
Refine and Gabriel : Support for Refinement and Tactics

Marcel Oliveira
Computing Laboratory

University of Kent
CT2 7NF

Canterbury, England
mvmo2@kent.ac.uk

Manuela Xavier
Centro de Inforḿatica

Universidade Federal de Pernambuco
Caixa Postal 7851,

Cidade Universit́aria
Recife, Brazil

max@cin.ufpe.br

Ana Cavalcanti
Computing Laboratory

University of Kent
CT2 7NF

Canterbury, England
A.L.C.Cavalcanti@kent.ac.uk

Abstract

Using Morgan’s refinement calculus, we can write soft-
ware in a precise and consistent way. Nevertheless, this
may involve long and repetitive developments. Several re-
finement strategies are useful in different developments, and
even in different points of a single development. A lot is
gained by identifying these strategies, documenting them
as tactics, and using them as single transformation rules.
With this motivation, we have designedArcAngel, a tactic
language especially tailored for refinement; we have for-
malised its semantics and studied its algebraic laws. Even
with the use of tactics, however, refinement can be a hard
task and the use of tools is essential in practice. In this
paper, we presentRefine and Gabriel, interactive, user-
friendly tools that allow us to use the refinement calculus
with the support ofArcAngel tactics.

1. Introduction

Morgan’s refinement calculus [17] is a successful tech-
nique to develop programs while guaranteeing correctness.
From a formal specification, we obtain a program by repeat-
edly applying correctness-preserving transformation rules
(refinement laws).

Using the refinement calculus, however, can be a hard
task, as program developments may be long and repetitive.
Frequently used strategies of refinement are reflected in se-
quences of laws that are applied over and over again. Identi-
fying these strategies, documenting them as tactics, and us-
ing them in program developments as single transformation
rules, is a great help.

We designed and formalised a refinement-tactic lan-
guage calledArcAngel [22]. It is based on Angel [16], a
general language that makes no assumption about the form
of proof goals, or about the rules that are applied to them.

ArcAngel considers the fact that, by applying refinement
laws to a program, we produce not only a program, but also
proof obligations. The constructs ofArcAngel are similar to
those of Angel, but are adapted to deal with refinement laws
and programs.ArcAngel also provides structural combina-
tors which are suitable to apply refinement laws to compo-
nents of programs.

The semantics ofArcAngel is an adaptation and exten-
sion of that of Angel. It can be found in [19, 22], along with
over seventy laws of reasoning, their proofs, and their use
in a reduction strategy to a normal form. In [21],ArcAngel
is used to formalise a large number of refinement strate-
gies available in the literature [15, 17]. Nonetheless, using
ArcAngel without tool support is still a hard task. A tool
brings further profit in time and effort, and was left as fu-
ture work in [22].

We presentRefine, a tool that supports the use of the re-
finement calculus, and a plug-in calledGabriel, which sup-
ports the use ofArcAngel, and allows its users to create and
use tactics of development. An initial version ofRefine was
presented in [8]; since then, we have extended it with facil-
ities to manage developments, and support for the develop-
ment of, possibly recursive, procedures.Refine has been
used successfully in teaching for almost three years.

In Section 2 we give an overview of the refinement cal-
culus. Section 3 introducesArcAngel; we present an ex-
ample of a tactic. Section 4 presentsRefine, and Section 5
presentsGabriel and its integration toRefine. Finally, Sec-
tion 6 discusses related and future work.

2. Refinement Calculus

The refinement calculus is based on an unified language
of specification, design and implementation; it makes no
distinction between specifications and programs. In this
technique, program development consists of refinement law

applications to a specification until an adequate program is
obtained.

A specification has the formw : [pre, post]. It describes
a program that, if executed in a state that satisfies the pre-
conditionpre, changes the variables listed in the framew,
so that the final state satisfies the postconditionpost. If the
initial state does not satisfy the precondition, the resultcan-
not be predicted. A preconditiontrue can be omitted. The
pre and the postcondition are predicates.

In the postcondition, the initial value of a variable is rep-
resented by a corresponding0-subscripted variable. For ex-
ample, the specification statementx : [x = xn

0
] defines the

program that assigns tox thenth power of its initial value.
Besides the specification statement, the language of the

refinement calculus includes all the constructors of Dijk-
stra’s language [9] of guarded commands. Block constructs
are also available to declare local variables, logical con-
stants, and procedures. Variable blocks[[var x : T • p]]
declare a variablex to be of typeT, with a scope restricted
to p. Similarly, logical constantsc are declared in blocks of
the form[[con c : T • p]].

Procedure blocks[[proc pname =̂ body • main]] de-
clare a procedurepnameand itsbody, along with themain
program, where we can usepname. If pnamehas parame-
ters, thenbodyis a parameterized command [2, 6]. Parame-
ters can be passed by value, by result, or by value-result us-
ing the keywordsval, res, andval-res. An example is pre-
sented below.

[[proc power=̂
(val-res x : N; val n : N • x := xn])

• power(a, b)]]

This program raisesa to the power ofb, using a procedure
powerwith value-result parameterx and value parametern.
At this point we depart from Morgan’s calculus and adopt
Back’s approach for the reasons reported in [7]. Nonethe-
less, we still support a calculational style based on the re-
finement laws in [6, 5].

The development of recursive procedures uses variant
blocks[[proc pname=̂ bodyvariant v is e • prog]] [5, 6].
Besides the procedure and the main program, we declare a
variant expressione namedv. It is used to guarantee termi-
nation in the development of a recursive implementation for
pname.

ExampleAs an example, we consider a program which,
given two integersa and b, such thata ≥ 0 and b > 0,
setsq to the quotient ofa divided byb, and setsr to the re-
mainder of this division. The initial formal specification is
as follows.

q, r : [a ≥ 0 ∧ b > 0, a = q ∗ b + r ∧ 0 ≤ r < b]

We derive a program that initialisesq and r with 0 anda,

and then starts an iteration which runs whiler ≥ b. In each
step, it incrementsq by one, and decrementsr by b.

We start our refinement by splitting the specification into
two: the first specifies the initialisation ofq andr, and the
second is later refined to an iteration. In the sequel, the sym-
bolv represents the refinement relation. In each step of the
refinement, we give the name of the law applied, and the ar-
guments used in the application; the definition of the laws
can be found in Appendix A.

v seqComp(a = q ∗ b + r ∧ 0 ≤ r)
q, r : [a ≥ 0 ∧ b > 0, a = q ∗ b + r ∧ 0 ≤ r]; C

q, r :

[
a = q ∗ b + r ∧ 0 ≤ r ,

a = q ∗ b + r ∧ 0 ≤ r < b

]
(i)

The seqComplaw splits the specification with basis on an
intermediate state definition given as argument; it is used as
the postcondition of the first resulting specification, and the
precondition of the second one. In this case, the intermedi-
ate state is characterised by the invariant of the iteration. At
each step of the iteration, asq is incremented andr is decre-
mented, the equalitya = q ∗ b + r is maintained, and we
never get a value forr below0.

We introduce the initialisation ofq andr with an appli-
cation of theassignlaw to the first specification. The sym-
bol C on the right indicates the specification to which the
next law is applied. As a syntactic sugar, we use assign-
ments as arguments of laws and tactics; for instance, we
write law assign(q, r := 0, a), but the arguments are actu-
ally q, r and0, a.

v assign(q, r := 0, a)
q, r := 0, a

The predicatea ≥ 0 ∧ b > 0 ⇒ a = 0 ∗ b + a ∧ 0 ≤ a
is generated as proof obligation; its proof is simple, since
0 ∗ b = 0 and0 ≤ a is in the antecedent of the implica-
tion. Most of the proof obligations in our examples are very
simple; we omit them and their proofs for reasons of con-
ciseness.

Next, we introduce the iteration. We user ≥ b as guard
andr as variant.

(i) v iter(〈r ≥ b〉, r)
do r ≥ b →

q, r :

[
a = q ∗ b + r ∧ 0 ≤ r ∧ r ≥ b ,

a = q ∗ b + r ∧ 0 ≤ r ∧ 0 ≤ r < r0

]
C

od

Finally, we introduce the assignment in the body of the iter-
ation. We use the lawassignIV, which applies to specifica-
tions with0-subscribed variables.

v assignIV(q, r := q + 1, r − b)
q, r := q + 1, r − b

In conclusion, by applying a sequence of refinement laws

to the initial specification, we get the following executable
program.

q, r := 0, a; do r ≥ b → q, r := q + 1, r − b od

In this simple example, we need four steps to obtain a pro-
gram. This number is decreased when we use tactics, which
is important for large developments.

3. ArcAngel

ArcAngel is a refinement-tactic language which can be
used for documenting and analysing program developments
and frequently used strategies of development.ArcAngel
includes three different kinds of tactics: the simplest tac-
tics are called basic tactics; the combinators of tactics are
called tacticals; and tactics to handle parts of programs are
called structural combinators.

3.1. Basic Tactics

A law application is expressed aslaw n(a). The applica-
tion of this tactic to a program may lead to two outcomes: if
the lawn with argumentsa is applicable, then it is actually
applied, otherwise the tactic fails. We also havetactic n(a);
its behaviour is similar, but it applies a tactic calledn.

Another basic tactic isskip, which always succeeds,
does not change the program, and also does not generate
proof obligations. The tacticfail always fails; and the tac-
tic abort neither succeeds nor fails, but runs indefinitely.

3.2. Tacticals

In ArcAngel, tacticst1 and t2 can be combined in se-
quence:t1; t2. This tactic first appliest1 to the program, and
then appliest2 to the outcome of the application oft1. If ei-
ther t1 or t2 fails, t1; t2 fails. When it succeeds, the proof
obligations generated are those resulting from the applica-
tion of t1 andt2.

We can also combine tactics in alternation:t1 | t2. This
tactic appliest1 to the program. If the application oft1 suc-
ceeds, then this tactic succeeds, else this tactic appliest2
to the program. If the application oft2 succeeds then this
tactic succeeds, else the whole tactic fails. If one of the
tactics aborts, the whole tactic aborts. Moreover, the first
choice that leads to success is selected. This angelic nature
of choice earnedAngel andArcAngel (A Refinement Cal-
culusAngel) their names.

For instance, suppose we have a tactict that always suc-
ceeds if the frame of the specification to which it is applied
contains the variablex, and that we want to generalise it to
t′, which always succeeds. The generalisationt′ could be
defined as(skip | law expFrame(x)); t. This tactic first

appliesskip, and then attempts to applyt. If this applica-
tion fails, a backtracking occurs, the lawexpFrameis ap-
plied to insertx in the frame, and the tactic attempts again
to apply t. This application now succeeds, since the vari-
ablex was inserted in the frame. This successfully finishes
the application of the whole tactict′.

The backtracking in the implementation of angelic non-
determinism may lead to inefficient searches.ArcAngel
gives to the programmer some control through the cut oper-
ator (!). The tactic! t behaves liket, except that it returns the
first successful application oft. If a subsequent tactic appli-
cation fails, then the whole tactic fails. The application of
!(skip | law expFrame(x)); t to a specification in which
x is not in the frame, for instance, fails since, after apply-
ing the first choice of the alternation,skip, no backtracking
is possible.

ArcAngel has a fixed-point operator that allows us to de-
fine recursive tactics. Using this operator, we can, for in-
stance, define a tactic that applies another tactict exhaus-
tively: µ X • (t; X | skip). This tactic appliest as many
times as possible, terminating with success when the appli-
cation oft fails.

In the tacticapplies to p do t, a meta-programp is in-
troduced to characterise the programs to which this tactic
is applicable; the meta-variables used inp can then be used
in t. By way of illustration, we have that the meta-program
w : [pre1 ∧ pre2, post] characterises those specifications
whose precondition is a conjunction; here,pre1, pre2, and
postare the meta-variables. The commonly used refinement
strategy of weakening a precondition by dropping a con-
junct can be formalised by the tactic below.

applies to w : [pr1 ∧ pr2, pt] do law weakPre(pr1)

ArcAngel defines two tactics that are used to make tac-
tic assertions. The tacticsuccst fails whenevert fails, and
behaves likeskip whenevert succeeds. On the other hand,
fails t behaves likeskip if t fails, and fails ift succeeds. If
the application oft runs indefinitely, then these tacticals be-
have likeabort.

3.3. Structural Combinators

Usually, it is desirable to apply tactics to subprograms.
For sequential composition,ArcAngel defines the tactic
t1 ; t2, which applies to programs of the formp1; p2. It re-
turns the sequential composition of the programs obtained
by applyingt1 to p1 andt2 to p2; the proof obligations gen-
erated are those arising from both tactic applications. The
combinators like; are calledstructural combinators. There
is one combinator for each syntactic construct.

The tactic if t1 [] . . . [] tn fi applies to an alternation in
the form if g1 → p1 [] . . . [] gn → pn fi and returns the

result of applying each tacticti to the corresponding pro-
gram pi . A similar constructor is available for iterations:
do t1 [] . . . [] tn od.

For variable blocks,ArcAngel defines the structural
combinator var t]] ; similarly, the structural combina-
tor con t]] applies to logical constant blocks. Each applies
its tactict to the block’s body.

The combinatorspmain t]] and pmainvariant t]] are
used in the case of procedure and variant blocks; they ap-
ply t to the main program of the blocks. In the case of ap-
plying a tactic to a procedure body, we use the combinators
pbody t]] andpbodyvariant t]] . The application of tactics
to a procedure body and to the main program of a procedure
block or of a variant block, at the same time is also possi-
ble. We use the structural combinatorspbodymain tb , tm]]

and pmainvariantbody tb , tm]] . They applytb to the pro-
cedure body, andtm to the main program.

For parameterised commands,ArcAngel defines the tac-
tics val t, res t, and val-res t. Consider, for instance, the
application ofpbody val-res law assignIV(x := xn)]] to
the procedure block below.

[[proc power=̂ (val-res x : N • x : [x = xn
0
])

• x : [x = xn
0
]]].

We get the following program as result.

[[proc power=̂ (val-res x : N • x := xn)
• x : [x = xn

0
]]].

We also getx = x0 ∧ true⇒ xn = xn
0

as proof obligation. If
we are not concerned with the type of argument declaration,
we useparcommand t.

A tactic program consists of a sequence of tactic dec-
larations followed by a main tactic that usually makes use
of the declared tactics. A tactic declaration takes the form
Tactic n(a) t end. The result of applyingTactic n(a) t end
is that of applyingt, which is namedn and uses the ar-
guments a. For documentation purposes, we may in-
clude in the declaration the clausesproof obligations and
program generated; the former lists the proof obliga-
tions generated by the application oft, and the latter shows
the program generated.

3.4. Example

The tactictakeConjAsInvdeclared below aims at the de-
velopment of an initialised iteration [17, 15]. It applies to
specifications in the formw : [pre, invConj∧ ¬ guard] and
takesinvConjas part of the iteration invariant.

This tactic has three arguments: a predicateinvBound
that gives limits for indexing variables of the iteration; the
initialisation lstVar := lstVal of the iteration variables; and

the variant of the iterationvariantExp. It introduces an ini-
tialised iteration with invariantinvBound ∧ invConj, and
variantvariantExp.

Tactic takeConjAsInv
(invBound, (lstVar := lstVal), variantExp)
applies to w : [pre, invConj∧ ¬ guard] do

law strPost(invBound∧ invConj∧ ¬ guard);
law seqComp(invBound∧ invConj);
(law assign(lstVar := lstVal) ;

law iter(〈guard〉, variantExp)) end

Firstly, takeConjAsInvstrengthens the postcondition (law
strPost) of the initial specification, addinginvBoundas a
conjunct. Then, it introduces a sequence (lawseqComp);
the invariant defines the intermediate state. Finally, it ap-
plies the lawassignto the first program of the composition
to derive the initialisation, and the lawiter to the second
program to introduce the iteration.

In Section 2, we refined the specification below.

q, r :

[
a ≥ 0 ∧ b > 0 ,

(a = q ∗ b + r ∧ 0 ≤ r) ∧ ¬ r ≥ b

]
C

We can apply the tactictakeConjAsInvin this development.
We use the argumentstrue as the range limit of the in-
dex variableb (invBound), q, r := 0, a as the initialisa-
tion (lstVar := lstVal), andr as the variant (variantExp).

v takeConjAsInv(true, (q, r := 0, a), r)
q, r := 0, a;
do r ≥ b →

q, r :

[
a = q ∗ b + r ∧ 0 ≤ r ∧ r ≥ b ,

a = q ∗ b + r ∧ 0 ≤ r ∧ 0 ≤ r < r0

]
C

od

The proof obligations generated are the same as in Sec-
tion 2, as is the last step of the development: to introduce
the assignment in the body of the iteration. We get the same
code in two steps.

Further examples can be found in [19].

4. Refine

Refine is a tool that supports program development
based on the refinement calculus. Its interface is composed
of a menu and four windows (see Figure 1): the refinement
window, which presents the program development; the laws
window, which lists the refinement laws; the proof obliga-
tions window, which lists the proof obligations generated
in the program development; and the code window, which
presents the currently developed program.

To illustrate the use ofRefine, we consider again our ex-
ample in Section 2. To start a new program development in
Refine, the user must press the start new development but-
ton or select this option in the refinement menu. As a re-

Figure 1. Refine’s user interface

sult, the user is asked to type a specification to be refined.
In our example, the initial specification is as follows.

q,r:[a>=0 & b>0,
a=q*b+r & 0<=r & not r>=b]

We use an ASCII notation for relational and predicate cal-
culus symbols; in our example,>= for ≥, & for ∧, andnot
for ¬ . The predicate language supported includes all oper-
ators in [17]. Moreover, a symbol keyboard is provided to
help the user to introduce these operators. The starting pro-
gram may be a specification, as in our example, or any valid
program of the refinement calculus language.

To apply a refinement law, we select the part of the pro-
gram we want to refine by clicking the left-button of the
mouse on it. Afterwards, we select the law we want to ap-
ply by clicking the left-button of the mouse on its name in
the laws window, and press the apply button. As opposed
to many tools described in the literature, especially those
based on theorem provers, the interface is completely inter-
active. Virtually, no extra knowledge is required for its use,
except the refinement calculus itself. This is very important
for an educational tool.

In our example, the first step is the sequential composi-
tion introduction. We select the initial specification in the
development window, and the sequential composition law
in the laws window. The user is asked to type the argu-
ment. After the application of the law, the development,
proof obligations, and code windows are refreshed.

If some error occurs in the law application, an error
window is displayed describing the reason. For instance,
we cannot apply the sequential composition law to any-
thing other than a specification statement; this is checked
by Refine. Moreover,Refine checks all the syntactic re-
strictions associated with the laws. For example, it checks

that the argument given in the application of the sequential
composition law does not include 0-subscripted variables.

SinceRefine was first presented in [8], a lot of work has
been done on it. We introduced facilities for development
management, and, even more important, support to the de-
velopment of procedures. The following example presents
a development that introduces a procedure. We also illus-
trate the development management features ofRefine.

We consider, by way of illustration, a program that
raisesa to its b power. After we start a new develop-
ment, we introducea:[a=a0**b] as the initial spec-
ification. The predicatea=a0**b is the ASCII repre-
sentation fora = ab

0
. We may easily develop this pro-

gram by applying the law that introduces an assignment
from a specification with initial variables with argu-
ment a:=a**b . As result of this application, we get
this assignment as final program, and the proof obliga-
tion (a=a0) & true => a**b = a0**b .

Nevertheless, we may refine this program using the pro-
cedurepower presented in Section 2. InRefine, we can
undo previous law applications by pressing the undo but-
ton. This undoes the last law application in the develop-
ment window, removes the proof obligations generated by
it, and refreshes the collected code window. In contrast, the
redo operation redoes the last undone application. In our ex-
ample, by pressing the undo button, we return to the situa-
tion in which we have the initial specification in the devel-
opment and the collected code windows, and to an empty
proof obligation window.

We restart our refinement by introducing the procedure
power using the parameterised procedure introduction law.
The arguments used for this application are presented in
Figure 2: the name and the body of the procedure, and its
parameters. With this application, we get the following pro-

Figure 2. Parameterised procedure introduc-
tion arguments

cedure block.

|[proc power =ˆ= (val_res x; val n @
x:[x=x0**n]) @ a:[a=a0**b]]|

We may add comments to any part of the development by
clicking with the right-button of the mouse on any line of
the development window, and then selecting the insert com-
ments option. With this, a window pops up in which we can
insert the comment. In our example, we add a comment to
the procedure to explain its functionality (see Figure 3). An-
other option available with the click of the right-button of
the mouse in the development window is the visualisation of
a previously inserted comment. With the use of comments,
we can record and document important decisions and make
the development more readable.

Figure 3. Adding comments

We start the refinement of the main program by
strengthening its postcondition, using the predicate
(a=x0**b)[x0\a0] as argument. The resulting
specification matches the pattern required by the call
by value-result law, which we apply next. We get
(val_res x @x:[x=x0**b])(a) as result.

We refine the specification in the parameterised com-
mand by strengthening the postcondition, using the pred-
icate (x=x0**n)[n,n0\b,b0] as argument, in order
to get a specification which matches the pattern re-
quired by the call by value law. With this law, we get
(val n @ x:[x=x0**n])(b) as result.

The next step is to collect the code in the development
window, by clicking on the right-button of the mouse and
choosing the collect code option. This step is necessary be-
cause we want to apply a law to the outer parameterised
command, which is not shown in the development win-
dow in its current form. This gives us the code presented
in Figure 4. We select the whole main program of the pro-
cedure block by clicking on all its lines. Then, we ap-
ply the multiple parameters law and get the main program

Figure 4. Collecting code

(val_res x ; val n@x:[x=x0**n])(a,b) . The
parameterised statement we obtain is the same as that in the
body ofpower ; we are ready to introduce a procedure call.

Next, we collect again the code in order to get the whole
procedure block together. We select it and apply the param-
eterised procedure call introduction law. This gives us the
following procedure block.

|[proc power=ˆ=(val_res x; val n @
x:[x=x0**n]) @ power(a,b)]|

Finally, we refine the body of the procedurepower to
x:=x**n . The resulting program is as follows.

|[proc power=ˆ=(val_res x; val n @
x:=x**n) @ power(a,b)]|

Only three proof obligations are generated in the whole de-
velopment (see Figure 5). If we click on any of them, the
law application that generated it is highlighted.

At any time of the development the user can save the cur-
rent development in order to edit it later. Besides, the user
can print all the information of a development. This con-
sists of the development itself, proof obligations, collected
code, and comments, or a combination of them.

5. Gabriel

Gabriel brings to the users ofRefine the possibility of
dealing with tactics. It works as a plug-in and adds one win-
dow to Refine: the tactics window, which lists the tactics
available for application in program developments. Most
of the tactics presented in [21, 19], which covers the vast

Figure 5. Proof obligations and law applica-
tions

majority of those in the literature, are initially available in
Gabriel; however, the user can add his own tactics.

Gabriel is activated from Refine by pressing the
Gabriel’s button in Refine’s menu, or by selecting the
Gabriel option in the window menu ofRefine. The fol-
lowing operations are available inGabriel: create a tactic
usingArcAngel; edit a tactic; generate a tactic, which ver-
ifies syntactically the tactic, and inserts the tactic in the
tactics window; and remove a tactic. After its genera-
tion, a tactic can be applied in program developments of
Refine.

Gabriel has a simple user interface, which is presented
in Figure 6. The buttons can be used to: start a new tac-
tic; open an existing tactic; save a tactic; generate a tactic
and insert it into the tactics list ofRefine; and open a sym-
bols keyboard, which is used to insert the ASCII version of
ArcAngel.

Gabriel’s user interface was projected and tested us-
ing LUCID [18], the User-Centered Interface Design [14]
technique. First, we made an action-object analysis, which
consists of building a directed-graph describing the ac-
tivities involved in program refinement, and building an
object-tree containing the objects ofRefine andGabriel’s
user interface. Using this material, we analysed the corre-
spondence of program refinement activities and the user-
interface ofRefine andGabriel. Finally, we testedRefine
and Gabriel’s usability. This test was made with poten-
tial users of the tool and consisted of creating and using
a tactic usingGabriel andRefine. After using the tool, the
users were interviewed. Positive points and difficulties were
raised in an interview.

The positive aspects pointed were the easiness of open-

Figure 6. Gabriel’s user interface

ing Gabriel, seeing the result of a tactic creation, and apply-
ing laws and tactics, and the nice integration withRefine.
The suggestions made were the inclusion of a symbol key-
board, ofArcAngel documentation in the help, of a gen-
erate tactic button, a show tactic/law details facility forthe
tactic/law list, and of a tactic template to start new tactics.
These facilities were incorporated toRefine andGabriel.

Gabriel supports an ASCII version ofArcAngel. Table 1
presents the ASCII version of someArcAngel’s constructs.
During a tactic generation,Gabriel verifies if the laws used
in its definition are supported byRefine. In Gabriel the ar-
guments of the laws are typed. The existing types, and ex-
amples of argument declarations are presented in [19].

ArcAngel Gabriel

; |; |

if [] fi | if | | [] | | fi |

var]] | var | |] ||

Table 1. ArcAngel’s ASCII derivation

We consider our refinement example presented in Sec-
tion 3. After starting a new development and entering our
new specification, as before, we select the initial specifica-
tion and the tactictakeConjAsInv. When the apply button
in the tactic window is pressed,Gabriel requires the argu-
ments of the tactic application. The values inserted in our
example aretrue for invBound; q,r for lstVar; 0,a for
lstVal; andr for variantExp.

Gabriel applies the tactics after the insertion of the last
argument value. In the application of theapplies to p do t
constructor, an unification algorithm is used; in our exam-
ple, the meta-variablesw, pre, invConj, andguard (see the
definition of takeConjAsInvin Section 3.4) are unified with

q,r , a>=0 & b>0 , a=q*b+r & 0<=r , andr>=b , re-
spectively. The program development window, the proof
obligations window and the collected code window are re-
freshed. The resulting development window of our example
is presented in Figure 7. The last step of our refinement is

Figure 7. Application of tactic takeConjAsInv

the assignment introduction in the iteration. It is carriedout
using only the facilities ofRefine, as explained in the pre-
vious section.

In order to use a new tactic, the user must define it using
Gabriel and insert it intoRefine’s tactics list. As case stud-
ies on the use ofRefine andGabriel, we have developed
all B programming examples presented in [1]. One of them
considers a development strategy for programs that calcu-
late the value off (n), wheref is a function on natural num-
bers that is recursively defined in terms of another function
g as shown below, andn is a natural number.

f (0) = a
f (n + 1) = g(f (n))

(1)

Using ArcAngel, we were able to capture this strat-
egy as the refinement tacticrecNat presented in Figure 8.
This tactic has two arguments: the valuea of the func-
tion f at 0, and the functiong. It applies to specifica-
tionsr:[n>=0,r=f(n)] , which assign tor the value of
f(n) . The result is the program

|[var k @ r,k := a,0 ;
do k<n -> r,k := g(r),k+1 od]|.

It initialises r to a, and iteratesn times applyingg to r .
First, recNatintroduces the variablek . Then, it strengthens
the postcondition, relating the variablek to the old post-
condition; the result is a specification that matches the pat-
tern required by the tactictakeConjAsInv, which is invoked
in sequence. Finally,recNat refines the body of the itera-
tion.

To define this tactic, the user must openGabriel from
Refine by pressing theGabriel’s button. A tactics template
is presented, which can be edited to get the tactic in Fig-
ure 8. Afterwards, the user must save the text by pressing

Tactic recNat (EXP(a),EXP(g))
applies to r:[n>=0,r=f(n)]
do

law varInt(DECS(k));
|var|

law strPost(PRED((0<=k & k<=n &
r=f(k)) &
not k<n));

tactic takeConjAsInv(PRED(true),
IDS(r,k),
EXPS(a,0),
EXP(n-k));

(skip |;| |do|
law assign(IDS(r,k),

EXPS(g(r),
k+1))

|od|)
|]||

program generated
|[var k @ r,k := a,0 ;

do k<n -> r,k := g(r),k+1 od]|
end

Figure 8. Tactic recNat

the save button inGabriel, choosing a name of a file, and
pressing the OK button. Now, the user can generate the tac-
tic by pressing the generate button inGabriel or choosing
the generate option in the file menu ofGabriel. The suc-
cess of this generation depends on the tactic being syntacti-
cally correct and referring only to valid laws. Success leads
to the insertion of the tactic in the list ofRefine. However,
if the generation fails,Gabriel shows an error message indi-
cating the line of the error, the invalid construct which orig-
inated the error, and a detailed parser message.

As an example of using the tacticrecNat, let us con-
sider the natural number exponentiation functionexp(x)(y),
which can be recursively defined as

exp(x)(0) = 1
exp(x)(y + 1) = mult(x)(exp(x)(y)).

(2)

UsingRefine, we can start the development of the program
that assigns tor the expressionexp(x)(y) with the specifi-
cationr:[y>=0,r=exp_x(y)] . SinceRefine does not
support expressions of the formf(x)(y) , we use the no-
tation f_x(y) to represent such expressions. By applying
recNatwith arguments1 andmult_x , we get the follow-
ing program.

|[var k @ r,k := 1,0 ;
do k<y -> r,k := mult_x(r),k+1 od]|

The refinement is accomplished in just one step.

6. Conclusions

In this paper, we presented tools to support the use of
the refinement calculus andArcAngel. This is a refinement-
tactic language, that can be used to describe commonly
used program development strategies. Using these tactics
as transformation rules shortens developments and improve
their readability. The literature presents some other tactic
languages [10, 25, 26, 23, 24, 11, 12, 3, 27, 28, 4, 13]. How-
ever, as far as we know, apart fromAngel, which we extend
and adapt, none of them has a formal semantics and reason-
ing laws.

Our tool,Gabriel, extendsRefine which we developed
to support the application of the refinement calculus.Refine
has been successfully used as an educational tool for more
than three years.Gabriel adds the facility to define and ap-
ply tactics of development. Together,Refine andGabriel
provide powerful tool support for program developments
using the refinement calculus andArcAngel.

Both Refine andGabriel are available from [20]. They
were developed using Java, and amount to sixty thousand
lines of code. In the site, we can also find UML documenta-
tion of their design, a tutorial, and example developments.

Several existing tools provide support for the use of the
refinement calculus and tactics. Some [10, 11, 12, 4] use
languages like Prolog for defining tactics and, in this case,
the user needs to learn complex languages to achieve his
goals. In [13] a goal-oriented approach is adopted: refining
consists of proving that the final program implements the
initial specification. Since we do not know the final program
from the beginning of the refinement, this does not seem
convenient. The Proxac system [23, 24] does not define
any language for tactic definition. Furthermore, as far as we
know, it is not possible to deal with procedure and variant
blocks using any of the existing refinement tools [3, 27, 28].

Refine has already proved to be very useful as an edu-
cational tool;Gabriel has proved to be very promising: we
have used both to refine many programming examples, in-
cluding most of the programming examples presented in [1,
chap.10]. We believe that, together, they are an added moti-
vation for the application of the refinement calculus. There
is, however, more work to be done.

With the aim of building a user-friendly tool, whose
use is as straightforward as possible, we decided to build
Refine (and Gabriel) from scratch. We did not rely on
an existing theorem prover. As a drawback,Refine and
Gabriel do not provide support for the discharge of the
proof obligations. We do not plan to replicate work by im-
plementing yet another theorem prover; we plan to integrate
them to a suitable existing one.

Another substantial piece of future work is the support
of higher-order tactics; this requires a revision of the se-
mantics and laws ofArcAngel. Finally, as already men-

tioned,ArcAngel has an extensive suite of transformation
laws that can be used to reason about tactics. An interest-
ing extension toGabriel is the support to the application of
these laws. In this way, we can develop and transform tac-
tics of development, in much the same way as we develop
programs. At the moment, however, we are concentrating
on case studies. We expect them to reveal any extensions to
ArcAngel andGabriel that are important in practice, which
we will then address before moving to the more adventur-
ous work.

Acknowledgements

The work of Marcel Oliveira was partially sup-
ported by the Computing Laboratory of the University
of Kent. The work of Ana Cavalcanti is partially sup-
ported by CNPq: grants 520763/98-0 and 472204/01-7. We
are grateful to Jim Woodcock for his valuable collabora-
tion in the work onArcAngel.

References

[1] J.-R. Abrial. The B-book: assigning programs to meanings.
Cambridge University Press, 1996.

[2] R. J. R. Back. Procedural Abstraction in the Refinement Cal-
culus. Technical report, Department of Computer Science,
Åbo - Finland, 1987. Ser. A No. 55.

[3] R. J. R. Back and J. von Wright. Refinement Concepts For-
malised in Higher Order Logic.Formal Aspects of Comput-
ing, 2:247–274, 1990.

[4] D. Carrington, I. Hayes, R. Nickson, G. Watson, and
J. Welsh. A program refinement tool.Formal Aspects of
Computing, 10(2):97–124, 1998.

[5] A. L. C. Cavalcanti. A Refinement Calculus for Z. PhD
thesis, Oxford University Computing Laboratory, Oxford
- UK, 1997. Technical Monograph TM-PRG-123, ISBN
00902928-97-X.

[6] A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Wood-
cock. Procedures and Recursion in the Refinement Calculus.
Accepted for publication in Journal of the Brazilian Com-
puter Society, 1998.

[7] A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Wood-
cock. An Inconsistency in Procedures, Parameters and Sub-
stitution in the Refinement Calculus.Science of Computer
Programming, 33(1):87–96, 1999.

[8] S. L. Coutinho, T. P. C. Reis, and A. L. C. Cavalcanti. Uma
Ferramenta Educacional de Refinamentos. InXIII Simṕosio
Brasileiro de Engenharia de Software, pages 61 – 64, Flo-
rianópolis - SC, 1999. Sessão de Ferramentas.

[9] E. W. Dijkstra.A Discipline of Programming. Prentice-Hall,
1976.

[10] L. Groves, R. Nickson, and M. Utting. A Tactic Driven Re-
finement Tool. In C. B. Jones, R. C. Shaw, and T. Denvir, ed-
itors, 5th Refinement Workshop, Workshops in Computing,
pages 272 – 297. Springer-Verlag, 1992.

[11] Lindsay Groves. Adapting formal derivations. Technical Re-
port 1995.CS-TR-95-9, 1995.

[12] Lindsay Groves. Deriving programs by combining and
adapting refinement scripts. Technical Report 1995.CS-TR-
95-13, 1995.

[13] J. Grundy. A Window Inference Tool for Refinement. In
C. B. Jones, R. C. Shaw, and T. Denvir, editors,5th Refine-
ment Workshop, Workshops in Computing, pages 230 – 254.
Springer-Verlag, 1992.

[14] Inc. John Wiley & Sons, editor.The Elements of User Inter-
face Design. Springer Verlag, 1997.

[15] A. Kaldewaij. Programming: The Derivation of Algorithms.
Prentice-Hall, 1990.

[16] A. P. Martin, P. H. B. Gardiner, and J. C. P. Woodcock. A
Tactical Calculus.Formal Aspects of Computing, 8(4):479–
489, 1996.

[17] Carroll Morgan.Programming from Specifications. Prentice-
Hall, 2nd edition, 1994.

[18] M. V. M. Oliveira. Teste de Usabilidade de REFINE e T
- REFINE. Technical report, Centro de Informática - Uni-
versidade Federal de Pernambuco, Pernambuco - Brazil, De-
cember 2001. At http://www.cs.kent.ac.uk/˜mvmo2/gabriel/.

[19] M. V. M. Oliveira. ArcAngel: a Tactic Language for Refine-
ment and its Tool Support. Master’s thesis, Centro de In-
formática - Universidade Federal de Pernambuco, Pernam-
buco - Brazil, 2002. At http://www.ufpe.br/sib/.

[20] M. V. M. Oliveira. Refine-Gabriel Project Page, 2002. At
http://www.cs.kent.ac.uk/˜mvmo2/gabriel/.

[21] M. V. M. Oliveira and A. L. C. Cavalcanti. Tactics of Re-
finement. InXIV Simṕosio Brasileiro de Engenharia de Soft-
ware, pages 117 – 132, 2000.

[22] M. V. M. Oliveira, A. L. C. Cavalcanti, and J. C. P. Wood-
cock. ArcAngel: a Tactic Language for Refinement.Formal
Aspects of Computing, 15(1):28 – 47, 2003.

[23] Jan L. A. van de Snepscheut. Proxac: An editor for program
transformation. Technical Report 1993.cs-tr-93-33, 1993.

[24] Jan L. A. van de Snepscheut. Mechanised support for step-
wise refinement. In J̈urg Gutknecht, editor,Programming
Languages and System Archtectures, volume 782 ofLecture
Notes in Computer Science, pages 35–48. Springer, March
1994. Zurich, Switzerland.

[25] T. Vickers. An Overview of a Refinement Editor. In5th Aus-
tralian Software Engineering Conference, pages 39–44, Syd-
ney - Australia, May 1990.

[26] T. Vickers. A language of refinements. Technical Report TR-
CS-94-05, Computer Science Department, Australian Na-
tional University, 1994.

[27] J. von Wright. Program Refinement by Theorem Prover.
In D. Till, editor, 6th Refinement Workshop, Workshops in
Computing, pages 121 – 150, London - UK, 1994. Springer-
Verlag.

[28] J. von Wright, J. Hekanaho, P. Luostarinen, and
T. Långbacka. Mechanizing Some Advanced Refine-
ment Concepts.Formal Methods in System Design, 3:49–81,
1993.

A. Refinement Laws

Law strPost(pt2). w : [pr, pt1] v w : [pr, pt2],
providedpt2 ⇒ pt1

Law weakPre(pr2). w : [pr1, pt] v w : [pr2, pt],
providedpr1 ⇒ pr2

Law assign(w := E). w : [pr, pt] v w := E,
providedpr ⇒ pt[w \ E]

Law seqComp(mid).
w : [pr, pt] v w : [pr, mid]; w : [mid, pt],
providedmid andpt have no free initial variables.

Law assignIV(w := E). w, x : [pr, pt] v w := E,
provided(w = w0) ∧ pre⇒ post[w \ E].

Law iter(〈G1, ..., Gn〉, V). Let inv, the invariant, be any for-
mula; letV, the variant, be any integer-valued expres-
sion. Then, ifGG is the disjunction of the guards,
w : [inv, inv ∧ ¬ GG]
v
do (? i.Gi →

w : [inv ∧ Gi , inv ∧ 0 ≤ V ≤ V[w \ w0]]) od
inv andGi may not contain initial variables.

Law expFrame(x).
w : [pr, pt] v w, x : [pr, pt ∧ x = x0].

Law procArgsIntro(pn, p1, par).
p2 = [[proc pn = (par • p1) • p2]],
providedpn is not free inp2.

Law callByValue(f , a).
w : [pre[f \ a], post[f , f0 \ a, a0]] =
(val f • w : [pre, post])(a),
providedf is not inw andw is not free ina.

Law callByValueResult(f , a).
w, a : [pre[f \ a], post[f0 \ a0]] =
(val-res f • w, f : [pre, post[a \ f]])(a),
providedf is not inw, and is not free inpost.

Law multiArgs().
(par1 f1 • (par2 f2)(a2))(a1) =
(par1 f1; par2 f2)(a1, a2)

Law procArgsCall().
[[proc pn = (par • p1) • p2[(par • p1)(a)]]] =
[[proc pn = (par • p1) • p2[pn(a)]]].

