
Designs with angelic nondeterminism

Pedro Ribeiro
Department of Computer Science

University of York
York, UK

E-mail: pfr500@york.ac.uk

Ana Cavalcanti
Department of Computer Science

University of York
York, UK

E-mail: ana.cavalcanti@york.ac.uk

Abstract—Hoare and He’s Unifying Theories of Programming
(UTP) are a predicative relational framework for the definition
and combination of refinement languages for a variety of pro-
gramming paradigms. Previous work has defined a theory for
angelic nondeterminism in the UTP; this is basically an encoding
of binary multirelations in a predicative model. In the UTP a
theory of designs (pre and postcondition pairs) provides, not only
a model of terminating programs, but also a stepping stone to
define a theory for state-rich reactive processes. In this paper, we
cast the angelic nondeterminism theory of the UTP as a theory
of designs with the long-term objective of providing a model for
well established refinement process algebras like Communicating
Sequential Processes (CSP) and Circus.

I. INTRODUCTION

In [1] Hoare and He introduce the UTP, a predicative
framework of alphabetized relations suitable for character-
ising and reasoning about programs based on the principle
of observation. Relations are characterised by their alphabet
and a predicate whose free variables determine the possible
observations of a particular mechanism. These variables can
be either program variables or auxiliary variables that record
additional information, including for instance, time.

A collection of UTP theories are presented in [1] that
target multiple aspects of different programming paradigms,
such as functionality, concurrency, logic programming and
high-order programming. In addition, other UTP theories have
been proposed that can handle angelic-nondeterminism [2],
object-orientation [3], pointers [4], time [5]–[7] and others.
The central aspect of the UTP is that theories can be linked and
their results reused. This promotes unification while allowing
different aspects of programs to be considered in isolation.

Total correctness of sequential programs is characterised in
the UTP through the theory of designs that captures the tra-
ditional pre and postcondition specification pairs. Termination
is modelled using auxiliary boolean variables.

While the relationship between the initial and final value
of program variables is sufficient to provide semantics for
sequential programs, in the case of reactive processes interme-
diate information also needs to be recorded. This is handled in
the UTP by the theory of reactive processes, whose alphabet
includes extra observational variables for this purpose. The
combination of the theory of designs and the theory of reactive
processes supports the characterisation of CSP [8]. Every
predicate of the theory of CSP can be specified as a reactive
design [1], [9] with pre and postcondition pairs.

Angelic nondeterminism is a useful specification construct

that allows for a high degree of abstraction to be achieved
in specifications. It has traditionally been studied within the
refinement calculus [10]–[12] through the monotonic predicate
transformers. There it is defined in terms of weakest precondi-
tion semantics, and it is precisely the dual of demonic nonde-
terminism. Unfortunately it is not possible to characterise both
forms of nondeterminism directly in a relational setting [2],
[13] such as that of the UTP, instead multirelational models
can be used [2], [14].

In [14] Rewitzky presents the foundational work on mul-
tirelations to model both forms of nondeterminism within a
single relational model. Multirelations relate input states to
sets of states. The most important model is that of up-closed
multirelations that has a lattice-theoretic structure. Refinement
notions are further elaborated in [15].

Cavalcanti et al. [2] propose a UTP theory based on
multirelations that can encode angelic nondeterminism. It
is focused on correctness of sequential programs and not
applicable to reactive programs. The theory in [2] is, first of
all, cast in the general set of relations, which can only treat
partial correctness. The encoding of binary multirelations, on
the other hand, can cater for termination and designs are not
really considered as a separate theory.

The contribution of this work is a new UTP theory of
designs that can express both angelic and demonic nondeter-
minism. Our new theory of designs is suitable for combina-
tion with the theory of reactive designs, and, therefore, for
definition of a process algebra with angelic nondeterminism.
We observe that the theory of designs encompasses programs
whose precondition depends not only on observations of the
initial values, but also on the final or later values of the
variables. This is required to establish the link with the theory
of CSP. Our theory, therefore, addresses the challenge of
catering for such preconditions in the presence of angelic
nondeterminism. In this context, for example, the definition
of sequential composition is not immediately obvious.

The structure of this paper is as follows. Section II briefly
introduces the UTP, the theory of designs and contextualizes
this work by introducing the encoding of [2]. In Section III
the new theory is introduced by defining its alphabet and its
healthiness conditions. Section IV discusses the operators, their
basic properties and provides some intuition with the aid of
examples. In Section V we show how our theory relates to that
of [2]. Finally in Section VI we present our conclusions.

II. UTP

In the UTP [1], a theory is defined by three essential
elements: an alphabet, which consists of a set of variables
corresponding to observations made of programs; a set of
healthiness conditions, usually specified as idempotent mono-
tonic functions whose fixed points are the valid predicates of
the theory; and a set of operators.

The alphabet is split into two subsets, where undashed and
dashed variables characterise initial and final states, respec-
tively. The input alphabet corresponds to the set of undashed
variables while the output alphabet corresponds to the set
of dashed variables. For a relation where both alphabets are
exactly the same, except for the fact that they are dashed
or undashed, it is said to be homogeneous. For theories
where relations are homogenenous the sequential composition
operator is defined as relational composition.

A. UTP designs

As introduced by Hoare and He [1], the theory of designs
is the definitive treatment of total correctness for sequential
programs. Its alphabet consists of the program variables and
two auxiliary Boolean variables ok and ok′ that record when
a program starts, and when it finishes, respectively. The
definition of a design is reproduced below.

Definition 1:

(P0 ` P1) =̂ (ok ∧ P0)⇒ (P1 ∧ ok′)

The relation P0 corresponds to the precondition, while P1

corresponds to the postcondition. A design P can be expressed
in this form if and only if it satisfies the healthiness conditions
H1 and H2 [1] (whose composition we call simply H) as
reproduced below, where P[E/b] is the predicate obtained by
substitution of every free variable b in P with expression E.

Definition 2:

H(P) = (ok ∧ ¬ P[false/ok′])⇒ (P[true/ok′] ∧ ok′)

This is more concisely written using the following shorthand
notation Pa = P[a/ok′], with t = true and f = false, as
introduced by Woodcock and Cavalcanti [16].

H(P) = (¬ Pf ` Pt)

We observe that ok is not free in either Pf or Pt [1] and that
given a design P its precondition is given by ¬ Pf and its
postcondition by Pt. In addition we also note that none of the
proofs [1], [16] for idempotency and monotonicity regarding
H1, H2 and H rely on relations being homogeneous.

When modelling sequential programs, the precondition P
of a design is in fact not a relation, but rather a condition
that only refers to undashed variables. Designs exhibiting this
characteristic are fixed points of the healthiness condition H3
whose definition [1] we reproduce below.

Definition 3:

H3(P) = P ; (true ` x′ = x)

The requirement imposed by H3 is that the skip of the theory,
defined as (true ` x′ = x), is a right-unit for sequential

composition [1]. In order to see the consequences of a non-
H3-design consider the following example.

Example 1:

(x′ 6= 2 ` x′ = 1)

= (ok ∧ x′ 6= 2)⇒ (x′ = 1 ∧ ok′)
= ok⇒ ((x′ = 1 ∧ ok′) ∨ x′ = 2)

This is a design that once started, that is ok is true, can
either establish x′ = 1 and terminate with ok′ being true,
or alternatively can establish x′ = 2 without necessarily
terminating. This is a behaviour that would not normally
be expected in a theory for sequential programs. However,
reactive programs can be expressed as the image of non-H3
designs through the function R that characterises the theory of
reactive programs [17].

B. Designs with angelic nondeterminism

In [2] a non-homogeneous theory of designs is presented
that can encode both notions of nondeterminism. Its alphabet
consists of the undashed program variables, and of the sole
dashed variable, ac′. This dashed variable represents the set
of final states available for angelic choice, while the choices
of the value of ac′ encode the demonic choices. A state is
a record whose components represent program variables. For
instance, for a program whose only variable is x, then ac′ must
contain a record component of name x′, such that its value is
one of the possible final values of x′. Despite not including the
variables ok and ok′, the model of [2] captures termination.

The only healthiness condition of the theory in [2] is
defined by PBMH, whose requirement is that the value of
ac′ is upward closed. This is defined using sequential compo-
sition [2].

Definition 4:

PBMH(P) =̂ P ; ac ⊆ ac′

If it were possible for P to establish some value of ac′ then
it must also be the case that any superset could have been
obtained. This is the same requirement observed in the theory
of binary multirelations [14].

In fact, Cavalcanti et al. [2] establish that their theory
is isomorphic to both the universally monotonic predicate
transformers and binary multirelations. The linking function
defined there is used to calculate the definition of the op-
erators from the predicate transformers model. Since that
model observes H3, then we can ascertain that as a result the
isomorphic models can only express H3-designs. It is precisely
this restriction that we need to avoid.

III. DESIGNS

The new theory that we propose is a theory of designs
with non-homogeneous relations. The alphabet we consider
contains both ok and ok′ like in the original theory of designs.
In addition it has two variables s and ac′ as shown in the
following definition.

Definition 5 (Alphabet):

s : State
ac′ : P State
ok, ok′ : {true, false}

The variable s encapsulates the initial values of program
variables as record components of s. The set of final states
ac′ is similar to that of [2] except that we only consider
undashed variables in each state. This deliberate choice bears
no consequences, other than simplifying reasoning. In fact, our
ac′ can be related to and from the original ac′ of [2] by either
dashing or undashing the variables in all states in either set.

A. Healthiness conditions

Since the theory we propose is a theory of designs, predi-
cates need to satisfy H. In addition, since we seek to define a
theory of designs that uses ok and ok′, a consistent notion of
termination needs to be established with respect to ac′. This
is addressed by the healthiness condition A0.

Furthermore, and similarly to the theory of [2], there is
a requirement on ac′ to be upward closed. However, because
designs are not necessarily H3-healthy, this requirement needs
to be extended to potentially non-terminating designs. This is
the concern of the healthiness condition A1.

Finally the new theory is fully characterised by the func-
tional composition of A0 and A1 as specified by the function
A. In what follows we define each of the functions and present
their functional composition A and its properties.

B. A0: Termination

The notion of termination embodied in our theory is related
to that of [2]. In that model, termination is always guaranteed
as long as ac′ is not empty. In fact, ac′ 6= ∅ closely matches
the design Choice, where any final outcome is allowed as long
as it terminates. In contrast, abortion is characterised in [2] by
true, as in that case ac′ is allowed every possible value.

In our theory, once termination is guaranteed, that is ok′
holds, then ac′ cannot be empty. This constraint is imposed on
a design P by our new healthiness condition A0.

Definition 6 (A0):

A0(P) =̂ (¬ Pf ` Pt ∧ ac′ 6= ∅)

This function is idempotent and monotonic with respect to
the refinement ordering. In addition it distributes over both
conjunction and disjunction. As a result it is also closed with
respect to conjunction and disjunction. Proof of this and all
other results discussed in this paper can be found in [18].

C. A1: Upward closure

The notion of upward closure needs to be revisited in light
of the possibility for non-termination. The requirement upon
our theory is expressed by A1 as defined below.

Definition 7 (A1):

A1(P0 ` P1) =̂ (¬ PBMH(¬ P0) ` PBMH(P1))

The upward closure of ac′ in the postcondition, P1, is enforced
exactly as in the theory of [2]. The difference here is how the
precondition is handled. In this case we ensure that it is the
negation of the precondition that must be upward closed. This
is because it is actually the negation of the precondition that
establishes the value of ac′ when the design does not require
termination. We can rewrite A1 as follows.

Lemma 1:

A1(P0 ` P1) = ok⇒

(
((P1 ; ac ⊆ ac′) ∧ ok′)
∨
(¬ P0 ; ac ⊆ ac′)

)

Proof:

A1(P0 ` P1) {Definition of A1}
= (¬ (¬ P0 ; ac ⊆ ac′) ` P1 ; ac ⊆ ac′)

{Definition of designs}
= (ok ∧ ¬ (¬ P0 ; ac ⊆ ac′))⇒ ((P1 ; ac ⊆ ac′) ∧ ok′)

{Predicate calculus}
= ok⇒ (((P1 ; ac ⊆ ac′) ∧ ok′) ∨ (¬ P0 ; ac ⊆ ac′))

In both the terminating or potentially non-terminating case, ac′
is required to be upward closed.

The function A1 is idempotent and monotonic with respect
to the refinement ordering. It is closed with respect to conjunc-
tion and disjunction, provided both operands are A1-healthy.
Furthermore it also distributes through disjunction.

D. A

The designs of the theory are characterised by the func-
tional composition of A1 followed by A0.

Definition 8 (A):

A(P) =̂ A0 ◦ A1(P)

The reason for this particular order is that the functions do
not always necessarily commute. In order to see the reason
consider the following counter-example.

Counter-example 1:

A0 ◦ A1(true ` ac′ = ∅) {Definition of A1}
= A0(¬ (false ; ac ⊆ ac′) ` ac′ = ∅ ; ac ⊆ ac′)

{Definition of sequential composition}

= A0

(¬ (false ∧ ∃ ac0 • ac0 ⊆ ac′)
`
∃ ac0 • ac0 = ∅ ∧ ac0 ⊆ ac′

)
{One-point rule and predicate calculus}

= A0(true ` true) {Definition of A0}
= A0(true ` ac′ 6= ∅)

A1 ◦ A0(true ` ac′ = ∅) {Definition of A0}
= A1(true ` ac′ = ∅ ∧ ac′ 6= ∅) {Predicate calculus}
= A1(true ` false) {Definition of A1}
= (¬ (false ; ac ⊆ ac′) ` false ; ac ⊆ ac′)

{Definition of sequential composition}
= (true ` false)

In this example we consider the application of the healthiness
conditions to an unhealthy design whose postcondition requires
non-termination by requiring ac′ = ∅. In the first case A1
changes the precondition into true, followed by the application
of A0. While in the second case, the application of A0 makes
the postcondition false, a predicate that satisfies PBMH.

If instead we consider healthy predicates, then A0 and A1
commute. The following Lemma 2 establishes this.

Lemma 2: Provided Pt satisfies PBMH.

A0 ◦ A1(P) = A1 ◦ A0(P)

A proof of this result (and a few others to follow) can be found
in the Appendix. The only requirement is for the postcondition
of P to satisfy PBMH. This requirement can be met as long
as we apply A1 first. Since A0 and A1 are idempotent, it
follows from the commutativity of Lemma 2 that so is A [1].
Furthermore, monotonicity follows from that of A0 and A1.

The healthiness condition of our theory is H ◦ A. Since H
and A commute, and H and A are idempotent, so is H ◦ A.
Likewise, monotonicity also follows from that of H and A.

Furthermore, as A is idempotent and monotonic, a result
in [1] establishes that such a function also yields a complete
lattice. Therefore the theory we propose is also a complete
lattice under the refinement ordering of the UTP.

IV. OPERATORS

In this section the operators of the theory are defined.
First we define the assignment operator followed by the most
important operator sequential composition. Since the theory
considers non-homogeneous relations this is also the most
challenging operator. This is followed by the definition of
demonic and angelic choice operators.

A. Assignment

Similarly to the definition in [2], the assignment operator
is defined as follows.

Definition 9 (Assignment):

(x :=Dac e) =̂ (true ` s⊕ (x 7→ e) ∈ ac′)

Its definition is specified by a design whose precondition is
true, and whose postcondition establishes that every set of final
states ac′ available for demonic choice has a component where
x is assigned the value of expression e. Every such state is the
result of overriding the initial state s on the value of x, thus
leaving every other program variable unchanged.

B. Sequential composition

The most challenging aspect of this theory is its reliance
on non-homogeneous relations. As explained earlier, the con-
sequence is that sequential composition cannot be defined as
relational composition. The definition that we introduce below
is layered upon that of the sequential composition in [2].

Definition 10 (; Dac-sequence):

P ; Dac Q =̂ ∃ ok0 • P[ok0/ok′] ; A Q[ok0/ok]

This definition resembles relational composition with the no-
table difference that instead of conjunction another operator
is used (; A) that handles the non-homogeneous alphabet of
the relations. This operator actually closely corresponds to
the sequential composition operator introduced in [2]. The
difference lies in how we treat the initial state with the variable
s instead of individual program variables.

Definition 11 (; A-sequence):

P ; A Q =̂ P[{z : State | Q[z/s]}/ac′]

This sequential composition can be understood as follows: a
final state of P ; A Q is a final state of Q that can be reached
from a set of input states z of Q that is available to P as a set
ac′ of angelic choices.

A more intuitive interpretation can be given by considering
the operator ; A as back propagating the information con-
cerning the valid final states, thus resembling a backtracking
operation. Consider the following example from [2].

Example 2:

(s⊕ (x 7→ 1)) ∈ ac′ ; A

(
(s⊕ (x 7→ s.x + 1)) ∈ ac′
∧
(s⊕ (x 7→ s.x + 2)) ∈ ac′

)
{Definition of ; A and substitution}

= (s⊕ (x 7→ 1)) ∈

{
z

∣∣∣∣∣ ((s⊕ (x 7→ s.x + 1)) ∈ ac′)[z/s]
∧
((s⊕ (x 7→ s.x + 2)) ∈ ac′)[z/s]

}
{Substitution}

= (s⊕ (x 7→ 1)) ∈

{
z

∣∣∣∣∣ (z⊕ (x 7→ z.x + 1)) ∈ ac′
∧
(z⊕ (x 7→ z.x + 2)) ∈ ac′

}
{Property of sets}

=

(
(s⊕ (x 7→ 1)⊕ (x 7→ (s⊕ (x 7→ 1)).x + 1)) ∈ ac′
∧
(s⊕ (x 7→ 1)⊕ (x 7→ (s⊕ (x 7→ 1)).x + 2)) ∈ ac′

)
{Record component}

=

(
(s⊕ (x 7→ 1)⊕ (x 7→ 2)) ∈ ac′
∧
(s⊕ (x 7→ 1)⊕ (x 7→ 3)) ∈ ac′

)
{Property of ⊕}

= (s⊕ (x 7→ 2)) ∈ ac′ ∧ (s⊕ (x 7→ 3)) ∈ ac′

In this example we consider the sequential composition of a
predicate that assigns 1 to x, followed by the conjunction of
two predicates: one that increments the initial value of x by
one, and the other by two. We observe that in [2] conjunction
corresponds to angelic choice. If we take that interpretation,
then the sequential composition yields two choices for assign-
ing a value to x in ac′ available to the angel.

Based on properties of the operator ; A it is possible to
characterise the sequential composition of A-healthy designs
as established by the following Theorem 1.

Theorem 1: Provided (P0 ` P1) is A-healthy.

(P0 ` P1) ; Dac (Q0 ` Q1)

=

(¬ (¬ P0 ; A true) ∧ ¬ (P1 ; A ¬ Q0) ` (P1 ; A Q1))

The result obtained is similar to that of sequential composition
for the original theory of designs [1], [16], except for the use
of the operator ; A instead of relational composition [1].

Similarly to the original theory of designs, we identify the
Skip of the theory whose definition we present below.

Definition 12 (Skip):

IIDac =̂ (true ` s ∈ ac′)

This is a design that always terminates and upon termination
establishes that the input state s is in all sets of angelic choices
ac′. The behaviour of IIDac is to maintain the current state. As
expected IIDac is A-healthy and is the left-unit for sequential
composition.

Law 1 (Skip- ; Dac): Provided P is a design.

IIDac ; Dac P = P

This law can be proved from the definition of IIDac and by
application of Theorem 1. It confirms the suitability of IIDac
as the Skip of the theory.

Finally, it is also possible to show that ; Dac behaves as
expected with respect to the extreme points of the lattice.

Law 2 (⊥D− ; Dac):

⊥D ; Dac P = ⊥D

Law 3 (>D− ; Dac):

>D ; Dac P = >D

This follows directly from the definition of ; Dac and that of
the bottom ⊥D and top of the lattice >D, which correspond to
the extreme points of the lattice of UTP designs, respectively.

C. Demonic choice

The intuition for the definition of demonic choice is related
to the possible ways in which the value of ac′ can be chosen.
In general, this can be described by disjunction like in [2].

Definition 13 (Demonic choice):

P uDac Q =̂ P ∨ Q

This corresponds to the greatest lower bound of the lattice. We
consider the following example.

Example 3:

(x := 1) uDac (x := 2) {Definition of assignment}

=

(
(true ` s⊕ (x 7→ 1) ∈ ac′)
uDac
(true ` s⊕ (x 7→ 2) ∈ ac′)

)
{Definition of uDac and disjunction of designs}

= (true ` s⊕ (x 7→ 1) ∈ ac′ ∨ s⊕ (x 7→ 2) ∈ ac′)

In this example we have at least two choices for the final value
of ac′: one has a state where x is 1 and the other has a state
where x is 2. The demon can choose any set ac′ satisfying
either predicate. In this case, the angel is not guaranteed to be

able to choose a particular final value for x, since there are no
choices in the intersection of all possible choices of ac′.

Following from the closure of A with respect to disjunction,
the demonic choice operator is also closed. Furthermore, it
observes the zero and unit laws regarding the extreme points
of the lattice as stated below.

Law 4 (u-⊥Dac):

P uDac ⊥D = ⊥D

Law 5 (u-⊥Dac):

P uDac >D = P

This confirms the intuition for demonic choice that if it is
possible to abort, then the demon will choose the worst
outcome. Furthermore, given the choice between a miraculous
program and a design P, the result is P. This indicates the
suitability of the definition of demonic choice.

D. Angelic choice

The original theory of designs does not contemplate angelic
nondeterminism, and therefore the least upper bound of the
lattice of designs, defined as conjunction, does not correspond
to angelic choice. In other theories, such as in the predicate
transformers model, angelic choice is defined exactly as the
dual operator of demonic choice [10]–[12]. The same is
applicable for the model of [2], where angelic choice is defined
by conjunction, while demonic choice is disjunction. The
definition adopted in our model is also conjunction of designs.

Definition 14 (Angelic choice):

P tDac Q =̂ P ∧ Q

To provide the intuition for this definition we consider the
following example.

Example 4:(
((x 7→ 1) /∈ ac′ ` (x 7→ 1) ∈ ac′)
tDac
(true ` (x 7→ 2) ∈ ac′)

)

{Definition of tDac}

=


(x 7→ 1) /∈ ac′ ∨ true(̀

(x 7→ 1) /∈ ac′ ⇒ (x 7→ 1) ∈ ac′
∧
true⇒ (x 7→ 2) ∈ ac′

)


{Predicate calculus}
= (true ` (x 7→ 1) ∈ ac′ ∧ (x 7→ 2) ∈ ac′)

It considers the angelic choice between a design that assigns
1 to the only program variable x, but does not necessarily
terminate, and a design that assigns 2 to x but terminates.
The result is a program that terminates and, for every set of
final states, there is the possibility for the angel to choose the
assignment of the value 1 or 2 to x.

In general, and since angelic choice corresponds to the least
upper bound, the angelic choice of a design P and the top of
the lattice >D is also >D.

PBMH A

pbmh2d

d2pbmh

H3

Fig. 1. Link between the theories.

Law 6 (tDac −>D): Provided P is a design.

P tDac >D = >D

Proof:

P tDac >D {Definition of tDac and >D}
= P ∧ ¬ ok {Definition of design}
= (¬ Pf ` Pt) ∧ ¬ ok {Definition of design}
= ((ok ∧ ¬ Pf)⇒ (Pt ∧ ok′)) ∧ ¬ ok

{Predicate calculus}
= (¬ ok ∨ Pf ∨ (Pt ∧ ok′)) ∧ ¬ ok

{Predicate calculus: absorption law}
= ¬ ok {Definition of >D}
= >D

Law 7 (tDac −⊥D):

P tDac ⊥D = P

Furthermore, the angelic choice between a design P and the
bottom of the lattice ⊥D is also P. These laws indicate the
suitability of the angelic choice operator.

V. LINKING THEORIES

If we restrict the theory of designs that we propose to H3-
healthy designs, then we can relate it with the theory in [2]. For
this purpose we define a pair of linking functions between the
models that we illustrate in Figure 1. The function pbmh2d
maps from PBMH-healthy predicates into the subset of our
theory while d2pbmh maps in the opposite direction.

The major difference between the theory in [2] and our
new theory is the use of the auxiliary variables ok and ok′
for capturing termination. In addition, as discussed earlier,
instead of considering all input program variables, we have
a single initial state denoted by s that encapsulates them as
record components. Furthermore, all sets of final states in our
theory have undashed variables, rather than dashed variables.
The relationship between the sets of states in both models
can, therefore, be formalized by the functions ac2acdash and
its inverse acdash2ac.

Definition 15 (acdash-to-ac):

acdash2ac(ss) =


s0 : Sinα, s1 : Soutα∣∣∣∣ s1 ∈ ss ∧
(
∧

x : αP • s0.x = s1.x′) • s0


ac2acdash(zz) =


z0 : Sinα, z1 : Soutα∣∣∣∣ z0 ∈ ss ∧
(
∧

x : αP • z0.x = z1.x′) • z1


The function acdash2ac maps a set of angelic choices ss whose
record components are dashed variables into a set whose record
components are undashed. This is achieved by considering
every state s1 in ss and every state s0, such that s0 is a state on
the undashed variables of predicate P and whose components
are exactly the same as those in s1, except that those in s1 are
dashed. We use Sinα to denote the set of input variables for a
given program while Soutα denotes the set of output variables.

A. From designs to PBMH predicates

The first linking function of interest is d2pbmh that maps
from designs that are A and H3-healthy into the theory of [2].

Definition 16:

d2pbmh : A 7→ PBMH

d2pbmh(P) =̂
(
∃ ac0 • (¬ Pf ⇒ Pt)[ac0/ac′][inα/s]
∧ ac2acdash(ac0) ⊆ ac′

)

For a design P we consider both its pre and postconditions
directly. This is sufficient since we require ok to be true and
hide ok′. The substitution of inα for s corresponds to the
substitution of every occurrence of a record component s.x with
x, where x is an input program variable. Finally, we substitute
the temporary variable ac0 for ac′ in P. This allows us to relate
the set of final states ac0 with ac′ by applying ac2acdash.

B. From PBMH predicates to designs

Definition 17:

pbmh2d : PBMH 7→ A

pbmh2d(P) =̂

 ¬ P[∅/ac′][s/inα]
`
∃ ac0 • P[ac0/ac′][s/inα]
∧ acdash2ac(ac0) ⊆ ac′


The definition yields a design whose precondition guarantees
successful termination, the postcondition follows the same idea
explored in the definition of d2pbmh. Every input program
variable x in inα is substituted with s.x, where s is the initial
state, and ac0 is related to ac′ by application of acdash2ac.

In the model of [2], the possibility of non termination
occurs when ac′ is the empty set. Therefore the negation of
this predicate can be taken as a precondition.

C. Isomorphism

Together the linking functions d2pbmh and pbmh2d are a
bijection. This result is established by the following theorems,
whose proofs are available in [18].

Theorem 2: Provided P is A ◦ H3-healthy.

pbmh2d ◦ d2pbmh(P) = P

Theorem 3: Provided P is PBMH-healthy.

d2pbmh ◦ pbmh2d(P) = P

While our theory of designs has a different alphabet, it is
reassuring that the subset of our theory that is H3-healthy
is in exact correspondence with the UTP theory of [2]. This
indicates that our results are consistent with the existing model.

VI. CONCLUSION

Angelic nondeterminism is a useful specification construct.
It has been extensively studied in the context of theories of cor-
rectness for sequential programs [2], [10]–[12]. In particular,
in the universally monotonic predicate transformers model it
is defined precisely as the dual of demonic nondeterminism.

The characterisation of angelic nondeterminism in a re-
lational setting such as the UTP, is however, more challeng-
ing [2]. Similarly to [2] the theory that we propose is also
a theory of non-homogeneous relations. As a consequence
sequential composition is not relational composition. Despite
the unconventional definition that we propose, the results
indicate that it is consistent with a theory of designs. We
have also shown that the subset of H3-designs of our theory
is just as expressive as that of [2]. Moreover, the fact that
we can describe sequential composition in a way similar to
that adopted in the theory of reactive designs, by lifting the
sequential composition operator of the theory in [2] is both
pleasing and reassuring.

Other works regarding angelic nondeterminism include
those of Morris and Tyrrel [19]–[22], and Hesselink [23], who
have pursued the modelling of both types of nondeterminism
at the expression or term level. Their focus is on functional
languages. Tyrrell et al. [24] have attempted an axiomatization
for an algebra resembling CSP where external choice is
referred to as “angelic choice”, however this is quite different
from the semantics of external choice in standard CSP [8].

In [25] a modelling approach for the verification of imple-
mentations of control systems based on the notation Circus
Time [6] is proposed that uses angelic nondeterminism. This
is a notation whose semantics are defined using the UTP. The
development of a practical verification for such an approach
would require a theory of reactive processes with angelic
nondeterminism. As far as we know, no definitive treatment
of angelic nondeterminism has been provided in the context
of process algebras such as CSP.

It is our objective to consider a theory of reactive programs
using the theory of designs that we propose here. This will al-
low us to explore the consequences of angelic nondeterminism
with respect to reactive programs.

ACKNOWLEDGMENT

The work presented here is funded by the EPSRC, UK.

REFERENCES

[1] C. A. R. Hoare and H. Jifeng, Unifying Theories of Programming.
Prentice Hall International Series in Computer Science, 1998.

[2] A. Cavalcanti, J. Woodcock, and S. Dunne, “Angelic nondeterminism in
the unifying theories of programming,” Formal Aspects of Computing,
vol. 18, pp. 288–307, 2006.

[3] T. Santos, A. Cavalcanti, and A. Sampaio, “Object-Orientation in the
UTP,” in Unifying Theories of Programming, ser. Lecture Notes in
Computer Science, S. Dunne and B. Stoddart, Eds. Springer Berlin /
Heidelberg, 2006, vol. 4010, pp. 18–37.

[4] W. Harwood, A. Cavalcanti, and J. Woodcock, “A Theory of Pointers
for the UTP,” in Theoretical Aspects of Computing - ICTAC 2008, ser.
Lecture Notes in Computer Science, J. Fitzgerald, A. Haxthausen, and
H. Yenigun, Eds. Springer Berlin / Heidelberg, 2008, vol. 5160, pp.
141–155.

[5] A. Sherif and J. He, “Towards a Time Model for circus,” in Proceedings
of the 4th International Conference on Formal Engineering Methods:
Formal Methods and Software Engineering, ser. ICFEM ’02. London,
UK, UK: Springer-Verlag, 2002, pp. 613–624.

[6] A. Sherif, “A Framework for Specification and Validation of
Real-Time Systems using Circus Actions,” Ph.D. dissertation,
Center of Informatics - Federal University of Pernambuco, Brazil,
2006. [Online]. Available: http://www.cs.york.ac.uk/circus/publications/
papers/06-sherif.pdf

[7] K. Wei, J. Woodcock, and A. Cavalcanti, “New Circus Time,” Univer-
sity of York, Tech. Rep., April 2013. [Online]. Available: http://www.cs.
york.ac.uk/circus/publications/techreports/reports/Circus%20Time.pdf

[8] A. W. Roscoe, The Theory and Practice of Concurrency. Prentice
Hall, 1998.

[9] A. Cavalcanti and J. Woodcock, “A Tutorial Introduction to CSP in Uni-
fying Theories of Programming,” in Refinement Techniques in Software
Engineering, ser. Lecture Notes in Computer Science, A. Cavalcanti,
A. Sampaio, and J. Woodcock, Eds. Springer Berlin / Heidelberg,
2006, vol. 3167, pp. 220–268.

[10] R. Back and J. Wright, Refinement calculus: a systematic introduction,
ser. Graduate texts in computer science. Springer, 1998.

[11] J. M. Morris, “A theoretical basis for stepwise refinement and the
programming calculus,” Sci. Comput. Program., vol. 9, pp. 287–306,
December 1987.

[12] C. Morgan, Programming from specifications. Prentice Hall, 1994.
[13] R. Back and J. von Wright, “Combining angels, demons and miracles in

program specifications,” Theoretical Computer Science, vol. 100, no. 2,
pp. 365 – 383, 1992.

[14] I. Rewitzky, “Binary Multirelations,” in Theory and Applications of
Relational Structures as Knowledge Instruments, ser. Lecture Notes
in Computer Science, H. de Swart, E. Orlowska, G. Schmidt, and
M. Roubens, Eds. Springer Berlin / Heidelberg, 2003, vol. 2929,
pp. 1964–1964.

[15] C. E. Martin, S. A. Curtis, and I. Rewitzky, “Modelling Nondetermin-
ism,” in MPC, volume 3125 of LNCS. Springer, 2004, pp. 228–251.

[16] J. Woodcock and A. Cavalcanti, “A Tutorial Introduction to Designs in
Unifying Theories of Programming,” in Integrated Formal Methods, ser.
Lecture Notes in Computer Science, E. Boiten, J. Derrick, and G. Smith,
Eds. Springer Berlin / Heidelberg, 2004, vol. 2999, pp. 40–66.

[17] A. Cavalcanti and J. Woodcock, “Angelic Nondeterminism and
Unifying Theories of Programming,” University of Kent, Tech. Rep.,
2004. [Online]. Available: http://kar.kent.ac.uk/14151/

[18] P. Ribeiro, “Designs with angelic nondeterminism,” University
of York, Technical Report, February 2013. [Online]. Available:
http://www-users.cs.york.ac.uk/pfr/dac/designs-dac.pdf

[19] J. M. Morris and M. Tyrrell, “Terms with unbounded demonic and
angelic nondeterminacy,” Science of Computer Programming, vol. 65,
no. 2, pp. 159 – 172, 2007.

[20] J. Morris and M. Tyrrell, “Dual unbounded nondeterminacy, recursion,
and fixpoints,” Acta Informatica, vol. 44, pp. 323–344, 2007.

[21] J. M. Morris and M. Tyrrell, “Dually nondeterministic functions,” ACM
Trans. Program. Lang. Syst., vol. 30, pp. 34:1–34:34, October 2008.

[22] J. Morris and M. Tyrrell, “Modelling higher-order dual
nondeterminacy,” Acta Informatica, vol. 45, pp. 441–465, 2008.
[Online]. Available: http://dx.doi.org/10.1007/s00236-008-0076-1

[23] W. H. Hesselink, “Alternating states for dual nondeterminism in impera-
tive programming,” Theoretical Computer Science, vol. 411, no. 22-24,
pp. 2317 – 2330, 2010.

[24] M. Tyrrell, J. Morris, A. Butterfield, and A. Hughes, “A Lattice-
Theoretic Model for an Algebra of Communicating Sequential Pro-
cesses,” in Theoretical Aspects of Computing - ICTAC 2006, ser. Lecture
Notes in Computer Science, K. Barkaoui, A. Cavalcanti, and A. Cerone,
Eds. Springer Berlin / Heidelberg, 2006, vol. 4281, pp. 123–137.

[25] A. Cavalcanti and M. Alexandre, “Simulink in Circus Time.”

APPENDIX

Lemma 3: Provided P satisfies PBMH.

P ; A (Q ∧ ok′) = (P ; A false) ∨ ((P ; A Q) ∧ ok′)

Proof of Lemma 2:

A0 ◦ A1(P) {Definition of design}
= A0 ◦ A1(¬ Pf ` Pt) {Definition of A1}
= A0(¬ PBMH(Pf) ` PBMH(Pt)) {Definition of A0}
= (¬ PBMH(Pf) ` PBMH(Pt) ∧ ac′ 6= ∅)

{ac′ 6= ∅ satisfies PBMH}
= (¬ PBMH(Pf) ` PBMH(Pt) ∧ PBMH(ac′ 6= ∅))

{Closure of PBMH w.r.t. conjunction}
= (¬ PBMH(Pf) ` PBMH(PBMH(Pt) ∧ PBMH(ac′ 6= ∅)))

{ac′ 6= ∅ satisfies PBMH}
= (¬ PBMH(Pf) ` PBMH(PBMH(Pt) ∧ ac′ 6= ∅))

{Assumption: Pt satisfies PBMH}
= (¬ PBMH(Pf) ` PBMH(Pt ∧ ac′ 6= ∅))

{Definition of A1}
= A1(¬ Pf ` Pt ∧ ac′ 6= ∅) {Definition of A0}
= A1 ◦ A0(¬ Pf ` Pt) {Definition of design}
= A1 ◦ A0(P)

Proof of Theorem 1:

(P0 ` P1) ; Dac (Q0 ` Q1) {Definition of design}

=

(
((ok ∧ P0)⇒ (P1 ∧ ok′))
; Dac
((ok ∧ Q0)⇒ (Q1 ∧ ok′))

)
{Definition of ; Dac}

= ∃ ok0 •

(
((ok ∧ P0)⇒ (P1 ∧ ok′))[ok0/ok′]
; A
((ok ∧ Q0)⇒ (Q1 ∧ ok′))[ok0/ok]

)
{Substitution}

= ∃ ok0 •

(
((ok ∧ P0)⇒ (P1 ∧ ok0))
; A
((ok0 ∧ Q0)⇒ (Q1 ∧ ok′))

)
{Case-analysis on ok0}

=

(
(((ok ∧ P0)⇒ P1) ; A (Q0 ⇒ (Q1 ∧ ok′)))
∨
((¬ (ok ∧ P0)) ; A true)

)
{Predicate calculus}

=

(
((¬ ok ∨ ¬ P0 ∨ P1) ; A (Q0 ⇒ (Q1 ∧ ok′)))
∨
((¬ ok ∨ ¬ P0) ; A true)

)
{Right-distributivity of ; A}

=



(¬ ok ; A (Q0 ⇒ (Q1 ∧ ok′)))
∨
(¬ P0 ; A (Q0 ⇒ (Q1 ∧ ok′)))
∨
(P1 ; A (Q0 ⇒ (Q1 ∧ ok′)))
∨
(¬ ok ; A true) ∨ (¬ P0 ; A true)


{Property of ; A (ac′ is not free) and predicate calculus}

=


¬ ok ∨ (¬ P0 ; A (Q0 ⇒ (Q1 ∧ ok′)))
∨
(P1 ; A (Q0 ⇒ (Q1 ∧ ok′)))
∨
(¬ P0 ; A true)


{Assumption: P is A-healthy, and left distributivity of ; A}

=

(¬ ok ∨ (¬ P0 ; A ((Q0 ⇒ (Q1 ∧ ok′)) ∨ true))
∨
(P1 ; A (Q0 ⇒ (Q1 ∧ ok′)))

)
{Predicate calculus}

= ¬ ok ∨ (¬ P0 ; A true) ∨ (P1 ; A (¬ Q0 ∨ (Q1 ∧ ok′)))
{Assumption: P is A-healthy, and left distributivity of ; A}

=

(¬ ok ∨ (¬ P0 ; A true) ∨ (P1 ; A ¬ Q0)
∨
(P1 ; A (Q1 ∧ ok′))

)
{Assumption: P is A-healthy, and Lemma 3}

=

(
¬ ok ∨ (¬ P0 ; A true) ∨ (P1 ; A ¬ Q0)
∨ (P1 ; A false) ∨ ((P1 ; A Q1) ∧ ok′)

)
{Assumption: P is A-healthy, and left distributivity of ; A}

=

(
¬ ok ∨ (¬ P0 ; A true) ∨
(P1 ; A (¬ Q0 ∨ false)) ∨ ((P1 ; A Q1) ∧ ok′)

)
{Predicate calculus}

=

(
¬ ok ∨ (¬ P0 ; A true) ∨ (P1 ; A ¬ Q0)
∨ ((P1 ; A Q1) ∧ ok′)

)
{Predicate calculus}

=

(
ok ∧ ¬ (¬ P0 ; A true)
∧ ¬ (P1 ; A ¬ Q0)

)
⇒ ((P1 ; A Q1) ∧ ok′)

{Definition of design}
= (¬ (¬ P0 ; A true) ∧ ¬ (P1 ; A ¬ Q0) ` P1 ; A Q1)

