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Abstract Formal modelling of complex systems requires catering for a
variety of aspects. The Unifying Theories of Programming (UTP) distin-
guishes itself as a semantic framework that promotes unification of res-
ults across different modelling paradigms via linking functions. The naive
composition of theories, however, may yield unexpected or undesirable
semantic models. Here, we propose a stepwise approach to linking theor-
ies where we deal separately with the definition of the relation between
the variables in the different theories and the identification of healthiness
conditions. We explore this approach by deriving healthiness conditions
for Circus Time via calculation, based on the healthiness conditions of
CSP and a small set of principles underlying the timed model.
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1 Introduction

Systems exhibit several aspects of interest, including, for instance, state, be-
haviour, concurrency, object-orientation, time, and others. Several modelling
paradigms capture one or a few of these aspects. The UTP of Hoare and He [1] is
distinctive as a relational semantic framework that supports unification of results
across different paradigms. Individual models can be studied in isolation using
different UTP theories, while their combinations can be studied by composing
theories. Of central importance to composition of theories are: a standard notion
of refinement across the theories, and the definition of pairs of monotonic linking
functions between them, usually Galois connections.

For example, in the UTP, functional total correctness is characterised by
the theory of designs, while reactive behaviour is captured using the theory of
reactive processes. Their combination yields a theory for the process algebra
Communicating Sequential Processes (CSP) [2]. Additions to that theory yield
theories in the Circus [3] family, where not only can state and behaviour be
captured together, but also time [4,5], object-orientation [6], and so on [7].

Combining paradigms is not trivial as their naive combination may produce
unexpected or undesirable semantic models. For example, it is often desirable
for the operators of the combined theory to preserve the semantics of the cor-
responding operators of the original theories, in the sense that, when they are
applied to predicates that correspond to those of the original theory, their beha-
viours are also in correspondence. To establish such a result, we need to identify
Galois connections between the original and the combined theories.
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We consider, for example, the theory of Circus Time [4], a discrete-time version
of Circus that combines Z [8] and Timed CSP [9]. In Circus Time, data operations
are instantaneous, and so every time property is explicitly specified: this is crucial
to facilitate modelling and reasoning. It is not clear how to establish that the
Circus Time theory preserves the semantics of the CSP operators, so that, when
Circus Time operators are applied to (untimed) CSP processes, the resulting
behaviour is consistent with that of the corresponding CSP operators.

Identifying a Galois connection that supports the proof that the operators in
the Circus Time and CSP theories are consistent with each other is important, for
example, to study external choice. The current definition [4] is not satisfactory: as
pointed out in [10], external choice in Circus Time does not handle termination
appropriately. We consider, for instance, Wait d 2 Wait (d+m), a choice between
terminating after d or after d + m time units. Since, like in CSP, termination
is not under the control of the environment, the choice should be resolved in
favour of Wait d. However, this is not the case with the definition proposed
in [4]. Finding an appropriate definition is challenging [11,12].

A Galois connection (L,R) is defined in [4]. L maps Circus Time processes
to untimed Circus processes, while R is defined as the weakest inverse of L. For
example, the application of L to Wait d yields Skip u Stop, a process that may
choose nondeterministically to terminate or deadlock. The results obtained for
operators mapped through this linking function are not satisfactory. It is not
clear how Skip can be mapped into its Circus Time counterpart as a terminating
process taking no time, at the same time that the timed counterpart of Stop
takes any amount of time. These desirable properties of the timed model make
it less than obvious how to define an appropriate Galois connection.

In this paper, we present a general stepwise approach to linking theories that,
by providing for a clear separation of concerns when linking theories, gives guid-
ance as to how theories can be linked. We take inspiration from the calculational
approach to data refinement based on auxiliary variables [13]. Accordingly, we
use an intermediate super-theory with variables of both theories of interest.

In our approach, the link between the source and the super-theory adds the
variables of the target theory. Another important component of a UTP theory
are healthiness conditions, which identify the valid predicates over the theory
variables. In our approach, healthiness conditions that the desired target theory
must satisfy and coupling invariants relating variables of both theories are used
to characterise the super-theory. The target theory is reached by removing the
starting theory’s variables. The opposite links can be constructed similarly.

We have applied our approach to Circus Time to construct a Galois connection
that can justify its healthiness conditions and operators. In this example, we
split the healthiness conditions in two categories: those that refer exclusively to
concerns of the timed model are identified separately from those carried over
from (untimed) CSP. The healthiness conditions of the original Circus Time
theory are explained as combinations of these. We also justify the relationship
between the observation variables of the two theories by considering separately
the removal and introduction of variables, and the relationship between variables
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in the different theories. Our super-theory allows us to derive the healthiness
conditions and operators of Circus Time as induced from the untimed model.

The remainder of this paper is organised as follows. In Section 2 we intro-
duce the required UTP theories, including the theory of CSP and Circus Time.
In Section 3 we discuss the stepwise linking approach. In Section 4 we use the
proposed approach to build a super-theory of timed reactive processes, and ul-
timately derive a model for Circus Time. Finally, we conclude in Section 5 by
summarizing our findings and discussing future work.

2 Preliminaries

UTP theories include relations defined by predicates P. They are characterised
by three components: an alphabet, a set of healthiness conditions and a set of
operators. The alphabet defines the free variables that can be used in the predic-
ates. Also, the alphabet α(P) of a relation P is split into inα(P), which contains
undashed variables corresponding to the initial observations, and outα(P) con-
taining the dashed counterparts for after or final observations. The healthiness
conditions are defined by monotonic idempotent functions; the theory contains
only the healthy predicates: the fixed points of the healthiness conditions. The
predicates can be defined using the operators of the theory.

Refinement is defined in all theories as universal reverse implication. In
the UTP, total correctness is characterised through the theory of designs [1,14],
whose healthiness conditions are named H1 and H2. Every design P can be ex-
pressed in terms of pre and postcondition pairs, (¬P f ` Pt), where Po = P[o/ok ′]
and t and f correspond to true and false, respectively.

2.1 CSP

Programs characterised by continuous interactions with their environment are
modelled in the UTP using the theory of reactive processes [1,15]. In addition
to the variables, ok and ok ′ of the theory of designs, this theory includes the
variables wait, tr , ref and their dashed counterparts, that record information
about interactions with the environment.

This is a theory where observations of intermediate states of programs are
recorded. The boolean variable wait records whether the previous process is
waiting for an interaction from the environment or, alternatively, has terminated.
Similarly, wait′ ascertains this for the current process. The boolean variable ok
indicates whether the previous process is in a stable state, while ok ′ records this
information for the current process. If a process is not in a stable state, it is said
to have diverged. A process starts executing only in states where ok and ¬wait
are true. Successful termination is characterised by ok ′ and ¬wait′ being true.

The actual interactions with the environment are represented using sequences
of events, recorded by tr and tr ′. The variable tr records the sequence of events
that took place before the current process started, while tr ′ records the inter-
mediate or final sequence of events that can be observed. Finally, ref and ref ′
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record the set of events that may be refused by the process. Refusal sets allow
the appropriate modelling of deadlock and nondeterminism [2].

The theory of reactive processes R is characterised by the functional compos-
ition (◦) of three healthiness conditions [1,15] below, where function application
binds stronger than function composition.
Definition 1 (Healthiness Conditions of Reactive Processes).

R1(P) =̂ P ∧ tr ≤ tr ′ R2(P) =̂ P[〈〉, (tr ′−tr)/tr , tr ′]

R3(P) =̂ IIrea C wait B P R(P) =̂ R3 ◦ R1 ◦ R2(P)

R1 requires that in all circumstances the only change that can be observed in
the final trace of events tr ′ is an extension of the initial sequence tr , while R2
requires that a process must not impose any restriction on the initial value of tr .
Finally, R3 requires that if the previous process is waiting for an interaction with
the environment, that is, wait is true, then the process behaves as the identity
of the theory II rea [1,15].

The theory of CSP can be described by reactive processes that in addition
satisfy the healthiness conditions CSP1 and CSP2 reproduced below [1,15].
Definition 2 (CSP).

CSP1(P) =̂ P ∨ R1(¬ok)
CSP2(P) =̂ P ; ((ok ⇒ ok ′) ∧ tr ′ = tr ∧ ref ′ = ref ∧ wait′ = wait)

The first healthiness condition CSP1 requires that if the previous process has
diverged, that is, ok is false, then extension of the trace is the only guarantee.
CSP2 is H2 restated with the extended alphabet of reactive processes.

A process that is R, CSP1 and CSP2-healthy can be described in terms of
a design [1,15]. We reproduce this result below, where Po

w = P[o,w/ok ′,wait].
Theorem 1 (Reactive Design). For every CSP process P, R(¬P f

f ` Pt
f ) = P

This result is important as it allows CSP processes to be specified in terms of
pre and postconditions, such as is the case for sequential programs, while the
healthiness condition R enforces the required reactive behaviour.

2.2 Circus Time
Circus is a combination of Z, CSP and Dijkstra’s language of guarded commands.
Its semantics is also defined using reactive designs. The timed version Circus
Time [4,5] provides facilities to explicitly model and reason about discrete time
state-rich reactive systems. Observations are timed, so the trace of events and
the set of refusals are recorded as pairs in a non-empty timed sequence trT ,
whose dashed counterpart is tr ′

T , and where Σ is the set of all possible events.
This is analogous to untimed CSP where tr and tr ′ are defined as sequences
whose elements are drawn from Σ.
Definition 3. trT , tr ′

T : seq1(seqΣ × PΣ)

Here we use seq1 following the Z notation [16] to denote a finite non-empty
sequence. The variables ok, ok ′, wait and wait′ retain the same meaning as in
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Figure 1: A timed sequence.

the untimed theory, and in that of CSP. For the purpose of our discussion, we
adopt a model based on that of [4], but without considering state directly.

An illustration of a timed sequence consisting of three time slots is presented
in Figure 1. Each slot contains a pair, whose first component is a sequence of
events, such as a followed by b, and whose second component is a refusal set
(shaded in Figure 1) such as R. This is useful to illustrate the intuition behind
the healthiness conditions that we discuss in the sequel.

Healthiness Conditions The first healthiness condition R1T of the Circus
Time theory ensures that the trace of events across time cannot be undone. It is
the counterpart to R1 and is defined as follows.

Definition 4. R1T(P) =̂ P ∧ E(trT , tr ′
T)

It is a conjunctive healthiness condition [7] defined using the predicate E .

Definition 5. E(s, t) =̂ (front(s) < t) ∧ fst ◦ last(s) ≤ fst ◦ head(t−front(s))

Given two timed traces s and t, E requires the front (which for a given sequence
yields all the elements except the last) of s to be a strict prefix of t, and in
addition that the first component (as given by fst) of the last pair of s is a prefix
of the first component of the head of the difference between t and front(s). If
we consider s and t to be trT and tr ′

T , respectively, then the strict prefixing
front(trT) < tr ′

T requires that not only are the traces of previous time slots kept
unchanged, but also the refusal sets. In addition, the difference tr ′

T − front(trT)
yields the timed sequence corresponding to the current and future observations,
and so the head corresponds to the first after observation in the current time
slot. A pair of sequences satisfying R1T is illustrated in Figure 2. The functions
front, last, head, fst and snd are those of Z [16] with expected meanings.

The counterpart to R2 is R2T, which requires processes to be insensitive to
events in the initial timed sequence trT .

Definition 6. R2T(P) =̂ P[〈(〈〉, snd ◦ last(trT))〉, difT(tr ′
T , trT)/trT , tr ′

T ]

It is defined by considering the substitution of trT by the timed sequence whose
only element is a pair, where the trace is empty and the refusal set is the last ob-
served in trT . The sequence tr ′

T is substituted by the application of the function
difT that captures the difference in events during the current time slot.
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Figure 2: Example of a pair of sequences trT and tr ′
T satisfying R1T.
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Figure 3: Example application of difT .

The function difT takes two timed traces tr ′
T and trT , and yields a sequence

whose first element is a pair containing the trace actually observed during that
time slot, and the refusal set observed at the end of the time slot.

Definition 7.

difT(tr ′
T , trT) =̂

 〈
(

fst ◦ head(tr ′
T − front(trT))− fst ◦ last(trT)),

snd ◦ head(tr ′
T − front(trT))

)
〉

a

tail(tr ′
T − front(trT))


The current sequence of time slots is obtained by the difference tr ′

T − front(trT).
The actual events occurring during the first of those slots are obtained by the
difference between fst ◦ head(tr ′

T−front(trT)) and fst ◦ last(trT). An illustration
of an application of difT to timed traces satisfying R1T is shown in Figure 3.

The counterpart to R3 is R3T below. Instead of II rea, the identity of the
theory of reactive processes, IIT , the identify of the timed theory is employed.
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Figure 4: Linking between theories.

Definition 8.

R3T(P) =̂ IIT C wait B P
IIT =̂ R1T(¬ok) ∨ (ok ′ ∧ tr ′

T = trT ∧ wait′ = wait)

If the process is in an unstable state, that is, ok is false, then expansion of the
timed sequence trT is the only guarantee. Otherwise, the process is stable, that
is, ok is true, the timed sequence trT is kept intact and so is the value of wait.
The functional composition of R1T, R2T and R3T is RT.

This concludes the overview of Circus Time. We next explore an approach to
find Galois connections between theories, which leads to the definition of a new
Galois connection between Circus and Circus Time.

3 Linking Theories via Super-Theories

The definition of linking functions between UTP theories with different alphabets
involves introduction of variables of the target theory and removal of variables of
the source theory (essentially a data refinement), while at the same time enfor-
cing the healthiness conditions of the target theory. In other words, in addition
to a data refinement, there is an application of the healthiness condition of the
target theory. This is illustrated for two arbitrary theories A and C in Figure 4,
where a pair of linking functions a2c and c2a is shown.

When defining a2c and c2a, a problem arises if the complete set of health-
iness conditions of the target theory C is not known a priori. This is often the
case when developing a new theory. An appealing approach is to calculate the
healthiness conditions via application of a2c to healthy predicates of A. If, how-
ever, finding a Galois connection, that is, defining a2c and c2a in the first place,
is not immediately obvious, then this is not a solution.

For example, in the case of the link from Circus to Circus Time two choices
arise naturally: every trace of events takes place in a single time slot, and so
no time is actually added; or any amount of time can pass for any given trace.
The latter violates R1T, while the former does not capture an interesting cor-
respondence between the models. The right approach lies between these two
extremes.

We propose that, instead of exploring the links between the theories directly,
we break down the linking functions into a series of functions that, when com-
posed, achieve the same goal. We consider again the arbitrary theories depicted
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Figure 5: Stepwise linking between theories.

in Figure 4, and suppose that we know only partially the set of healthiness con-
ditions of the theory C , denoted by the function HC. To calculate those induced
from theory A, we can proceed as depicted in Figure 5.

The theories A and C are related through an intermediate super-theory B.
The alphabet of B is the union of the alphabets of A and C : αB = αA∪αC . To
relate the values of variables in αA and αC we introduce a coupling invariant
CI, which is applied after HC, the known healthiness condition of the theory C
that must be satisfied irrespective of those induced from A.

In what follows we define coupling invariants and characterise the properties
required of HC to ensure that a2c and c2a form a Galois connection between
the theories of interest. Finally, we present formal definitions for a2c and c2a,
and show that they form a Galois connection.

A coupling invariant is a monotonic and idempotent function CI defined by
the general form below, where Q is a predicate relating variables.

Definition 9 (Coupling Invariant). CI(P) =̂ P ∧ Q

If Q does not depend on P, then CI is a conjunctive healthiness condition [7].
A coupling invariant and the identity function II form a Galois connection as
established by the following Lemma 1, following the result of Lemma 4.2.3 in [1].

Lemma 1. CI and II form a Galois connection in the domain of CI-healthy
predicates.

Proof. II ◦ CI(P) w P {By definition of II and CI and predicate calculus}
and CI ◦ II(Q) v Q {By definition of II and predicate calculus, Q satisfies CI}

ut

We observe that in the proof of Lemma 1, we assume that II is applied to a
CI-healthy predicate. This is because the Galois connection is established with
the subset of interest of theory B that is CI-healthy.

Similarly, links related to the data refinement, in which one function intro-
duces variables, and another function hides them, also form a Galois connection
as established by the following Lemma 2. We use the operator +C , an alphabet
extension with no particular value specified for variables in the set C .

Definition 10. P+C =̂ P,with α(P+C ) = α(P) ∪ C

In words, the alphabet of P+C is augmented with the variables in C , but the
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values of these new variables are not restricted.

Lemma 2. Provided variables in αC are not free in P, ∃αC • P and Q+C
form a Galois connection.

Proof.

∃αC • (P+C ) {Theory alphabet extension}
= ∃αC • (P) {Assumption: c and c′ not free in P}
= P

(∃αC • Q)+C {Theory alphabet extension}
= (∃αC • Q) {Predicate calculus}
v Q

ut

The remaining Galois connection to be established lies between the theory with
variables of both A and B (depicted as A + αC in Figure 5), and the theory
whose predicates satisfy HC (depicted as A + B in Figure 5).

Lemma 3. HC and II form a Galois connection in the domain of HC-healthy
predicates, provided HC is a monotonic and idempotent function, and, for all
P, either HC(P) w P (strengthening) or HC(P) v P (weakening), or both.

Proof. HC ◦ II(Q) = Q {Def. of II , and assumption: Q is HC-healthy}
(Case: HC is strengthening)

II ◦ HC(P) {Definition of II}
= HC(P) {Assumption: HC(P) w P}
w P

(Case: HC is weakening)

II ◦ HC(P) {Definition of II}
= HC(P) {Assumption: HC(P) v P}
v P

ut

When HC is applied to a predicate P that is HC-healthy, then HC(P) = P,
and the proviso of Lemma 3 requiring strengthening or weakening is trivially
satisfied. In the context of our approach, however, the proviso must also be
satisfied when HC is applied to a predicate P that results from the application
of P+C , that is, when the variables of set C are allowed to take arbitrary values by
P. For example, we consider the case where HC is defined by a function like R2.
This function is neither strengthening nor weakening when applied to unhealthy-
predicates. We consider the following counter-example: R2(tr = 〈〉) = true and
R2(tr 6= 〈〉) = false. However, the application of R2(P) to a predicate P where
tr and tr ′ take arbitrary values yields an equality.
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As illustrated in Figure 5 the linking function a2c from A to C is the com-
position of several functions: a function that introduces the variables of C ; the
healthiness condition HC; the coupling invariant CI; followed by two applica-
tions of the identity function, and an existential quantification over all variables
in A. We have a similar composition for c2a. Formally, we can describe a2c and
c2a as follows: the identities do not need to be included in the composition.

Definition 11.

a2c(P) =̂ ∃αA • CI ◦ HC(P+C ) c2a(P) =̂ ∃αC • CI ◦ HC(P+A)

For variables that are simply aliases, the existential quantification at either end
of the link is over the subset of those variables not present in the target theory.
The relation established between variables could alternatively be defined using
the data refinement approach of the UTP. However, to satisfy HC the invariants
would need to be strengthened, and it is not clear how functions like R2 could be
justified purely by data refinement. Here we deal with these concerns piecewise.

The functions a2c and c2a form a Galois connection. This is our main result
in this paper, established by the following Theorem 2.

Theorem 2. a2c and c2a form a Galois connection, provided HC is idempotent
and monotonic, and HC is either strengthening or weakening, or both.

Proof. Follows from Lemmas 1 to 3 and Theorem 4.2.5 in [1] (Galois connections
compose).

Our approach provides for a systematic way of studying the relationship
between theories. As long as the known healthiness condition HC is weakening
or strengthening, or both, then a Galois connection can be established. The coup-
ling invariant can be tweaked as required to yield different Galois connections.
Links between theories can be non-trivial due to the underlying differences in
paradigm. The intermediate super-theory enables constructs from multiple the-
ories to be considered together within the same alphabetized relation space,
while still providing a Galois connection with the constituent theories.

This concludes our discussion on building super-theories. In the next section,
we illustrate our approach by discussing how it can be used to build a model for
Circus Time starting with the (untimed) CSP theory.

4 A Stepwise Approach Towards Circus Time

Here, we build a super-theory of timed reactive processes based on the CSP
theory. Section 4.1 defines the alphabet and healthiness conditions of the super-
theory, and coupling invariants that characterise the valid timed traces. The
instance of HC in this example is the composition of the healthiness conditions
we identify; similarly, the instance of CI is the composition of the coupling
invariants. Defining HC and CI by composition of simpler functions gives a
piecewise characterisation of properties of interest. This method is suggested by
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Theorem 2 and is an illustration the main feature of our stepwise approach to
connecting theories. In Section 4.2 we calculate an explicit description of the
linking function from (untimed) CSP to Circus Time, using Definition 11, and
present the results obtained with our Galois connection.

4.1 Constructing the Super-Theory

The alphabet of the super-theory includes the union of alphabets of the theories
of CSP and Circus Time, defined in Section 2; ok and ok ′ are common to both
theories. Furthermore, we also add auxiliary variables trC and tr ′

C to the super-
theory to facilitate reasoning about traces in the current time slot.

Definition 12 (Alphabet).

tr , tr ′ : seqΣ trT , tr ′
T : seq(seqΣ × PΣ)

wait,wait′, ok, ok ′ : Boolean waitT ,wait′T : Boolean
ref , ref ′ : PΣ trC , tr ′

C : seqΣ

In contrast with the treatment in [4], we require timed traces not to be empty
by using a healthiness condition, defined in the sequel, rather than using the
type system directly. This obviates the need to check intermediate calculations
for type correctness with regards to this property.

Healthiness Conditions Here, we identify minimal restrictions that are later
used to justify the original healthiness conditions of Circus Time. With this ap-
proach, we consider issues related to time in isolation from those already cap-
tured by the healthiness condition of CSP.

TR0 The first condition of the super-theory requires that no sequence of events
is empty: the length #trT of the initial trace trT is greater than zero.

Definition 13. TR0(P) =̂ P ∧ #trT > 0

This makes operations on traces, such as front, well-defined. The corresponding
restriction on tr ′

T arises as a consequence of TR0 and TR1 defined next.

TR1 The second healthiness condition requires that time increases monoton-
ically, that is, the length of the after timed trace tr ′

T must be greater than or
equal to the length of the current timed trace trT .

Definition 14. TR1(P) =̂ P ∧ #trT ≤ #tr ′
T

In the original Circus Time model [4], TR0 and TR1 are implicit.
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Figure 6: Example of applying R2locT.

TR2 The third healthiness condition requires that previous observations across
time cannot be changed and is defined as follows.

Definition 15. TR2(P) =̂ P ∧ front(trT) ≤ tr ′
T

In words, the front of the current timed sequence trT must be a prefix of tr ′
T .

In [4], this requirement is part of R1T, but here it is studied in isolation.
An example of a relation that is TR0, TR1 and TR2-healthy is depicted in

Figure 2. The healthiness conditions considered so far guarantee preservation of
history before the current time slot, however, they are not sufficient to guarantee
that R1 is observed within the current time slot. Later in this section, we tackle
this aspect by using coupling invariants related to trC and tr ′

C .

TR3 The next healthiness condition defines for waitT part of what is established
by R3 for wait. It states that if the previous process is waiting in a stable state,
then no explicit time is added and it continues waiting.

Definition 16. TR3(P) =̂ P ∧ ((ok ∧ waitT)⇒ (#tr ′
T = #trT ∧ wait′T))

This healthiness condition is essential to justify the definition of the timed iden-
tity IIT . Further aspects of R3, including behaviour in the presence of divergence
of the previous process are considered separately.

R2locT The following healthiness condition captures part of R2, in that, if we
ignore time and the events that happened in the previous time slot, then the
counterpart to applying R2 in the current time slot is R2locT.

Definition 17. R2locT(P) = P
[

front(trT)a 〈(〈〉, snd ◦ last(trT))〉/trT
front(trT)a difT(tr ′

T , trT)/tr ′
T

]
A pictorial description of the application of R2locT is shown in Figure 6. In the
current time slot, the front of trT is maintained, while the last sequence of events
is replaced by the empty sequence. Similarly, the subsequent observation of tr ′

T
is replaced with front of trT (front(trT) is guaranteed to be a prefix of tr ′

T when
we consider relations that satisfy TR0 and TR1) followed by the corresponding
difference in events observed during the current time slots as given by difT .

For difT to be well-defined fst(last(trT)) must be a prefix of the sequence
fst(head(tr ′

T−front(trT))). This is not an issue in the original Circus Time theory
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Figure 7: Example of applying TR4.

as it includes R1T, but the healthiness conditions above do not address this
issue. One option is to consider this as a requirement for difT to be well-defined.
Another option, which we choose to follow, is to enforce the counterpart to R1
in the current time slot with the following healthiness condition.

Definition 18. R1C(P) =̂ trC ≤ tr ′
C

This is a modelling decision: both options can justify R1T. Later, a coupling
invariant relates the values of trC and tr ′

C with those of tr ′
T and tr ′

T .

TR4 The second requirement of R2T is captured by the following healthiness
condition TR4 that requires processes not to depend on the time elapsed before
them, irrespective of events that have happened. R2locT above captures insens-
itivity to events, whereas TR4 captures insensitivity to time. A fixed point of
TR4 must allow the timed traces trT and tr ′

T to be replaced with traces whose
first time slots contain all events that have happened before, concatenated with
any current events. In other words, the behaviour of a fixed point must be the
same, even if no time had elapsed before.

Definition 19.

TR4(P) =̂ P


〈(Flat(trT), snd ◦ last(trT))〉/trT 〈
(

Flat(front(trT)a head(tr ′
T − front(trT))),

snd ◦ head(tr ′
T − front(trT))

)
〉

a

tail(tr ′
T − front(trT))

 /tr ′
T


The sequence trT is replaced by a sequence with only one element: a pair whose
first component is Flat(trT), a projection on trT that yields the sequence of
events in every first component of the pairs in trT , that is, all events that
happened by the beginning of the current observation. Similarly, tr ′

T is re-
placed by a sequence whose first pair has as first component the sequence of
events observed up until the end of the current time slot. This includes the
events in front(trT) concatenated with those in the current time slot, given by
head(tr ′

T − front(trT)). An example of applying TR4 is shown in Figure 7.
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The combination of R2locT and TR4 corresponds to R2T as established
by the following Lemma 4. Proof of this and other results to follow that are not
included in this paper are available in [17], with essential results having been
checked using Isabelle/UTP [18].

Lemma 4. Provided #trT > 0, TR4 ◦ R2locT(P) = R2T(P).

This equality with R2T holds only when TR4 is applied after R2locT. Although
this may seem counter-intuitive, this requirement is a consequence of the order
in which the substitutions of TR4 and R2locT are applied.

TR The healthiness condition corresponding to the functional composition of
all the previous healthiness conditions is TR.

Definition 20.

TR(P) =̂ TR0 ◦ TR1 ◦ TR2 ◦ TR3 ◦ TR4 ◦ R2locT ◦ R1C(P)

This function is strengthening as established by the following Theorem 3.

Theorem 3. Provided trT and tr ′
T are not free in P, TR(P) w P.

Proof.

TR(P) {Definition of TR}
= TR0123 ◦ TR4 ◦ R2locT ◦ R1C(P) {Lemma 4}
= TR0123 ◦ R2T ◦ R1C(P) {Assumption: trT and tr ′

T not free in P}
= TR0123 ◦ R1C(P) {Definition of TR0 to TR3, predicate calculus}
w R1C(P) {Definition of R1C and predicate calculus}
w P

Following the approach outlined in Section 3, this result ensures that a linking
function including TR as healthiness condition, yields a Galois connection.

This concludes the discussion of the healthiness conditions governing the
timed aspects of the super-theory and Circus Time.

Coupling Invariants In this section we define the coupling invariants that
relate the value of variables in the super-theory.

CI0 The first coupling invariant relates the timed traces, trT and tr ′
T , with

their untimed counterparts, tr and tr ′. The difference in traces in the untimed
model tr ′ − tr must be in agreement with the difference in events observed over
all time units as given by the difference Flat(tr ′

T)− Flat(trT).

Definition 21.

CI0(P) =̂
P ∧ (tr ′−tr) = Flat(tr ′

T)−Flat(trT) ∧ Flat(trT) ≤ Flat(tr ′
T) ∧ tr ≤ tr ′



15

For the differences to be well-defined we require Flat(trT) to be a prefix of
Flat(tr ′

T), and tr of tr ′. While a direct equality could be used, rather than an
equality between differences, it poses problems if R2 were applied to CI0 as it
forbids insisting on a particular value for tr . Therefore, here we only consider
the relationship between differences, an approach also followed in [19].

CI1 The second invariant requires refusals in the untimed ref variables and the
timed traces variables trT to be in agreement.
Definition 22. CI1(P) =̂ P ∧ ref = snd ◦ last(trT) ∧ ref ′ = snd ◦ last(tr ′

T)

The value of ref must be the same as the refusal in the last time slot last(trT)
of trT , as given by the second component of last(trT), whereas ref ′ must be
the refusal in the last time slot last(tr ′

T), as given by the second component of
last(tr ′

T), which may or may not be the same time slot as last(trT).

CI2 The next invariant requires that termination without visible events in a
stable state in the untimed model does not allow any time to pass.
Definition 23.

CI2(P) =̂ P ∧ ((¬wait′ ∧ ¬P f
f ∧ ok ∧ ok ′ ∧ tr ′ = tr)⇒ #tr ′

T = #trT)

That is, when wait′ is false, the precondition ¬P f
f of P is satisfied, and stability

is preserved with ok and ok ′, and no event is observed tr ′ = tr , then no time
must pass. Consequently, the CSP process Skip in the context of the super-theory
allows no time to pass. As previously indicated, this is required in Circus Time
to ensure that time passage is explicitly modelled. We note that data operations
in Circus Time, like Skip, do not engage in events, and so, if not divergent, are
instantaneous. So, time budgets and deadlines need to be explicitly defined.

CI3 The next invariant relates termination of interactions in both theories.
Definition 24. CI3(P) =̂ P ∧ waitT = wait ∧ (¬wait′ ⇒ ¬wait′T)

It requires that termination, or not, of the previous process is the same in both
models as waitT is equal to wait. On the other hand, termination of interactions
in the untimed model, for the current process, implies termination in the timed
model, but not vice-versa. If we were to admit wait′ = wait′T , then it would
be impossible to define a process such as Wait d, since, when it terminates,
CI2 requires no time to pass, and thus d could never be greater than zero.
On the negative side, if we consider the CSP process Stop in the context of
the super-theory, then it does not necessarily wait forever in the timed model.
This is, however, unavoidable: if we were to admit wait′ ⇒ wait′T , then in the
context of the super-theory Stop would require non-termination appropriately,
but Skip would no longer require termination, and similarly Wait d could still
never terminate with d greater than zero due to CI2. We, therefore, need to
provide a new definition of Stop in the super-theory, which is not related to
the CSP process Stop by our Galois connection. It was the study of the super-
theory, including both the wait and waitT variables, that revealed the difficulties.
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CI4 The final coupling invariant CI4 relates the values of trC and tr ′
C , and the

values of trT and tr ′
T , respectively.

Definition 25.

CI4(P) =̂

 fst ◦ head(tr ′
T − front(trT))− fst ◦ last(trT) = tr ′

C − trC ∧
P ∧
trC ≤ tr ′

C ∧ fst ◦ last(trT) ≤ fst ◦ head(tr ′
T − front(trT))


The difference in traces between the variables tr ′

C and trC , and the difference
in events observed in the timed traces during the current time slot, as given by
fst ◦ head(tr ′

T−front(trT)) and fst ◦ last(trT), must be in agreement. Finally trC
must be a prefix of tr ′

C in order for the difference to be well-defined. Similarly,
we also require the differences in the timed model to be prefixes. As discussed
before, this aspect is part of R1T in the original Circus Time theory.

CI The complete relationship between timed and untimed variables is estab-
lished by the coupling invariant CI, the composition of the previous invariants.

Definition 26. CI(P) = CI0 ◦ CI1 ◦ CI3 ◦ CI2 ◦ CI4(P)

We observe that CI3 needs to be applied before CI2 as the functions are not
commutative; the others commute with each other.

Having defined both the healthiness condition TR and the coupling invari-
ant CI of the super-theory, we now define the resulting Galois connection as
described in Section 3. We have a pair of functions csp2t, mapping from un-
timed CSP to Circus Time, and t2csp mapping in the opposite direction.

Definition 27.

csp2t(P) =̂ ∃Uα • CI ◦ TR(P+T) t2csp(P) =̂ ∃Tα • CI ◦ TR(P+U )

where T = {trT , tr ′
T , trC , tr ′

C}, U = {tr , tr ′, ref , ref ′,wait,wait′, trC , tr ′
C}

That we have a Galois connection follows from Theorem 3 and Lemma 3.
This concludes the construction of the super-theory. In the following we ex-

plore the mapping of CSP operators into the super-theory and into Circus Time.

4.2 Using the Super-Theory

In this section we use the super-theory to relate CSP processes and their Circus
Time counterparts. To that end, we first observe that the application of TR
and CI to a reactive design yields a timed reactive process in the context of
the super-theory of the form established by the following Theorem 4, where the
function S, defined below, is used instead of R.

Definition 28. S(P) = R012T ◦ CI0134 ◦ R3T ◦ R2(P)
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The function S is the result of composing the healthiness conditions of the ori-
ginal Circus Time theory (R0T to R2T, and R3T), together with our coupling
invariants and R2. In the resulting design of Theorem 4, the conjunction in the
postcondition is due to CI2: if the process terminates successfully in the untimed
model, and without communicating any event, then time must not pass.

Theorem 4. Provided ok ′ and wait are not free in P,

CI ◦ TR ◦ R(P ` Q) = S(P ` ((¬wait′ ∧ tr ′ = tr)⇒ #tr ′
T = #trT) ∧ Q)

We recall that all predicates of the CSP theory can be described as reactive
designs, and so Theorem 4 describes all predicates of the super-theory. Simil-
arly to CSP processes, they are the image of a design through a healthiness
function. We observe that the proviso is standard for CSP processes, since their
preconditions do not depend on the value of wait as a result of R3.

Using Theorem 4, we can give a general characterisation of the result of
applying csp2t to a reactive design as established by the following Theorem 5,
where φ =̂ (Flat(tr ′

T) = Flat(trT)) and f = false and t = true.

Theorem 5. Provided trC and tr ′
C are not free in P and Q, and ok ′ and wait

are not free in P,

csp2t ◦ R(P ` Q) =

RT

 (ψ(P)[f /wait′] ∨ wait′T) ∧ ψ(P)[t/wait′]
`
((φ⇒ #tr ′

T = #trT) ∧ ¬wait′T ∧ ψ(Q)[f /wait′]) ∨ ψ(Q)[t/wait′]


The proviso is satisfied by CSP processes as trC and tr ′

C are not free in a reactive
design. We obtain a timed reactive design with RT applied. The design mentions
the original pre and postconditions, P and Q, with ψ applied to them.

Definition 29. ψ(P) =̂ P
[
〈〉,Flat(tr ′

T)− Flat(trT),waitT/tr ′, tr ′,wait
snd ◦ last(trT), snd ◦ last(tr ′

T)/ref , ref ′
]

These substitutions are a consequence of the definition of the coupling invariants
and the healthiness condition R2 of the original reactive design.

In a CSP process R(P ` Q), we expect wait′ not to be constrained, or even
free, in P. In this case, the precondition of csp2t ◦ R(P ` Q) is simply ψ(P).
We do not have, however, a healthiness condition that ensures that wait′ is not
free in P. So, the actual precondition of csp2t ◦ R(P ` Q) requires that wait′T
must hold if P requires wait′ to be true.

The postcondition considers two cases. The second case is simpler: wait′ is
admitted to be true in Q, and so the postcondition is Q with the appropriate
substitutions of ψ. The first case is when wait′ is admitted to be false: if no
events are observed, that is, Flat(trT) = Flat(tr ′

T), then no time can pass, and
termination also occurs in the timed model, with wait′T being false.

Having established the general results of mapping (untimed) CSP processes
into the super-theory, and into Circus Time, in the remainder of this section we
discuss the mapping of Skip, Stop and external choice.
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Skip The result of mapping Skip into the timed theory is established by the
following Theorem 6.

Theorem 6. csp2t(Skip) = RT(true ` #tr ′
T = #trT ∧ φ ∧ ¬wait′T)

The precondition is also true, while the postcondition requires termination in
the timed model ¬wait′T , that no events are observed, and that no time must
pass. This is the original definition of Skip in Circus Time [4].

Stop The result of mapping Stop through csp2t is established by Theorem 7.

Theorem 7. csp2t(Stop) = RT(true ` Flat(tr ′
T) = Flat(trT))

Like in CSP the precondition is true, while the postcondition is rather different: it
only states that no events are observed, but termination is not guaranteed. This
is unlike the definition of timed StopT [4] reproduced below.

Definition 30. StopT =̂ RT(true ` Flat(tr ′
T) = Flat(trT) ∧ wait′T)

The application of t2csp to StopT , however, yields the Stop of CSP as required,
since wait′T ⇒ wait′ is enforced by CI3.

External Choice Following from the result of Theorem 4, the next Theorem 8
establishes the induced definition of external choice in the super-theory.

Theorem 8. Provided ok ′ and wait are not free in P and Q,

TR ◦ CI ◦ R((P ` R) 2CSP (Q ` S)) =

S

 (P ∧ Q) `

 ((R ∧ S)C tr ′ = tr ∧ wait′ B (R ∨ S))
∧
((¬wait′ ∧ tr ′ = tr)⇒ #tr ′

T = #trT)


The precondition is the conjunction of both preconditions just like in CSP,
whereas the postcondition requires, in addition to that of CSP, immediate ter-
mination in the untimed model to become instantaneous. For example, in the
case of the untimed process Skip 2 a → Skip, there is no agreement on waiting,
so either Skip terminates instantaneously, or the prefixing on the event a termin-
ates at any time, without any waiting period observed. So, we have unexpected
behaviour in a timed setting: although Skip terminates immediately, it does not
resolve the choice, and although a → Skip can take time, we cannot observe its
stable waiting states. We note that, in (untimed) CSP, termination also does not
resolve a choice, and the above is the definition in the super-theory. We consider
next the result of mapping external choice through the super-theory into the
timed model is established by the following Theorem 9.
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Theorem 9. Provided trC and tr ′
C , and ok ′ and wait, are not free in P and Q,

csp2t(R(P ` S) 2CSP R(Q ` R)) =

RT


(ψ(P ∧ Q)[f /wait′] ∨ wait′T) ∧ ψ(P ∧ Q)[t/wait′]̀ψ(R ∧ S)[t/wait′]C φB ψ(R ∨ S)[t/wait′])
∨
((φ⇒ #tr ′

T = #trT) ∧ ψ(R ∨ S)[f /wait′] ∧ ¬wait′T)




This result closely follows that of Theorems 5 and 8. The precondition retains
the conjunction of the original reactive design with appropriate substitutions.

In the postcondition there is a disjunction between, roughly, the usual con-
ditional that characterises the choice, and an extra disjunct that stems from CI.
It covers the possibility that one of the processes terminates, with wait′ being
false in R or S , and termination also takes place in the timed theory, with wait′T
being false, but it is instantaneous if no event is observed. The conditional con-
siders the cases where R and S agree on waiting in the untimed model and,
either no event is observed (φ) and R and S agree, or either process performs
some visible event (¬φ). In any case, waiting in the untimed model does not
lead to waiting in the timed model because of CI3. For example, the process
Skip 2 Wait 1 has only one possible behaviour: immediate and instantaneous
termination. We note that Skip = Wait 0, and so Skip 2 Wait 1 is a process of
the form Wait d 2 Wait (d + m) mentioned in Section 1.

We consider another example: Wait 1 2 Wait 2. In this case, the only possible
agreement between the processes is to wait 1 time unit. Termination of either
process with no visible events cannot be instantaneous and so the behaviour after
1 time unit is miraculous. Finally, we consider Wait 1 2 (Wait 2 ; a → Skip),
where there is a choice between terminating after 1 time unit, or performing the
event a after 2 time units. In this case, and following Theorem 9, the processes
can only agree on waiting for 1 time unit. After 2 time units, the event a can
still be observed, but between 1 and 2 time units the process is miraculous.

Ultimately the definition of external choice induced from (untimed) CSP does
not satisfy the timed properties of interest, namely, that early termination of one
of the processes leads to termination. The definition considered in [4] does not
correspond to this induced definition either. The approach we propose allows
the study of different timed models, and, consequently, different definitions of
timed external choice, through Galois connections which preserve the properties
of untimed CSP. These variations can be obtained by adjusting the coupling
variants piecewise. Further work is necessary to explore other possibilities.

5 Conclusion

The composition of theories is crucial for the unification of results in the UTP.
Galois connections are an essential tool for the theory engineer as part of study-
ing multiple aspects and relating definitions amongst different models.
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The approach we propose promotes separation of concerns: healthiness con-
ditions are defined separately to the relation between variables of the theories.
The coupling invariants can be adjusted to yield models satisfying different prop-
erties, and provided the healthiness conditions are strengthening or weakening,
or both, then Galois connections can be established. Although, we have used
this technique to study only Circus and Circus Time, we expect it to be of more
general use because it is based on general ideas of data refinement. Confirmation
of this generality, however, is still to be established.

We have applied our approach to find a Galois connection between CSP
and Circus Time that can justify the definition of the healthiness conditions
and operators of Circus Time. This is different to that proposed in [4]. Our
construction relies on a set of principles underlying the timed model and the
appropriate definition of coupling invariants. This approach provides a way to
study the induced definitions of operators, such as Skip, Stop and external choice.

The definition obtained for timed external choice is not entirely satisfactory
in light of desired properties. Different versions of this operator are considered
in [12,11]. In pursuit of a suitable treatment of external choice, it remains for
us to study the relationship between untimed CSP and those models through a
super-theory construction that preserves the semantics of untimed CSP.
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