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Abstract The concept of angelic nondeterminism has traditionally been
employed in the refinement calculus. Despite different notions having
been proposed in the context of process algebras, namely Communicating
Sequential Processes (CSP), the analogous counterpart to the angelic
choice operator of the monotonic predicate transformers, has been elu-
sive. In order to consider this concept in the context of reactive processes,
we introduce a new theory in the setting of Hoare and He’s Unifying The-
ories of Programming (UTP). Based on a theory of designs with angelic
nondeterminism previously developed, we show how these processes can
be similarly expressed as reactive designs. Furthermore, a Galois connec-
tion is established with the existing theory of reactive processes and a
bijection is also found with respect to the subset of non-angelic processes.
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1 Introduction

In the refinement calculus [1,2,3], angelic nondeterminism is defined as the least
upper bound of the lattice of monotonic predicate transformers and is the dual
operator of demonic nondeterminism. The angelic nature pertains to the embod-
ied notion of nondeterminism that is aversive to failure. In theories of correctness
for sequential programs, this corresponds to evading abortion, if possible.

In the context of reactive and concurrent systems, however, the notions of
angelic nondeterminism considered so far in the literature, have been notably
different. Tyrrell et al. [4] have proposed an axiomatized algebra of processes
resembling CSP where external choice is referred to as angelic choice, however,
in their model deadlock is not distinguishable from divergence.

Roscoe [5] has proposed an angelic choice operator P�Q through operational
combinator semantics for CSP. It is an alternative to the external choice operator
that behaves as follows: as long as the environment chooses events offered by
both P and Q, then the choice between P and Q is unresolved. The possibility
of divergence or otherwise has no effect on the choice. A suitable notion of angelic
nondeterminism for reactive processes would ideally also avoid divergence.

The UTP of Hoare and He [6] is a suitable framework in order to study the
concept of angelic nondeterminism in a theory of reactive processes. Although
characterising both demonic and angelic nondeterminism in a relational setting
is not trivial [7], an encoding of upward-closed binary multirelations [8] can be
used in order to define a theory of designs with both as we showed in [9].
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In this paper we propose a natural extension to the UTP theories of reactive
processes that characterises CSP in the UTP, using the principles of the theory
in [9] in order to support both notions of nondeterminism. In this new theory,
the angelic choice (a → Skip) t (a → Chaos) is actually resolved in favour of
a → Skip. Angelic nondeterminism corresponds to the least upper bound of the
lattice, while demonic nondeterminism is the greatest lower bound.

We show how processes in this new theory can similarly be expressed as
reactive designs with angelic nondeterminism [9], just like processes in the theory
of [6,10] can be expressed as reactive designs. Furthermore, a Galois connection
is also established with the existing theory and a bijection is found with respect
to the subset of our theory that does not exhibit angelic nondeterminism.

2 Preliminaries

The UTP [6] is an alphabetized, predicative theory of relations suitable for
modelling different programming paradigms. Theories are characterised by three
components: an alphabet, a set of healthiness conditions and a set of operators.
The alphabet α(P) of a relation P is split into inα(P), which contains undashed
variables corresponding to the initial observations, and outα(P) containing the
dashed counterparts for after or final observations.

Refinement is defined as universal reverse implication. In the UTP, total cor-
rectness is characterised through the theory of designs [6,11], whose healthiness
conditions are H1 and H2. Every design P can be expressed in terms of pre and
postcondition pairs, (¬ P f ` Pt), where Po = P[o/ok ′] and t and f correspond
to true and false, respectively.

2.1 Angelic Designs

As discussed earlier, modelling of both angelic and demonic nondeterminism in
the UTP can be achieved through an encoding of upward-closed binary multire-
lations [8] with non-homogeneous relations as proposed by Cavalcanti et al. [7].
In that theory, the alphabet consists of input program variables and a sole output
variable ac′ that is a set of final states available for angelic choice. Intuitively,
the angelic choice over states corresponds to those in ac′, while the demonic
choice corresponds to the choice over the value of ac′ itself.

Upward closure is enforced by the following healthiness condition, where v
and v′ refer to every variable other than ac and ac′, respectively.

Definition 1. PBMH(P) =̂ P ; ac ⊆ ac′ ∧ v′ = v

A fixed point of PBMH requires that if it is possible for P to provide some set
of final states ac′ for angelic choice, then any superset can also be established.
In the theory in [7], there are no other variables v′, and here we consider a more
general class of theories. PBMH can be restated as shown in Lemma 1.

Lemma 1. PBMH(P) = ∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ ac′
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This function commutes with both H1 and H2 of the theory of designs. Proofs
of these and all other results can be found in [12].

Following this approach we have defined a theory of angelic designs [9]. Its
alphabet includes ok and ok ′, a single input state s and a set of final states ac′.
A state is a record whose components are program variables.

The healthiness conditions of our theory of angelic designs are H1 and H2
from Hoare and He’s theory of designs [6], and A, whose definition is the func-
tional composition of A0 and A1 as reproduced below [9].

Definition 2.

A0(P) =̂ P ∧ ((ok ∧ ¬ P f )⇒ (ok ′ ⇒ ac′ 6= ∅))
A1(P) =̂ (¬ PBMH(P f ) ` PBMH(Pt))

A(P) =̂ A0 ◦ A1(P)

The healthiness condition A0 requires that when a design terminates success-
fully, then there must be some final state in ac′ available for angelic choice.
While A1 requires that the final set of states in both the postcondition and the
negation of the precondition are upward closed. We observe that A1 can also be
expressed as the application of PBMH to the whole of the design P.

Since H1, H2 and A commute, and these functions are all idempotent and
monotonic [9], so is the functional composition of H1, H2 and A. Furthermore,
because A is idempotent and monotonic, and the theory of designs is a complete
lattice, so is our theory of A-healthy designs [6].

Amongst the operators introduced in [9] we single out sequential composi-
tion as the least trivial due to the non-homogeneous nature of the relations. Its
definition is layered upon the sequential composition operator ;A of [7], whose
definition, in the context of this theory, we reproduce below.

Definition 3. P ;A Q =̂ P[{s | Q}/ac′]

The resulting set of angelic choices is that of Q, such that they can be reached
from an initial state of Q that is available for P as a set ac′ of angelic choices.
This use of substitution can be interpreted as back propagating the necessary
information concerning the final states.

For instance, consider the following example, where angelic choice (t) is the
least upper bound of the lattice. The choice is between the assignment of true
or false to the program variable b, as denoted by t and f , respectively. This is
sequentially composed with the program that maintains the value of b provided
that the initial value of b is true, and otherwise aborts.

Example 1.

({b 7→ t} ∈ ac′ t {b 7→ f } ∈ ac′) ;A (s.b ⇒ s ∈ ac′) {Definition of t}
= ({b 7→ t} ∈ ac′ ∧ {b 7→ f } ∈ ac′) ;A (s.b ⇒ s ∈ ac′) {Definition of ;A}
= ({b 7→ t} ∈ ac′ ∧ {b 7→ f } ∈ ac′)[{s | s.b ⇒ s ∈ ac′}/ac′] {Substitution}
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= {b 7→ t} ∈ {s | s.b ⇒ s ∈ ac′} ∧ {b 7→ f } ∈ {s | s.b ⇒ s ∈ ac′}
{Property of sets and value of record component b}

= (true ⇒ {b 7→ t} ∈ ac′) ∧ (false ⇒ {b 7→ f } ∈ ac′}) {Predicate calculus}
= {b 7→ t} ∈ ac′

The only possible result is the assignment of true to b, since this avoids aborting.

2.2 Reactive Processes

Programs characterised by continuous interactions with their environment are
modelled in the UTP using the theory of reactive processes [6,10]. In addition
to the variables, ok and ok ′ of the theory of designs, this theory includes the
variables wait, tr , ref and their dashed counterparts, that record information
about interactions with the environment.

This is a theory where there are observations of intermediate states. The vari-
able wait records whether the previous process is waiting for an interaction from
the environment or, alternatively, has terminated. Similarly, wait′ ascertains this
for the current process. The variable ok indicates whether the previous process
is in a stable state, while ok ′ records this information for the current process. If
a process is not in a stable state, then it is said to have diverged. A process only
starts executing in a state where ok and ¬ wait are true. Successful termination
is characterised by ok ′ and ¬ wait′ being true.

The actual interactions with the environment are represented using sequences
of events, recorded by tr and tr ′. The variable tr records the sequence of events
that took place before the current process started, while tr ′ records the inter-
mediate or final sequence of events that can be observed. Finally, ref and ref ′
record the set of events that may be refused by the process. Refusal sets allow
the appropriate modelling of deadlock [13].

Healthiness Conditions The theory of reactive processes R is characterised
by the functional composition of three healthiness conditions [6,10] below.

Definition 4 (Reactive Process).

R1(P) =̂ P ∧ tr ≤ tr ′

R2(P) =̂ P[〈〉, tr ′ − tr/tr , tr ′]
R3(P) =̂ IIrea C wait B P
R(P) =̂ R3 ◦ R1 ◦ R2(P)

R1 requires that in all circumstances the only change that can be observed in
the final trace of events tr ′ is an extension of the initial sequence tr , while R2
requires that a process must not impose any restriction on the initial value of tr .
Finally, R3 requires that if the previous process is waiting for an interaction with
the environment, that is wait is true, then the process behaves as the identity of
the theory II rea [6,10], otherwise it behaves as P.
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CSP Processes as Reactive Designs The theory of CSP can be described by
reactive processes that in addition also satisfy two other healthiness conditions,
CSP1 and CSP2, whose definitions are reproduced below [6,10].

Definition 5 (CSP).

CSP1(P) =̂ P ∨ R1(¬ ok)
CSP2(P) =̂ P ; ((ok ⇒ ok ′) ∧ tr ′ = tr ∧ ref ′ = ref ∧ wait′ = wait)

The first healthiness condition CSP1 requires that if the previous process has
diverged, that is, ok is false, then extension of the trace is the only guarantee.
CSP2 is H2 restated with the extended alphabet of reactive processes.

A process that is R, CSP1 and CSP2-healthy can be described in terms of
a design as proved in [6,10]. We reproduce this result below, where we use the
notation Po

w = P[o,w/ok ′,wait].

Theorem 1 (Reactive Design). For every CSP process P, R(¬ P f
f ` Pt

f ) = P

This result is important as it allows CSP processes to be specified in terms of
pre and postconditions, such as is the case for sequential programs, while the
healthiness condition R enforces the required reactive behaviour.

3 A Natural Extension of the Theory of Reactive
Processes

Based on the concept of states, as introduced in the theory of angelic designs [9],
we explore a new model where the observational variables of the theory of re-
active processes are encoded as state components.

Definition 6 (Alphabet).

ok, ok ′ : {true, false}, s : State, ac′ : PState
dom State = {tr , ref ,wait}

In addition to a single initial state s, a set of final states ac′, and the observational
variables ok and ok ′ that record stability, we require that every State has record
components of name tr , wait and ref . This enables the angelic choice over the
final or intermediate observations of tr , ref and wait.

3.1 Healthiness Conditions for Reactive Angelic Processes

Since this is a theory with angelic nondeterminism, relations need to satisfy
PBMH, that is the set of final states ac′ must be upward-closed. Furthermore,
reactive processes must also satisfy the counterpart properties to R in the new
model. In this section, we restate all the properties enforced by R, namely we
define healthiness conditions RA1, RA2 and RA3.
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RA1 The first property of interest that underpins the theory of reactive pro-
cesses is the notion that the history of events observed cannot be undone. In
general, for any initial state x, the set of all final states that satisfy this property
is given by Statestr≤tr′(x) as defined below.
Definition 7. Statestr≤tr′(x) =̂ {z : State | x.tr ≤ z.tr}
This definition is used for introducing the first healthiness condition, RA1, that
not only enforces this notion for final states in ac′, but also requires that there
is some final state satisfying this property available for angelic choice.
Definition 8. RA1(P) =̂ (P ∧ ac′ 6= ∅)[Statestr≤tr′(s) ∩ ac′/ac′]
A consequence of the definition of RA1 is that it also enforces A0.
Theorem 2. RA1 ◦ A0(P) = RA1(P)

Although A0 only requires ac′ not to be empty in the postcondition of a design,
RA1 requires this under all circumstances.

The function RA1 distributes through conjunction and disjunction.
Theorem 3. RA1(P ∧ Q) = RA1(P) ∧ RA1(Q)

Theorem 4. RA1(P ∨ Q) = RA1(P) ∨ RA1(Q)

Furthermore, the operator ;A is closed under RA1, provided that both oper-
ands are upward-closed and RA1-healthy. This is an important property as the
definition for sequential composition in our theory is also based on ;A.
Theorem 5. Provided P and Q are RA1 and PBMH-healthy.

RA1(P ;A Q) = P ;A Q

For every healthiness condition of the theory, the upward-closure enforced by
PBMH must be maintained. Theorem 6 establishes this for RA1.
Theorem 6. Provided P is PBMH-healthy. PBMH ◦ RA1(P) = RA1(P)

However, PBMH and RA1 do not commute in general. We consider the follow-
ing counter-example where the healthiness conditions are applied to the relation
ac′ = ∅, which is not PBMH-healthy.
Example 2.

RA1 ◦ PBMH(ac′ = ∅) {Definition of PBMH (Lemma 1)}
= RA1(∃ ac0 • ac0 = ∅ ∧ ac0 ⊆ ac′) {One-point rule and property of sets}
= RA1(true)

PBMH ◦ RA1(ac′ = ∅) {Definition of RA1}
= PBMH((ac′ = ∅ ∧ ac′ 6= ∅)[Statestr≤tr′(s) ∩ ac′/ac′]) {Predicate calculus}
= PBMH(false) {Definition of PBMH (Lemma 1)}
= false

In the first case, the application of PBMH yields true. The result of the func-
tional composition is then RA1(true). On the other hand, in the second case,
there is a contradiction that yields false.
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RA2 The next healthiness condition of interest is RA2, that requires a process
to be insensitive to the initial trace of events s.tr . It is the counterpart to R2 of
the original theory of reactive processes, and is also defined using substitution.

Definition 9 (RA2).

RA2(P) =̂ P
[
s ⊕ {tr 7→ 〈〉},

{
z
∣∣∣∣ z ∈ ac′ ∧ s.tr ≤ z.tr
• z ⊕ {tr 7→ z.tr − s.tr}

}/
s, ac′

]
It sets the component tr in the initial state s to the empty sequence, and con-
sequently changes ac′ as follows: the set of final states ac′ is restricted to those
states z whose traces are a suffix of s.tr , and furthermore, their trace is set to
the difference with respect to the initial trace s.tr .

Since substitution distributes through conjunction and disjunction, so does
the healthiness condition RA2.

Theorem 7. RA2(P ∧ Q) = RA2(P) ∧ RA2(Q)

Theorem 8. RA2(P ∨ Q) = RA2(P) ∨ RA2(Q)

Furthermore, the operator ;A is also closed under RA2.

Theorem 9. Provided P and Q are RA2-healthy.

RA2(P ;A Q) = P ;A Q

A consequence of the definition of RA2 is that applying it to the non-empty set
of final states ac′ is equivalent to applying RA1 to the relation true.

Theorem 10. RA2(ac′ 6= ∅) = RA1(true)

This results sheds light on the relationship between RA2 and RA1, as in fact,
these functions are commutative.

Theorem 11. RA1 ◦ RA2(P) = RA2 ◦ RA1(P)

Finally, Theorem 12 establishes that RA2 maintains the upward-closure.

Theorem 12. Provided P is PBMH-healthy. PBMH ◦ RA2(P) = RA2(P)

This concludes our discussion of RA2 and its most important properties.

RA3 As in the theory of reactive processes, it is necessary to ensure that a
process cannot start before the previous process has finished interacting with
the environment. The counterpart to R3 in the new theory is RA3. Before
exploring its definition, we introduce the identity IIRac.

Definition 10. IIRac =̂ (RA1(¬ ok) ∨ (ok ′ ∧ s ∈ ac′))

Similarly to the reactive identity II rea, the behaviour for an unstable state ¬ ok
is given by RA1, that is, there must be at least one final state in ac′ whose
trace is a suffix of the initial trace s.tr . Otherwise, the process is stable, with ok ′
being true, and the initial state s is in the set of final states ac′.

Having defined the identity, we introduce the definition of RA3 below.
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Definition 11. RA3(P) =̂ IIRac C s.wait B P

This definition resembles that of the original theory, the difference being in the
identity IIRac and the fact that wait is a component of the initial state s. Using
Leibniz’s substitution, it is possible to prove the following Lemma 2, where
Po

w = P[o, s ⊕ {wait 7→ w}/s, ok ′].

Lemma 2. RA3(P) = RA3(Pf )

The function RA3 also distributes through both conjunction and disjunction.

Theorem 13. RA3(P ∧ Q) = RA3(P) ∧ RA3(Q)

Theorem 14. RA3(P ∨ Q) = RA3(P) ∨ RA3(Q)

In addition, the operator ;A is also closed under RA3 provided that the second
process is also RA1-healthy. This is not a problem since the theory of interest
is characterised by the functional composition of all the healthiness conditions.

Theorem 15. Provided P and Q are RA3-healthy and Q is RA1-healthy.

RA3(P ;A Q) = P ;A Q

Furthermore, as required, RA3 maintains the upward-closure.

Theorem 16. Provided P is PBMH-healthy. PBMH ◦ RA3(P) = RA3(P)

The identity IIRac is a fixed point of every healthiness condition, including RA1,
RA2, RA3 and PBMH. Finally, RA3 commutes with both RA1 and RA2.

Theorem 17. RA3 ◦ RA1(P) = RA1 ◦ RA3(P)

Theorem 18. RA3 ◦ RA2(P) = RA2 ◦ RA3(P)

This concludes our discussion of the most important properties of RA3.

RA The new theory of reactive processes that we define here is characterised by
the functional composition of the healthiness conditions RA3, RA2, RA1 and
PBMH. In order to maintain the parallel with the original theory of reactive
processes, we define part of this composition as RA below.

Definition 12. RA(P) =̂ RA1 ◦ RA2 ◦ RA3(P)

The order of the functional composition is not important since these functions
commute, except for PBMH that does not necessarily commute with every
function, so it must be applied in the first instance.

Since all of the healthiness conditions RA1, RA2 and RA3 are idempotent
and monotonic, so is RA. Similarly, since all those functions distribute through
conjunction and disjunction, so does RA. Finally, RA maintains upward-closure
since all of the RA healthiness conditions do so.
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3.2 CSP Processes with Angelic Nondeterminism

As mentioned before, in the UTP, CSP processes are characterised as reactive
processes that, in addition, satisfy the healthiness conditions CSP1 and CSP2.
In order to define a theory for CSP processes with angelic nondeterminism we
follow a similar approach by introducing two healthiness conditions.

CSPA1 The first healthiness condition of interest is CSPA1, that is, the coun-
terpart to CSP1 in the original theory of CSP processes.

Definition 13. CSPA1(P) =̂ P ∨ RA1(¬ ok)

A CSP process with angelic nondeterminism P is required to observe RA1 when
in an unstable state. For a RA-healthy process, this property is already enforced
by RA1 under all circumstances. Theorem 19 shows that this behaviour can also
be described as the functional composition of RA1 after H1.

Theorem 19. RA1 ◦ CSPA1(P) = RA1 ◦ H1(P)

Proof.

RA1 ◦ H1(P) {Definition of H1}
= RA1(ok ⇒ P) {Predicate calculus and Theorem 4}
= RA1(¬ ok) ∨ RA1(P) {RA1-idempotent}
= RA1 ◦ RA1(¬ ok) ∨ RA1(P) {Theorem 4}
= RA1(RA1(¬ ok) ∨ P) {Definition of CSPA1}
= RA1 ◦ CSPA1(P) ut

The function CSPA1 is idempotent and monotonic.

Theorem 20. Provided P is PBMH-healthy.

PBMH ◦ CSPA1(P) = CSPA1(P)

Furthermore, it preserves the upward closure as required by PBMH.

CSPA2 The last healthiness condition of interest is the counterpart to CSP2.
This is defined as H2 with the extended alphabet that includes s and ac′.

Definition 14. CSPA2(P) =̂ H2(P)

This healthiness condition satisfies the same properties as H2. It can alternat-
ively be defined using the J -split of [11].
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RAP The theory of CSP processes in the new model is defined by RAP, the
functional composition of all the healthiness conditions of interest.

Definition 15 (Reactive Angelic Process).

RAP(P) =̂ RA ◦ CSPA1 ◦ CSPA2 ◦ PBMH(P)

The fixed points of RAP are the reactive angelic processes. Since PBMH and
RA1 do not commute, PBMH is applied first. Every such process P can be
expressed as RA ◦ A(¬ P f

f ` Pt
f ) as shown by the following Theorem 21.

Theorem 21. RAP(P) = RA ◦ A(¬ P f
f ` Pt

f )

Proof.

RAP(P) {Definition of RAP}
= RA3 ◦ RA2 ◦ RA1 ◦ CSPA1 ◦ CSPA2 ◦ PBMH(P) {Theorem 19}
= RA3 ◦ RA2 ◦ RA1 ◦ H1 ◦ CSPA2 ◦ PBMH(P) {CSPA2 is H2}
= RA3 ◦ RA2 ◦ RA1 ◦ H1 ◦ H2 ◦ PBMH(P) {Theorem 2}
= RA3 ◦ RA2 ◦ RA1 ◦ A0 ◦ H1 ◦ H2 ◦ PBMH(P) {Theorems 34 and 35}
= RA3 ◦ RA2 ◦ RA1 ◦ A0 ◦ PBMH ◦ H1 ◦ H2(P) {Definition of design}
= RA3 ◦ RA2 ◦ RA1 ◦ A0 ◦ PBMH(¬ P f ` Pt) {Definition of A}
= RA3 ◦ RA2 ◦ RA1 ◦ A(¬ P f ` Pt) {Theorems 11, 17 and 18}
= RA1 ◦ RA2 ◦ RA3 ◦ A(¬ P f ` Pt) {Lemmas 2 and 6}
= RA1 ◦ RA2 ◦ RA3 ◦ A((¬ P f ` Pt)f ) {Substitution}

= RA1 ◦ RA2 ◦ RA3 ◦ A(¬ P f
f ` Pt

f ) {Definition of RA}

= RA ◦ A(¬ P f
f ` Pt

f ) ut

That is, such processes can be specified as the image of an A-healthy design
through the function RA. This is a result similar to that obtained for CSP
processes as the image of designs through R [6,10]. Since both RA and A are
monotonic and idempotent, and the theory of designs is a complete lattice [6],
so is the theory of reactive angelic processes.

3.3 Operators

Having discussed the healthiness conditions, in this section we present the cor-
responding definition of the most important operators of CSP in the new model.
The original operators of CSP are distinguished with the subscript CSP .

Chaos The first process of interest is that corresponding to divergence.
Definition 16. Chaos =̂ RA ◦ A(false ` ac′ 6= ∅)
This is characterised by Chaos, whose precondition is always false and postcon-
dition requires ac′ not to be empty.
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Stop The following process captures the notion of deadlock.

Definition 17. Stop =̂ RA ◦ A(true ` ∈ y
ac′(y.tr = s.tr ∧ y.wait))

The precondition is true, while the postcondition requires the process to always
be waiting for the environment and keep the trace of events unchanged. In this
new model we introduce the following auxiliary predicate.

Definition 18. ∈ y
ac′(P) =̂ ∃ y • y ∈ ac′ ∧ P

This definition requires that there is a state y available for angelic choice in ac′
satisfying P. In the upward-closed binary multirelational encoding of our theory,
it is the distributed intersection over all possible values of ac′ which constitutes
the actual final states available to the angel. Using this notation, the definitions
of the CSP operators are very similar. It can be further extrapolated to other
important CSP operators, such as external choice, parallelism and hiding.

Event Prefixing Prefixing is defined in a similar form as in the theory of CSP.

Definition 19.

a → Skip =̂ RA ◦ A

true ` ∈ y
ac′

 (y.tr = s.tr ∧ a /∈ y.ref )
Cy.waitB
(y.tr = s.tr a 〈a〉)


The precondition is true, while the postcondition is split into two cases. When
the process is waiting for an interaction from the environment, that is, wait is
true, then a is not in the set of refusals and the trace is kept unchanged. While
in the second case, the process has interacted with the environment, and so the
only guarantee is that the event a is part of the trace.

Demonic Choice The internal choice, also known as demonic choice, is defined
using the greatest lower bound of the lattice, which is disjunction.

Definition 20. P uQ =̂ P ∨ Q

For processes that are RAP-healthy, this result can also be turned into a RAP
process that depends on the pre and postconditions of P and Q, respectively [12].

Sequential Composition The operator for sequential composition is perhaps
the most challenging due to the use of non-homogeneous relations. We follow
the approach used for the theory of angelic designs [9].

Definition 21. P ;Rac Q = ∃ ok0 • P[ok0/ok ′] ;A Q[ok0/ok]

This definition is layered upon the sequential composition operator ;A of [7]
as introduced earlier. Finally, for processes that are RAP-healthy, sequential
composition also yields a RAP process as shown in Theorem 22.
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Theorem 22. Provided P and Q are RAP-healthy.

P ;Rac Q
=

RA ◦ A



¬ (RA1(P f
f ) ;A RA1(true))

∧
¬ (RA1(Pt

f ) ;A (¬ s.wait ∧ RA2 ◦ RA1(Qf
f )))


`
RA1(Pt

f ) ;A (s ∈ ac′ C s.wait B (RA2 ◦ RA1(¬ Qf
f ⇒ Qt

f )))


This is a result that resembles that for CSP, apart from the postcondition
of the design. When s.wait is false, and hence Pt

f has finished its interac-
tion with the environment, the behaviour is given by the composition with
RA2 ◦ RA1(¬ Qf

f ⇒ Qt
f ). In contrast with the result in CSP, this is an implic-

ation between the pre and postcondition of Q, instead of its postcondition.
In the theory of angelic designs, the sequential composition operator also has

a similar implication in the postcondition that acts as a filter by eliminating
final states of P that fail to satisfy the precondition of Q. In this theory, the
implication only has a significant role when Q’s precondition is not necessarily
true and when there is angelic nondeterminism in P.

3.4 Angelic Choice

Following from the theory of angelic designs [9], we define angelic choice as the
least upper bound of the lattice, which is conjunction.

Definition 22. P tQ =̂ P ∧ Q

Similarly, for processes that are RAP-healthy, this result is stated as follows.

Theorem 23. Provided P and Q are RAP-healthy.

P tQ = RA ◦ A(¬ P f
f ∨ ¬ Qf

f ` (¬ P f
f ⇒ Pt

f ) ∧ (¬ Qf
f ⇒ Qt

f ))

The resulting process has as precondition the disjunction of the preconditions
of P and Q, while the postcondition is the conjunction of two implications.
In both cases, if either precondition of P or Q holds, then the corresponding
postcondition is established. This is a result that follows closely that observed
for the least upper bound of designs [6,11].

Futhermore, Theorem 24 establishes that Chaos is the unit with respect to
the least upper bound of the lattice.

Theorem 24. Chaos tRA ◦ A(¬ P f
f ` Pt

f ) = RA ◦ A(¬ P f
f ` Pt

f )

In order to understand the behaviour of angelic choice we consider the following
examples. In Example 3 there is a choice between terminating and, deadlocking
following event a, sequentially composed with Chaos.
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Example 3. ((a → Skip ;Rac Stop) t Skip) ;Rac Chaos = a → Skip ;Rac Stop
In this case, the angel avoids diverging by choosing not to terminate, but instead
allowing the environment to perform event a and then deadlocking. In Example 4
there is a choice between terminating or diverging upon performing an a.
Example 4.

(a → Skip) t (a → Chaos) {Definition of prefixing}

=



RA ◦ A

true `

 ∈ y
ac′(y.wait ∧ y.tr = s.tr ∧ a /∈ y.ref )

∨
∈ y

ac′(¬ y.wait ∧ y.tr = s.tr a 〈a〉)


t

RA ◦ A

¬ ∈ y
ac′(s.tr a 〈a〉 ≤ y.tr)

`
∈ y

ac′(y.wait ∧ y.tr = s.tr ∧ a /∈ y.ref )




{Theorem 23 and predicate calculus}

= RA ◦ A


true `



 ∈ y
ac′(y.wait ∧ y.tr = s.tr ∧ a /∈ y.ref )

∨
∈ y

ac′(¬ y.wait ∧ y.tr = s.tr a 〈a〉)


∧ ∈ y

ac′(s.tr a 〈a〉 ≤ y.tr)
∨
∈ y

ac′(y.wait ∧ y.tr = s.tr ∧ a /∈ y.ref )






{Predicate calculus}

= RA ◦ A

true `

 ∈ y
ac′(y.wait ∧ y.tr = s.tr ∧ a /∈ y.ref )

∨
∈ y

ac′(¬ y.wait ∧ y.tr = s.tr a 〈a〉)


{Definition of prefixing}

= a → Skip

The result is a process that following event a can only terminate, and thus avoids
divergence. This property is an intuitive counterpart to the angelic choice oper-
ator of the refinement calculus, that instead considers choices over interactions.

4 Relationship with CSP

The theory that we propose can be related with the original UTP theory for CSP
through a pair of linking functions that we introduce in this section: ac2p, that
maps predicates from the theory of angelic reactive processes to predicates of the
theory of CSP, and p2ac, mapping in the opposite direction. The relationship
between the models of interest is illustrated in Figure 1(a), where each theory
is labelled according to its healthiness conditions. The subset of reactive angelic
processes that correspond exactly to CSP processes is characterised by A2, a
healthiness condition we introduce in this section.
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ac2p

p2ac

RAP

A2 CSP

(a) Theories and links

ac2p

p2
ac

p2ac ±   ac2p(P )

P ac2p (P )

w

Q

p2
ac

p2ac (Q) ac2p ac2p ± p2ac (Q)

=

RAP processes CSP processes

(b) Predicates and links

Figure 1: Relationship between theories

In Figure 1(b) the relationship between the predicates of each theory is il-
lustrated. For a predicate P of the theory of angelic processes, the functional
composition p2ac ◦ ac2p(P) yields a stronger predicate, while for a predicate
Q of the CSP theory, the composition ac2p ◦ p2ac(Q) yields exactly the same
predicate Q. Thus a Galois connection exists between the theories.

The definition of ac2p is introduced in Section 4.1, while the definition of p2ac
is introduced in Section 4.2. In Section 4.3 we discuss the results pertaining to the
functional composition of p2ac and ac2p. Finally, in Section 4.4 we characterise
the subset of angelic processes that do not exhibit angelic nondeterminism by
introducing the healthiness condition A2. Furthermore, we establish that this
subset is isomorphic to the CSP theory as suggested in Figure 1(a).

4.1 From Reactive Angelic Processes

The first function of interest is ac2p, whose goal is to collapse the set of final
states into a single final state, and re-introduce the variables tr , ref and wait, and
their dashed counterparts by performing appropriate substitutions. Its definition
is presented below, where inα = {tr , ref ,wait} and outα = {tr ′, ref ′,wait′}.
Definition 23.

ac2p(P) =̂ PBMH(P)[StateII(inα)/s] ;A
∧

x : outα • dash(s).x = x

First it enforces upward-closure by applying PBMH and then performs a sub-
stitution on the initial state s. This substitution introduces the initial variables
of the CSP theory, which in the angelic theory are collected as fields of the record
s. The variables ok and ok ′ are not changed as their meaning in both theories
is exactly the same. For a set of variables Sα, StateII (Sα) is an identity record,
whose components si are mapped to the respective variables si .
Definition 24. StateII(Sα) =̂ {s0 7→ s0, . . . , sn 7→ sn}
As an example, we consider (s.tr = 〈a〉 ∧ ok)[StateII (inα)/s] whose result is
tr = 〈a〉 ∧ ok. If we consider the definition of PBMH and ;A, then ac2p can be
rewritten as shown in the following Lemma 3.
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Lemma 3. ac2p(P) = ∃ ac′ •

P[StateII(inα)/s]
∧
∀ z • z ∈ ac′ ⇒ (

∧
x : outα • dash(z).x = x)


That is, the variable ac′ is quantified away, and for each state z in the set ac′,
the output variables in outα are introduced and set to the respective values of
the components of z. Since in our encoding, the components of a state are always
undashed, we apply the function dash(z) to z: its only purpose is to rename the
components of z to their dashed counterparts. If there is more than one state
in ac′, then ac2p yields false as no x variable introduced can take on more than
one value. In general, this function maps predicates with more than one state
in ac′ to false. We consider the following example, where ac2p is applied to the
angelic choice between a prefixing on the event a or b, followed by deadlock.

Example 5. ac2p(a → Stop t b → Stop) = a → Stop tCSP b → Stop

The result is the least upper bound of the corresponding CSP processes.
Application of ac2p after the healthiness conditions of the theory of reactive

angelic processes yields healthy counterparts in the original theory as established
by the following Theorem 25.

Theorem 25. Provided P is PBMH-healthy. ac2p ◦ RA(P) = R ◦ ac2p(P)

Finally, these results allow us to establish the following result: the application
of ac2p to a reactive angelic process yields a reactive design.

Theorem 26. ac2p ◦ RA ◦ A(¬ P f
f ` Pt

f ) = R(¬ ac2p(P f
f ) ` ac2p(Pt

f ))

Proof.

ac2p ◦ RA ◦ A(¬ P f
f ` Pt

f ) {Theorem 36}

= ac2p ◦ RA ◦ PBMH(¬ P f
f ` Pt

f ) {Theorem 25}

= R ◦ ac2p ◦ PBMH(¬ P f
f ` Pt

f ) {Lemma 7}

= R ◦ ac2p(¬ P f
f ` Pt

f ) {Lemma 8}

= R(¬ ac2p(P f
f ) ` ac2p(Pt

f )) ut

This is a pleasing result that supports the reuse of results across the theories.

4.2 From CSP Processes

The mapping in the opposite direction, that is, from the theory of CSP to our
theory is achieved through the function p2ac.

Definition 25. p2ac(P) =̂ ∃ z • P[s, z/inα, outα] ∧ undash(z) ∈ ac′

First, each variable in the set of input and output variables is replaced with
the corresponding component of the initial state s and a final state z from the
set of final states available for angelic choice. In general, for an arbitrary set of
variables Sα, this substitution is defined as follows.
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Definition 26. P[z/Sα] =̂ P[z.s0, . . . , z.sn/s0, . . . , sn]

Each variable si in Sα is replaced with z.si . As an example, we consider the
substitution (tr ′ = tr ∧ ok ′)[s, z/inα, outα], whose result is z.tr ′ = s.tr ∧ ok ′.
Since in our encoding states have undashed components, we require undash(z)
to be in ac′. The function undash is the inverse of dash.

A consequence of the definition of p2ac is that it requires ac′ not to be empty.
Furthermore, the result of p2ac is also upward-closed as established by Lemma 4.
Lemma 4. PBMH ◦ p2ac(P) = p2ac(P)

The application of ac2p to the healthiness conditions of the theory of reactive
processes yields the corresponding healthiness conditions of our theory. As a
result, we can establish that, in general, the application of p2ac to a process P,
characterised by R, can be described by the functional composition of RA after
p2ac to the original process P, as established by Theorem 27.
Theorem 27. p2ac ◦ R(P) = RA ◦ p2ac(P)

The result of applying p2ac to a reactive design is established below; p2ac can
be applied to the pre and postconditions separately, followed by A and RA.
Theorem 28. p2ac ◦ R(¬ P f

f ` Pt
f ) = RA ◦ A(¬ p2ac(P f

f ) ` p2ac(Pt
f ))

Proof.

p2ac ◦ R(¬ P f
f ` Pt

f ) {Theorem 27 and definition of RA}

= RA3 ◦ RA2 ◦ RA1 ◦ p2ac(¬ P f
f ` Pt

f ) {Definition of RA1}

= RA3 ◦ RA2 ◦ RA1((p2ac(¬ P f
f ` Pt

f ) ∧ ac′ 6= ∅) {Theorem 37}

= RA3 ◦ RA2 ◦ RA1((¬ p2ac(P f
f ) ` p2ac(Pt

f )) ∧ ac′ 6= ∅) {RA1 and RA}

= RA(¬ p2ac(P f
f ) ` p2ac(Pt

f )) {Lemma 4}

= RA(¬ PBMH ◦ p2ac(P f
f ) ` PBMH ◦ p2ac(Pt

f )) {Definition of A1}

= RA ◦ A1(¬ p2ac(P f
f ) ` p2ac(Pt)) {Definition of RA and Theorem 2}

= RA ◦ A0 ◦ A1(¬ p2ac(P f
f ) ` p2ac(Pt)) {Definition of A}

= RA ◦ A(¬ p2ac(P f
f ) ` p2ac(Pt)) ut

This proof relies on the fact that RA1 requires ac′ not to be empty, and the fact
that p2ac ensures that this is the case. Furthermore, as already mentioned, the
predicate resulting from applying p2ac is upward-closed. This result enables CSP
processes to be easily mapped into our theory by considering the mapping of the
pre and postcondition of reactive designs separately.

4.3 A Galois Connection
The linking functions we have defined establish a Galois connection between
the theories. In fact, when considering the mapping from the original theory of
reactive processes, followed by the mapping in the opposite direction, we obtain
an exact correspondence as described in Theorem 29.
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Theorem 29. ac2p ◦ p2ac(P) = P

This result establishes that our theory can accommodate the existing reactive
processes appropriately, that is, those without angelic nondeterminism.

When considering the mapping in opposite direction we obtain the following.

Lemma 5. p2ac ◦ ac2p(P) = ∃ ac0, y • P[ac0/ac′] ∧ ac0 ⊆ {y} ∧ y ∈ ac′

The functional composition behaves as follows: if the set of final states ac0 in P
has more than one state, then the result of this composition is false, otherwise ac0
is either a singleton or if, ac0 is empty, any final state is in ac′. In other words, the
mapping only preserves predicates whose set of angelic choices is either empty
or a singleton, otherwise the result is false. We consider the following example,
where Lemma 5 is applied to the process a → Stop t b → Stop.

Example 6.

p2ac ◦ ac2p(a → Stop t b → Stop)
=

RA ◦ A
(
true ` ∈ y

ac′(y.wait ∧ y.tr = s.tr ∧ a /∈ y.ref ∧ b /∈ y.ref )
)

This process corresponds to the application of p2ac to the result obtained in the
previous Example 5. In this case, the process is always waiting for the envir-
onment and keeps the trace of events unchanged, however it also requires that
neither event a nor b are refused. This is a process whose behaviour would not
be describable using the standard operators of CSP.

If we consider the result of Lemma 5 in the context of the predicates of our
theory, that is, those which are PBMH-healthy, then we obtain an inequality
as shown in the following Theorem 30.

Theorem 30. Provided P is PBMH-healthy. p2ac ◦ ac2p(P) w P

Proof.

p2ac ◦ ac2p(P) {Lemma 5}
= ∃ ac0, y • P[ac0/ac′] ∧ ac0 ⊆ {y} ∧ y ∈ ac′ {Predicate calculus}
w ∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ ac′ {Definition of PBMH (Lemma 1)}
= PBMH(P) {Assumption: P is PBMH-healthy}
= P ut

These results establish the existence of a Galois connection [6] between the theor-
ies. In particular, these results also hold between the reactive processes, charac-
terised by R, and those with angelic nondeterminism characterised by RA ◦ A,
that in general, the Galois connection is not restricted to CSP processes.

Using these results, we have established the relationship between operators
of CSP and their counterparts in our theory [12]. For instance, in the case of the
external choice operator of CSP we have the following results.
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Theorem 31. Provided P and Q are reactive angelic processes.

p2ac(ac2p(P) 2CSP ac2p(Q)) w P 2 Q

Theorem 32. ac2p(p2ac(P) 2 p2ac(Q)) = P 2CSP Q

These are important in validating our intuitive definitions of the operators using
∈ y

ac′(P) and the existing definitions of CSP operators as reactive designs.

4.4 Subset of Non-Angelic Processes

As mentioned before, in the setting of upward-closed binary multirelations, the
actual choices available to the angel are those available in every possible demonic
choice of the set of final states. This corresponds to the distributed intersection
over all possible choices of the set of final states.

Therefore, when we consider the upward-closure of a singleton, that is, a set
of final states with only one state, then this must be the only state available
for angelic choice. In other words, there is no angelic choice to be made, and
the relation can be represented in the original relational model that considers
a single final state. This subset of non-angelic processes is characterised in our
theory by the following healthiness condition.

Definition 27. A2(P) =̂ PBMH(P ;A {s} = ac′)

The predicate P ;A {s} = ac′ requires the set of final states in P to be either
empty or a singleton, otherwise it becomes false. Since this purposedly breaks
the upward-closure, PBMH must be applied as a result. If we consider the
application of A2 to the process a → Stop t b → Stop, we obtain exactly the
same result as in Example 6. In other words, for reactive angelic processes, A2
characterises exactly the same fixed points as p2ac ◦ ac2p. We observe, however,
that in general, A2 permits an empty set of final states, whereas in this theory,
both RA1 and p2ac require the set of final states not to be empty. The function
A2 is idempotent and monotonic.

Finally, we establish the following Theorem 33 for reactive angelic processes.

Theorem 33. Provided P f
f and Pt

f are A2-healthy.

p2ac ◦ ac2p ◦ RA ◦ A(¬ P f
f ` Pt

f ) = RA ◦ A(¬ P f
f ` Pt

f )

That is, when we consider the theory of reactive angelic processes that are A2-
healthy, then we find that there is a bijection with the original theory of reactive
processes. Thus this subset is isomorphic to the theory of CSP.

5 Conclusion

Angelic nondeterminism has traditionally been studied in the refinement calcu-
lus [1,2,3] through the universal monotonic predicate transformers. The char-
acterisation of both types of nondeterminism in a relational setting can use
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multirelational models [7]. In [8], Rewitzky presents several of these of which the
upward-closed model is the most important due to its lattice theoretic structure.

The concept of angelic nondeterminism has also been considered in the con-
text of functional languages by Morris and Tyrrel [14,15], and Hesselink [16] who
have modelled both types of nondeterminism at the expression or term level. A
generalised algebraic structure has been proposed by Guttmann [17], where ex-
isting computational models, such as the monotonic predicate transformers and
multirelations, are characterised as instances.

In the context of process algebras such as CSP, however, the notions of an-
gelic nondeterminism considered so far [4,5] have been rather different from that
of the refinement calculus. In order to provide a counterpart notion of angelic
nondeterminism in CSP, we have developed an encoding of the CSP theory based
on the underlying principles of the model of angelic designs previously developed
in [9], which itself is an encoding of upward-closed binary multirelations.

The approach we have followed consists of a natural extension of the exist-
ing CSP model. We have shown that reactive angelic processes can be specified
through angelic designs, in a similar fashion to the CSP theory, where processes
can be specified as reactive designs. In addition, we have proposed a natural way
to specify CSP operators in the new theory by use of a suitable predicate.

We have established that our theory forms a Galois connection with the CSP
theory. Furthermore, when considering the subset of processes that do not exhibit
angelic nondeterminism, there is a bijection with the existing CSP theory. A
number of operators have also been proved to correspond exactly to their CSP
counterparts, thus providing a reassuring result.

Finally, a number of examples have been presented to illustrate its relation-
ship with angelic choice. It remains to be seen what consequences arise from
combining angelic choice with other fundamental CSP operators, such as hiding,
interleaving and parallel composition. Algebraic laws of the new theory is our
main avenue for future work.
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A Auxiliary Results

Theorem 34. PBMH ◦ H1(P) = H1 ◦ PBMH(P)

Theorem 35. PBMH ◦ H2(P) = H2 ◦ PBMH(P)

Theorem 36. RA ◦ A(P) = RA ◦ PBMH(P)

Theorem 37. ac′ 6= ∅ ∧ p2ac(¬ P f ` Pt) = (¬ p2ac(P f ) ` p2ac(Pt))

Lemma 6. A(P)w = A(Pw)

Lemma 7. ac2p ◦ PBMH(P) = ac2p(P)

Lemma 8. ac2p(P ` Q) = (¬ ac2p(¬ P) ` ac2p(Q))
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