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Abstract ArcAngel considers the fact that, by applying refinement
laws to a program, we produce not only a program, but also
Using Morgan’s refinement calculus, we can write soft- proof obligations. The constructs AfcAngel are similar to
ware in a precise and consistent way. Nevertheless, thisthose of Angel, but are adapted to deal with refinement laws
may involve long and repetitive developments. Several re-and programsArcAngel also provides structural combina-
finement strategies are useful in different development, a tors which are suitable to apply refinement laws to compo-
even in different points of a single development. A lot is nents of programs.
gained by identifying these strategies, documenting them  The semantics ofrcAngel is an adaptation and exten-
as tactics, and using them as single transformation rules. sjon of that of Angel. It can be found in [19, 22], along with
With this motivation, we have designadcAngel, atactic  over seventy laws of reasoning, their proofs, and their use
language especially tailored for refinement; we have for- jn 3 reduction strategy to a normal form. In [2&}cAngel
malised its SemantiCS and Studied its algebraic laws. EVeniS used to forma“se a |arge number of refinement strate-
with the use of tactics, however, refinement can be a hardgies available in the literature [15, 17]. Nonethelesspasi
task and the use of tools is essential in practice. In this ArcAngel without tool support is still a hard task. A tool

paper, we presenRefine and Gabriel, interactive, user-  prings further profit in time and effort, and was left as fu-
friendly tools that allow us to use the refinement calculus tyre work in [22].

with the support oArcAngel tactics. We presenRefine, a tool that supports the use of the re-
finement calculus, and a plug-in call&abriel, which sup-
ports the use oArcAngel, and allows its users to create and

1. Introduction use tactics of development. An initial versionRéfine was
presented in [8]; since then, we have extended it with facil-

Morgan’s refinement calculus [17] is a successful tech- ities to manage developments, and support for the develop-
nigue to develop programs while guaranteeing correctnessment of, possibly recursive, procedur@®efine has been
From a formal specification, we obtain a program by repeat- used successfully in teaching for almost three years.
edly applying correctness-preserving transformatioesul In Section 2 we give an overview of the refinement cal-
(refinement laws). culus. Section 3 introducesrcAngel; we present an ex-

Using the refinement calculus, however, can be a hardample of a tactic. Section 4 presefsfine, and Section 5
task, as program developments may be long and repetitive presentssabriel and its integration t&efine. Finally, Sec-
Frequently used strategies of refinement are reflected in setion 6 discusses related and future work.
quences of laws that are applied over and over again. ldenti-
fying these strategies, documenting them as tactics, and us
ing them in program developments as single transformation2. Refinement Calculus
rules, is a great help.

We designed and formalised a refinement-tactic lan-  The refinement calculus is based on an unified language
guage calledArcAngel [22]. It is based on Angel [16], a  of specification, design and implementation; it makes no
general language that makes no assumption about the forndistinction between specifications and programs. In this
of proof goals, or about the rules that are applied to them.technique, program development consists of refinement law



applications to a specification until an adequate program isand then starts an iteration which runs while b. In each

obtained.
A specification has the forw : [ pre, post]. It describes

step, it incrementg by one, and decrementdy b.
We start our refinement by splitting the specification into

a program that, if executed in a state that satisfies the pretwo: the first specifies the initialisation gfandr, and the

conditionpre, changes the variables listed in the frame
so that the final state satisfies the postconditioat If the
initial state does not satisfy the precondition, the resaift-
not be predicted. A preconditicnue can be omitted. The
pre and the postcondition are predicates.

In the postcondition, the initial value of a variable is rep-
resented by a correspondifigsubscripted variable. For ex-
ample, the specification statement [x = xj | defines the
program that assigns tothe nth power of its initial value.

Besides the specification statement, the language of the

refinement calculus includes all the constructors of Dijk-

second is later refined to an iteration. In the sequel, the sym
bol C represents the refinement relation. In each step of the
refinement, we give the name of the law applied, and the ar-
guments used in the application; the definition of the laws
can be found in Appendix A.

CseqCompa=qxb+rA0<r)

gr:[@a>0Ab>0,a=qxb+rA0<r];
- a=qxb+rA0<r ,

ST | a=qgsbtrrao<r<b

<
(i)

The seqCompaw splits the specification with basis on an

stra’s language [9] of guarded commands. Block constructsintermediate state definition given as argument; it is used a

are also available to declare local variables, logical con-
stants, and procedures. Variable blofkar x : T e p]
declare a variabl& to be of typeT, with a scope restricted
to p. Similarly, logical constants are declared in blocks of
the form{[con c: T e pJ.

Procedure blockgproc pname = body e mairi] de-
clare a procedurpnameand itsbody, along with themain
program, where we can ugmame If pnamehas parame-
ters, therbodyis a parameterized command [2, 6]. Parame-
ters can be passed by value, by result, or by value-result us
ing the keywordwal, res, andval-res. An example is pre-
sented below.

[proc power=
(val-resx: N; valn: Nex:=X"))
e powel(a, b)]

This program raisea to the power ob, using a procedure
powerwith value-result parameterand value parameter

At this point we depart from Morgan’s calculus and adopt
Back’s approach for the reasons reported in [7]. Nonethe-
less, we still support a calculational style based on the re-
finement laws in [6, 5].

the postcondition of the first resulting specification, amal t
precondition of the second one. In this case, the intermedi-
ate state is characterised by the invariant of the iteratibn
each step of the iteration, gss incremented andis decre-
mented, the equalits = q* b + r is maintained, and we
never get a value far below0.

We introduce the initialisation af andr with an appli-
cation of theassignlaw to the first specification. The sym-
bol < on the right indicates the specification to which the
next law is applied. As a syntactic sugar, we use assign-
ments as arguments of laws and tactics; for instance, we
write law assigrig,r := 0, a), but the arguments are actu-
ally g,r ando, a.

C assigrig,r :== 0, a)
q,r:=0,a

The predicatea > 0 Ab>0=a=0xb+aAn0<a
is generated as proof obligation; its proof is simple, since
0xb = 0and0 < ais in the antecedent of the implica-
tion. Most of the proof obligations in our examples are very
simple; we omit them and their proofs for reasons of con-
ciseness.

Next, we introduce the iteration. We use> b as guard

The development of recursive procedures uses variantandr as variant

blocks[[proc pname= bodyvariant v is e e prog] [5, 6].

Besides the procedure and the main program, we declare &) C iter((r > b),r)

variant expressior namedv. It is used to guarantee termi-
nation in the development of a recursive implementation for
pname

Example As an example, we consider a program which,
given two integersa andb, such thata > 0 andb > 0,
setsq to the quotient of divided byb, and sets to the re-
mainder of this division. The initial formal specificatios i
as follows.

g,r:[@a>0Ab>0,a=qxb+rA0<r <b|

We derive a program that initialisepandr with 0 anda,

dor>b—
a=qxb+rAn0<rAr>b,
a=qxb+rAn0<rao<r<rg

9

od

Finally, we introduce the assignment in the body of the iter-
ation. We use the lawssignlV, which applies to specifica-
tions with(0-subscribed variables.

C assigniMq,r :=q+ 1,r — b)
g,r:=q+1,r—>b

In conclusion, by applying a sequence of refinement laws



to the initial specification, we get the following executabl
program.

gr:=0,aador>b—q,r:=q+1,r—b od

In this simple example, we need four steps to obtain a pro-

appliesskip, and then attempts to appty If this applica-
tion fails, a backtracking occurs, the laaxpFrameis ap-
plied to insertx in the frame, and the tactic attempts again
to applyt. This application now succeeds, since the vari-
ablex was inserted in the frame. This successfully finishes

gram. This number is decreased when we use tactics, whictihe application of the whole tacttt

is important for large developments.

3. ArcAngel

ArcAngel is a refinement-tactic language which can be

used for documenting and analysing program developments,(

and frequently used strategies of developmémtAngel
includes three different kinds of tactics: the simplest tac
tics are called basic tactics; the combinators of tacties ar
called tacticals; and tactics to handle parts of prograrmas ar
called structural combinators.

3.1. Basic Tactics

A law application is expressed v n(a). The applica-
tion of this tactic to a program may lead to two outcomes: if
the lawn with arguments is applicable, then it is actually
applied, otherwise the tactic fails. We also haetic n(a);
its behaviour is similar, but it applies a tactic called

Another basic tactic iskip, which always succeeds,

The backtracking in the implementation of angelic non-
determinism may lead to inefficient searchéscAngel
gives to the programmer some control through the cut oper-
ator (). The tactid t behaves like, except that it returns the
first successful application ¢fIf a subsequent tactic appli-
cation fails, then the whole tactic fails. The applicatidn o
skip |law expFraméx)); t to a specification in which
x is not in the frame, for instance, fails since, after apply-
ing the first choice of the alternatioskip, no backtracking
is possible.

ArcAngel has a fixed-point operator that allows us to de-
fine recursive tactics. Using this operator, we can, for in-
stance, define a tactic that applies another taotichaus-
tively: X o (t; X | skip). This tactic applies as many
times as possible, terminating with success when the appli-
cation oft fails.

In the tacticappliesto p do t, a meta-progranp is in-
troduced to characterise the programs to which this tactic
is applicable; the meta-variables usegican then be used
in t. By way of illustration, we have that the meta-program
w : [pre; A prey, post] characterises those specifications

does not change the program, and also does not generat@hose precondition is a conjunction; hepee;, pre;, and

proof obligations. The tactitail always fails; and the tac-
tic abort neither succeeds nor fails, but runs indefinitely.

3.2. Tacticals

In ArcAngel, tacticst; andt; can be combined in se-
quencety; ty. This tactic first appliet to the program, and
then applies, to the outcome of the application tf If ei-
thert; ort, fails, ty; t fails. When it succeeds, the proof

obligations generated are those resulting from the applica

tion of t; andts.

We can also combine tactics in alternation] to. This
tactic applieg; to the program. If the application of suc-
ceeds, then this tactic succeeds, else this tactic applies
to the program. If the application @ succeeds then this

tactic succeeds, else the whole tactic fails. If one of the

postare the meta-variables. The commonly used refinement
strategy of weakening a precondition by dropping a con-
junct can be formalised by the tactic below.

appliesto w: [pr; A pra, pt] do law weakPrépr,)

ArcAngel defines two tactics that are used to make tac-
tic assertions. The tactguccd fails whenevet fails, and
behaves likeskip whenevelt succeeds. On the other hand,
failst behaves likeskip if t fails, and fails ift succeeds. If
the application of runs indefinitely, then these tacticals be-
have likeabort.

3.3. Structural Combinators

Usually, it is desirable to apply tactics to subprograms.

tactics aborts, the whole tactic aborts. Moreover, the first For sequential compositiorArcAngel defines the tactic
choice that leads to success is selected. This angelicenaturt; tg, which applies to programs of the forp; p.. It re-

of choice earnedngel andArcAngel (A Refinement Cal-
culusAngel) their names.

For instance, suppose we have a tattlat always suc-
ceeds if the frame of the specification to which it is applied
contains the variablg, and that we want to generalise it to
t’, which always succeeds. The generalisatiooould be
defined aq skip |law expFraméx)); t. This tactic first

turns the sequential composition of the programs obtained
by applyingt; to p; andt; to p,; the proof obligations gen-
erated are those arising from both tactic applications. The
combinators Iikeﬂ are calledstructural combinatorsThere
is one combinator for each syntactic construct.

The tactict1 @ @tn applies to an alternation in
the formif g; — p1 [ ... [ 9n — pnfi and returns the



result of applying each tacti; to the corresponding pro- the variant of the iteratiomariantExp It introduces an ini-
gramp;. A similar constructor is available for iterations: tialised iteration with invarianinvBound A invConj and
t1 @ . @tn . variantvariantExp

For variable blocksArcAngel defines the structural _ _
combinator [var|t[]; similarly, the structural combina- Tactic takeConjAsInv

tor|conit|]]| applies to logical constant blocks. Each applies (invl_30und (Istvar = IstVaj),variantExp)
its co tphpe block’s %ody. PP appliesto w : [ pre, invConjA — guard] do

The combinatorspmain|t ]| and pmainvariant|t[]]| are :Zx zgpgf)(n;%\:r?\?gggﬁ dI/T\i/r?v%](J) Q; guard);
used in the case of procedure and variant blocks; they ap- (law agsigr( Stvar IstVaI) J);

ply t to the main program of the blocks. In the case of ap- . .

plying a tactic to a procedure body, we use the combinators law iter({guard), variantExp) end

pbody|t[J|andpbodyvariant]t ]| The application of tactics  Fjrstly, takeConjAsinwstrengthens the postcondition (law

to a procedure body and to the main program of a proceduregypogy of the initial specification, addingwBoundas a

block or of a variant block, at the same time is also possi- conjunct. Then, it introduces a sequence (ssgComjy

ble. We use the structural combinatgisodymainity , tm ] the invariant defines the intermediate state. Finally, it ap

andpmainvariantbody|tp , tm I They applyt, to the pro-  plies the lawassignto the first program of the composition

cedure body, ant, to the main program. to derive the initialisation, and the laiter to the second
For parameterised commandscAngel defines the tac-  program to introduce the iteration.

tics vallt, rest, and|val-rest. Consider, for instance, the In Section 2, we refined the specification below.

application ofpbody vaI—re% law assigni\(x := x“)@ to a>0Ab>0,
the procedure block below. q,r: (a=q+b+rA0O<T)A-T>b <
[ proc power= (val-resx: N e x: [x = X3]) We can apply the tactimkeConjAsinin this development.
oex:[x=x11]. We use the argumentsue as the range limit of the in-
dex variableb (invBound, g,r := 0,a as the initialisa-
We get the following program as result. tion (IstVar := IstVal), andr as the variantMariantExp.
[ proc power= (val-resx : N e x := x") C takeConjAsinftrue, (q,r := 0,a),r)
o x: [x=x]]. Gr=03a
dor>b—
We also gek = %y A true = X" = x{) as proof obligation. If e a=qxb+rAO<rAr>b, 4
we are not concerned with the type of argument declaration, ~ | a@=0*b+rA0<rA0<r<rg

we useparcommandt. od

A tactic program consists of a sequence of tactic dec-The proof obligations generated are the same as in Sec-
larations followed by a main tactic that usually makes use tjon 2, as is the last step of the development: to introduce
of the declared tactics. A tactic declaration takes the form ihe assignment in the body of the iteration. We get the same
Tacticn(a)t end. The result of applyingacticn(a)t end code in two steps.
is that of applyingt, which is namecdh and uses the ar- Further examples can be found in [19].
gumentsa. For documentation purposes, we may in-
clude in the declaration the clausgof obligations and
program generated the former lists the proof obliga-
tions generated by the applicationtpfind the latter shows
the program generated.

4. Refine

Refine is a tool that supports program development
based on the refinement calculus. Its interface is composed
of a menu and four windows (see Figure 1): the refinement
3.4. Example window, which presents the program development; the laws

window, which lists the refinement laws; the proof obliga-

The tactictakeConjAsindeclared below aims at the de- tions window, which lists the proof obligations generated
velopment of an initialised iteration [17, 15]. It appliest in the program development; and the code window, which
specifications in the fornw : [pre, invConjA — guard and presents the currently developed program.
takesinvConjas part of the iteration invariant. To illustrate the use dRefine, we consider again our ex-

This tactic has three arguments: a predidatBound ample in Section 2. To start a new program development in
that gives limits for indexing variables of the iteratiohpet ~ Refine, the user must press the start new development but-
initialisationIstVar := IstVal of the iteration variables; and ton or select this option in the refinement menu. As a re-



CE— - that the argument given in the application of the sequential
i AL composition law does not include 0-subscripted variables.

SinceRefine was first presented in [8], a lot of work has
been done on it. We introduced facilities for development
management, and, even more important, support to the de-
velopment of procedures. The following example presents
a development that introduces a procedure. We also illus-
| trate the development management featurdzafine.
We consider, by way of illustration, a program that
| raisesa to its b power. After we start a new develop-
ment, we introducea:[a=a0**b] as the initial spec-
ification. The predicatea=a0**b is the ASCII repre-
sentation fora = a. We may easily develop this pro-
gram by applying the law that introduces an assignment
ly of] from a specification with initial variables with argu-

ment a:=a**b . As result of this application, we get

Figure 1. Refine’s user interface this assignment as final program, and the proof obliga-
tion (a=a0) & true => a**bh = alO*b

Nevertheless, we may refine this program using the pro-
sult, the user is asked to type a specification to be refined.cedurepower presented in Section 2. IRefine, we can

In our example, the initial specification is as follows. undo previous law applications by pressing the undo but-
ton. This undoes the last law application in the develop-

q.r[a>=0 & b>0, ment window, removes the proof obligations generated by
a=q*b+r & 0<=r & not r>=b] it, and refreshes the collected code window. In contrast, th

We use an ASCII notation for relational and predicate cal- redo operation f¢d095 the last undone application. In ourex
culus symbols; in our examplez= for >, & for A, andnot ample, by pressing the undo button, we return to the situa-
for — . The predicate language supp;)rted includes all Oper_tion in which we have the initial specification in the devel-
ators in [17]. Moreover, a symbol keyboard is provided to opm;ant l"?md the collected code windows, and to an empty
help the user to introduce these operators. The starting proPro°f obligation window.

gram may be a specification, as in our example, or any valid We restart our refinement by introducing the procedure
program of the refinement calculus language power using the parameterised procedure introduction law.

To apply a refinement law, we select the part of the pro- l_he argzt'thr;]ents used fgrﬂfh'z adpphff:at\::on are 3resente§ .,'[n
gram we want to refine by clicking the left-button of the \gure t. ew'?r:rlﬁ'an I'e t'o y o et {)k:oc;e”urg, and its
mouse on it. Afterwards, we select the law we want to ap- parameters. Wi IS application, we get Ine toflowing-pro

ply by clicking the left-button of the mouse on its name in

the laws window, and press the apply button. As opposed x|

to many tools described in the literature, especially those

based on theorem provers, the interface is completely-inter procedure narme:

active. Virtually, no extra knowledge is required for iteus [power

except the refinement calculus itself. This is very impdrtan Pracedure hody:

for an educational tool. pT— =
In our example, the first step is the sequential composi-

tion introduction. We select the initial specification ireth _l;l

development window, and the sequential composition law - -

in the laws window. The user is asked to type the argu- Parameters st

ment. After the application of the law, the development, val_es ¥ vain

proof obligations, and code windows are refreshed. | cancel |
If some error occurs in the law application, an error

window is displayed describing the reason. For instance,

we cannot apply the sequential composition law to any-  Figure 2. Parameterised procedure introduc-
thing other than a specification statement; this is checked tion arguments

by Refine. Moreover,Refine checks all the syntactic re-

strictions associated with the laws. For example, it checks




cedure block.

|[ proc power (val_res x; val n @
x:[x=x0**n]) @ a:[a=a0**b] ]|

We may add comments to any part of the development by
clicking with the right-button of the mouse on any line of
the development window, and then selecting the insert com-
ments option. With this, a window pops up in which we can
insert the comment. In our example, we add a comment to
the procedure to explain its functionality (see Figure 3): A
other option available with the click of the right-button of
the mouse in the development window is the visualisation of
a previously inserted comment. With the use of comments,
we can record and document important decisions and make
the development more readable.

a: [a=a0%] (i
i) [=
|[ proc povwer == [ val_tes x; val n @
% ° [x=x0%n]

=10l

1@
a: [a=a0*] (i)

1
(i [=

a: [ (a=x0**) [x0va0]] (i)
(i} [=

[ val_res =@

w0 =] (i)

I &)
(iv) [=

x 0 [ (x=x0**m) [0, n0 b, bO] ] ()
(vl 1=

aaaaaaaaaaaaaaaa

|l proc power == [ val_res x; valn @
%0 [x=x0%n]
@
[ val_res x @ [ valn @
o [x=w0**n]
1 (b))
Jial

a:[a=al*h] (i)

[ proc povwer =*= ( val_res x; valn @
= [=x0**n]

=10l x|

Figure 4. Collecting code

)@

& [a=a0*h]
Inzert comments:

The procecure povver has two
parameters: a value-result parameter x
and & value parameter n. it assions to x
the n-th power of ts intial value

Cancel

(val_res x ; val n@x:[x=x0**n])(a,b)

. The
parameterised statement we obtain is the same as that in the
body ofpower ; we are ready to introduce a procedure call.
Next, we collect again the code in order to get the whole
procedure block together. We select it and apply the param-

eterised procedure call introduction law. This gives us the

following procedure block.

Figure 3. Adding comments

We start the refinement of the main program by ,._ .,

strengthening its postcondition, using the predicate
(a=x0**b)[x0\a0] as argument. The resulting

specification matches the pattern required by the call
by value-result law, which we apply next. We get
(val_res x @x:[x=x0**b])(a) as result.

We refine the specification in the parameterised com-
mand by strengthening the postcondition, using the pred-
icate (x=x0**n)[n,n0\b,b0] as argument, in order
to get a specification which matches the pattern re-
quired by the call by value law. With this law, we get
(val n @ x:[x=x0**n])(b) as result.

The next step is to collect the code in the development
window, by clicking on the right-button of the mouse and

[[ proc power="=(val_res x; val n @
X:[x=x0**n]) @ power(a,b) ]|

Finally, we refine the body of the procedupswer to
. The resulting program is as follows.

[[ proc power="=(val_res x; val n @
X:=xX**n) @ power(a,b) ]|

Only three proof obligations are generated in the whole de-
velopment (see Figure 5). If we click on any of them, the
law application that generated it is highlighted.

At any time of the development the user can save the cur-

rent development in order to edit it later. Besides, the user
can print all the information of a development. This con-
sists of the development itself, proof obligations, cdkelc
code, and comments, or a combination of them.

choosing the collect code option. This step is necessary be5. Gabriel

cause we want to apply a law to the outer parameterised
command, which is not shown in the development win-

Gabriel brings to the users drefine the possibility of

dow in its current form. This gives us the code presented dealing with tactics. It works as a plug-in and adds one win-
in Figure 4. We select the whole main program of the pro- dow to Refine: the tactics window, which lists the tactics

cedure block by clicking on all its lines. Then, we ap- available for application in program developments. Most
ply the multiple parameters law and get the main program of the tactics presented in [21, 19], which covers the vast



File Show Help

=101 x|

[D==els

Figure 5. Proof obligations and law applica-
tions

majority of those in the literature, are initially availebh
Gabriel; however, the user can add his own tactics.

Gabriel is activated fromRefine by pressing the
Gabriel's button in Refine’'s menu, or by selecting the
Gabriel option in the window menu oRefine. The fol-
lowing operations are available {Babriel: create a tactic
usingArcAngel; edit a tactic; generate a tactic, which ver-
ifies syntactically the tactic, and inserts the tactic in the
tactics window; and remove a tactic. After its genera-
tion, a tactic can be applied in program developments of
Refine.

Gabriel has a simple user interface, which is presented
in Figure 6. The buttons can be used to: start a new tac-
tic; open an existing tactic; save a tactic; generate actacti
and insert it into the tactics list &tefine; and open a sym-
bols keyboard, which is used to insert the ASCII version of
ArcAngel.

Gabriel's user interface was projected and tested us-
ing LUCID [18], the User-Centered Interface Design [14]

[Tactic =tactic name= {=arg1, arg2, ..=)
=<tactic hody=

[proaf obligations
=proof obligation 1=,
=proof obligation 2=,

[program generated
<pragram generated=

end

Lin: 12 Col: 1 Gabriel - Version 20030317

Figure 6. Gabriel's user interface

ing Gabriel, seeing the result of a tactic creation, and apply-
ing laws and tactics, and the nice integration wRéfine.
The suggestions made were the inclusion of a symbol key-
board, ofArcAngel documentation in the help, of a gen-
erate tactic button, a show tactic/law details facility foe
tactic/law list, and of a tactic template to start new tagtic
These facilities were incorporated Refine andGabriel.
Gabriel supports an ASCII version éfrcAngel. Table 1
presents the ASCII version of somdecAngel’s constructs.
During a tactic generatioiGabriel verifies if the laws used
in its definition are supported yefine. In Gabriel the ar-
guments of the laws are typed. The existing types, and ex-
amples of argument declarations are presented in [19].

[ ArcAngel [ Gabriel |
B 5 |
iDL
[ var [ ]|

Table 1. ArcAngel’'s ASCII derivation

technique. First, we made an action-object analysis, which  We consider our refinement example presented in Sec-
consists of building a directed-graph describing the ac-tion 3. After starting a new development and entering our
tivities involved in program refinement, and building an new specification, as before, we select the initial speeifica
object-tree containing the objects R&fine and Gabriel’s tion and the tactidcakeConjAsinvWhen the apply button
user interface. Using this material, we analysed the corre-in the tactic window is presse@abriel requires the argu-
spondence of program refinement activities and the user-ments of the tactic application. The values inserted in our

interface ofRefine andGabriel. Finally, we testedRefine

and Gabriel's usability. This test was made with poten-
tial users of the tool and consisted of creating and using
a tactic usingsabriel andRefine. After using the tool, the
users were interviewed. Positive points and difficultiesave
raised in an interview.

The positive aspects pointed were the easiness of open

example ardrue for invBound q,r for IstVar, 0,a for
IstVal, andr for variantExp

Gabriel applies the tactics after the insertion of the last
argument value. In the application of thppliesto p do t
constructor, an unification algorithm is used; in our exam-
ple, the meta-variables, pre, invConj andguard (see the

definition oftakeConjAsinin Section 3.4) are unified with



q,r ,a>=0 & b>0, a=g*b+r & O<=r , andr>=b, re-

spectively. The program development window, the proof Tactic recNat (EXP(a),EXP(g))

obligations window and the collected code window are re-
freshed. The resulting development window of our example
is presented in Figure 7. The last step of our refinement is

Bromemen:
o, t [ae=0 & k=0, a=g*h+t & O==r & not r==k] (i)
(0 [=
o, r=0, &
do
r==h-=

o, r: [true & a=o*h+r & O==r & r==h, true & a=q*h+r & O==r & O==r & r=r0]

=10l x|

oo

Figure 7. Application of tactic ~ takeConjAsinv

the assignment introduction in the iteration. It is caribed
using only the facilities oRefine, as explained in the pre-
vious section.

applies to r:[n>=0,r=f(n)]

do
law varint(DECS(K));
[var|
law strPost(PRED((0<=k & k<=n &
r=f(k)) &
not k<n));
tactic takeConjAsinv(PRED(true),
IDS(r,k),
EXPS(a,0),
EXP(n-k));
(skip [;| |do]
law assign(IDS(r,k),
EXPS(g(r),
k+1))
|od])
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program generated
[ var k @ rk = a,0 ;
do k<n -> rk := g(r),k+1 od ]|

In order to use a new tactic, the user must define it using€nd

Gabriel and insert it intdRefine’s tactics list. As case stud-
ies on the use oRefine and Gabriel, we have developed

all B programming examples presented in [1]. One of them

Figure 8. Tactic recNat

considers a development strategy for programs that calcu+the save button iGabriel, choosing a name of a file, and

late the value of (n), wheref is a function on natural num-

pressing the OK button. Now, the user can generate the tac-

bers that is recursively defined in terms of another function tic by pressing the generate buttonGabriel or choosing

g as shown below, andlis a natural number.

f(0)=a
f(n+1) = g(f(m)

Using ArcAngel, we were able to capture this strat-
egy as the refinement tactiecNat presented in Figure 8.
This tactic has two arguments: the valaeof the func-
tion f at 0, and the functiong. It applies to specifica-
tionsr:[n>=0,r=f(n)] , Which assign to the value of
f(n) . The resultis the program

[ var k @ rk = a,0 ;
do k<n -> rk := g(r),k+1 od ]|.

@)

It initialisesr to a, and iterates times applyingg to r .
First,recNatintroduces the variable. Then, it strengthens
the postcondition, relating the variabketo the old post-

condition; the result is a specification that matches the pat support expressions of the forigx)(y)

tern required by the tacti@akeConjAsInywhich is invoked
in sequence. FinallyrecNatrefines the body of the itera-
tion.

To define this tactic, the user must op&abriel from
Refine by pressing th&abriel’s button. A tactics template

is presented, which can be edited to get the tactic in Fig-

the generate option in the file menu Ghabriel. The suc-
cess of this generation depends on the tactic being syntacti
cally correct and referring only to valid laws. Success sead
to the insertion of the tactic in the list &efine. However,
if the generation fails3abriel shows an error message indi-
cating the line of the error, the invalid construct whichgeri
inated the error, and a detailed parser message.

As an example of using the tactrecNat let us con-
sider the natural number exponentiation funceem(x)(y),
which can be recursively defined as

expx)(0) =1
expX)(y + 1) = mult(x)(exp(x)(y))-

UsingRefine, we can start the development of the program
that assigns to the expressioexpx)(y) with the specifi-
cationr:[y>=0,r=exp_x(y)] . SinceRefine does not

, we use the no-
tationf_x(y) to represent such expressions. By applying
recNatwith argumentsl andmult_x , we get the follow-
ing program.

[ var k @ rk = 1,0 ;
do k<y -> rk = mult_x(r),k+1 od ]|

)

ure 8. Afterwards, the user must save the text by pressingThe refinement is accomplished in just one step.



6. Conclusions tioned, ArcAngel has an extensive suite of transformation
laws that can be used to reason about tactics. An interest-
In this paper, we presented tools to support the use ofing extension t@sabriel is the support to the application of
the refinement calculus adcAngel. This is arefinement-  these laws. In this way, we can develop and transform tac-
tactic language, that can be used to describe commonlfics of development, in much the same way as we develop
used program development strategies. Using these tacticprograms. At the moment, however, we are concentrating
as transformation rules shortens developments and improvedn case studies. We expect them to reveal any extensions to
their readability. The literature presents some othelidact ArcAngel andGabriel that are important in practice, which
languages [10, 25, 26, 23, 24,11, 12, 3, 27, 28, 4, 13]. How-we will then address before moving to the more adventur-
ever, as far as we know, apart frakngel, which we extend ~ ous work.
and adapt, none of them has a formal semantics and reason-
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A. Refinement Laws

Law strPostpty). w: [pr,pt;] C w: [pr, pt],
providedpt; = pt;

Law weakPrépry). w: [pri,ptf] T w: [pro, pt],
providedpr; = prs

Law assignw :=E). w: [pr,pt] C w:
providedpr = ptjw \ E]

Law seqComgmid).
w: [pr,pt C w: [pr,mid}; w: [mid, pt],
providedmid andpt have no free initial variables.

E,

Law assigniM(w:=E).w,x: [pr,pf] T w:=E,
provided(w = wy) A pre = posiw \ E].

Law iter({Gy, ..., Gn), V). Letinv, the invariant, be any for-
mula; letV, the variant, be any integer-valued expres-
sion. Then, ifGG s the disjunction of the guards,

w: [inv,inv A = GG
-
do (?i.Gi —
w: [inv A Gj,invA 0 <V <Vw\ w)]) od
inv andG; may not contain initial variables.
Law expFraméx).
w: [pr, pt] C© w, X : [pr, pt A X = Xo.

Law procArgsintrdpn, py, par).
p2 = [ proc pn= (par e p;)  p:],
providedpnis not free inp..

Law callByValudf,a).

w: [preff \ al, postf,fy \ & a]] =
(val f e w: [pre, post)(a),
providedf is not inw andw is not free ina.

Law callByValueResu(t, a).

w, a: [pre[f \ a], postfy \ a]] =
(val-res f e w,f : [pre, posfa\ f]])(a),
providedf is not inw, and is not free ipost

Law multiArgg).

(pary f; e (parz fy)(as))(ar)
(pary fy; pars fa)(ay, az)

Law procArgsCal().

[ proc pn= (par e p;) e pa[(par e p;)(a)]]
[ proc pn= (par e p;) e pz[pn(a)]]].



