
A Tactic Language for Refinement of State-Rich Concurrent
Specifications

M. V. M. Oliveira ∗,1

Departamento de Informática e Matemática Aplicada, Universidade Federal do Rio Grande do Norte, Natal, Brazil

A. L. C. Cavalcanti
Department of Computer Science, University of York, York, YO10 5DD, England

Abstract

Circus is a refinement language, in which specifications define both data and behavioural aspects of concurrent systems
using a combination of Z and CSP. Its refinement theory and calculus are distinctive, but since refinements may be
long and repetitive, using this technique can be hard. Some useful refinement strategies have already been identified,
described, and used. By documenting and using them as tactics, they can be repeatedly used as single transformation
rules. Here, we present ArcAngelC , a language for defining such tactics; we present the language, its semantics, and
its application in the formalisation of an existing informal strategy for verification of SPARK Ada implementations
of control systems specified using Simulink diagrams.

Key words: Concurrency, refinement calculus, tactics, control law diagrams

1. Introduction

Circus [3] is a formalism that combines Z [31] and CSP [7] to cover both data and behavioural aspects
of a system development or verification. It distinguishes itself from other such combinations like CSP-Z [4],
TCOZ [11], and CSP-B [28], in that it has a refinement theory and calculus for code development and
verification [18]. Using Circus, we can develop state-rich reactive systems in a calculational style [14].

In this approach, the repeated application of refinement laws to an abstract specification produces a
concrete specification that correctly implements it. This, however, is a hard task, since developments are
typically long and repetitive. If refinement strategies can be captured as sequences of law applications, they
can be used in different developments, or even many times within a single development. Identifying these
strategies, documenting them as tactics, and using them as single refinement laws can save time and effort.

We present ArcAngelC , a refinement-tactic language for Circus whose constructs are similar to those in
ArcAngel [21], a refinement-tactic language for sequential programs. Both languages are based on a general

∗ Corresponding author.
Email address: marcel@dimap.ufrn.br (M. V. M. Oliveira).
URL: http://www.dimap.ufrn.br/~marcel (M. V. M. Oliveira).

1 CNPq supports the work of Marcel Oliveira: grant 550946/2007-1.

Preprint submitted to Elsevier 15 October 2008

tactic language, Angel [13], which is not tailored to any particular proof tool and assumes only that rules
transform proof goals. Angel allows the use of angelic choice to define tactics that backtrack to search for
successful proofs. Furthermore, it has a formal semantics and an extensive set of laws that provide a complete
tool to reason about tactics. The semantics of ArcAngel and its set of laws can be found in [17] along with
the formalisation of useful refinement strategies.

Like ArcAngel, as a refinement-tactic language, ArcAngelC must take into account the fact that the appli-
cation of refinement laws yields not only a program, but proof obligations as well. So, the result of applying
a tactic is a program and a set of all the proof obligations generated by each law application. In the design
of ArcAngelC , we adapted the Angel approach to refinements. The constructs of ArcAngelC are similar to
Angel’s, but adapted to deal with the application of the Circus refinement laws: its structural combinators
are used to apply tactics to Circus’ programs, processes, and actions.

Many tactic languages can be found in the literature [5, 29, 1, 30]. However, as far as we know, none of
them present a formal semantics and support a refinement calculus for concurrent systems. Furthermore,
some of these languages do not present operators like recursion and alternative.

In [20], we have presented the novel combinators of ArcAngelC . In this paper, besides an informal intro-
duction to the language, we also present the formalisation of ArcAngelC ’s semantics in Z. This formalisation
fosters the mechanisation of the semantics in theorem provers like Z-Eves and ProofPower-Z, and the reason-
ing about ArcAngelC algebraic laws. The semantics of ArcAngelC is based on the semantics of ArcAngel [21],
but uses more generic definitions to allow the application of tactics to different types of components of a
Circus specification: actions, processes, and Circus programs. In this paper, we focus on novel aspects of the
ArcAngelC semantics; a full account on the ArcAngelC semantics can be found elsewhere [19].

In order to illustrate the usefulness of ArcAngelC in practice, in [20], we used it to formalise and generalise
the first part of a refinement strategy [2] to prove the correctness of implementations of Simulink diagrams [8]
in SPARK Ada. In this paper, we extend this formalisation by also providing the formalisation of the second
part of this refinement strategy. This formalisation provides structure and abstraction to the refinement
strategy, and fosters its automation [25, 24]; the implementation of ArcAngelC is currently in progress.

The next section describes Circus. In Section 3, our tactic language for Circus, ArcAngelC , is presented;
its semantics is described in Section 4. The Section 5 describes control law diagrams and uses a simple
controller to illustrate them; it also informally describes the refinement strategy that can be used to prove
that a given Ada code correctly implements a particular control law diagram [2]. In Section 6, we formalise
parts of the refinement strategy presented in [2] as ArcAngelC tactics and use them in the verification of a
simple controller. Finally, in Section 7, we draw our conclusions and discuss some future work.

2. Circus

In Circus, programs are declared as a sequence of paragraphs. Each paragraph may be a channel dec-
laration, a Z paragraph, or a process definition. A process defines a system that contains its own state,
and communicates with the environment via channels. The main constructs of Circus are illustrated in the
specification of a register presented below. The register stores a value, which is initialised with zero, and can
store or add a given value to its current value. The stored value can also be output or reset.

channel store, add , out : N; result , reset
process Register =̂ begin state RegSt =̂ [value : N]

RegCycle =̂ store?newValue → value := newValue

2 add?newValue → value := value + newValue

2 result → out !value → Skip

2 reset → value := 0

• value := 0; (µX • RegCycle; X)
end

2

Channel declarations channel c : T introduce a channel c that communicates values of type T . For
instance, channel store, add , out : N declares three different channels that communicate natural numbers.

Processes may be declared in terms of other processes or explicitly. An explicit definition is composed of
a state definition, a sequence of paragraphs, and finally, a nameless main action that defines the behaviour
of the process. The state is defined as a Z schema; the remaining paragraphs can either be Z paragraphs, or
named actions. For instance, the state of process Register is defined by the Z schema RegSt ; it contains a
component that stores its value.

Three primitive actions are Skip, Stop, and Chaos. The first finishes with no change to the state, the
second deadlocks, and the third diverges. Other Circus actions may be defined using Z schemas. Finally,
actions may be defined as a guarded command, an invocation to other actions, or the combination of actions
using CSP operators like hiding, sequence, external and internal choice, parallelism, interleaving, or their
corresponding iterated operators.

The process Register initialises its value to zero and then, has a recursive behaviour. The action RegCycle
is an external choice: a new value can be stored or accumulated using the channels store and add ; the current
value is requested through result , and then received through out , or reset .

Circus prefixing is as in CSP. However, it may have a guard associated with it. If the predicate p is true, the
action p & c?x → A assigns the value input through c to a new implicitly declared variable x ; it deadlocks
otherwise.

Besides the set of channels in which the actions synchronise, the parallelism of actions requires additional
information in order to avoid conflicts in the access to the variables in scope: two sets that partition all
the variables in scope. In the action A1 |[ns1 | cs | ns2]| A2, the actions synchronise on the channels in the
set cs and have access to the initial values of all variables in scope. However, only A1 and A2 may modify
the values of the variables in ns1 and ns2, respectively. The interleaving A1 ||[ns1 | ns2]|| A2 has a similar
behaviour. However, the actions do not synchronise on any channel.

Parametrised actions (and processes) and their instantiation are also available in Circus. When applied
to actions, the renaming operator substitutes state components and local variables. Finally, actions may be
assignments, alternations, variable blocks, or specification statements in the form of [14]. The CSP operators
of sequence, choice, parallelism, interleaving, event hiding and renaming may also be used to define processes.

In Circus, the basic notion of refinement is that of action refinement [26]. Here, we use some of the
refinement laws from [18] like the Law 1 (par-inter) presented below, which transforms a parallel composition
into an interleaving.

Law 1 (par-inter) A1 |[ns1 | cs | ns2]|A2 = A1 ||[ns1 | ns2]|| A2

provided (usedC (A1) ∪ usedC (A2)) ∩ cs = ∅

Proof obligations of refinement laws are described in their provided condition. They are conditions that
need to be met in order to validated the application of the corresponding refinement law. For instance, the
application of Law 1 is only valid if none of the channels used in actions A1 and A2 are in cs; the function
usedC returns the set of all channels used in a given action.

Process refinement is defined in terms of action refinement: a process P2 refines a process P1 (P1 vP P2)
if its main action (P2.Act) refines the main action of P1 (P1.Act). Both main actions may act on different
states and their dashed counterparts, and so may not be comparable. Hence, we compare the actions we
obtain by hiding the state components of P1 and P2, as if they were declared in a local variable blocks.

Definition 2.1 (Process Refinement) P1 vP P2 if, and only if,
(∃P1.State; P1.State ′ • P1.Act) vA (∃P2.State; P2.State ′ • P2.Act)

As discussed above, the state of a process is private. This allows processes’ components to be changed
during a refinement. This can be achieved in much the same way as we can data refine variable blocks
and modules in imperative programs [15]. A well-known technique of data refinement in those contexts is
forwards simulation [9]. Details of Circus data refinement can be found in [3].

3

TacticDecl ::= TacticN (Decl) Tactic [tactic declaration]

[generates Prog]

[proof obligations Pred+] end

Tactic ::= law N (Exp∗) [law application]

| tactic N (Exp∗) [tactic application]

| skip | fail | abort [basic tactics]

| applies to Prog do Tactic [patterns]

| Tactic ; Tactic | Tactic | Tactic [sequence / alternative]

| µT N • Tactic | ! Tactic [recursion / cut]

| succsTactic | failsTactic [assertions]

| → Tactic | & Tactic [action combinators]

| µ Tactic | if Tactic+ fi | var Tactic

| val Tactic | res Tactic | vres Tactic

| beginend ((N, Tactic)∗,Tactic) [process combinators]

| ¯ Tactic | ¯inst Tactic

| =̂ Tactic | Tactic ; Tactic [action/process combinators]

| Tactic2 Tactic | Tacticu Tactic

| Tactic‖ Tactic | Tactic ||| Tactic

| ; Tactic | 2 Tactic | u Tactic | ‖ Tactic

| ||| Tactic | \ Tactic | \ Tactic | := Tactic

| • Tactic | •inst Tactic

| program (N,Tactic)∗ [program combinator]

Fig. 1. Abstract Syntax of ArcAngelC

3. ArcAngelC

ArcAngelC is a refinement-tactic language similar to ArcAngel [21], which is a tactic language tailored
for Morgan’s refinement calculus. It includes basic tactics, like a law application, for example; tacticals,
which are general tactic combinators; and structural combinators, which support the application of tactics
to components of Circus programs. The basic tactics and tacticals of ArcAngelC are inherited from Angel,
and some of its structural combinators are inherited from ArcAngel; nevertheless, the ArcAngelC ’s structural
combinators that are related to the CSP part of Circus are a new feature. Furthermore, unlike ArcAngel tactics
that can be applied to programs only, ArcAngelC ’s tactics can be applied to Circus programs, processes,
and actions. Hence, tactics can be used to prove proof obligations raised in the application of refinement
laws like process refinement laws whose proof obligations may contain action refinement statements.

The syntax of ArcAngelC is displayed in Figure 1. We use Exp∗ to denote a possibly empty sequence
of elements of the syntactic category Exp of expressions. We use Tactic+ to denote a non-empty sequence
of tactics. The categories N, Number, Pred, and Decl include the Z identifiers, numbers, predicates and
declarations defined in [27]. Finally, the syntactic category Prog denotes the Circus programs as in [18].

4

3.1. Tactic Declarations

A tactic program consists of a sequence of tactic declarations. We declare a tactic t named n with arguments
a using Tactic n(a) t end. For documentation purposes, we may include the clause proof obligations and
the clause generates; the former enumerates the proof obligations generated by the application of t , and
the latter shows the program generated.

3.2. Basic Tactics

The most basic tactic is a law application: law n(a) p. If the law n with arguments a is applicable to the
Circus program p, the application succeeds: a new program is returned, possibly generating proof obligations.
However, if it is not applicable to p, the application of the tactic fails. A similar construct, tactic n(a),
applies the tactic n as though it were a single law.

By way of illustration, the tactic law copy-rule-action(N) applies to an action the refinement Law 6 (copy-
rule-action), which takes the name N of the action as argument. As a result, it replaces all the references to
N by the definition of N . In this case, no proof obligation is generated. A list of the refinement laws used
in this paper can be found in Appendix B.

Other basic tactics are provided: the trivial tactic skip always succeeds, and the tactic fail always fails;
finally, the tactic abort neither succeeds nor fails, but runs indefinitely.

3.3. Tacticals

The tactic applies to p do t introduces a meta-program p that characterises the programs to which the
tactic t is applicable; the meta-variables used in p can then be used in t . For example, the meta-program
A |[ns1 | cs | ns2]| Skip characterises those parallel compositions whose right-hand action is Skip; here, A,
ns1, cs and ns2 are the meta-variables. We consider as an example a refinement tactic that transforms a
parallel composition into an interleaving: applies to A |[ns1 | cs | ns2]| Skip do law par-inter().

The tactical t1; t2 applies t1, and then applies t2 to the outcome of the application of t1. If either t1 or
t2 fails, then so does the whole tactic. When it succeeds, the proof obligations generated are those resulting
from the application of t1 and t2. For example, we may define a tactic that removes a parallel composition by
first transforming it into an interleaving using Law 1 (par-inter), and then simplifies this interleaving using
the unit law for interleaving, Law 16 (inter-unit). These two law applications are composed in sequence.
The tactic interIntroAndSimpl presented below formalises this tactic. It applies to parallel compositions in
which the right-hand action is Skip and returns the action A and the proof obligation originated from the
application of inter-unit.

Tactic interIntroAndSimpl() =̂

applies to A |[ns1 | cs | ns2]| Skip

do law par-inter(); law inter-unit() generates A

proof obligations usedC (A) ∩ cs = ∅
end

Tactics may also be combined as alternatives: t1 | t2. First t1 is applied to the program. If the application
of t1 succeeds, then the composite tactic succeeds; otherwise t2 is applied to the program. If the application
of t2 succeeds then the composite tactic succeeds; otherwise the composite tactic fails. If one of the tactics
aborts, the whole tactic aborts.

The definition of the tactic below uses alternatives. It promotes the local variables declared in the
main action to state components. This is the result of an application of either Law 29 (prom-var-state)

5

or Law 30 (prom-var-state-2) depending on whether the process has state or not.

Tactic promoteVars() =̂ law prom-var-state() | law prom-var-state-2()
end

Angelic nondeterminism is implemented through backtracking: on failures, law applications are undone up
to the last point where further alternatives are available (as in t1 | t2) and can be explored. This, however,
may result in inefficient searches. Some control is given to the programmer through the cut operator: the
tactic ! t behaves like t , except that it returns the first successful application of t . If a subsequent tactic
application fails, the whole tactic fails.

ArcAngelC has a fixed-point operator that allows us to define recursive tactics. Using µ, we can define
a tactic like the one below that exhaustively applies a given tactic t , terminating with success when its
application fails.

Tactic EXHAUST(t) =̂ µX • (t ; X | skip)
end

Recursive application of a tactic may lead to nontermination, in which case the result is the same as the
basic tactic abort.

Two tactics are used to assert the outcome of applying a tactic. The tactic succs t fails whenever t fails,
and behaves like skip whenever t succeeds. On the other hand, fails t behaves like skip if t fails, and fails if t
succeeds. If the application of t runs indefinitely, then these tacticals behave like abort. A simple example is
a test to check whether a program is a parallel composition. The commutativity law for parallel composition
applies only (and always) to parallel compositions. So, our test may be coded as succs(law par-com()).

3.4. Structural Combinators

Often, we want to apply individual tactics to parts of a Circus program. In [21], we defined structural
combinators that apply to subprograms of sequential programs. ArcAngelC extends the number of structural
combinators; essentially, there is one combinator for each syntactic construct in Circus.

The Action Structural Combinators are the ones that allow us to apply a tactic to parts of a Circus
action. The first one we present allows us to apply a tactic to an action prefixed by an event. The tactic
→ t applies to actions of the form c → A. It returns the prefixing c → B , where B is the program obtained
by applying t to A; the proof obligations generated are those arising from the tactic application. As for the
other structural combinators, if the tactic application fails or aborts, so does the application of the whole
tactic.

Similarly, the combinator & t applies to a guarded action g & A and returns the result of applying t to A;
the guard is unaffected in the resulting program. For recursive actions µX • A(X), there is the structural
combinator µ t ; it returns recursion obtained by applying t to A(X).

For alternation, there is the structural combinator if t1 [] . . . [] tn fi , which applies to an alternation
if g1 → p1[] . . . []gn → pn fi. It returns the result of applying each tactic ti to the corresponding program
pi . For example, if we apply the tactic if law assign-intro(x := −1) [] law assign-intro(x := 1) fi to the
program if a ≤ b → x : [x < 0][] a > b → x : [x > 0] fi we obtain two proof obligations true ⇒ −1 < 0
and and true ⇒ 1 > 0, and if a ≤ b → x := −1[] a > b → x := −1 fi.

The structural combinator var t applies to a variable block; it applies t to the body of the block. By
way of illustration, if we apply the tactic var law assign-intro(x := 10) to var x : N • x : [x ≥ 0], we get
var x : N • x := 10 and the proof obligation true ⇒ 10 ≥ 0. For argument declaration, the combinators
val t , res t , and vres t are used, depending on whether the arguments are passed by value, result, or
value-result.

The Process Structural Combinators are those combinators that can be applied only to processes bod-
ies. The only Circus constructs that are particular to process are the explicit processes definitions (enclosed
by the keywords begin and end) and indexing processes declarations and instantiations.

In order to apply tactics to components of a process explicit declaration we may use the structural combina-
tor beginend . This combinator receives two arguments: a possibly-empty sequence of pairs (n, t) of names

6

n and tactics t , and another tactic. For each element (n, t) in the sequence received as second argument, this
combinator applies t to the paragraph named n of the process; and finally, the second argument is applied to
the process main action. For example, the tactic beginend (〈(RegCycle, tactic T1())〉, tactic T2()) could
be used to apply a tactic T1 to the body of RegCycle and a tactic T2 to the main action of process Register .

Most of the Circus constructs originating from CSP can be used in the definition of both processes and
actions; therefore, for each of these constructs we define a single Action/Process Structural Combina-
tor. Their application are oblivious to whether we are applying the tactic to an action or a process: in both
cases they have the same behaviour.

The tactic t1 ; t2 applies to actions/processes of the form p1; p2. It returns the sequential composition of
the actions/processes obtained by applying t1 to p1 and t2 to p2; the proof obligations generated are those
arising from both tactic applications. This structural combinator is widely used in Section 6. For instance,
one of the steps of the refinement strategy is defined as skip ; tactic interIntroAndSimpl() (See Page 22 for
details). This tactic applies to a sequential composition: the left-hand action is left unchanged and the tactic
interIntroAndSimpl is applied to right-hand action.

As for the sequential composition, similar structural combinators are available for external choice (t1 2 t2),
internal choice (t1u t2), parallel composition (t1 ‖ t2), interleaving (t1 ||| t2), event hiding (\ t), and renam-
ing (:= t).

As for the binary constructs, we also have a corresponding structural combinator for each of the indexed
CSP constructs that can be used in Circus. For instance, ; t can be applied to an indexed sequential
composition ; decl • body : the result is that obtained by the application of t to body . For instance, assuming
that s is a natural variable that has already been initialised to 0, a program that assigns the sum of all
elements of a sequence sq of natural numbers to s can be specified as ; i : 0 . . #sq • s : [s ′ = s + sq [i]]. If
we apply ; law assign-intro(s := s + sq [i]), we get the program ; i : 0 . . #sq • s := s + sq [i] and proof
obligations true ⇒ s + sq [i] = s + sq [i], for every i in 0 . . #sq .

As for indexed sequential composition, we have 2 for indexed external choices, u for indexed internal
choices, ‖ for indexed parallel composition, and ||| for indexed interleaving.

There is only one Program Structural Combinator; it can be used to apply tactics to specific para-
graphs of a Circus program. The tactical program receives a sequence of pairs (n, t) of names and tactics: for
each element (n, t) in the received sequence, it applies the tactic t to the paragraph named n of the Circus
program. The tactics used in our case study in Section 6 illustrates the use of this constructor.

4. The Semantics of ArcAngelC

In this section, we describe the semantics of ArcAngelC , which is based on the semantics of ArcAngel [21],
a refinement-tactic language for sequential programs. The constructors for law and tactic application, the
basic tactics, the pattern matching operator, sequence, alternative, cut, recursion, and assertions follow the
definitions from [21]. The structural combinators however, although following the approach from [21], use
more generic definitions. This derives from the fact that programs that can be transformed, in the case
of Circus, may be different types of components of a Circus specification: actions, processes, and Circus
programs. In this paper, we do not describe the whole semantics in detail; we focus on the main novelties
of the ArcAngelC semantics, when compared to the ArcAngel work.

As opposed to the ArcAngel semantics, the formalisation of ArcAngelC uses Z as a meta-language; we have
embedded the syntax of Circus in Z. This allows the mechanisation of the semantics using Z theorem provers
like ProofPower-Z and Z-Eves.

Tactics are applied to a pair: the first element of this pair is a term to which the tactic is applied, and
the second element is the set of proof obligations generated. This pair is called refinement cell. In order
to handle different sorts of tactic (action tactics, data refinement tactics, and process tactics), we define a
general type of refinement cell, which can have programs, processes, or actions as its first element. First we

7

define a Cell : it can be a parametrised action, a parametrised process, a sequence of process paragraphs, or
a sequence of program paragraphs.

Cell ::= ParActC 〈〈ParAct〉〉 | ParProcC 〈〈ParProc〉〉
| ProcParC 〈〈seqProcPar〉〉 | ProgC 〈〈seqProgPar〉〉

The sets ParAct , ParProc, ProcPar , and ProgPar contain (Z representations of) parametrised action,
parametrised processes, processes paragraphs, and program paragraphs, respectively. For conciseness, we
also define the sets that contains each sort of cell. For instance, the set ParProcCell is the set that contains
all cells corresponding to parametrised processes.

ParProcCell == ranParProcC

A refinement can only transform an action to an action (action refinement), a process to a process (process
refinement), or a program to a program (program refinement). We may also have data refinement laws, in
which case we need to take into account the retrieve relation (given as an schema expression - SchemaExp)
and the declaration (Decl) of any local variables.

Refinement ::= ActRefinement〈〈ActBody × ActBody〉〉
| ProcRefinement〈〈ProcBody × ProcBody〉〉
| ProgRefinement〈〈Program × Program〉〉
| DataRefinement〈〈SchemaExp × Decl × ActBody × ActBody〉〉

The proof obligations can be simple Z predicates (Pred) or refinements.

PObs == iseqPred × iseqRefinement

Refinement cells are pairs (c, pobs), where c is a cell and pobs are proof obligations.

RCell == Cell × PObs

A refinement law (Law) is a function from a Cell to a refinement cell. If applied to a certain type of cell
it can only return a refinement cell whose first element is of the same type.

Law == {L : Cell 7→ RCell | L(| ParActCell |) ⊆ ParActRCell
∧ L(| ParProcCell |) ⊆ ParProcRCell
∧ L(| ProcParCell |) ⊆ ProcParRCell
∧ L(| ProgCell |) ⊆ ProgRCell}

The restriction is expressed using the Z relational image. For instance, the relational image of the set of
all cells that represent a parametrised action (ParActCell) is the set of all refinement cells that contain
a parametrised action cell as its first element (ParActRCell). Informally, this means that the application
of a refinement law to a parametrised action may only return a parametrised action (possibly with some
proof obligations). The same restrictions apply to parametrised processes (ParProcCell), process para-
graphs (ProcParCell), and programs (ProgCell).

The result of a tactic application is a possibly infinite list of RCells that contains all possible outcomes of
its application: every program it can generate, together with the corresponding proof obligations (existing
obligations and those generated by the tactic application). Different possibilities arise from the use of alter-
nation, and the list can be infinite, since the application of a tactic may run indefinitely. If the application
of some tactic fails, then the empty list is returned. The same restrictions on the type of the refinement cells
applies to tactics.

Tactic == {T : RCell → pfiseq[RCell]
| T (| ParActRCell |) ⊆ pfiseq[ParActRCell]

∧ T (| ParProcRCell |) ⊆ pfiseq[ParProcRCell]
∧ T (| ProcParRCell |) ⊆ pfiseq[ProcParRCell]
∧ T (| ProgRCell |) ⊆ pfiseq[ProgRCell]}

The type pfiseq[RCell] is that of possibly infinite lists of RCells. We use the model for infinite lists proposed
in [12]; it is summarised in the Appendix A. In this model, finite, partial, and infinite lists are considered.
A partial list ends in an undefined list, denoted ⊥. An infinite list is a limit of a directed set of partial lists.

8

To give semantics to named laws and tactics, we need to maintain two environments, one for refinement
laws and one for refinement tactics. A law environment records the known laws; it is a partial function whose
domain is the set of the names of these laws. For a law environment envL and a given law name n, we have
that envL n is also a partial function that relates all valid arguments of n (sequence of terms) to yet another
function, a Law .

LEnv == N 7→ ((seqTERM) 7→ Law)

Similarly, a tactic environment is a function that takes a tactic name and a sequence of arguments, and
returns a Tactic.

4.1. Legacy Tactics

The definitions of the basic tactics are very similar to those in [21]. For instance, the basic tactic law n(a)
applies a simple law to an RCell ; it is defined as follows.

law: (N × (seqTERM)) → LEnv → Tactic

∀n : N ; args : seqTERM ; r : RCell ; lenv : LEnv •
law (n, args) lenv r =

if (n ∈ dom(lenv) ∧ args ∈ dom(lenv(n)) ∧ r .1 ∈ dom((lenv(n)(args))))
then [∞((lenv(n)(args)(r .1)).1, MPObs(r .2, (lenv(n)(args)(r .1)).2))]∞
else [∞]∞

If the law name n is in the given law environment lenv , and if the arguments a and cell r .1 are appropriate,
then the tactic succeeds, and returns a list with a new RCell . The refinement cell r is transformed by
applying the law to the cell r .1; the new proof obligations are merged with the proof obligations r .2 of the
original RCell . Otherwise, the tactic fails with the empty list as result. The function MPObs merges two sets
of proof obligations. The brackets subscripted with ∞ indicate that this is a possibly infinite list (pfiseq).

In this work, we use a simple approach for expression arguments. They are used as they were already
evaluated. However, they should be evaluated before being used. This is left as future work.

The semantics of tacticn(a) is similar to that of the law construct. The tactic skip returns its argument
unchanged.

skip : Tactic

∀ r : RCell • skip(r) = [∞r]∞

The tactic fail always fails. It returns the empty list [∞]∞.
The operators are also very similar to the definitions in [21]. The sequence operator, for instance, uses a

construction known as the Kleisli composition [10]. It applies its first tactic to its argument, producing a
list of cells; it then applies the second tactic to each member of this list; finally, this list-of-lists is flattened
to produce the result.

; : (Tactic × Tactic) → Tactic

∀ t1, t2 : Tactic; r : RCell • (t1 ; t2)(r) = ∞a/[RCell](t2 ∗ (t1(r)))

For a total function f : A → B , f ∗ : pfiseqA → pfiseqB is the map function that operates on a list
by applying f to each of its elements; the operator ∞a/ is the distributed concatenation operation. Formal
definitions of these operators and others to follow can be found in Appendix A.

The semantics of the alternation (t1 | t1), cut (!t), recursion (µX • t), abort, assertions succs t and
fails t , and pattern matching are also very similar to those from [21] and are omitted here for conciseness.
A full account on the semantics of ArcAngelC can be found in [19].

9

4.2. Structural Combinators

The structural combinators apply tactics to components of a program independently (and so can be
thought of as in parallel), and then reassemble the results in all possible ways. For instance, let us sup-
pose that we want to apply tactics t1 and t2 to two different components p1 and p2 of a program P (for
this example, let us use P [p1, p2] to denote that the program P has components p1 and p2). A struc-
tural combinator allows us to make this application independently. In our example, let us also assume
that t1 (p1) = [∞r1, r2]∞ and that t2 (p2) = [∞s1, s2]∞. A combination of these results gives us a list
[∞(r1, s1), (r1, s2), (r2, s1), (r2, s2)]∞. The application of the structural combinator yields a list of programs
based on this combination by reassembling the original program and replacing in P each component by the
corresponding result in the combined list. In our example, we have the following list of programs as a result.

[∞P [r1, s1],P [r1, s2],P [r2, s1],P [r2, s2]]∞

There is one combinator for each construct in the programming language. In our case, since tactics may
target different components of a Circus program, we actually have four groups of structural combinators: those
that can either be applied to actions or processes, those that can only be applied to actions, those that can
only be applied to processes, and those that can be applied to programs.

In this work, the reassembling previously mentioned is done by Ω functions. The semantics of the vast
majority of the structural combinators has the following structure.

(structComb tacs) rc = (Ω args) ∗ tacApp

In this template, structComb stands for the structural combinator, tacs is either a single tactic, a pair of
tactics, or a sequence of tactics, and rc is a refinement cell. Their definitions apply the tactic(s) to the
refinement cell following some structure (this application is represented by tacApp above) and maps (∗) a
given Ω function using the arguments required by this function (like the original Circus construct) to the list
tacApp resulting from the tactic application.

The naming and typing of Ω functions follows a template: essentially, they are generic functions on X as
the one presented below.

ΩR
D : X → ((X × D) → R) → RCell 7→ RCell

They receive an element x of type X , a function f : (X × D) → R, and a refinement cell. In this template,
X is the type variable, and D and R are to be replaced by Circus syntactic categories in the actual defini-
tions (ActBody , ProcPar , etc). The Ω functions return the refinement cell with same proof obligations and
with a cell of type R, which results from the application of f to (x , p), where p is the program structure of the
cell in the original refinement cell. In a few cases, the function they receive has type f : (X × D × D) → R;
this is denoted in the name of the function by subscripting the D with a 2 as in ΩR

D2
. Furthermore, in cases

where D and R are the same we may omit R in the name of the function.

4.2.1. Action Combinators
The first Ω function, ΩActBody , instantiates both D and R to the syntactic category of action bodies,

ActBody . It receives an element x of a certain type X , a function f : (X × ActBody) → ActBody , and
a refinement cell. It returns the refinement cell with same proof obligations and with a basic action as its
cell, which results from the application of f to (x , a), where a is the action body of the cell in the original
refinement cell.

[X]
ΩActBody : X → ((X × ActBody) → ActBody) → RCell 7→ RCell

∀ x : X ; f : (X × ActBody) → ActBody ; a : ActBody ; pobs : PObs •
ΩActBody x f (ParActC (BaseAct(a)), pobs) = (ParActC (BaseAct(f (x , a))), pobs)

By way of illustration, if we have c : Comm (c is a Circus communication) we can have the following

10

application of ΩActBody . The prefixing → is a function → : (Comm × ActBody) → ActBody .

ΩActBody (c) (→) (ParActC (BaseAct(Skip)), pobs) = (ParActC (BaseAct(→ (c,Skip))), pobs)

If we rebuild a cell by giving to ΩActBody a communication c, the function →, and the cell that contains
the basic action Skip and proof obligations pobs, as arguments, we get a new refinement cell that contains
the action c → Skip as its action (represented as ParActC (BaseAct(→ (c,Skip))) in our embedding of the
syntax) and the same proof obligations pobs.

Using this Ω function, we can define the structural combinator used for prefixing. As already explained,
the structural combinator → t applies to a prefixing c → A (→ (c,A) in our Z embedding of Circus). As a
result, t is applied to A; the possible results are assembled back with the prefixing by mapping the function
ΩActBody with arguments c and →.

→ : Tactic → Tactic

∀ t : Tactic; c : Comm; a : ActBody ; pobs : PObs •
(→ t)(ParActC (BaseAct(→ (c, a))), pobs) =

(ΩActBody (c) (→)) ∗ (t (ParActC (BaseAct(a)), pobs))

Basically, for every Circus action construct that is defined as a function f : (X × ActBody) → ActBody ,
like → above, the semantics of the corresponding structural combinator is similarly defined: we apply the
tactic to the action body and reassemble the original action using the function ΩActBody . This includes
the semantics of structural combinators for guarded action (&), recursion (µ), variable blocks (var), and
parametrised actions (val , res , and vres). The semantics of the structural combinator used for alternation
has a more complex definition; it, however, follows the same ideas from [21].

We now turn into the structural combinators that relate to Circus process constructs.

4.2.2. Process Combinators
The process structural combinators are the ones related to indexed processes (¯ and ¯inst) and the one

that applies to a process body (beginend). The first two of them are similar to those for actions, but take
parametrised processes into consideration. For instance, the semantics for the structural combinator ¯ , uses
the function ΩParProc , which is very similar to ΩActBody , but applies to parametrised processes instead.

[X]
ΩParProc : X → ((X × ParProc) → ParProc) → RCell 7→ RCell

∀ x : X ; f : (X × ParProc) → ParProc; p : ParProc; pobs : PObs •
ΩParProc x f (ParProcC (p), pobs) = (ParProcC (f (x , p)), pobs)

This function is used in the following definition.

¯ : Tactic → Tactic

∀ t : Tactic; p : ParProc; d : Decl ; pobs : PObs •
(¯ t)(ParProcC (¯(d , p)), pobs) = (ΩParProc (d) (¯)) ∗ (t (ParProcC (p), pobs))

It applies the tactic t to the cell that contains the parametrised process p. We reassemble the cells by
mapping the ΩParProc function with the original variable declaration d and Circus construct ¯ to the list
that resulted from the application of t .

The structural combinator beginend applies to refinement cells that have an explicit process definition in
its cell. It applies each of the received tactics to the corresponding part of the declaration, merges the process
paragraphs, and rebuilds the refinement cells. Its definition is omitted here for the sake of conciseness. It,
however, like the other definitions that have been omitted here, can be found in [19].

4.2.3. Action and Process Combinators
The structure of the definitions of combinators that can be applied to either actions or processes follow

the standard way we have used separately for combinators for actions and processes before. Since they are

11

used for both action and process, however, their definition is a conjunction in which each of the conjuncts
have the same structure as the simpler definitions previously presented, but define their behaviour for each
type of application (rebuilding actions ΩA and rebuilding process ΩP).

(structCombP tacs) rc = (ΩP args) ∗ tacApp
∧ (structCombA tacs) rc = (ΩA args) ∗ tacApp

The first definition of a structural combinator that can be applied to processes and actions is for the
structural combinator that allows the application of a tactic to the body of a process or action defini-
tion, =̂ . It uses two Ω functions. The first one receives a generic argument x : X , a function f of type
(X × ParAct) → ProcPar , and a refinement cell that contains a parametrised action a and returns a cell
that contains a process paragraph resulting from the application of f to (x , a). In our work, ParAct and
ProcPar are the syntactic classes of parametrised actions and process paragraphs, respectively.

[X]
ΩProcPar

ParAct : X → ((X × ParAct) → ProcPar) → RCell 7→ RCell

∀ x : X ; f : (X × ParAct) → ProcPar ; a : ParAct ; pobs : PObs •
ΩProcPar

ParAct x f (ParActC (a), pobs) = (ProcParC (〈f (x , a)〉), pobs)

The second function is similar, but the functions it receives are functions from (X × ParProc) to ProgPar .
These are the syntactic classes of parametrised processes and program paragraphs, respectively.

[X]
ΩProgPar

ParProc : X → ((X × ParProc) → ProgPar) → RCell 7→ RCell

∀ x : X ; f : (X × ParProc) → ProgPar ; p : ParProc; pobs : PObs •
ΩProgPar

ParProc x f (ParProcC (p), pobs) = (ProgC (〈f (x , p)〉), pobs)

The structural combinator that applies to an action or process definition, =̂ , is defined in the way
described above. If applied to a process definition process n[gen] =̂ p (denoted by process((n, gen), p)
in our embedding of the Circus syntax), where [gen] are optional type arguments for generic processes, it
applies the tactic to the process body and reconstructs the process definition. Nevertheless, if the combinator
is applied to an action definition n =̂ a (denoted by ActDef (n, a) in our syntactic embedding), it applies
the tactic to the action body and reconstructs the action definition.

=̂ : Tactic → Tactic

∀ t : Tactic; n : N ; gen : seqN ; a : ParAct ; p : ParProc; pobs : PObs •
(=̂ t)(ProgC (〈process((n, gen), p)〉), pobs) =

(ΩProgPar
ParProc (n, gen) (process)) ∗ (t (ParProcC (p), pobs))

∧ (=̂ t)(ProcParC (〈ActDef (n, a)〉), pobs) =
(ΩProcPar

ParAct n ActDef) ∗ (t (ParActC (a), pobs))

A similar approach has been adopted for the Circus binary operators of sequential composition, external
choice, internal choice, parallel composition and interleaving. Nevertheless, their domains are slightly dif-
ferent: sequence, external and internal choice are defined as functions with a domain composed of pairs of
tactics, and the remaining constructs are defined as functions with a domain composed of triples. Never-
theless, the first element of these triples have no influence in the behaviour and hence, we can have a single
way to define the behaviour of the structural combinator related to all these Circus constructs and we have
done so by defining a function generalise that transforms functions ((X × X) → X) into functions of type
((NIL VAL × X × X) → X) in the obvious way.

After this, we could define Ω functions (ΩProcBody2 and ΩActBody2) that rebuild actions or process refine-
ment cells given a binary operator and two actions or processes. Furthermore, we defined functions that
applies each of the two tactics received as arguments to each of the action or process bodies also received as
argument (applyTacsProcBody2 and applyTacsActBody2), combines both lists of results using the distributed

12

cartesian product and rebuilds the refinement cells using the corresponding Ω functions. In order to have
the same structure in the definitions of structural combinators that apply to constructs like sequential com-
position and in the definition of structural combinators that apply to constructs like parallel composition,
this function accepts functions that represent Circus constructs that have triples in their domain. Constructs
like sequential composition have only two arguments, which are the two actions or process that are com-
posed in sequence. For constructs like parallel composition, however, we have one further argument: a triple
(ns1, cs,ns2) that contains the state partitions ns1 and ns2, and the synchronisation channel set cs.

By way of illustration, we present the final definition of the structural combinator for sequential composi-
tion. As we know, the domain of sequential composition are pairs; in order to use the function that applies
the tactics, we need to generalise the functions ;A and ;P (embedding of the sequential composition for
actions and processes, respectively) before giving them as arguments to the functions that apply the tactics.
Besides, a null value, nil , is used as the first argument of this call.

; : (Tactic × Tactic) → Tactic

∀ t1, t2 : Tactic; a1, a2 : ActBody ; p1, p2 : ProcBody ; pobs : PObs •
(t1 ; t2)(ParProcC (BaseProc(;P (p1, p2))), pobs) =

applyTacsProcBody2 (nil , generalise (;P), (p1, p2), pobs, (t1, t2))
∧ (t1 ; t2)(ParActC (BaseAct(;A(a1, a2))), pobs) =

applyTacsActBody2 (nil , generalise (;A), (a1, a2), pobs, (t1, t2))

The same applies to the structural combinators that apply to external choice and internal choice. For
parallel composition of processes and actions (denoted by ‖P and ‖A, respectively) we have that the first
element of the triples are indeed used and hence, we do not need to generalise the functions ‖P and ‖A.
We invoke applyTacsProcBody2 and applyTacsActBody2 using the original element of the triple and the original
function as arguments.

‖ : (Tactic × Tactic) → Tactic

∀ t1, t2 : Tactic; a1, a2 : ActBody ; p1, p2 : ProcBody ;
ns1,ns2 : NSExp; cs : CSExp; pobs : PObs •
(t1‖ t2)(ParProcC (BaseProc(‖P (cs, p1, p2))), pobs) =

applyTacsProcBody2 (cs, (‖P), (p1, p2), pobs, (t1, t2))
∧ (t1‖ t2)(ParActC (BaseAct(‖A ((ns1, cs,ns2), a1, a2))), pobs) =

applyTacsActBody2 ((ns1, cs,ns2), (‖A), (a1, a2), pobs, (t1, t2))

The same applies to the interleaving structural combinator.
For the iterated operators, and for the hiding, parametrisation, and renaming operators we follow a similar

approach. The only difference is the definitions of the Ω functions, which have to deal with different types
of arguments.

5. A Refinement Strategy for Verification of Control System Implementations

Control systems can be specified using block diagrams, which model systems as a directed graph of blocks
interconnected by wires. The wires carry signals that represent input and output and the blocks represent
functions that determine how the outputs are calculated from the inputs.

Simulink is a popular tool that is part of the Matlab environment[8]; its use in the avionics and automotive
sectors is very widespread. A simple example of two Simulink diagrams is presented in Figure 2; it contains a
PID (Proportional Integral Derivative) controller, a generic control loop feedback mechanism that attempts
to correct the error between a measured process variable and a desired set-point by calculating and then
outputting a corrective action that can adjust the process accordingly.

Control systems present a cyclic behaviour. We consider discrete-time models, in which inputs and outputs
are sampled at fixed intervals. The inputs and outputs are represented by rounded boxes containing numbers.
In our example, there are four inputs, E, Kp, Ki, and Kd, and one output, Y.

13

Fig. 2. A Simple PID Controller

Typically, a block takes input signals and produces outputs according to its corresponding function. For
instance, the circle is a sum block and boxes with a × symbol model a product. There are libraries of blocks
in Simulink, and they can also be user-defined. Boxes enclosing names are subsystems; they denote control
systems defined in other diagrams. For example, the diagram that corresponds to the Diff block is also
presented in Figure 2.

Blocks can have state. For instance, Unit Delay blocks store the value of the input signal, and output the
value stored in the previous cycle.

In [2], we present a technique to verify SPARK Ada programs with respect to Simulink diagrams using
Circus. The approach, illustrated in Figure 3, is based on calculating the Circus model of the diagram using
the semantics given in [2], calculating a Circus model for the SPARK Ada program, and proving that the
former is refined by the latter.

Fig. 3. The Refinement Strategy

In the model of the diagram, there is a basic Circus process for each block, and the diagram itself is
specified by the parallel composition of these processes. For a subsystem block, the Circus process captures
the parallel behaviour that arises if some of the outputs do not depend on the values of all the inputs. For
example, if there is one output whose value does not depend on the value of all the inputs, as soon as the
required inputs become available, its calculation can proceed, and the resulting value can be output. In this
case, the calculation of the output is an independent flow of execution of the subsystem. In addition, for all
blocks, the update of its state, if any, is an independent flow of execution.

By way of illustration, the translation of the Diff block shown in Figure 2 is the Diff process show in Fig-
ure 4. Informally, Init initialises the process state, Calc Diff out calculates the output of the differentiator
at the next clock cycle, and Calc Diff St calculates the process state at the current clock cycle; all of them
are defined as Z operations on the state of Diff .

The inputs of diagrams and blocks are modelled as components In1?, In2?, and so on. Similarly, outputs
have conventional names Out1!, Out2!, and so on. Components state, state0, and initialstate record the
value of the state at the beginning and at the end of the cycle, and at the beginning of the first cycle. The

14

process Diff =̂ begin

state Diff St =̂ [pid Diff UnitDelay St : U]

pid Diff Sum =̂ Sum PM

pid Diff UnitDelay =̂ UnitDelay g(X0 =̂ 0 e 0)

pid Diff
In1? : U; Out1! : U
Sum : pid Diff Sum
UnitDelay : pid Diff UnitDelay

Out1! = Sum.Out1!
UnitDelay.In1? = Sum.In1?
Sum.In1? = In1?
Sum.In2? = UnitDelay.Out1!

Init
Diff State′

∃ b : pid Diff UnitDelay • pid Diff UnitDelay state′ = b.initialstate

Calculate Diff
∆Diff State
In1?m,Out1! : U

∃ b : pid Diff •
b.In1? = In1?
∧ b.UnitDelay.state = pid Diff UnitDelay state
∧ b.UnitDelay.state′ = pid Diff UnitDelay state′

∧ b.Out1! = Out1!

Calculate Diff Out =̂ Calculate Diff \ (pid Diff UnitDelay state′) ∧ ΞDiff State

Exec Diff out =̂ var In1 : U • E?x → In1 := x; var Out1 : U • Calc Diff out; Diff out !Out1 → Skip

Flows =̂ Exec Diff out

Calculate Diff State =̂ Calculate Diff \ Out1!

Diff StUpdt =̂ var In1 : U • E?x → In1 := x ; Calc Diff St

• Init; µX • (Flows |[{ } | {|E |} | { pid Diff UnitDelay St}]|Diff StUpdt); end cycle → X

end

Fig. 4. Circus process for the block Diff

other components, if any, represent blocks; for each block in the diagram or in the diagram of a subsystem
block, there is a component.

For each flow of execution f , the action Exec f takes the required inputs, and then calculates and produces
the outputs. The name f of the flow is determined by the unique outputs that it produces. In Exec Diff out
there is one input variable In1, and one output variable Out1. The inputs are received in any order. The
value x of the input is recorded in the corresponding variable Ini . Similarly, outputs are sent in any order.
In our example, since there is only one input and one output, the interleavings are each reduced to one
action: an input through E and an output through Diff out .

The main action starts with the initialisation, and recursively proceeds in parallel to execute each of the
flows and update the state, before synchronising on end cycle. The flows proceed independently, but a block
can only start a new cycle when all the flows (and all the blocks of the diagram) have finished. In Diff ,

15

Fig. 5. Blocks Configurations

there is only one flow, so the parallelism in the action is reduced to a single action Exec Diff out that
synchronises with Diff StUpdt on E .

The proof of refinement uses a four-phase strategy. In the first of them, NB, we refine the Circus process that
corresponds to each block into a recursion that iteratively performs an action that embodies the behaviour
of one cycle, and signals the end of the cycle. The action should be in a form similar to that of the model of
a SPARK Ada procedure: interleaving of inputs, followed by output calculations and state update, followed
by interleaving of outputs.

Informally, the steps in the phase NB are described in [2] as follows: in order to normalise the model of a
block we remove the parallelism between the actions that model the flows of execution and the state update,
and promote the local variables of the main action to state components. If the block can be implemented se-
quentially, this step succeeds generating only proof obligations that can be discharged using simple syntactic
checks.

After the NB phase, we have the phase BJ, in which we collapse the parallelism between the processes of
the blocks that are implemented by a single procedure in the Ada program, and then between the processes
that represent procedures that are handled by a single scheduler. Each of the resulting processes should
be refined to put them back into the normal form described in the previous phase NB. The success of this
phase confirms that the architecture of the implementation is appropriate, in the sense that it groups blocks
and procedures that can be implemented sequentially. Again, only syntactic checks are raised by the law
applications.

After these two phases, two other phases, Pr, and Sc conclude the refinement. They match the structure
of the diagram to the architecture of the scheduler, and prove that the individual procedures implement the
block functionality correctly. Their definitions are omitted here for the sake of conciseness. Further details
can be found in [2].

6. Case Study - The Tactics NB and BJ

In this section, we present the tactics NB and BJ that formally describe the refinement strategy presented
in Section 5. Their application to the example presented here is also discussed; it illustrates how we can
accomplish the stages NB and BJ of the refinement strategy by using refinement tactics.

6.1. Phase NB

In [2], we describe the NB phase for blocks whose flows share their inputs as in Configuration 4 in Figure 5.
The state update is also combined in this way with the flows.

The first step of this phase is a series of applications of the refinement Law copy-rule-action to eliminate
all references to action names in the main action. The tactic that accomplishes this step uses a couple of
auxiliary tactics in its definition. The first one, TRY, makes a robust application of a given tactic t .

Tactic TRY(t) =̂ !(t | skip)
end

The next tactic is used to repeatedly apply a given law l using the elements of a given list args as arguments,

16

in sequence. It uses the tactic TRY in order to skip when it reaches the base case, an empty list of arguments.

Tactic APPLYL(l , args) =̂ TRY(law l(hd args); APPLYL(tl s))
end

The functions hd and tl return the head and the tail of a given list, respectively. The former fails if applied
to an empty sequence. A similar tactic, APPLYT is used to apply tactics in the same way.

The tactic below formalises the series of applications of Law copy-rule-action. It receives a list fs of the
names of the actions Exec f that execute the flows as arguments. It applies to explicit process definitions,
and transforms the process using Law copy-rule-action () .

Tactic applyCopyRule(fs) =̂

applies to process P =̂ begin PPars • Main end

do =̂

law copy-rule-action(“Flows”);

APPLYL(copy-rule-action, fs);

TRY(law copy-rule-action(P+“ StUpdt”))

end

The tactic that corresponds to the first step of the NB phase, NBStep1, simply receives the list of the
action names and invokes tactic applyCopyRule(fs).

Tactic NBStep1(fs) =̂ tactic applyCopyRule(fs)
end

The application of this tactic to Diff changes its main action to the action below in which the references to
Flows, and then Exec Diff out (the unique flow) and Diff StUpdt are replaced with their definitions. For
that, we give as parameters to NBStep1 the singleton list 〈Exec Diff out〉.

Init ; µX •

var In1 : U •
E?x → In1 := x ;

var Out1 : U • Calc Diff out; Diff out !Out1 → Skip

|[{ } | {|E |} | { pid Diff UnitDelay St}]|
(var In1 : U • E?x → In1 := x ; Calc Diff St)

; end cycle → X

Throughout this paper, we box the target of the next refinement step.

6.1.1. Synchronise inputs
All flows in the main action require all inputs, and so does the state update. For this reason, all parallel

actions in the body of the recursion declare local variables dIn to hold each of the input values, and take
all of them in interleaving in AIn . In our example, an interleaving is not needed because we have a single
input. In this step, we extract from the parallelism the declarations dIn using Law 35 (var-exp-par-2) and the
interleaving AIn , using a law that distributes an action over a parallel composition, Law 27 (par-seq-step-2).

Tactic syncInput() =̂

applies to (var dIn : U • AIn ; AOut) |[ns1 | cs | ns2]| (var dIn : U • AIn ; ASt)

do law var-exp-par-2(); var law par-seq-step-2()]]

generates var dIn : U • AIn ; (AOut |[ns1 | cs | ns2]|ASt)

proof obligations usedC (AIn) ⊆ cs,wrtV (AIn) ⊆ {dIn}
end

This tactic generates a program that declares the input variables, takes the inputs and behaves like a parallel

17

composition.
In our example we have a single flow; nevertheless, we aim at the definition of a tactic that supports

multiple flows. In the general case, we have a parallel composition as the one presented below in which the
right-hand side is the state update, and the left-hand side is the parallel composition of all the flows.

I ; µX •
(

((var d • AIn ; AOut0) ‖ (. . . ‖ (var d • AIn ; AOutn))) ‖ (var d • AIn ; ASt)
)
; EC

Our strategy is to remove the declarations d and interleaving AIn from the parallel composition of all
the flows by recursively applying syncInput. Only then, we remove d and AIn from the outermost parallel
composition. The auxiliary tactic foldl‖ recursively applies a given tactic t , from the innermost to the
outermost parallel composition of an action A1 ‖ (. . . ‖ An).

Tactic foldl‖(t) =̂ µX • tactic TRY((skip‖ X); t)
end

For example, the application of tactic foldl‖ (tactic syncInput()) to an instantiation of the generic case in
which there are three flows is presented below. The tactic recurs until the point in which the application of
the structural combinator ‖ fails (lines 1 to 6), in which case, since we are in a TRY tactic, the tactic skips
and returns (var d • AIn ; AOut2) (line 7). Then, the tactic applies tactic syncInput() to each result of the
the recursive invocation: first, it synchronises the inputs of the branches 1 and 2 (lines 8 and 9), and finally,
it synchronises all the inputs (lines 10 and 11).

(var d • Ai ; Ao0) ‖ ((var d • Ai ; Ao1) ‖ (var d • Ai ; Ao2)) (1)

= [tactic TRY ((skip‖ (tactic foldl‖ (tactic syncInput()))); . . .)] (2)

(var d • Ai ; Ao1) ‖ (var d • Ai ; Ao2) (3)

= [tactic TRY ((skip‖ (tactic foldl‖ (tactic syncInput()))); . . .)] (4)

(var d • Ai ; Ao2) (5)

= [tactic TRY ((skip‖ (tactic foldl‖ (tactic syncInput()))); . . .)] (6)

(var d • Ai ; Ao2) (7)

= [tactic TRY (. . . ; tactic syncInput())] (8)

(var d • Ai ; (Ao1 ‖ Ao2)) (9)

= [tactic TRY (. . . ; tactic syncInput())] (10)

var d • Ai ; (Ao0 ‖ (Ao1 ‖ Ao2)) (11)

In the same way, we may use foldl‖ in the n-ary case to join all the variables declarations d and interleaving
Ai in the left-hand action of the outermost parallel composition. This is captured by the tactic that follows.

Tactic joinFlowsInput =̂ tactic foldl‖ (tactic syncInput())
end

The process to which we are applying this step may have state or not: the main action of a stateful process
is a parallel composition of the flows with the state update. For this case, we define the following tactic,
which synchronises the inputs of the flows, and then, it synchronises the inputs of the whole action.

Tactic NBStep2 f() =̂ (tactic joinFlowsInput()‖ skip); tactic syncInput()
end

Nevertheless, stateless processes do not have a parallel composition with a state update; the application of
the tactic above fails. Hence, we define another tactic that synchronises the input of the flows, and then,
introduces a parallel composition of the flows output with Skip. This unifies the structure of the actions
that result from the application of this step to both stateful and stateless processes, allowing the remaining

18

tactics to be used in both of them.

Tactic NBStep2 l() =̂ tactic joinFlowsInput(); var (skip ; tactic createPar())]]
end

The tactic createPar creates a parallel composition using Laws 16 (inter-unit) and 23 (par-inter-2) in sequence.
Finally, we may define the tactic that corresponds to second step of the NB phase, NBStep2: it is either

the application of the stateful version or the application of the stateless version of the second step.

Tactic NBStep2() =̂ tactic NBStep2 f() | tactic NBStep2 l()
end

Our example has one flow; hence, the application of joinFlowsInput immediately skips. Afterwards, the
application of syncInput returns the action below.

Init ; µX •

var In1 : U •
E?x → In1 := x ;

(var Out1 : U • Calc Diff out; Diff out !Out1 → Skip)

|[{ } | {|E |} | { pid Diff UnitDelay St}]|
Calc Diff St

; end cycle → X

The next step expands the scope of the output variable blocks.

6.1.2. Expanding the scope of the output variables
Since there are no repeated declarations of output variables and each output is handled by a single flow,

we can expand the scope of the output variable blocks, and join the resulting nested blocks. This can be
achieved using Laws 34 (var-exp-par), 37 (var-exp-seq) and 20 (join-blocks).

As for the previous step, we need to define a tactic that supports multiple flows. At this point, the general
structure of the main action has a parallel composition as the one presented below in which the left-hand
side is the parallel composition of variable blocks that declare different output variables.

I ; µX • (var d • AIn ; (((var d0 • A0) ‖ (. . . ‖ (var dn • An))) ‖ ASt)); EC

The strategy to define the tactic that corresponds to this step is similar to the one used in the previous
step: we define a tactic, expDisjVarPar, which extracts both variable blocks from a parallel composition of
two variable blocks, and joins them; we use foldl‖ to join all the variables blocks in the left-hand action
of the outermost parallel composition; and finally, we define a tactic that expands the scope of the output
variable blocks to outside the parallel composition and AIn , and join the variable blocks.

The tactic expDisjVarPar presented below applies to a parallel composition of two variables block whose
sets of declared variables are disjoint. It applies Law var-exp-par to expand the scope of the variable block
in the left-hand action to outside the parallelism. Next, it commutes the parallel composition and uses the
Law var-exp-par again to expand the scope of the other variable block to outside the parallel composition.
Finally, it commutes the parallel composition once again and joins the variable blocks.

Tactic expDisjVarPar() =̂

applies to (var d0 • A0) |[ns1 | cs | ns2]| (var d1 • A1)

do law var-exp-par(); var law par-comm(); law var-exp-par(); var law par-comm()]]]] ;

law join-blocks()

generates var d0; d1 • (A0 |[ns1 | cs | ns2]|A1)

proof obligations {d0, d ′0} ∩ FV (A1) = ∅, {d1, d ′1} ∩ FV (A0) = ∅
end

Using this tactic, we may join all the variables declarations di in the left-hand action of the outermost

19

parallel composition. This is captured by the tactic joinFlowsOutVarScope declared below.

Tactic joinFlowsOutVarScope =̂ (tactic foldl‖ (tactic expDisjVarPar()))‖ skip
end

Finally, we define the tactic expOutVarScope, which applies to actions that declare the input variables,
receives their values, and then, declares the output variables, and calculates and produces the outputs in
parallel with the state update. First, using Law 34 (var-exp-par), we expand the scope of the variable blocks
to outside the parallelism. Next, the tactic introduces a Skip to obtain an action in the format accepted by
Law var-exp-seq, which is then applied to move the variable declaration to include AIn in its scope. Finally,
the tactics remove the Skip that was introduced and joins both variable blocks. The invocation of equality
laws superscripted with b (from backwards) indicates that the law shall be applied from right to left.

Tactic expOutVarScope() =̂

applies to var d • AIn ; ((var dO • AO) |[ns1 | cs | ns2]|ASt)

do var (skip ; (law var-exp-par(); law seq-right-unit())); law var-exp-seq();

var skip ; law seq-right-unitb()]]]] ;

law join-blocks()

generates var d ; dO • AIn ; (AO |[ns1 | cs | ns2]|ASt)

proof obligations {dOut , d ′Out} ∩ FV (ASt) = ∅, {dOut , d ′Out} ∩ FV (AIn) = ∅
end

The result is a single variable block that declares input and output variables. The tactic that corresponds
to the third step of the NB phase, NBStep3, first joins all the variables blocks in the left-hand action of the
outermost parallel composition. Finally, it invokes tactic expOutVarScope() in order to expand the scope of
the block that introduces the output variables, and joins the resulting nested blocks.

Tactic NBStep3() =̂ (var skip ; tactic joinFlowsOutVarScope()]]); tactic expOutVarScope()
end

As for the previous step, the application of the tactic joinFlowsOutVarScope immediately skips in our example
because it contains only one flow. The application of the tactic expOutVarScope yields the following action.

Init ; µX •

var In1 : U; Out1 : U •
E?x → In1 := x ;

(Calc Diff out; Diff out !Out1 → Skip)

|[{ } | {|E |} | { pid Diff UnitDelay St}]|
Calc Diff St

; end cycle → X

The next step removes all schemas that calculates the outputs and updates the state from the parallel
composition.

6.1.3. Isolating the input processing
The fourth step aims at isolating the communication of the output values. In the most general case, at

this stage, we have a parallel composition as the one presented below, in which the right-hand action is the
state update and the left-hand action is the parallel composition of the flows: each flow calculates the output
values and communicates them.

I ; µX • (var d ; dO • AIn ; (((AC0 ; AO0) ‖ (. . . ‖ (ACn ; AOn))) ‖ ASt));EC

As before, the strategy is to define a tactic that isolates the output communications in a parallel composition
of two flows, use foldl‖ to isolate all the output communications in the left-hand action of the outermost

20

parallel composition, and finally, define a tactic that isolates the output communications in the outermost
parallel composition.

The tactic isolateSeqActions presented below applies to a parallel composition (AC0 ; AO0) ‖ (AC1 ; AO1).
It applies Law 26 (par-seq-step) to remove the schema AC0 from the parallel composition resulting in a
sequential composition. Next, it commutes the remaining parallel composition and uses the Law par-seq-step
again to remove the schema AC1 from the parallel composition. Finally, it commutes the parallel composition
once again and applies the associativity law for parallel composition in order to aggregate AC0 and AC1 .

Tactic isolateSeqActions() =̂

applies to (AC0 ; AO0) |[ns1 | cs | ns2]| (AC1 ; AO1))

do law par-seq-step();

(skip ; (law par-comm(); law par-seq-step(); (skip ; law par-comm())));

law seq-assoc()

generates (AC0 ; AC1); (AO0 |[ns1 | cs | ns2]|AO1)

proof obligations usedC (AC0) = ∅, usedC (AC1) = ∅,
wrtV (AC0) ⊆ ns1 ∩ ns ′1,wrtV (AC1) ⊆ ns2 ∩ ns ′2

usedV (AC1 ; AO1) ∩ wrtV (AC0) = ∅, usedV (AC0) ∩ wrtV (AC1) = ∅
end

The proof obligations are originated from the applications of Law par-seq-step. Using this tactic, we may
isolate all the output communications AOi in the left-hand action of the outermost parallel composition.
This is captured by the tactic joinFlowsCalc declared below.

Tactic joinFlowsCalc =̂ (tactic foldl‖ (tactic isolateSeqActions()))‖ skip
end

Finally, we can define the tactic isolateIn, which introduces a Skip into the right branch of the parallel
composition and then uses Law par-seq-step to remove the schemas ACi that calculate the outputs from
the parallel composition resulting in a sequential composition. Then, it works on the second part of this
sequential composition: it commutes the parallel composition and then it applies once again Law par-seq-step
in order to remove the schemas ASt that calculates the state. Once again, it commutes the remaining parallel
composition. Finally, it applies the Law 31 (seq-assoc) to the whole sequential composition; this aggregates
the output calculation and the state update.

Tactic isolateIn() =̂

applies to (AC ; AO) |[ns1 | cs | ns2]|ASt

do (skip‖ (law seq-right-unit())); law par-seq-step();

(skip ; (law par-com(); law par-seq-step(); (skip ; law par-com())));

law seq-assoc()

generates (AC ; ASt); (AO |[ns1 | cs | ns2]| Skip)

proof obligations usedV (ASt) ∩ wrtV (ACalc) = ∅,
usedV (AComm) ∩ wrtV (ASt) = ∅,
wrtV (ACalc) ⊆ ns1 ∪ ns ′1,wrtV (ASt) ⊆ ns2 ∪ ns ′2

end

This step is applied to the result of step three, which is a sequential composition AIn ; (AOut ‖ ASt). Its
objective is to apply isolateIn to the parallel composition. Nevertheless, the system may have many flows;

21

hence, we first need to isolate all the output communications in AOut . Afterwards, we are able to apply
isolateIn to the parallel composition. Finally, Law seq-assoc isolates the parallel composition as the second
part of a sequential composition.

Tactic NBStep4() =̂ (skip ; (tactic joinFlowsCalc(); tactic isolateIn())); law seq-assoc()
end

In our example, the application of the tactic joinFlowsCalc immediately skips. The application of the tactic
isolateIn yields the following action.

Init ; µX •

var In1 : U; var Out1 : U •
((E?x → In1 := x); (Calc Diff out; Calc Diff St));

Diff out !Out1 → Skip

|[{ } | {|E |} | { pid Diff UnitDelay St}]|
Skip

; end cycle → X

Finally, the next step removes the parallel composition from the main action.

6.1.4. Introducing and simplifying interleaving of outputs
None of the input variables occur in the parallelism resulting from the last step. Hence, we can use the

tactic interIntroAndSimpl presented in Section 3.3 to simplify this parallel composition. The result of the
previous step is a sequence: the first part of the sequence processes inputs and calculates the outputs and
the state, and the second part of the sequence is the parallel composition; we apply interIntroAndSimpl only
to the second part.

Tactic NBSteps5 6() =̂ skip ; tactic interIntroAndSimpl()
end

In our example, the application of this tactic yields the following action.

Init ; µX •

var In1 : U; var Out1 : U •
((E?x → In1 := x); (Calc Diff out; Calc Diff St));

(Diff out !Out1 → Skip)

 ; end cycle → X

Next, we extend the scope of the variables blocks to the whole main action.

6.1.5. Extend scope of the variable declarations to the outer level
At this stage, the main action’s format is AIn ; (µX • (var d • AOutSt); EC). We expand the scope of d

to the outer level using the unit laws for sequence, and Laws 36 (var-exp-rec) and 37 (var-exp-seq) as follows.
First, we introduce a Skip to the left of the sequential composition in the body of the recursion. Next, we
expand the scope of d to the whole sequential composition in the body of the recursion (Law var-exp-seq),
remove the Skip that was introduced, and expand the scope of d over the recursion (Law var-exp-rec). Finally,
we introduce a Skip to the sequential composition in the main action, expand the scope of d to the whole
sequential composition (Law var-exp-seq), and remove the Skip that was introduced. At the end, we have

22

var d • AIn ; (µX • (AOutSt ; EC)) as the main action.

Tactic extendVarScope() =̂

applies to AIn ; (µX • (var d • AOutSt); EC)

do

 skip ;

 (µ (law seq-left-unit(); law var-exp-seq(); var law seq-left-unitb()]]));

law var-exp-rec(); law seq-right-unit()

 ;

law var-exp-seq(); var (skip ; law seq-right-unitb())]]

generates var d • AIn ; (µX • (AOutSt ; EC))

proof obligations {d , d ′} ∩ (FV (AIn) ∪ FV (EC)) = ∅, d are initialised before use in AOutSt

end

The proof obligations are those originated from the application of the expansion laws. The simple application
of extendVarScope represents the seventh step of the phase NB.

Tactic NBStep7() =̂ tactic extendVarScope()
end

The result of its application to our example yields the following main action.

var In1 : U; Out1 : U •

Init; µX •

 ((E?x → In1 := x); (Calc Diff out; Calc Diff St));

(Diff out !Out1 → Skip)

 ; end cycle → X

This concludes the transformation in the main action of the process.

6.1.6. Promote local variables to state components
In the last step, the tactic NBStep8 simply invokes the tactic promoteVars in order to turn the input and

output variables into state components. This concludes the application of the refinement strategy, which, in
our example, results in the following process.

process Diff =̂ begin
state Diff St =̂ [pid Diff UnitDelay St : U; In1 : U; Out1 : U]

. . .

• Init; µX •

 ((E?x → In1 := x); (Calc Diff out; Calc Diff St));

(Diff out !Out1 → Skip)

 ; end cycle → X

end

There is one tactic NBStepi , for each of the steps i of the refinement strategy. We compose most of these
tactics in the tactic NBMain. Furthermore, two auxiliary tactics are used in NBMain. As previously discussed,
the process we are dealing with may have a state or not. The example presented here falls in the first case: its
main action is a sequential composition of a schema that initialises the state and a recursion. In the second
case, however, since there is no state to initialise, the main action is just a recursion. In order to have the
same structure (a sequential composition) in both cases, we use two auxiliary tactics, insertSeqComp and
removeSeqComp. In the absence of a sequential composition, the tactic insertSeqComp introduces one, using
law seq-left-unit; otherwise, it skips.

Tactic insertSeqComp() =̂ TRY(fails(skip ; skip); (law seq-left-unit()))
end

The second one, tactic removeSeqComp removes any sequential composition with Skip using Laws 32 (seq-

23

left-unit) and 33 (seq-right-unit).

Tactic removeSeqComp() =̂ TRY(law seq-left-unitb()) ; TRY(law seq-right-unitb())
end

The tactic NBMain is applied to the main action of the processes. After introducing a sequential com-
position, if needed, it works on the body of the recursion. This body is a sequential composition in which
the second part ends the cycle and is not changed. Hence, the tactic only changes its first action: it applies
NBStep2 (creating a parallel composition with Skip if needed), NBStep3, NBStep4, and NBSteps5 6. Finally,
we apply the seventh step and remove any sequential composition with Skip in the variable block.

Tactic NBMain() =̂ tactic insertSeqComp();
 skip ; µ

 tactic NBStep2(); tactic NBStep3();

var tactic NBStep4(); tactic NBSteps5 6()]]

 ; skip

 ;

tactic NBStep7();var tactic removeSeqComp()]]
end

The tactic NBProc presented below can be applied to normalise the process that corresponds to a individual
block: it receives a process name and normalises the corresponding Circus process. First, it applies the
tactic NBStep1 using a list that contains the names of the actions of the process that execute its flows
that is returned by the function FNames. Then, it applies the tactic NBMain to the main action of the
process. Finally, it promotes the variables declared in the beginning of the resulting main action to state
components (NBStep8).

Tactic NBProc(pname) =̂ program

〈

pname, tactic NBStep1(FNames(pname));

=̂

 beginend (〈〉, tactic NBMain());

tactic NBStep8()

〉

end

This tactic refines the corresponding Circus process in the diagram model to write its main action in a
normal form: a recursion that iteratively executes an action that captures the behaviour of a cycle as an
interleaving of inputs, followed by output calculations and state update, followed by interleaving of outputs,
and synchronisation on end cycle.

Using this tactic, we may also refine the remaining components shown in Figure 2; the refinement of Int,
Si, Sd, Sp, and Sum can be accomplished with simple applications of tactic NBProc. We achieve this by
applying the following tactic to the Circus program that contains their specifications.

Tactic NB(ind blocks) =̂ APPLYT(NBProc, ind blocks)
end

This tactic receives an argument that is a list of block names. In our example, we have that the list
〈Diff ,Sd , Int ,Si ,Sp,Sum〉 can be used to apply the phase NB to the whole Circus program.

Although not presented in this paper, Si, Sd, Sp, and Sum do not have state and, as a direct consequence,
do not have a parallel composition in the main action because they do not need to have any state update.
The first three of them, Si, Sd, and Sp, take two input values and produce one output value; the last one
of them Sum takes three input values and produces one output value. Regardless of the difference in the
internal structure of these processes, however, the tactic NB can be applied with success.

6.2. Phase BJ

In the phase BJ, we use the information about the Ada procedures that implement block functionality,
namely, the blocks that they implement, and about the procedures handled by each scheduler. For our

24

example, we identify a procedure Calc_Derivative that implements the functionality of the blocks Diff
and Sd. Similarly, we can also also find a procedure Calc_Integral that implements the blocks Si and
Int. Finally, the main program has procedures Calc_Proportion, which implements the block Sp, and
Calc_Output, which implements the block Sum.

We consider each of these procedures, or more precisely, those that implement more than one block. For
each of them, we remove, in the process that defines the diagram, the parallelism between the processes
that model the blocks that they implement. As a result, we create a single process for each procedure. For
that, we consider two blocks at a time, and proceed as shown below. Afterwards, with the collection of
processes now in correspondence with the procedures of the implementation, we then group the processes
that correspond to procedures scheduled by a single task. In our case, the procedures Calc_Proportion and
Calc_Output, which implement the blocks Sp and Sum, are scheduled by the same program. Therefore, in
this phase, we also join the processes Sp and Sum to produce a process Sp Sum.

To illustrate the steps of this phase, we join the processes Diff and Sd , which model Diff and Sd. For Int
and Si , and Sp and Sum, of course, we proceed in a similar way.

6.2.1. Create a single process
The first step of the phase BJ joins the processes that are implemented in a same procedure or in dif-

ferent procedures that are scheduled by the same task in the Ada code together. For that, it receives
as argument a sequence that contains sequences of blocks that are to be joined. In our example, we use
〈〈Diff ,Sd〉, 〈Int ,Si〉, 〈Sp,Sum〉〉 (henceforth called pid blocks) as argument. That means that, for instance,
that processes Diff and Sd are to be joined. In fact, the argument ind blocks given to the tactic NB is the
distributed concatenation of pid blocks.

The tactic below uses Law 5 (join-proc-par) to join the processes. This law is based directly on the definition
of process parallelism [23]. It describes P1 |[cs]|P2 as a basic process whose state includes all the components
of P1 and P2 and whose main action is the parallel composition of the main actions A1 of P1 and A2 of
P2. For simplicity, we assume that if there are clashes in the names of the state components (or any other
definitions) of P1 and P2, they are resolved by renaming. The name sets associated to A1 and A2 in the
parallelism are the state components of P1 and P2. The overall program is changed to refer to the newly
created process instead of the parallel composition; furthermore, the individual processes are also removed
from the specification.

The processes are joined two at a time. For this reason, we use an auxiliary function join all that receives
a list of list of process names, in which each member is a list of process that must be joined. If the list
cardinality is less than two, it ignores the list, otherwise, it creates a list of arguments for Law join-proc-par.
This function is particularly useful if we have procedures implementing more than two blocks. For instance,
we have that if we apply join all to 〈〈P1,P2,P3〉〉, we get 〈(P1,P2), (P1 P2,P3)〉 as result. That means that
we first join P1 and P2 and then, we join the resulting process and P3.

In our example, we get the list 〈(Diff ,Sd), (Int ,Si), (Sp,Sum)〉, which is interactively used, as presented
below, as argument for Law join-proc-par.

Tactic createSingleProcesses(blocks) =̂ APPLYL(join-proc-pars, join all(blocks))
end

The simple invocation of this tactic formalises the first step of the refinement strategy.

Tactic BJSt1(blocks) =̂ createSingleProcesses(blocks)
end

In our example, the application of this tactic, using the list pid blocks as argument, we get the Circus
program sketched in Figure 6. The Ini and Outj variables in the state are renamed when the processes are
joined to avoid clashes as explained above. The parallelism requires synchronisation on the intersection of
the alphabets of the original processes: in our example, the channels Diff out and end cycle. The parallel
actions have write access to the state components of the corresponding original processes.

The next steps aim at normalising the main action of the joined processes.

25

process Diff Sd =̂ begin state Diff State ∧ Sd State

Diff State =̂ [pid Diff UnitDelay state : U; pid Diff In1 : U; pid Diff Out1 : U]
Sd State =̂ [pid Sd In1, pid Sd In2 : U; pid Sd Out1 : U]

. . .

•

pid Diff Init;

µX •

E?x →
 (pid Diff In1 := x ; Calculate Diff out);

Calculate Diff State

 ;

(Diff out !pid Diff Out1 → Skip)

; endCycle → X

|[{pid Diff UnitDelay state, pid Diff In1, pid Diff Out1}
| {| Diff out , end cycle |} |
{pid Sd In1, pid Sd In2, pid Sd Out1}]|

µX •

Diff out?x → pid Sd In2 := x

||[{ pid Sd In2 } | { pid Sd In1 }]||
Kd?x → pid Sd In1 := x

 ;

(pid Sd ; Sd out !pid Sd Out1 → Skip)

; endCycle → X

end

process Si Int =̂ . . . end

process Sp Sum =̂ . . . end

process PID =̂ . . . end

Fig. 6. Result of applying BJStep1

6.2.2. Extract Initialisations
This step of the refinement strategy removes the initialisation from the parallelism. At this stage, the

main action of the processes that have been joined have the following structure.

(((I0; R0) ‖ (I1; R1)) ‖ . . .) ‖ (In ; Rn)

Where Ii are the state initialisation, if any, and Ri are the recursive behaviours that synchronise on end cycle
at the end of each cycle.

The tactic isolateSeqActions from Section 6.1.3 applies to a parallel composition (AC0 ; AO0) ‖ (AC1 ; AO1)
and removes AC0 and AC1 from the parallel composition; hence, in the binary case, it can also be used
to isolate the initialisations. However, since the original blocks may have state initialisation or not, before
invoking this tactic, we must guarantee that there will be a sequential composition. For that, we use the
tactic insertSeqComp on both sides of the parallel composition before invoking isolateSeqActions. Finally, we
remove any sequential composition with Skip that might have been included earlier.

Tactic isolateInitBin() =̂ (tactic insertSeqComp()‖ tactic insertSeqComp()) ;

tactic isolateSeqActions() ; (tactic removeSeqComp() ; skip)
end

For a given process name, the tactic BJSt2Proc extracts the initialisations from the parallel composition

26

in the main action of the process. In our example we have joined only two processes. However, in the general
case, we may have joined more than two processes together, in which case we have a nested parallel compo-
sition (associated to the left). Our strategy is to remove the initialisations from the parallel composition of
all the parallel branches by recursively applying isolateSeqActions. For this reason, we use the tactic foldr‖,
which is very similar to the previously presented foldl‖, but applies to left-associated parallel compositions
((A1 ‖ A2) ‖ . . .) ‖ An (moving r ight).

Tactic BJSt2Proc(pname) =̂
program 〈(pname, =̂ (beginend (〈〉, foldr‖ (tactic isolateInitBin()))))〉

end

Using this tactic, we may refine all processes that resulted from joining processes in parallel in the previous
step (Diff Sd , Int Si , and Sp Sum). This can be achieved by applying the following tactic to the Circus
program.

Tactic BJSt2(blocks) =̂ APPLYT(BJSt2Proc, join names(blocks))
end

This tactic receives a sequence that contains sequences of blocks that are to be joined (for instance,
pid blocks) as arguments. It uses the function join names that returns the names of the final processes
that resulted from each individual join. The resulting list is used as argument for the application of tac-
tic BJSt2Proc. In our example, the tactic BJSt2Proc is applied three times: one for each of the processes
Diff Sd , Int Si , and Sp Sum. For the first one, we have the resulting main action presented below.

pid Diff Init;

µX •

E?x →
 (pid Diff In1 := x ; Calculate Diff out);

Calculate Diff State

 ;

(Diff out !pid Diff Out1 → Skip)

; endCycle → X

|[{pid Diff UnitDelay state, pid Diff In1, pid Diff Out1}
| {| Diff out , end cycle |} |
{pid Sd In1, pid Sd In2, pid Sd Out1}]|

µX •

Diff out?x → pid Sd In2 := x

||[{ pid Sd In2 } | { pid Sd In1 }]||
Kd?x → pid Sd In1 := x

 ;

(pid Sd ; Sd out !pid Sd Out1 → Skip)

; endCycle → X

We are left with the initialisation of the state components related to the original Diff process followed by a
parallel composition of two recursive actions, which we intend to transform into a single recursive action in
the step that follows.

6.2.3. Extract the synchronisation on end cycle
In this step of the BJ phase of the refinement strategy, we extract the synchronisation on end cycle. For

that, we use the fixed-point Law 2 (rec-sync).

27

Law 2 (rec-sync)

(µX • A1; c → X) |[ns1 | {| c |} ∪ cs | ns2]| (µX • A2; c → X)
=
µX • (A1 |[ns1 | cs | ns2]|A2); c → X

provided
• c /∈ cs ∪ usedC (A1) ∪ usedC (A2)
• wrtV (A1) ∩ usedV (A2) = ∅
• wrtV (A2) ∩ usedV (A1) = ∅

The first proviso ensures that in the parallelism of recursive actions, the channel c is only used at the end
of the bodies A1; c → X and A2; c → X of each recursion. The set usedC (A) contains the channels used
by an action A. The synchronisation on c ensures that the recursions proceed in lock-step. This law states
that we can establish a lock-step by considering a single recursive action in which A1 and A2 are executed
in parallel in each iteration. We use wrtV (A) to refer to the set of variables whose values can potentially be
changed by the action A, and usedV (A) to the set of variables that are used by A.

The tactic isolateEC extracts the synchronisation on end cycle from the main action of the processes that
implement the groups of blocks. As previously described, these actions may be a sequential composition of a
state initialisation followed by a recursive behaviour. However, the state initialisation is not always present.
For uniformity, as we did in the tactics NB and isolateInitBin, we include a sequential composition, if needed,
using insertSeqComp.

Tactic isolateEC() =̂ tactic insertSeqComp() ; (skip ; (foldr‖ (law rec-sync())))
end

For the same reason as in the previous step, we may have a nested parallel composition (associated to the
left). Hence, we take the same approach as in the previous step: our strategy is to remove the synchronisations
on end cycle from the parallel composition of all the parallel branches by recursively using Law 2. For this
reason, we use the tactic foldr‖. For a given process name, the tactic BJSt3Proc extracts the synchronisation
on end cycle. It works on the whole Circus programs but only changes, using isolateEC, the main action of
the specified process.

Tactic BJSt3Proc(pname) =̂ program 〈(pname, =̂ (beginend (〈〉, tactic isolateEC())))〉
end

The tactic that refines all processes that resulted from joining processes in parallel (Diff Sd , Int Si , and
Sp Sum) uses the tactic BJSt3Proc and the names of the blocks that have been joined.

Tactic BjSt3(blocks) =̂ APPLYT(BJSt3Proc, join names(blocks))
end

In our example, the tactic BJSt3Proc is applied to Diff Sd , Int Si , and Sp Sum. For the first one, this
application yields the following recursive behaviour after the initialisation.

µX •

 (E?x → ((pid Diff In1 := x ; Calculate Diff out); Calculate Diff State));

(Diff out !pid Diff Out1 → Skip)

|[{pid Diff UnitDelay state, pid Diff In1, pid Diff Out1}
| {| Diff out |} | {pid Sd In1, pid Sd In2, pid Sd Out1}]|

Diff out?x → pid Sd In2 := x

||[{ pid Sd In2 } | { pid Sd In1 }]||
Kd?x → pid Sd In1 := x

 ; (pid Sd ; Sd out !pid Sd Out1 → Skip)

;

end cycle → X

28

The parallelism of recursions becomes a recursive parallel action, with the synchronisation on end cycle
outside the parallelism, which no longer requires synchronisation on this channel.

We are now left with the task of removing the remaining parallel composition. This is accomplished with
the next step.

6.2.4. Remove Parallelism
The particular steps required to remove a parallelism depend on the way in which the parallel blocks are

arranged. Also, joining parallelism is not always possible: we combine blocks connected in sequence. If we
have more than two blocks to combine, we join two at a time. For this reason, the tactic that formalises this
step is defined as an alternation of different possibilities, one for each configuration.

Tactic BJSt4A all config() =̂

tactic BJSt4A-config1() | tactic BJSt4A-config2()

| tactic BJSt4A-config3A() | tactic BJSt4A-config3B() | tactic BJSt4A-config4()
end

The first one that succeeds leads to the success of the whole tactic.
The configurations presented in Figure 5 cover all the cases. In the first three, the final output, that is, the

output of the second block, depends on all outputs of the first block. The communications of the outputs of
the first block to the second one are internal, and can be eliminated. For these configurations, we proceed as
shown below. Configuration (4) involves no internal channels and, therefore, the removal of the parallelism is
simpler. For conciseness, we describe below the tactic that formalises this step for our example, configuration
2. The formalisation of the remaining configurations can be found elsewhere [19].

The fourth step of the BJ phase is accomplished in four stages.

A. Evaluate the synchronisation entailed by the internal communications
B. Remove internal communications
C. Sequentialise assignments
D. Introduce interleaving of inputs

In what follows, we describe each one of them separately. Finally, we define the tactic BJSt4 that formalises
the whole step 4.

6.2.4.1. Evaluate the synchronisation entailed by the internal communications. In this stage, we use highly
specialised, but similar, refinement laws. For our example (that is, configuration 2), we have the following
structure in the body of the recursion.

(TakeInAndCalc; OutInternalComm) ‖ ((InpInternalComm ||| InpExternal); CalcOutAndComm)

The main behaviour of the body of the recursion has two parallel branches. The left-hand side action
takes the inputs and calculates the new state and outputs (TakeInAndCalc) and then it communicates
the outputs (OutInternalComm). The action on the right-hand side takes the inputs communicated from
the other action (InpInternalComm) and the external inputs (InpExternal) in interleaving. Afterwards, it
calculates the state and outputs the values that were calculated.

In our example, we have that both OutInternalComm and InpInternalComm are simple prefixed ac-
tions (on Diff out). That means that the first block has one output (Diff out) and synchronises with
InpInternalComm on this channel. There may be, however, the case in which there is more than one in-
ternal communication. In these cases, both OutInternalComm and InpInternalComm are an interleaving of
prefixed actions. To deal with these cases, we use Law 15 (inter-index) that is based on the definition of
indexed interleaving and transforms an explicit interleaving into a indexed one. Simple prefixed actions like
in our example are also transformed into an indexed interleaving in which the range of the indexing variable
has cardinality one. We apply Law inter-index to OutInternalComm and InpInternalComm. Only then, we
are able to use a generalisation of the Law 24 (par-out-inp-inter-exchange) from [20], which is useful when

29

the first block has one output that synchronises with one of the two interleaved inputs of the second block.
The generalised Law 25 (par-out-inp-inter-exchange-n) follows the same principles, but evaluates the multiple
synchronisations.

The tactic BJSt4A-config2 transforms both OutInternal and InpInternalComm into indexed interleaving
using Law inter-index, evaluates the synchronisation entailed by the internal communications for configura-
tion (2) using Law par-out-inp-inter-exchange-n, and uses Law inter-index once again to expand the indexed
interleaving that resulted from the evaluation.

Tactic BJSt4A− config2() =̂

((skip ; law inter-indexb())‖ ((law inter-indexb() ||| skip) ; skip)) ;

law par-out-inp-inter-exchange-n() ;

((skip ; (law inter-index() ||| skip)) ; skip)
end

In our example, the result of applying the tactic BJSt4A-config2 to the first part of the body of the recursion
is presented below.

 (E?x → ((pid Diff In1 := x ; Calculate Diff out); Calculate Diff State));

(Diff out !pid Diff Out1 → pid Sd In2 := pid Diff Out1)

||[{pid Diff UnitDelay state, pid Diff In1, pid Diff Out1, pid Sd In2} | {pid Sd In1}]||
(Kd?x → pid Sd In1 := x)

;

(pid Sd ; Sd out !pid Sd Out1 → Skip)

As for the previous steps, we have a tactic that formalises the application of the stage A for a specific
process. It applies to the overall Circus program, but works specifically on the main action of the given
process. More precisely, it works on the first action of the sequential composition within the body of the
recursion in the main action.

Tactic BJSt4AProc(pname) =̂
program 〈 (pname, =̂ beginend (〈〉, skip ; µ (tactic BJSt4A all config() ; skip))) 〉

end

The tactic that formalises the application of the first stage of this step to the whole processes is presented
below. It follows the same patterns as the tactics previously presented.

Tactic BjSt4A(blocks) =̂ APPLYT(BJSt4AProc, join names(blocks))
end

The next step removes the communications like Diff out that happen internally between blocks.

6.2.5. Remove Internal Communications
Before working on each individual process, we need to work on the overall specification to distribute the

hiding over the process that describes the overall system specification, in our example, PID .
The tactic BjSt4 HidPrep presented below applies to the whole Circus program. It receives the name main

of the main process of the system and works on the body of its definition. First, it applies the Law 22 (par-
hid-dist) that applies to processes ((P1 α1) ‖ . . . ‖ (Pn αn)) \ cs and distributes the hiding over the parallel
composition. The law guarantees that for each one of the parallel processes we hide only the events that are
in cs but are not in the interface of the other parallel processes. We remove from cs these events; hence, cs
is left only with the events that are shared between parallel processes.

Next, using the tactic mapr‖, BjSt4 HidPrep applies Law 7 (hid-contract) to each parallel process. This
law reduces the set of hidden events to only those that are actually in the interface of the process.

30

The tactical mapr‖ applies a tactic to all elements in a nested right-associated parallel composition. It is
defined as follows.

Tactic mapr‖(t) =̂ µX • (t ‖ X) | t
end

If it finds a parallel composition, it applies t to the left branch and recurs its application to the right branch.
Finally, at the last branch to the left it will apply t ; this is done by the alternative in the tactic.

Finally, the tactic BjSt4 HidPrep applies the Law 4 (join-proc-hid) to the overall Circus program. This law
states that if a process P is only referenced in the overall program by hiding some of its events ((P αP) \ cs),
then we replace P by a new process P1 in the Circus specification. The new process P1 is very similar to P , but
hide these events in its main action. In the overall Circus specification, we may now reference (P1 (αP \ cs));
the new interface removes cs from the original one.

Tactic BjSt4 HidPrep(main) =̂

program 〈 (main, =̂ (law par-hid-dist() ; mapr‖ (law hid-contract()))) 〉 ;

APPLYL(join-proc-hid, join names(blocks))
end

In our example, we have that the PID is the main action and its definition, before the application of the
tactic BjSt4 HidPrep is as follows.

PID =̂

Diff Sd {| E ,Kd ,Diff out ,Sd out , end cycle |}
‖ Int Si {| E ,Ki ,Si out , Int out , end cycle |}
‖ Sp Sum {| E ,Kp,Sd out , Int out ,Sp out ,Y , end cycle |}

\ {| Si out ,Diff out , Int out ,Sd out ,Sp out |}

The application of the tactic BjSt4 HidPrep distributes the hiding over the parallel composition and changes
the overall Circus program including the definition of PID . A sketch of the resulting Circus program is
presented below.

. . .

Diff Sd1 =̂ . . . • . . . \ {| Diff out |} end

PID =̂

Diff Sd1 {| E ,Kd ,Sd out , end cycle |}
‖ Int Si1 {| E ,Ki , Int out , end cycle |}
‖ Sp Sum1 {| E ,Kp,Sd out , Int out ,Y , end cycle |}

 \ {| Int out ,Sd out |}

The new definition of Diff Sd , Diff Sd1, hides the internal communication between Diff and Sd in its main
action. Only now, we are able to work on the main action of each process resulting from a join, like Diff Sd ,
as informally described in [2].

For each process, we use the distribution laws of hiding to localise the hiding of the channel involved around
the prefixing, and apply Law 13 (hid-step) to remove the communication. This distribution is achieved by the
tactic HidDistStep, which exhausts the application of the hiding distribution laws over the Circus operators
and, when it is no longer possible to distribute the hiding, it applies the step Law 13. Finally, it uses

31

Law 8 (hid-idem) to remove the hiding.

Tactic HidDistStep() =̂ µX • TRY

(law hid-seq-dist() ; (X ; X))

| (law hid-par-dist() ; (X ‖ X))

| (law hid-inter-dist() ; (X ||| X))

| (law hid-rec-dist() ; (µ X))

| (law hid-step() ; X)

| (law hid-idem())

end

For a given process name, the tactic BJSt4Proc removes the internal communications. It works on the whole
Circus programs but only changes, using HidDistStep, the main action of the specified process.

Tactic BJSt4BProc(pname) =̂ program 〈(pname, =̂ (beginend (〈〉, tactic HidDistStep()))))〉
end

The tactic that refines all process that resulted from joining two process in parallel (Diff Sd , Int Si , and
Sp Sum) uses the tactic BJSt4Proc and the names of the blocks that have been joined.

Tactic BjSt4B(blocks) =̂ APPLYT(BJSt4BProc, join names1(blocks))
end

The function join names1 is very similar to join names, but sufixes all names with 1.
In our example, the application of the tactic BJSt4B removes the communication through Diff out in the

main action of process Diff Sd yielding the main action presented below.

pid Diff Init;

µX •

 (E?x → ((pid Diff In1 := x ; Calculate Diff out); Calculate Diff State));

pid Sd In2 := pid Diff Out1

||[{pid Diff UnitDelay state, pid Diff In1, pid Diff Out1, pid Sd In2}
| {pid Sd In1}]||

(Kd?x → pid Sd In1 := x)

;

(pid Sd ; Sd out !pid Sd Out1 → Skip)

;

endCycle → X

If there were several internal communications, then we are left with an interleaving of assignments. The
next step aims at sequentialising these assignments.

6.2.6. Sequentialise Assignments
We transform the interleaving into a sequence of assignments using the Law 17 (inter-seq-assig). However,

this law only needs to be applied to the interleaving of assignments. For this reason, the tactic SeqAssig
presented below, recursively searches for such structures and, once it finds an interleaving, it searches for
further interleaved assignments, and then, it tries to apply the Law inter-seq-assig.

Tactic SeqAssig() =̂
µX • TRY((X ; X) | (X ‖ X) | (→ X) | (µ X) | ((X ||| X) ; TRY(law inter-seq-assig())))

end

The definition of the tactic that implements the application of this step of the refinement strategy follows
the same structures as the tactics corresponding to the previous steps. First, we define a tactic BJSt4CProc

32

that applies this step to the main action of a specific process, given its name. Finally, we define a tactic
BjSt4C that applies this tactic to each process that resulted from joining two process in parallel. In Diff Sd ,
there is only one internal communication; the application of BjSt4C leaves the main action unchanged. We
are left with the last stage of this step, which introduces an interleaving of inputs.

6.2.7. Introduce Interleaving of Inputs
As illustrated by our example, at this stage we are left with an interleaving that may include more than

just the inputs; we need to simplify it using the tactic that we present in the sequel. First, let us recall
the shape of the main action before this stage. In our example, which falls in the configuration 2, the main
action is as follows.

I ; µX • ((((in1?x → ((v1 := x ; A1); A2)); A3) ||[ns1 | ns2]|| (in2?x → v2 := x)); A4) ; end cycle → X

This stage focus on the boxed part of the main action.
In the first part, the tactic BjSt4D-config2 works on the action on the left-hand side of the interleaving.

(in1?x → ((v1 := x ; A1); A2)); A3

First, it applies the associativity law to the action prefixed by the input on in1 to isolate the assignment.

(in1?x → (v1 := x ; (A1; A2))); A3

Then, it applies the associativity law for prefixing, Law 28 (prefix-seq-assoc), to isolate the prefixed action
in1?x → st1 := x .

((in1?x → v1 := x); (A1; A2)); A3

Next, it applies once again the associativity law for sequence in order to make the isolated prefixed action
the left-hand side of a sequential composition.

(in1?x → v1 := x); ((A1; A2); A3)

Only then, we are able to use the Law 18 (inter-seq-extract-snd) that removes the processing of inputs from
the interleaving, leaving just prefixings of assignments to input variables.

(((in1?x → v1 := x) ||[ns1 | ns2]|| (in2?x → v2 := x)); ((A1; A2); A3)); A4

The next part of the tactic works specifically on the interleaving of inputs. It uses the Laws 19 (inter-
unused-name) and 14 (inter-comm) to leave in the name sets only the input variables. In our example, we
remove pid Diff UnitDelay state, pid Diff Out1, and pid Sd In2 from the first name set. The second
name set already contains only the right input variable. Finally, we isolate the interleaving of inputs as the
left-hand side of a sequential composition by applying, once again, the associativity law for sequences.

Tactic BjSt4D− config2() =̂

applies to (((in1?x → ((st1 := x ; A1); A2)); A3) ||[ns1 | ns2]|| (in2?x → st2 := x)); A4

do

 ((→ law seq-assocb() ; law prefix-seq-assoc()) ; skip) ;

law seq-assocb()

 ||| skip

 ;

law inter-seq-extract-snd() ;

 law inter-unused-name({st2}) ; law inter-comm()

law inter-unused-name({st1}) ; law inter-comm()

 ; skip

; skip

;

law seq-assoc()
end

For a given process name, the tactic BJSt4DProc introduces the interleaving of inputs in the main action. It
works on the whole Circus programs but only changes, using BjSt4D-config2, the main action of the specified

33

process. It, however, works specifically on the action in the left-hand side of the sequential composition
within the recursion body.

Tactic BJSt4DProc(pname) =̂

program

〈
 pname,

=̂ (beginend (〈〉, skip ; µ (TRY(tactic BjSt4D-config2()) ; skip)))

〉

end

Since this step is only required for configuration 2, it uses the tactical TRY. This allows this tactic to be
applied in the general case. Its application, however, only changes the main action of blocks that follows the
configuration 2, like our example. This application results in the main action presented below.

pid Diff Init; µX •

(E?x → pid Diff In1 := x)

||[{pid Diff In1} | {pid Sd In1}]||
(Kd?x → pid Sd In1 := x)

 ;

 (Calculate Diff out; Calculate Diff State);

(pid Sd In2 := pid Diff Out1)

 ;

(pid Sd ; Sd out !pid Sd Out1 → Skip)

; endCycle → X

The communication over the channel Diff out has become internal to this process, so it is removed, and
replaced with a direct assignment. Inputs are taken in interleaving from E and Kd , the calculations of Diff
and Sd are performed, and the output of Sd is produced, before a synchronisation on end cycle.

The tactic that refines all process that resulted from joining two process in parallel (Diff Sd , Int Si , and
Sp Sum) uses the tactic BJSt4DProc and the names of the blocks that have been joined.

Tactic BjSt4D(blocks) =̂ APPLYT(BJSt4DProc, join names1(blocks))
end

We combine all the stages of this step in the tactic presented below that corresponds to the fourth, and
final, step of the BJ phase of the refinement strategy.

Tactic BJSt4(main, blocks) =̂

tactic BjSt4A(blocks) ; tactic BjSt4 HidPrep(main) ;

tactic BjSt4B(blocks) ; tactic BjSt4C(blocks) ; tactic BjSt4D(blocks)
end

This tactic receives as arguments the name of the main process (i.e PID), and the sequence that contains
sequences of blocks that are to be joined. It simply invokes the tactics that corresponds to each one of the
stages in sequence.

Finally, we have the tactic that corresponds to the stage BJ of the refinement strategy.

Tactic BJ(main, blocks) =̂

tactic BJSt1(blocks) ; tactic BJSt2(blocks) ; tactic BJSt3(blocks) ; tactic BJSt4(main, blocks)
end

It also receives the name of the main process and the blocks sequence as arguments. As in the previous
tactic, it simply invokes the tactics that corresponds to each one of the steps in sequence.

In this step, using the tactic BJ above, we obtain the process Diff Sd . Furthermore, we also join the
Circus processes Si and Int to produce a process Si Int , and the processes Sp and Sum to produce a process
Sp Sum. Regardless of the difference in the internal structure of these processes, however, the tactic BJ,
together with tactic NB, can be applied with success reducing considerably the amount of effort used in the
correctness proof of the PID controller.

34

The remaining of the refinement strategy can be formalised in the same way and is left as future work.
This will foster its automatic application using tools like [24].

7. Conclusions

In this paper, we presented ArcAngelC , a refinement-tactic language that extends ArcAngel and can be
used in the formalisation of refinement strategies for concurrent state-rich programs in Circus. Tactics can be
used as single transformation rules, and hence, shorten developments. We formalised the first two phases of
a refinement strategy proposed in [2] that is used to verify SPARK Ada programs with respect to Simulink
diagrams using Circus. The approach is based on calculating the Circus model of the diagram using the
semantics given in [2], calculating a Circus model for the SPARK Ada program, and proving that the former
is refined by the latter. In this paper, we described the first phases as tactics NB and BJ and used them
in the development of a simple PID-controller. The tactics, however, are general enough to apply to the
large examples that we find in industrial practice. The formalisation of the verification strategy as tactics
of refinement gives clear route to automation.

We also defined the semantics of ArcAngelC based on the ArcAngel semantics. As in ArcAngel, a goal is
called an RCell , which is a pair with a program as its first element and a set of proof obligations as its
second element. The application of a tactic to an RCell returns a list of RCells containing the possible
output programs with their corresponding set of proof obligations. In ArcAngelC , however, we need a more
general definition since there are different sorts of programs to which transformation rules (refinement laws)
can be applied. For instance, we have refinement laws that transform actions, processes, and even Circus
programs.

In [16], we have shown the soundness of algebraic laws for reasoning about ArcAngel tactics. We covered
most of the laws that have been proposed for Angel. For the vast majority of them, proofs are not available
in the literature and are provided in [16] in the context of ArcAngel. Since these laws are valid, the strategy
proposed to reduce finite Angel tactics to a normal form can be applied to ArcAngel tactics. As future work,
we intend to prove that these laws are also valid in the context of ArcAngelC . Since it is a natural extension
of ArcAngel, it is possible that these proofs will be relatively simple. They remain, however, still to be done.

The formalisation of the semantics presented here used Z as meta-language. For this reason, it will be
possible to encode it in a theorem prover like ProofPower-Z and mechanically prove the algebraic laws.
Furthermore, the encoding of the semantics can be done in the context of the work presented in [22], where
we present the mechanisation of Circus in ProofPower-Z. This will allow us to use tactics in the development
of Circus programs within the theories for Circus processes we have developed in ProofPower-Z.

We are currently developing a tool based on the work presented in [32, 25] to provide automated support
for the application of the Circus refinement calculus [6, 24]. In the near future, we intend to include support
for tactics written in ArcAngelC ; using this extension, one may then specify refinement tactics like those
presented in this paper, and apply them just like refinement laws.

Finally, we will complete the formalisation of the refinement strategy for Ada programs. ArcAngelC and
the tools that we will develop will provide a route for its automated application in industry.

Appendix A. Infinite Lists

We present the model for infinite lists adopted here from [12]. The set of the finite and partial sequences
of members of X is defined as

PF ::= partial | finite
pfseq[X] == PF × seqX

We define an order ≤ on these pairs such that for a, b : pfseqX , if a is finite, then a ≤ b if, and only if, b is

35

also finite and equal to a. If a is partial, then a ≤ b if, and only if, a is a prefix of b.

[X]
≤ : pfseq[X] ↔ pfseq[X]

∀ gs, hs : seqX •
(finite, gs) ≤ (finite, hs) ⇔ gs = hs
∧ (finite, gs) ≤ (partial, hs) ⇔ false
∧ (partial, gs) ≤ (finite, hs) ⇔ gs prefix hs
∧ (partial, gs) ≤ (partial, hs) ⇔ gs prefix hs

A chain of sequences is a set whose elements are pairwise related.

[X]
chain : P(P(pfseq[X]))

∀ c : P(pfseq[X]) •
c ∈ chain ⇔ (∀ x , y : c • x ≤ y ∨ y ≤ x)

The set pchain contains all downward closed chains.

[X]
pchain : P(chain[X])

∀ c : chain[X] •
c ∈ pchain ⇔ (∀ x : c; y : pfseq[X] | y ≤ x • y ∈ c)

The set pfiseq contains partial, finite, and infinite list of elements of X , which are prefixed-closed chains
of elements in pfseqX .

pfiseq[X] == pchain[X]

The idea is that ⊥ = {(partial, 〈 〉)}, the empty list [∞]∞ = {(finite, 〈 〉)}, the finite list [e1, e2, . . . , en] is
represented by the set containing {(finite, 〈e1, e2, . . . , en〉)} and all approximations to it. An infinite list is
represented by an infinite set of partial approximations to it. The infinite list itself is the least upper bound
of such a set.

The definitions of the functions used in this paper are as follows.
(i) The map function maps a function f to each element of a possibly infinite list.

[X ,Y]
pfmap : ((X → Y) × pfseq[X]) → pfseq[Y]

∀ xs : seqX ; f : X → Y ; pf : PF • f pfmap (pf , xs) = (pf , (f ◦ xs))

[X ,Y]
∗ : ((X → Y) × pfiseq[X]) → pfiseq[Y]

∀ c : pfiseq[X]; g : X → Y • g ∗ c = { x : c • g pfmap x }

The function pfmap maps the function f to the second element of x .
(ii) The distributed concatenation returns the concatenation of all the elements of a possibly infinite list

of possibly infinite lists.

[X]∞a/ : pfiseq[pfiseq[X]] → pfiseq[X]

∀ s : pfiseq[pfiseq[X]] • ∞a/ s =
⊔
∞{ c : s • ∞∧/ c }

It uses the function
∞∧/, which is the distributed concatenation for pfseq(pfiseqX). The function cat

36

is the standard concatenation function for X ∗.

[X]
∞∧/ : pfseq[pfiseq[X]] → pfiseq[X]
∞∧/(finite, 〈〉) = {};
∞∧/(partial, 〈〉) = {(partial, 〈〉)};
∀ g : pfiseq[X] • ∞∧/(finite, 〈g〉) = g ∧ ∞∧/(partial, 〈g〉) = g ∞a {(partial, 〈〉)};
∀ gs, hs : seq(pfiseq[X]) •

∞∧/(finite, gs a hs) = (
∞∧/(finite, gs))∞a (

∞∧/(finite, hs))
∧ ∞∧/(finite, gs a hs) = (

∞∧/(finite, gs))∞a (
∞∧/(partial, hs))

The function ∞a is the concatenation function for possibly infinite lists. Its definition is

[X]∞a : (pfiseq[X] × pfiseq[X]) → pfiseq[X]

∀ a, b : pfiseq[X] •
a ∞a b = { x : a; y : b • x ∧ y }

where the function ∧ is the concatenation function for pfseqX defined as

[X]
∧ : (pfseq[X] × pfseq[X]) → pfseq[X]

∀ gs, hs : seqX ; s : pfseq[X] •
(finite, gs) ∧ (finite, hs) = (finite, gs a hs)
∧ (finite, gs) ∧ (partial, hs) = (partial, gs a hs)
∧ (partial, gs) ∧ s = (partial, gs)

(iii) The function headl∞ returns a list containing the first element of a possibly infinite list.

[X]
headl∞ : pfiseq[X] → pfiseq[X]

∀ xs : pfiseq[X] • headl∞(xs) = take∞ 1 xs

It uses the function take∞ that returns a list containing the first n elements of a possibly infinite list.

[X]
take∞ : N→ pfiseq[X] → pfiseq[X]

∀n : N; xs : pfiseq[X] •
n = 0 ⇒ take∞ n xs = [∞]∞
∧ n 6= 0 ⇒

take∞ n ⊥[X] = ⊥[X]
∧ take∞ n [∞]∞ = [∞]∞
∧ take∞ n xs = (head∞ xs) :∞ (take∞ (n − 1) (tail∞ xs))

For a possibly infinite list xs, the function head∞ returns the head of xs.

[X]
head∞ : pfiseq1[X] → X

∀ s : pfiseq1[X] • head∞(s) = (µ x : X | (partial, 〈 x 〉) ∈ s)

On the other hand, the function tail∞ returns the tail of xs.

37

[X]
tail∞ : pfiseq1[X] → pfiseq[X]

∀ s : pfiseq1[X] • tail∞(s) = { x : s | x .2 6= 〈 〉 • (x .1, tail(x .2)) }

For a pair p = (a, b), we have that p.1 = a and p.2 = b.
In [12], the conditional in the set comprehension used in the definition of tail∞ was not present;

nevertheless, by definition (partial, 〈 〉) is a member of every pfiseq1[X]. Without the conditional, there
would be a undefined value involved since tail is not defined for empty sequences.

(iv) The function ◦ applies a possibly infinite list of functions to a single argument.

[X ,Y]
◦ : (pfiseq[X 7→ Y] × X) → pfiseq[Y]

∀ fs : pfiseq[X 7→ Y]; f : X 7→ Y ; x : X •
⊥[X 7→ Y] ◦ x = [∞]∞
∧ [∞]∞ ◦ x = [∞]∞
∧ (f :∞ fs) ◦ x = (f x) :∞ (fs ◦ x)

(v) The function Π∞ is the distributed cartesian product for possibly infinite lists.

Appendix B. Laws of refinement

We use FV (p) to denote the set of free variables of a predicate or expression p. Moreover, we use L(n)
to denote the fact that the Local action definitions may include references to the action n; the same holds
for the Main Action MA(n). Later references to L(A) and MA(A) are the result of substituting the body
A of n for some or all occurrences of n in L and MA.

Law 3 (assign-intro) w : [pre, post] vA x := e
provided pre ⇒ post [e/x]

Law 4 (join-proc-hid)

CPars1 ((P1 αP) \ cs)
P1 =̂ begin PPars1 state P State =̂ SExpP PPars2 • PAct end
CPars2 ((P1 αP) \ cs)

=

CPars1 ((P2 (αP \ cs)))
P2 =̂ begin PPars1 state P State =̂ SExpP PPars2 • PAct \ cs end
CPars2 ((P2 (αP \ cs)))

provided
• P1 /∈ α(CPars1 (P2)) ∪ α(CPars2 (P2))
• P2 /∈ α(CPars1 (P1)) ∪ α(CPars2 (P1))

38

Law 5 (join-proc-par)

CPars1 (P ‖ Q)
P =̂ begin PPars1 state P State =̂ SExpP PPars2 • PAct end
CPars2 (P ‖ Q)
Q =̂ begin QPars1 state Q State =̂ SExpQ QPars2 • QAct end
CPars3 (P ‖ Q)

=

P Q =̂ begin state P Q State =̂ P State ∧ Q State

PPars1

PPars2

QPars1

QPars2

• PAct |[α(P State) | usedC (PAct) ∩ usedC (QAct) | α(Q State)]|QAct

end
CPars1 (P Q)
CPars2 (P Q)
CPars3 (P Q)

provided
• P /∈ α(Q) ∪⋃

i α(CParsi (P Q))
• Q /∈ α(P) ∪⋃

i α(CParsi (P Q))
• α(P State) ∩ α(Q State) = ∅
• (α(PPars1) ∪ α(PPars2)) ∩ (α(QPars1) ∪ α(QPars2)) = ∅

Law 6 (copy-rule-action)

begin (state S) (n =̂ A) L(n) • MA(n) end
= begin (state S) (n =̂ A) L(A) • MA(A) end

Law 7 (hid-contract) (P αP) \ cs = (P αP) \ cs ′ where cs ′ = cs ∩ αP

Law 8 (hid-idem) A \ cs = A
provided usedC (A) ∩ cs = ∅

Law 9 (hid-inter-dist) (A1 ||[ns1 | ns2]|| A2) \ cs2 = (A1 \ cs2) ||[ns1 | ns2]|| (A2 \ cs2)

Law 10 (hid-par-dist) (A1 |[ns1 | cs1 | ns2]|A2) \ cs2 = (A1 \ cs2) |[ns1 | cs1 | ns2]| (A2 \ cs2)
provided cs1 ∩ cs2 = ∅

Law 11 (hid-rec-dist) (µX • A) \ cs = µX • A \ cs

Law 12 (hid-seq-dist) (A1; A2) \ cs = (P1 \ cs); (P2 \ cs)

Law 13 (hid-step) (c → A) \ cs = A \ cs
provided c ∈ cs

Law 14 (inter-comm) A1 |[ns1 | ns2]|A2 = A2 |[ns2 | ns1]|A1

39

Law 15 (inter-index)

||| x : {v1, . . . , vn} •||[ns(x)]|| A(x)
=
A(v1) ||[ns(v1) |

⋃{x : {v2, . . . , vn} • ns(x)}]|| (. . . (A(vn−1) ||[ns(vn−1) | ns(vn)]|| A(vn)))

Law 16 (inter-unit) A ||[ns1 | ns2]|| Skip = A

Law 17 (inter-seq-assig)

v1 := e1 ||[ns1 | ns2]|| v2 := e2 = v1 := e1; v2 := e2

provided
• v1 /∈ {v2} ∪ FV (e2)
• v1 ∈ ns1
• v2 ∈ ns2

Law 18 (inter-seq-extract-snd)

(A1; A2) ||[ns1 | ns2]|| A3 = (A1 ||[ns1 | ns2]|| A3); A2

provided
• usedC (A2) = ∅
• usedV (A2) ∩ wrtV (A3) = ∅
• wrtV (A1) ⊆ ns1
• wrtV (A2) ⊆ ns1

Law 19 (inter-unused-name) A1 ||[{x} ∪ ns2 | ns3]|| A2 = A1 ||[ns2 | ns3]|| A2

provided x /∈ wrtV (A1)

Law 20 (join-blocks) var x : T1 • var y : T2 • A = var x : T1; y : T2 • A

Law 21 (par-comm) A1 |[ns1 | cs | ns2]|A2 = A2 |[ns2 | cs | ns1]|A1

Law 22 (par-hid-dist)

((P1 α1) ‖ (P2 α2) ‖ . . . ‖ (Pn αn)) \ cs
=
(((P1 α1) \ cs1) ‖ ((P2 α2) \ cs2) ‖ . . . ‖ ((Pn αn) \ csn)) \ cs ′

where
• ∀ i : 1 . . n • csi = cs \ (αi ∩ (

⋃
j :(1..n)\{i} αj))

• cs ′ = cs \ ⋃
i:1..n csi

Law 23 (par-inter-2) A1 ||[ns2 | ns2]|| A2 = A1 |[ns2 | ∅ | ns2]|A2

Law 24 (par-out-inp-inter-exchange)

(A1; c1!v → Skip) |[ns1 | {| c1 |} | ns2]| ((c1?x → A2(x) ||[ns3 | ns4]|| A3); A4)
=
((A1; c1!v → A2(v)) ||[ns1 ∪ ns3 | ns4]|| A3); A4

provided
• c1 /∈ initials(A3)
• c1 /∈ ⋃

i:1..4 usedC (Ai)
• ns3 ∪ ns4 ⊆ ns2
• wrtV (A1) ⊆ ns1
• wrtV (A2) ⊆ ns3
• wrtV (A4) ⊆ ns2

40

Law 25 (par-out-inp-inter-exchange-n)

(B1; (||| i : 1 . . n •||[nsi]|| (ci !vi → Skip)))
|[ns1 | {| c1, . . . , cn |} | ns2]|
(((||| i : 1 . . n •||[nsi]|| (ci?x → Ai(x))) ||[ns3 | ns4]|| B2); B3)
=
(B1; ((||| i : 1 . . n •||[nsi]|| (ci !vi → Ai(vi))) ||[ns1 ∪ ns3 | ns4]|| B2)); B3

provided
• {c1, . . . , cn} ∩ initials(B2) = ∅
• {c1, . . . , cn} ∩ (usedC (B1) ∪ usedC (B2) ∩ usedC (B3) ∪ (

⋃
i:1..n usedC (Ai))) = ∅

• ns3 ∪ ns4 ⊆ ns2
• wrtV (B1) ⊆ ns1
• ⋃

i:1..n wrtV (Ai) ⊆ ns3
• wrtV (B3) ⊆ ns2

Law 26 (par-seq-step)

(A1; A2) |[ns1 | cs | ns2]|A3 = A1; (A2 |[ns1 | cs | ns2]|A3)

provided
• usedC (A1) = ∅, usedV (A3) ∩ wrtV (A1) = ∅
• wrtV (A1) ⊆ ns1 ∪ ns ′1

Law 27 (par-seq-step-2)

var d • (A1; A2) |[ns1 | cs | ns2]| (A1; A3) = var d • A1; (A2 |[ns1 | cs | ns2]|A3)

provided
• usedC (A1) ⊆ cs
• wrtV (A1) ⊆ α(d)

Law 28 (prefix-seq-assoc)

c → (A1; A2) = (c → A1); A2

provided FV (A2) ∩ α(c) = ∅
The reference to L() denotes the fact that declarations of x (and x ′) in schemas, which were used to put

the local variable x of the main action into scope, may now be removed, as x is a state component.

Law 29 (prom-var-state)

begin (state S) L(x : T) • (var x : T • MA) end
= begin (state S ∧ [x : T]) L() • MA end

Law 30 (prom-var-state-2)

begin L(x : T) • (var x : T • MA) end
= begin (state [x : T]) L() • MA end

Law 31 (seq-assoc) A1; (A2; A3) = (A1; A2); A3

Law 32 (seq-left-unit) A = Skip; A

Law 33 (seq-right-unit) A = A; Skip

41

Law 34 (var-exp-par)

(var d : T • A1) |[ns1 | cs | ns2]|A2 = (var d : T • A1 |[ns1 | cs | ns2]|A2)

provided { d , d ′ } ∩ FV (A2) = ∅
Law 35 (var-exp-par-2)

(var d • A1) |[ns1 | cs | ns2]| (var d • A2) = (var d • A1 |[ns1 | cs | ns2]|A2)

Law 36 (var-exp-rec) µX • (var x : T • F (X)) = var x : T • (µX • F (X))
provided x is initialised before use in F

Law 37 (var-exp-seq) A1; (var x : T • A2); A3 = (var x : T • A1; A2; A3)
provided { x , x ′ } ∩ (FV (A1) ∪ FV (A3)) = ∅

References

[1] R. J. R. Back and J. von Wright. Refinement Concepts Formalised in Higher Order Logic. Formal
Aspects of Computing, 2:247–274, 1990.

[2] A. L. C. Cavalcanti and P. Clayton. Verification of Control Systems using Circus. In Proceedings of the
11th IEEE International Conference on Engineering of Complex Computer Systems, pages 269 – 278.
IEEE Computer Society, 2006.

[3] A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. A refinement strategy for Circus.
Formal Aspects of Computing, 15(2–3):146–181, 2003.

[4] C. Fischer. How to combine Z with a process algebra. In J. Bowen, A. Fett, and M. Hinchey, editors,
ZUM ’98: Proceedings of the 11th International Conference of Z Users on The Z Formal Specification
Notation, pages 5–23. Springer-Verlag, 1998.

[5] L. Groves, R. Nickson, and M. Utting. A Tactic Driven Refinement Tool. In C. B. Jones, R. C.
Shaw, and T. Denvir, editors, 5th Refinement Workshop, Workshops in Computing, pages 272–297.
Springer-Verlag, 1992.

[6] A. C. Gurgel, C. G. de Castro, and M. V. M. Oliveira. Tool Support for the Circus Refinement Calculus.
In J. P. Bowen E. Brger, M. Butler and P. Boca, editors, ABZ Conference, volume 5238 of Lecture
Notes in Computer Science, page 349. Springer-Verlag, 2008.

[7] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
[8] Brian R. Hunt, Ronald L. Lipsman, and Jonathan M. Rosenberg. A guide to MATLAB: for beginners

and experienced users. Cambridge University Press, New York, NY, USA, 2001.
[9] He Jifeng, C. A. R. Hoare, and J. W. Sanders. Data Refinement Refined. In E. Robinet and R. Wilhelm,

editors, ESOP’86 European Symposium on Programming, volume 213 of Lecture Notes in Computer
Science, pages 187–196, March 1986.

[10] Saunders Mac Lane. Categories for the Working Mathematician. Graduate Texts in Mathematics.
Springer, 1991.

[11] B. P. Mahony and J. S. Dong. Blending Object-Z and Timed CSP: an Introduction to TCOZ. In
K. Torii, K. Futatsugi, and R. A. Kemmerer, editors, The 20th International Conference on Software
Engineering (ICSE’98), pages 95–104. IEEE Computer Society Press, 1998.

[12] A. Martin. Infinite Lists for Specifying Functional Programs in Z. Technical report, University of
Queensland, Queensland - Australia, March 1995.

[13] A. P. Martin, P. H. B. Gardiner, and J. C. P. Woodcock. A Tactical Calculus. Formal Aspects of
Computing, 8(4):479–489, 1996.

[14] C. Morgan. Programming from Specifications. Prentice-Hall, 1994.
[15] C. Morgan and P. H. B. Gardiner. Data refinement by calculation. Acta Informatica, 27(6):481–503,

1990.
[16] M. V. M. Oliveira. Tactics of refinement. Technical report, Centro de Informática - Universidade Federal

de Pernambuco, Pernambuco - Brazil, December 2000. At http://www.cs.york.ac.uk/˜marcel/gabriel/.

42

[17] M. V. M. Oliveira. ArcAngel: a Tactic Language for Refinement and its Tool Support . Master’s
thesis, Centro de Informática – Universidade Federal de Pernambuco, Pernambuco, Brazil, 2002. At
http://www.ufpe.br/sib/.

[18] M. V. M. Oliveira. Formal Derivation of State-Rich Reactive Programs using Circus. PhD thesis,
Department of Computer Science, University of York, 2006. YCST-2006/02.

[19] M. V. M. Oliveira. ArcAngelC. Technical report, Departamento de Informática e Matemática Aplicada
- Universidade Federal do Rio Grande do Norte, Natal, Brazil, February 2007.

[20] M. V. M. Oliveira and A. L. C. Cavalcanti. ArcAngelC: a Refinement Tactic Language for Circus.
Electronic Notes in Theoretical Computer Science, 214C:203 – 229, 2008.

[21] M. V. M. Oliveira, A. L. C. Cavalcanti, and J. C. P. Woodcock. ArcAngel: a Tactic Language for
Refinement. Formal Aspects of Computing, 15(1):28–47, 2003.

[22] M. V. M. Oliveira, A. L. C. Cavalcanti, and J. C. P. Woodcock. Unifying theories in ProofPower-Z. In
S. Dunne and B. Stoddart, editors, UTP 2006: First International Symposium on Unifying Theories
of Programming, volume 4010 of Lecture Notes in Computer Science, pages 123–140. Springer-Verlag,
2006.

[23] M. V. M. Oliveira, A. L. C. Cavalcanti, and J. C. P. Woodcock. A UTP Semantics for Circus. Formal
Aspects of Computing, 2008. DOI 10.1007/s00165-007-0052-5.

[24] M. V. M. Oliveira, A. C. Gurgel, and C. G. de Castro. Tool Support for the Circus Refinement Calculus.
In 6th IEEE International Conferences on Softwar Engineering and Formal Methods. IEEE Computer
Society Press, 2008. To Appear.

[25] M. V. M. Oliveira, M. Xavier, and A. L. C. Cavalcanti. Refine and Gabriel: Support for Refinement and
Tactics. In Jorge R. Cuellar and Zhiming Liu, editors, 2nd IEEE International Conference on Software
Engineering and Formal Methods, pages 310–319. IEEE Computer Society Press, Sep 2004.

[26] A. C. A. Sampaio, J. C. P. Woodcock, and A. L. C. Cavalcanti. Refinement in Circus. In L. Eriksson
and P. A. Lindsay, editors, FME 2002: Formal Methods—Getting IT Right, volume 2391 of Lecture
Notes in Computer Science, pages 451–470. Springer-Verlag, 2002.

[27] J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, 2nd edition, 1992.
[28] H. Treharne and S. Schneider. Using a process algebra to control B operations. In K. Araki, A. Galloway,

and K. Taguchi, editors, Proceedings of the 1st International Conference on Integrated Formal Methods,
pages 437–456. Springer, June 1999.

[29] T. Vickers. A language of refinements. Technical Report TR-CS-94-05, Computer Science Department,
Australian National University, 1994.

[30] J. von Wright. Program Refinement by Theorem Prover. In D. Till, editor, 6th Refinement Workshop,
Workshops in Computing, pages 121–150, London, 1994. Springer-Verlag.

[31] J. C. P. Woodcock and J. Davies. Using Z—Specification, Refinement, and Proof. Prentice-Hall, 1996.
[32] M. A. Xavier, A. L. C. Cavalcanti, and A. C. A. Sampaio. Type Checking Circus Specifications. In

A. M. Moreira and L. Ribeiro, editors, SBMF 2006: Brazilian Symposium on Formal Methods, pages
105 – 120, 2006.

43

