
(res) or value-result (valres), must have types introduced in Γcls or primitive
ones. In any case, the meaning depends on whether the method is being declared
for the first time or not. If it is (m /∈ α(meth A m = (pds • p))), then the
definition below applies. The new name m is introduced in the alphabet using a
variable declaration. The design defines the value of m.

meth A m = (pds • p) =df

var m ;(
A ∈ dom Γcls∧
∀ t ∈ types(pds) • t ∈ {B, Z} ∪ dom Γcls

)
`

(
m ′ = program
∧w ′ = w

)
provided m /∈ α(meth A m = (pds • p))
where program = valres self : Object ; pds • (p � self is A �⊥)
and w = inα(meth A m = (pds • p)) \ {m}.

The value of m is a parametrised program. Methods are higher-order, predicate-
valued variables as in the theory of higher-order procedures and parameters of
the UTP. The parameters of m are those in pds and an extra parameter self
to represent the target of a call; its type is Object . Just as in var x , where we
introduce in the alphabet new variables x and x ′, with meth A m, we introduce
in the alphabet the variables m and m ′. At the same time, we use a design to
define the value of m ′.

For the case of a redefinition of a method m (m ∈ α(meth A m = (pds • p))),
we have the definition below.

meth A m = (pds • p) =dfA ∈ dom Γcls∧
∀ t ∈ types(pds) • t ∈ {B, Z} ∪ dom Γcls∧
∃ q • m = valres self : Object ; pds • q

 `∃ q •m = (valres self : Object ; pds • q)
∧m ′ = valres self : Object ; pds • join(A, p, q)
∧w ′ = w

provided m ∈ α(meth A m = (pds • p))
where w = inα(meth A m = (pds • p)) \ {m},
and
join(A, a,⊥) = a � self is A �⊥
join(A, a, bl � self is B � br) ={

a � self is A � (bl � self is B � br), if A � B ∧A 6= B
bl � self is B � join(A, a, br) , otherwise

It is worth emphasizing that the definition of join deals with redefinition of m
both in superclasses and in subclasses A of the class where the original definition

is placed. The use of join allows us to introduce the method values, expressed
as (parametrised) programs [16], in a form where dynamic binding is already re-
solved, as in algebraic methods [18, 5], and in the weakest precondition approach
[15]. The special variable self denotes the instance of the target of the method
call. All references to attributes on method bodies must be prefixed with self ;
variables without this prefix are formal parameters or local variables.

If the method is a redefinition, the method signatures must be exactly the
same, and a new conditional is built to take into account the class hierarchy.
Finally, if we try to make a call to m with an object of an inappropriate type as
a target, the result is ⊥ as well. Thus, a program with invalid method calls has
unpredictable behavior.

We give the meaning of a parametrised program as a function from a value or
a variable name to a program (or predicate). We consider each of the mechanisms
of parameter passing individually; the definitions reflect the standard way of
implementing them.

For a value parameter, the semantics is a higher-order function that takes the
value of the argument and gives the program that declares the formal parameter
as a local variable and initializes it with the argument.

(val v : T • p) = (λw : T • (var v : T ; v := w ; p; end v))

A function that models a parametrised program with a parameter passed by
result takes as argument the name of a variable: an element of the syntactic
category N . This is the argument in a method call.

(res v : T • p) = (λw : N • (var v : T ; p; w := v ; end v))

In this case, the local variable corresponding to the formal parameter is not
initialized; its value is assigned to the argument.

For a value-result parameter, the definition is as expected: the local variable
is initialized and then assigned to the argument in the end.

(valres v : T • p) = (λw : N • (var v : T ; v := w ; p; w := v ; end v))

The parameter of the function is again a program variable. This is an abstraction
over three arguments: a variable, its dashed counterpart, and the type variable.

(λ x : N • p)(y) = p[y , y ′, yt/x , x ′, xt]

In this case, lambda-reduction is extended to cope with variable parameters: el-
ements of the syntactic category N . This semantics for methods was presented
in [11].

Example 4. In this example we show the semantics of method declarations, con-
sidering that Γcls is the one defined in Example 2 and Γatt that defined in
Example 3. There is a method credit for Account and we redefine it for class

BAccount to increase the value of a bonus variable before executing the credit
behaviour.

meth Account credit = (val x : Z •
self.balance := self.balance + x);

meth BAccount credit = (val x : Z •
self.bonus := self.bonus + 1; self.balance := self.balance + x)

We observe that, in the body of the redefinition of credit for BAccount we have
a repetition of the code in the body of credit as defined for Account . In a pro-
gramming language, this is likely to be written as super.credit(x) or using some
other similar notation that avoids code repetition. As we explained in Section 2,
however, semantically, these constructs can be removed using a copy rule. For
this reason, do not consider such issue here. The meaning for the two method
declarations is given by the sequence:

var credit ;(
Account ∈ dom Γcls ∧ ∀ t ∈ types(val x : Z) • t ∈ {B, Z} ∪ dom Γcls

)
(̀

credit ′ =
(

valres self : Object ; val x : Z •
self.balance . . . � self is Account �⊥

))
;(

BAccount ∈ dom Γcls ∧ ∀ t ∈ types(val x : Z) • t ∈ {B, Z} ∪ dom Γcls∧
∃ q • m = (valres self : Object ; val x : Z • q)

)
̀

credit ′ = valres self : Object ; val x : Z •

join

BAccount ,
(self.bonus := self.bonus + 1; . . .),(
self.balance . . . � self is Account �⊥

)

The value associated to credit after the second design is of the following form:

valres self : Object ; val x : Z •
self.bonus . . . � self is BAccount�

(self.balance . . . � self is Account �⊥)

The conditional type test created by join selects the appropriate command.

4 Variables

In [6], type information is not explicitly recorded for the variables. In an object-
oriented language, where types play a central role, this is not appropriate. In our
theory, the values of the variables are pairs, whose first element is the (runtime)
type of the current value of the variable and the second is the value itself.

We give semantics to the construct var x : T , where T is the static (declared)
type of the variable x . The new definition for a var that declares the types of
the variables that it introduces is as follows:

var x : T =df

var x , xt ; T ∈ {B, Z,Object} ∪ dom Γcls ` xt ′ = T ∧ x ′ ∈ T ∧ w ′ = w

where w = inα(var x : T) \ {x , xt}.

We use the existing var construct to introduce both x and xt in the alphabet.
In the design, we check that T is a valid type. In this case, the type of x is
defined to be T , and an arbitrary element of T is chosen as its initial value. All
the other variables are not changed. In assignments to x , the pair (et , ev) which
denotes the value may change, but xt does not.

To complete this definition, we need to define the set of elements of a class
type C . These are pairs in which the first element is C , and the second element
is either the special value null or a mapping (record) that associates a value to
the name of each of the attributes of C , and the values of the types determined
by the subclasses of C . A formal definition is a function that takes Γcls and Γatt

as parameters; a similar function is specified in [15].
As within the UTP, var x : T is a non-homogeneous relation: the alphabet

of var x : T does not include x or xt . The definition of end x : T (the construct
used to finalize the scope of x) is similar to that in the UTP. There are no
concerns about type at the end of the scope of a variable, but we need to close
the scope of both x and xt .

This discussion about the structure of values is extremely important to guide
our concepts of what is an object value and how we can guarantee the correctness
of assignments, and method requests, in an OO context. This interpretation of
variables and values is not against the principles of the UTP; we have just made
explicit representation of values in order to handle the concepts of OO.

5 Expressions

In this section we specify well-definedness rules for expressions, and the semantics
of object creation, type test, type cast and attribute accesses.

5.1 Well-definedness

Our theory includes new forms of expression e characterized by the following
BNF-like definition.

e ::= v | le | new N | e is N | (N)e | f (e) | null
le ::= x | self | le.x

Here v is a primitive or object value. The expressions le, named left expressions,
can be a variable, the special variable named self, or a sequence of dot-separated

names. The expression new N stands for object creation, e is N for type test,
and (N)e for type cast. There is also a group of built-in operations over expres-
sions, like, for instance, arithmetic and relational operators denoted by f (e).

For an expression e, we write et to denote the first element of the value of
e, and ev to denote the second element. In other words, et is the type of the
value of e, and ev is the value itself forming a pair (et , ev). The construct null
actually stands for a family of values, one for each class. The type held by et in
this case is inferred from the context. For instance, in an assignment x := null,
et = xt . Which means that the runtime type of null is the declared type of x .

The well-definedness of expressions is specified by a function named D. If an
expression has a primitive value, it is well-defined if the value belong to the set
of possible values of the type. For objects, we must check if the type belongs to
dom Γcls , and if the value belongs to the type.

Primitive Values Objects
D((B, v)) ≡ v ∈ B D((T ,null)) ≡ T ∈ dom Γcls

D((Z, v)) ≡ v ∈ Z D((T , v)) ≡ T ∈ dom Γcls ∧ v ∈ T

Variables are well-defined if their types are either primitive or present in the in
dom Γcls . If a variable has the special name self, it cannot be of a primitive type.

Variables
D(x) ≡ xt ∈ {B, Z,Object} ∪ dom Γcls

D(self) ≡ selft ∈ {Object} ∪ dom Γcls

An attribute access le.x is valid only if le is well-defined, the value of le is
different from null and x is in the domain of le.

Attribute Accesses
D(le.x) ≡ D(le) ∧ lev 6= null ∧ x ∈ dom lev

A new N declaration is valid only if the class N is recorded in dom Γcls . The
type test and casting can be done only if e is a well-defined expression and N
belongs to dom Γcls .

Typing
D(new N) ≡ N ∈ dom Γcls

D(e is N) ≡ D(e) ∧N ∈ dom Γcls ∧ et � N
D((N)e) ≡ D(e) ∧N ∈ dom Γcls ∧ et � N

The well-definedness restrictions for built-in operations for primitive types, f (e),
are defined individually and are very similar. We show the example of the re-
mainder of a division operator, usually written ‘%’ in programming languages:

Remainder
D(x%y) ≡ D(x) ∧ D(y) ∧ xt = Z ∧ yt = Z ∧ y 6= 0

In Section 6.1, we use the function D on expressions to define well-definedness
rules for commands.

5.2 Object Creation

An object value is a pair (type, value): the type is a class name and the value
is a mapping from names to attribute values. Using Γcls and Γatt to recover
attributes and inheritance information, we provide a definition for new as:

new N ≡

N ,

x : dom Γcls ;
t : {B, Z} ∪ dom Γcls ;
v : B ∪ Z ∪ {T : dom Γcls ; i : T • i }
|
(C(N)(x) = B ∧ t = B ∧ v = false)∨
(C(N)(x) = Z ∧ t = Z ∧ v = 0)∨
(∃T : dom Γcls • C(N)(x) = T ∧ t = T ∧ v = null)
• x 7→ (t , v)

This definition says that the value of a newly created object is a mapping from
attribute names to values that associates all boolean attributes to false, all
integer attributes to 0, and all class-typed attributes to null. For example, the
value of new BAccount is:

(BAccount , {id 7→ (Z, 0), balance 7→ (Z, 0), contact 7→ (Contact ,null)})

5.3 Type Test

The expression e is N is a boolean that indicates whether the value of e belongs
to the class N or one of its subclasses.

e is N ≡ (B, et � N)

For example:

(newBAccount) is Account ≡ (BAccount , {. . .}) is Account
≡ (B,BAccount � Account)
≡ (B, true)

This is justified by the definitions of new, type test, and �, if we assume that
Γcls is as defined in Example 2.

5.4 Type Cast

The result of a casting (N)e is the expression e itself, if the casting is well
defined. Since we are only defining the meaning of well-defined expressions, our
specification is surprisingly trivial.

(N)e ≡ e

For example, provided that BAccount � Account :

(Account) new BAccount ≡ (Account)(BAccount , {. . .})
≡ (BAccount , {. . .})

In the semantics of assignments and conditionals, we guarantee that well-definedness
is checked.

5.5 Attribute Access

An attribute access le.x recovers from the object value mapping (lev) the at-
tribute named x .

le.x ≡ lev (x)

Again, we have a very simple definition, because we are only considering well-
defined attribute accesses.

6 Commands

In addition to the commands in the theory of designs, our theory includes assign-
ments le := e of a value e to a left expression le, and method calls le.m(a) with
target le and list of arguments a. Moreover, since expressions have changed, we
need to consider well-definedness for some commands. We also consider mutual
recursion. The other commands such as sequential composition (P ; Q) remain
unchanged.

6.1 Well-definedness

In this section, we specify well-definedness for assignments, conditionals and
method calls. We consider two cases of assignments: assignments to variables,
and assignments to object attributes. An assignment of an expression e to a
variable x is considered well-defined if x is well-defined, e is well-defined and the
type of e is a subtype of x .

Assignment to variables
D(x := e) ≡ D(x) ∧ D(e) ∧ et � xt

For an assignment of an expression e to an attribute x of le to be well-defined,
the expression le.x must be well-defined, e must be well-defined and the type of
the expression e must be a subtype of the type of the attribute x in the class let
(C(let)(x)).

Assignment to attributes
D(le.x := e) ≡ D(le.x) ∧ D(e) ∧ et � C(let)(x)

For a conditional to be well-defined, the conditional expression must be well-
defined and yield a boolean value.

Conditional
D(P � e � Q) ≡ D(e) ∧ et = B ∧ D(P) ∧ D(Q)

The well-definedness for method calls is the most extensive rule. A method call
in the form le.m(a) is valid if:

• le is well-defined;

• the method m is defined for the type of le;
• the value of le is different from null;
• to avoid aliasing, le is not passed as an argument and is not involved in any

argument, or as part of a variable in these parameters. For further details
about this restriction see [15];

• the types of the arguments in the list a must be compatible with the formal
parameter list of m.

We present well-definedness rules according to the parameter mechanism. Start-
ing with value parameters, we have:

D(le.m(e)) ≡ D(le) ∧ compatible(le,m) ∧ lev 6= null ∧ et � T

provided ∃m, p • m = (val x : T • p),
where compatible(le,m) is the predicate:
∃ pds, p •m = (pds • p) ∧ let ∈ scan(p)

and
scan(⊥) = {}
scan(al � self is A � ar) = {B : dom Γcls | B � A} ∪ scan(ar)

The scan function yields the set of class names for which the method m can
have a definition different from abort. For result and value-result parameters we
use the function disjoint described in [15], which verifies if le is involved in any
of the arguments.

D(le.m(y)) ≡ D(le) ∧ compatible(le,m) ∧ lev 6= null ∧ disjoint(le, y) ∧ T � yt

provided ∃m, p • m = (res x : T • p)

D(le.m(z)) ≡ D(le) ∧ compatible(le,m) ∧ lev 6= null ∧ disjoint(le, z) ∧ T = zt
provided ∃m, p • m = (valres x : T • p)

A method call with multiple arguments can be checked using combinations of
these definitions.

6.2 Assignments

Now we give the semantics for assignments to variables, and assignments to
attributes of object variables. In our theory, for assignments, we observe that
modifying the value of method variables, the type variable xt , or Γcls and Γatt

is not allowed, in much the same way that assignments to ok are not allowed in
the theory of designs.

If we establish the well-definedness of an assignment, we can update the value
of the variable with that of the expression on the right side.

x := e =df D(x := e) ` x ′ = e ∧ w ′ = w

where w = inα(x := e) \ {x}.

For example, given a variable x of type Account (xt = Account), we can
calculate the meaning of the assignment x := newBAccount as follows, provided
that y is the list of undashed variables in the alphabet, other than x , and that
Γcls is as in Example 2.

D(x := (BAccount , {. . .})) `
x ′ = (BAccount , {. . .}) ∧ y ′ = y

≡ D(x) ∧ D((BAccount , {. . .})) ∧ BAccount � xt `
x ′ = (BAccount , {. . .}) ∧ y ′ = y

≡ xt ∈ {B, Z,Object} ∪ dom Γcls ∧ BAccount ∈ dom Γcls ∧ true `
x ′ = (BAccount , {. . .}) ∧ y ′ = y

≡ true `
x ′ = (BAccount , {. . .}) ∧ y ′ = y

When we have to update an attribute of an object-valued expression, we must
check the well-definedness of the assignment, and if it is valid, then we update
the mapping that records the attribute value, maintaining the left expression
type unchanged.

le.x := e =df D(le.x := e) ` le ′ = (let , lev ⊕ {x 7→ e}) ∧ w ′ = w

where w = inα(le.x := e) \ α(le).

We use α(le) to denote a variable in the alphabet whose value is being inspected
by the left-expression le. If le is a variable, then α(le) is the variable itself. For
x .y and x .y .z , the result is x . The equality le ′ = (let , lev ⊕ { x 7→ e }) for the
case in which le is itself an attribute access y .z is an abbreviation of the equality
y ′ = (yt , yv ⊕ { z 7→ y .z ⊕ { x 7→ e } }).

For example, given a variable x of type Account (xt = Account), which has
been initialized with new BAccount (x = (BAccount , {id 7→ (Z, 0), . . .})), we
can calculate the attribute update x .id := 1 as follows, provided that y is the
list of undashed variables in the alphabet, other than x , and that Γcls is as in
Example 2.

x .id := 1
≡ D((BAccount , {id 7→ (Z, 0), . . .}).id := (Z, 1)) `

x ′ = (BAccount , {id 7→ (Z, 0), . . .} ⊕ {id 7→ (Z, 1)}) ∧ y ′ = y
≡ D((BAccount , {id 7→ (Z, 0), . . .}).id) ∧ D((Z, 1)) ∧ Z � C(xt)(id) `

x ′ = (BAccount , {id 7→ (Z, 1), . . .}) ∧ y ′ = y
≡ D((BAccount , {id 7→ (Z, 0), . . .})) ∧ {id 7→ (Z, 0), . . .} 6= null∧
id ∈ dom{id 7→ (Z, 0), . . .} ∧ true ∧ Z � Z `

x ′ = (BAccount , {id 7→ (Z, 1), . . .}) ∧ y ′ = y
≡ BAccount ∈ {B, Z,Object} ∪ dom Γcls ∧ true ∧ true ∧ true ∧ true `

x ′ = (BAccount , {id 7→ (Z, 1), . . .}) ∧ y ′ = y
≡ true `

x ′ = (BAccount , {id 7→ (Z, 1), . . .}) ∧ y ′ = y

Notice that if we had not initialized the variable x , the assignment would not be
well-defined and would abort. The same behaviour would occur if we had tried

to access the attribute bonus of the BAccount instance: since the variable has
type Account , we cannot access variables from its subclass instance.

6.3 Conditional

We need to redefine the conditional to consider the well-definedness of the con-
dition.

P � e � Q =df D(P � e � Q) ∧ ((ev ∧ P) ∨ (¬ev ∧Q))

For example, suppose we have that self = (BAccount , {. . .}), the type of self is
a class, Γcls is that provided by Example 2, and both P and Q are well-defined
(D(P) ∧D(Q) = true). The conditional P � self is BAccount � Q leads to the
execution of P , as shown below.

P � self is BAccount � Q
≡ D(P � self is BAccount � Q)∧

((B, selft � BAccount)v ∧ P) ∨ (¬(B, selft � BAccount)v ∧Q))
≡ D(self is BAccount) ∧ (B, selft � BAccount)t = B ∧ D(P) ∧ D(Q)∧

((true ∧ P) ∨ (false ∧Q))
≡ D(self) ∧ BAccount ∈ dom Γcls ∧ P
≡ D(self) ∧ P
≡ selft ∈ {Object} ∪ dom Γcls ∧ P
≡ P

If the type test were false, the branch selected would be Q . Moreover, according
to the well-definedness rules for the variable self, it cannot be an instance of a
primitive type. If this were the case, the meaning of the conditional would be
abort.

6.4 Recursion

Basically, the meaning of recursion is as in the UTP: defined in terms of least
fixed point. Our complete lattice is that of parametrised programs, with refine-
ment as the partial order. The general form of a recursive method m of class A
is the following.

meth A m = µX •
(
pds • F (X)

)
For example, the factorial function could be added to A as:

meth A m = µX •
(

val n : Z; res r : Z •
r := 1 � n ≤ 0 � r := n ∗X (n − 1, r)

)
We observe that this is not in conflict with the expected form of a method
declaration, meth A m = (pds • p), since, of course, the least fixed point
operator results in a parametrised program. In particular, the parameters are

the same as those in the body of the recursion. As a matter of fact, for each
parameter declaration, we take the fixed point in the lattice of parametrised
programs with those parameters.

Mutual recursion is easily addressed in our theory. It can be defined as:

meth A m,B n = µX ,Y •
(
pdsm • F (X ,Y), pdsn • G(X ,Y)

)
In this case, since m and n are mutually recursive, they are defined together, even
though they are methods of different classes. This follows the standard approach
to the definition of mutually recursive procedures. The vector of programs m,n
is defined as the least fixed point of the function from vectors of programs to
vectors of programs defined by the bodies of m and n: pdsm • F (X ,Y) and
pdsn • G(X ,Y). As an example, calling the methods m or n defined below and
a variable a as arguments results in the assignment of 0 to a.

meth A m,B n = µX ,Y •(
val x : Z; res i : Z • i := x � x = 0 � Y (−x , i),
val y : Z; res j : Z • X (y − 1, j) � x > 0 � X (y + 1, j)

)
In many theories of object-orientation, mutual recursion is a difficulty. The com-
plication is really attached to the fact that the mutually recursive methods may
be declared in an independent way in separate classes. By splitting the block
structure of a class into its basic semantic blocks, we trivially overcome this
difficulty.

6.5 Method Call

The most interesting feature of this work is the resolution of a method call.
Since we have already solved dynamic binding when dealing with the semantics
of method declaration (Section 3.3), the semantics of method call is just a call
to the value of the method. In other words, we have isolated the several aspects
involved in a method call, so that dynamic binding is captured in the definition
of the value of the method variable, which holds a parametrised program, and
a method call is just a simple call to a higher-order procedure. Thus, we can
defined the method call as:

le.m(args) =df D(le.m(args)) ∧ ¬(m(le, args)[false/okay ′]) ` m(le, args)

The condition ¬(m(args)[false/okay ′]) is the precondition of the design that
characterises the method call.

Suppose we start with Γcls = {} and Γatt = {}, and execute the declaration
of classes, attributes and methods in the Examples 2 and 3. Then consider the
program fragment below.

var a : Account ;
a := new BAccount ;
a.credit(10)

Due to dynamic binding, a.credit(10) must execute the body of the method
credit defined for the subclass BAccount . As described in Section 3, we have
solved this problem using a conditional test over the special variable named
self. Below, we show how the method call is expanded and how the program
associated to variable credit resolves the dynamic binding. Due to lack of space,
we omit the precondition of a.credit(10), and calculate only credit(a, 10).

credit(a, 10)
≡{ method expansion }(

valres self : Object ; val x : Z •
self.bonus . . . � self is BAccount � (. . . � self is Account �⊥)

)
(a, 10)

≡{ semantics of valres }
var self : Object ;

self := a;(
val x : Z •
self.bonus . . . � self is BAccount � (. . . � self is Account �⊥)

)
(10);

a := self;
end self

≡{ semantics of val }
var self : Object ;

self := a;
var x : Z;

x := 10;
self.bonus . . . � self is BAccount � (. . . � self is Account �⊥);

end x ;
a := self;

end self

≡{ the conditional reduces to its left branch }
var self : Object ;

self := a;
var x : Z;

x := 10;
self.bonus := self.bonus + 1;
self.balance := self.balance + x ;

end x ;
a := self;

end self

This can be expanded to a predicate that establishes the final value of a to be
its initial value with attributes updated by assignments. The expansion of this
sequential composition is exactly the expected meaning of the method call.

7 Conclusions

We have demonstrated that object-orientation with subtyping, data inheritance
and dynamic binding can be defined in the UTP, using a theory that com-
bines designs and higher-order procedures. In particular, we have introduced
two observational variables to capture information about class declarations, ex-
tra variables xt and xt ′, for each programming variable x , to capture the type of
the variables, and, finally, variables m and m ′ to capture the meaning (param-
eters and body) of each method named m. In our theory, recursion and mutual
recursion are handled in a very simple way.

The concept of variable in the object-orientation context requires explicit
typing information to allow the specification of well-definedness rules for expres-
sions and commands, and to provide the correct semantics of object-oriented
expressions and commands such as assignments, conditional and method calls.
We have a strong type system where all operations, and commands, over vari-
ables, values and expressions must be checked to be considered correct. We have
seen that invalid declarations and commands associated to OO elements lead to
⊥; in other words, the meaning of a badly-typed program is ⊥, which has the
unpredictable behavior that we would expect.

In contrast to [7], we do not use a runtime environment; we adopt a copy
semantics, as in [15]. In the future, we intend to introduce the concept of object
sharing; we plan to include extra information about variables, and review well-
definedness, expressions and commands. With object sharing, the view of the
target of a method call as a value-result parameter, whose value is updated to
reflect changes carried out by the method, becomes unnecessary since changes
are reflected directly in the objects, not in a copy. Other features that we will
explore in the future are visibility mechanisms and exception handling.

The work reported in [19] presents a method for defining object specifications
and refinement in a predicative style [20]. The idea is to decouple the concepts
associated with general OO features, like, for instance, inheritance and class
specification. This results in very general specification constructs, of which those
usually found in object-oriented languages are a special case. Here, we also pursue
modularity and decoupling, but we only consider object-oriented constructs.

This work was our first step towards the definition of a semantics for OhCircus,
our object-oriented combination of Z and CSP. Our next concern is with the
proposal and proof of refinement laws. Afterwards, we plan to combine our theory
with that of CSP processes.

Acknowledgements: The work of Thiago Santos and Augusto Sampaio are
funded by the Brazilian Research Council (CNPq grants 141301/2004-0 and
521039/95-9). The work of Ana Cavalcanti is partially funded by the Royal So-
ciety and QinetiQ. A preliminary approach to the semantics of methods was
previously studied in conjunction with Jim Woodcock; we benefitted from sev-
eral discussions with him. We also thank to the reviewers for their very detailed
and relevant comments and the symposium participants for their challenger ques-
tions.

References

1. Plotkin, G.: A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University (1981)

2. Drossopoulou, S., Eisenbach, S. In: Towards an Operational Semantics and Proof
of Type Soundness for Java. Springer-Verlag (1998)

3. Schmdit, D.A.: Denotational Semantics. A Methodology for Language Develop-
ment. Allyn and Bacon,Inc (1986)

4. Hoare, C.A.R., Hayes, I.J., Jifeng, H., Morgan, C.C., Roscoe, A.W., Sanders, J.W.,
Sorensen, I.H., Spivey, J.M., Sufrin, B.A.: Laws of programming. Commun. ACM
30 (1987) 672–686

5. Borba, P.H.M., Sampaio, A.C.A., Cavalcanti, A.L.C., Cornélio, M.L.: Algebraic
Reasoning for Object-Oriented Programming. Science of Computer Programming
52 (2004) 53–100

6. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice-Hall (1998)
7. Jifeng, H., Li, X., Liu, Z.: A Refinement Calculus for Object Systems. Technical

report 322, UNU-IIST, P.O.Box 3058, Macau (2005)
8. Qin, S.C., Dong, J.S., Chin, W.N.: A Semantic Foundation of TCOZ in Unifying

Theory of Programming. In: FM’03. Lecture Notes in Computer Science, Pisa,
Italy, Springer-Verlag (2003) 321–340

9. Mahony, B., Dong, J.: Blending Object-Z and Timed CSP: An introduction to
TCOZ. In: Proceedings of the 20th International Conference on Software Engi-
neering (ICSE’98), Kyoto, Japan, IEEE Computer Society Press (1998) 95–104

10. Mahony, B.P., Dong, J.S.: Timed Communicating Object Z. IEEE Transactions
on Software Engineering 26 (2000) 150–177

11. Cavalcanti, A.L.C., Sampaio, A.C.A., Woodcock, J.C.P.: Unifying Classes and
Processes. Software and System Modelling 4 (2005) 277–296

12. Woodcock, J.C.P., Cavalcanti, A.L.C.: The Semantics of Circus. In Bert, D.,
Bowen, J.P., Henson, M.C., Robinson, K., eds.: ZB 2002: Formal Specification and
Development in Z and B. Volume 2272 of Lecture Notes in Computer Science.,
Springer-Verlag (2002) 184–203

13. Woodcock, J.C.P., Davies, J.: Using Z-Specification, Refinement, and Proof.
Prentice-Hall (1996)

14. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall Series in
Computer Science. Prentice-Hall (1998)

15. Cavalcanti, A.L.C., Naumann, D.A.: A Weakest Precondition Semantics for Refine-
ment of Object-oriented Programs. IEEE Transactions on Software Engineering
26 (2000) 713–728

16. Back, R.J.R.: Procedural Abstraction in the Refinement Calculus. Technical re-
port, Department of Computer Science, Åbo, Finland (1987) Ser. A No. 55.

17. Naumann, D.A.: Predicate transformers and higher-order programs. Theor. Com-
put. Sci. 150 (1995) 111–159

18. Borba, P.H.M., Sampaio, A.C.A.: Basic Laws of ROOL: an object-oriented lan-
guage. In: 3rd Workshop on Formal Methods, Brazil (2000) 33–44

19. Kassios, I.T.: Decoupling in Object Orientation. In Fitzgerald, J., Tarlecki, A.,
Hayes, I., eds.: FME 2005: Formal Methods. Volume 3582 of Lecture Notes in
Computer Science., Springer-Verlag (2005) 43–58

20. Hehner, E.: A Practical Theory of Programming, the second edition. Springer-
Verlag, New York (2004)

