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Abstract. Circus specifications define both data and behavioural aspects of systems using a combination
of Z and CSP constructs. Previously, a denotational semantics has been given to Circus; however, a shallow
embedding of Circusin Z, in which the mapping from Circus constructs to their semantic representation as a Z
specification, with yet another language being used as a meta-language, was not useful for proving properties
like the refinement laws that justify the distinguishing development technique associated with Circus. This
work presents a final reference for the Circus denotational semantics based on Hoare and He’s Unifying
Theories of Programming (UTP); as such, it allows the proof of meta-theorems about Circus including the
refinement laws in which we are interested. Its correspondence with the CSP semantics is illustrated with
some examples. We also discuss the library of lemmas and theorems used in the proofs of the refinement
laws. Finally, we give an account of the mechanisation of the Circus semantics and of the mechanical proofs
of the refinement laws.
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1. Introduction

Throughout the past decades two schools have been developing formal techniques for precise and correct
software development. Model-based languages like Z [Spi92, WD96] focus on data aspects of the systems;
constructs to model behavioural aspects are not explicitly provided. On the other hand, CSP [Hoa85, Ros93],
among other process algebras, focuses on the behavioural aspects of the systems; however, it does not support
a concise and elegant way to describe complex data aspects of the systems.

Combinations of Z with CCS [GS97, TA97], Z with CSP [Fis98, RWW94, MS98], Object-Z [CDD190]
with CSP [Fis97, Smi97, MD98], and Object-Z with timed CSP [MD98] are some attempts to combine both
schools of formalisms. Furthermore, combinations of B and action systems [Abr03], B and CSP [TS99], and
notations that describe both aspects, like RAISE [Gro92] have been used. As far as we know, however, none
of them has a related refinement calculus to support code development. This has motivated the design of
Circus [WC02], a language that characterises systems as processes, which group constructs that describe data
and control; the Z notation is used to define most of the data aspects, and CSP is used to define behaviour.
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Predicate transformers [Dij76] are commonly used as the basis of semantic models for imperative refine-
ment calculi [Bac78, Mor87, Mor94]. However, a different model is used as the basis of theories of refinement
for CSP, the failures-divergence model [Hoa85, Ros98]. Other works, such as those presented in [Smi97, Fis97],
provide a failures-divergences model for Object-Z classes, in order to present the semantics for combinations
of Object-Z and CSP. Although data refinement was investigated for these combinations, no refinement laws
were proposed. In [WDBO00], the failures model was used to give behavioural semantics to abstract data
types. To give a semantics to Circus, we need a semantic model that is able to combine the notions of refine-
ment for CSP and for imperative programs. The UTP [HJ98] is a framework that makes this combination
possible by unifying the programming discipline across many different computational paradigms.

Every program, design, and specification is interpreted in the UTP as a relation between an initial
observation and a subsequent observation, which may be either an intermediate or a final observation of the
behaviour of a program execution. The relations are defined as predicates over observational variables; they
represent concepts that are important to describe all relevant aspects of a program behaviour. The initial
observations of each variable are represented using its undecorated name, and subsequent observations are
represented using the name of the variable decorated with a dash, very much in the style of Z, for example.

Eight distinguished variables record important observations about a program: okay indicates whether the
system has been properly started in a stable state or not; okay’ records the subsequent stabilisation in an
observable state. The observational variable wait distinguishes the intermediate observations of waiting states
from final observations on termination; wait’ distinguishes a stable intermediate state from a stable final state.
But what is the role of wait’ when okay’ is false? First, note that any behaviour is better than divergence, so
we cannot specify that a process must diverge, for such a specification would have only divergent refinements.
This essential asymmetry is captured in a healthiness condition, CSP2 (see Section 3.1 for details), that has
the property that a CSP process P can be expressed in the form P[false/okay’] V (okay’ A P[true/okay']).
Because okay’ and wait’ are boolean variables, there are four possible combinations of their values, but
another healthiness condition, CSP1 (see Section 3.1 for details), conflates two of these possibilities. Suppose
that a process P actually diverges (this is different from specifying that it must). Then okay’ will be false.
This means that okay is false in the following process, ). Now, CSP1 says that, if a process is activated in
a divergent state, then the only behaviour that can be relied upon is that the trace will be extended. In this
way, ) continues P’s divergence and behaves arbitrarily, but not even a divergent process can undo past
events. A particular consequence of CSP1 is that the value of wait in @ is irrelevant. So, there are only
three situations that are important in P: okay’ A wait’, okay’ A — wait’, and — okay’.

The sequence of events ¢r records the events that occurred before the program was started; the sequence
tr’ records the events that occurred up to the intermediate or final state. The set of events ref’ describe
the events being refused in the intermediate or final state. Finally, the set of events ref is used only for a
technicality: to make the program’s relation homogeneous in its dashed and undashed components.

A denotational semantics for Circus was first published in [WC02]; it was also based on the UTP, but
there our model for a Circus program is a 7Z specification. By using Z, that semantics allowed the use of tools
like Z/EVES [Saa97] to analyse and validate the definitions, and to reason about systems specified in Circus.
Unfortunately, that semantics is not appropriate to prove our refinement laws. The reason is that in [WC02]
we provided a shallow embedding [BG95] of Circus in Z. Such an embedding does not allow us to express
these laws; in order to prove properties about Circus itself, like our refinement laws, a new embedding of
Circus in Z is needed. For this reason, in this paper, we provide Circus with a new and definitive denotational
semantics. The approach taken in [CWO06] described below was an inspiration for this semantics and fosters
the reuse of the results presented there, simplifying and modularising the proofs of our refinement laws.
Furthermore, based on this new semantics, we were able to mechanise the syntax and the semantics of Circus
in Z. This allows us to mechanise the proofs of the Circus refinement laws that have already been done.

In [CWO06], we present an introduction to CSP in the UTP. Our definitions correspond to the ones
presented in [HJ98], but with a different style of specification: every CSP process is defined as a reactive
design of the form R(pre b post). A design pre b post is defined as okay A pre = okay’ A post: if the
program starts in a state satisfying its precondition, the design will terminate, and, on termination, it will
establish its postcondition. Using this style, we use a design to define the behaviour of a process when its
predecessor has terminated and not diverged; the process behaviour in the other situations is defined by the
healthiness condition R, which is a composition of three healthiness conditions that we explain in the sequel.
As we prove in [CW06], they can be composed in any order.

Healthiness conditions are used in the UTP to test a specification or design for feasibility, and reject
it, if it makes implementation impossible in the target language. They are often expressed in terms of an
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Formal Representation Description

R1 RI1(P)= PAtr<ir The execution of a reactive process
never undoes any event that has al-
ready been performed.

o~

R2 R2(P(tr,tr')) = P({),tr' —tr) The behaviour of a reactive process is

oblivious to what has gone before.

R3 R3(P) Z Iyeq <wait > P Intermediate stable states do not
progress.

Table 1. Healthiness Conditions — Reactive Processes

idempotent function ¢ that makes a program healthy; every ¢-healthy program P is a fixed point of ¢.

In Table 1, we summarise the three healthiness conditions that, together, characterise reactive processes.
The first healthiness condition, R1, states that the history of interactions of a process cannot be changed,
therefore, the value of #r can only get longer. The condition tr < ¢’ holds if, and only if, the sequence tr
is a prefix of or equal to the sequence tr’. The second healthiness condition, R2, establishes that a reactive
process should not rely on the interactions that happened before its activation. The expression s — ¢ stands
for the result of removing an initial copy of ¢ from s; this partial operator is only well-defined if ¢ is a prefix
of s. The sequence tr’ — ¢r represents the traces of events in which the process itself has engaged from the
moment it starts to the moment of observation. The final healthiness condition, R3, defines the behaviour
of a process that is still waiting for another process to finish: it should not start. If the condition b is true,
the predicate P < b > @ is equivalent to P; otherwise, it is equivalent to Q.

We consider the state variables v and v’ as part of the following definition for the reactive skip.

IOyeq = (— okay A tr < tr') V (okay’ A tr' = tr A wait’ = wait A ref’ = ref A v =)

If the previous process diverged, the reactive skip only guarantees that the history of communication is
not forgotten; otherwise, it terminates and keeps the values of the variables unchanged. For conciseness,
throughout this paper, given a process with state components and local variables zy, ..., z,, the predicate
v" = v denotes the conjunction z{ =z A ... Az = z,.

The reactive skip could not be defined as a design, because the set of designs and the set of reactive
processes are disjoint [CWO06]. It could, however, be defined as a reactive design.

Theorem 1.1. II,., = R(true - II)

This theorem can be proved by expanding the definitions of the healthiness conditions and designs. The II
is the relational skip; it is defined as okay’ = okay A tr' = tr A wait’ = wait A ref’ = ref A v/ = v.

The most recent denotational semantics of Circus was presented in [OCWO06al; it is based on the work
presented in [WCO02] and [HJ98], but follows the style of [CWO06]. In [CWO06], we write the UTP definitions
of some CSP operators as reactive designs; we illustrate the approach in detail for the prefixing operator.
In this paper, we use these results to define a definitive semantics for Circus. Each construct is formally
described in terms of a predicate in the UTP theory which extends the CSP theory with new operators and
extra healthiness conditions.

Based on the new definitions, we proved over ninety-two percent of the one-hundred and forty-six re-
finement laws of Circus that were proposed in [Oli05b] inspired by industrial case studies. These proofs,
which can be found in [Oli05a], are of soundness with respect to the semantics in this paper; they range over
all the constructs of the language and include all the data simulation laws. Besides supporting a practical
refinement technique, the proof of the refinement laws helped us to validate the semantics presented in this
paper. Furthermore, this validation was also done by studying its relationship to the UTP CSP theory, as
discussed in Section 3, and by proving the soundness of the Circus operational semantics [WCF05].

In [OCWO06a], we also discussed the structure of the library of lemmas and theorems created during that
work and illustrated its usefulness by presenting the proof of one of our refinement laws. In this paper, we
extend this discussion by presenting further examples of lemmas and proofs that use the proof strategy.

In [OCWO06b], we discuss a mechanisation of the UTP theory and our new Circus semantics using
ProofPower-Z [PPW]; it uses Z as a meta-notation to provide a model for our theory. More specifically,
we present a set-based model to UTP relations, and use it as a basis for the mechanisation of five theo-
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channel init, liftNozzle, putNozzle, pressTrigger, release Trigger
channel enterAmount, reload : N

process Pump =

begin state PState = [ fuel@ : N]
PInit = [ PState’ | fuel@’ = 5000 ]
Reload = [APState; q7 : N | fuel@Q' = fuel@ + q7]
Supply = [APState; ¢q7 : N| fuel@Q' = fuel@Q S q7?]

Pumpldle = liftNozzle — PumpActive
O reload?q — Reload
0O snit — Plnit
PumpActive = putNozzle — Skip
O enterAmount?q — pressTrigger — Supply; releaseTrigger — Skip

o init — Plnit; u X e Pumpldle; X
end

~

chanset SyncCustomer = {| liftNozzle, pressTrigger, release Trigger, enter Amount [}
chanset SyncEmployee = {| init, reload [}

process SinglePumpEmployee = init — reload!1000 — Skip
process SinglePumpStation = (Single PumpEmployee || SyncEmployee || Pump) \ SyncEmployee

Fig. 1. Fuel Pump in Circus

ries: relations, designs, reactive processes, CSP, and Circus. It is a conservative extension of the existing
theories of ProofPower-Z; this guarantees soundness. The automation of the proofs of the Circus refinement
laws, however, was left as future work. In this paper, we describe the issues that were raised during this
automation, which provide Circus with a mechanised refinement calculus; it is the basis for a refinement
editor and a theorem prover for Circus.

In the next section we present Circus. Section 3 describes the Circus denotational semantics based on the
UTP. A discussion on the Circus healthiness conditions is presented in Section 4 and the mechanisation of
the Circus semantics in a theorem prover, ProofPower-Z is presented in Section 5. In section 6 we discuss the
structure of the library of lemmas and theorems created during this work; its usefulness is illustrated with
the proofs of some of our refinement laws. A discussion of the automation of these proofs is also presented
in this section. Finally, we draw some conclusions in Section 7.

2. Circus

Circus is based on imperative CSP, but includes specification facilities in the Z style; this enables both
state and communication aspects to be captured in the same specification. Circus programs are formed by
a sequence of paragraphs: channel declarations, channel set definitions, Z paragraphs, or process definitions.
A process encapsulates its state and communicates through channels.

An example is given in Figure 1: it specifies a process that controls a fuel pump. Seven channels are used
in the system: init is used to initialise the pump, liftNozzle and putNozzle indicate to the pump that the
nozzle has been lifted or put back, pressTrigger and releaseTrigger indicate to the pump that the trigger
has been pressed or released, enterAmount is used by customers to enter the amount of fuel they want, and
finally, reload is used by the gas station employee to reload the pump.

In Figure 2, we present the BNF of the Circus syntax. We use CircusPar™ to denote a possibly empty list of
elements of the syntactic category CircusPar of Circus paragraphs; similarly for PPar® (process paragraphs).
We use N to denote a non-empty list of Z identifiers N. The categories Par, SchemaExp, Exp, Pred, and Decl
include the Z paragraphs, schema expressions, expressions, predicates and declarations defined in [Spi92].

The declarations of all the channels give their names and the types of the values that they can commu-
nicate. In Figure 1, channels enterAmount and reload communicate the amount of fuel that the client wants
and the amount of fuel that was loaded into the pump. If, however, a channel does not communicate any



A UTP semantics for Circus 5

Program = CircusPar*
CircusPar = Par | channel CDecl | chanset N == CSExp | ProcDecl
CDecl :=  SimpleCDecl | SimpleCDecl; CDecl
SimpleCDecl == N7T | NT:Exp | [NT]NT : Exp | SchemaExp
ProcDecl = process N = ProcDef | process N[NT| = ProcDef
ProcDef := Decl @ ProcDef | Decl ® ProcDef | Proc
Proc := begin PPar* state N = SchemaExp PPar* e Action end
| Proc; Proc | Proc O Proc | Proc M Proc | Proc || CSExp ]| Proc
| Proc ||| Proc | Proc \ CSExp | (Decl ® ProcDef)(Exp™) | N(Expt) | N
| (Decl ® ProcDef)|Exp™| | N|Exp™] | Proc[NT := N*] | N[ExpT]
| ; Decl e Proc | O Decl ® Proc | M Decl ® Proc
| |[CSExp]| Decl @ Proc | ||| Decl  Proc
PPar := Par | N = ParAction | nameset N == NSExp
ParAction := Action | Decl e ParAction
Action = SchemaExp | Command | N | CSPAction | Action [N := Exp™]
CSPAction ;= Skip | Stop | Chaos | Comm — Action | Pred & Action
| Action; Action | Action O Action | Action I Action
| Action |[[NSExp | CSExp | NSExp ]| Action
| Action |[NSExp | NSExp]| Action
| Action \ CSExp | ParAction(Exp™) | uN e Action
| ; Decl @ Action | O Decl e Action | 1M Decl o Action
| |[CSExp]| Decl @ [NSExp]| e Action | ||| Decl o|[NSExp]| Action
Comm := N CParameter* | N [Exp™] CParameter*
CParameter ::= 7N | 7N : Pred | !Exp | .Exp
Command := NT :=Exp™ | if GActions fi | var Decl o Action
| N7 :[Pred,Pred] | {Pred} | [Pred]
| val Decl o Action | res Decl o Action | vres Decl o Action
GActions = Pred — Action | Pred — Action O GActions

Fig. 2. Circus syntax

value its declaration contains only its name. This is illustrated in Figure 1 by the declaration of channels
init, liftNozzle, putNozzle, pressTrigger, and release Trigger.

Generic channel declarations introduce families of channels. For instance, channel [T] ¢ : T declares
a family of channels c¢. For every actual type S, we have a channel ¢[S] that communicates values of type
S. Channels can also be declared using schemas that group channel declarations. Channel sets may be
introduced in a chanset paragraph. The empty set {|[}, channel enumerations enclosed in {| and [}, and
expressions formed by some of the Z set operators are the elements of the syntactic category CSExp. In a
similar way, the empty set {}, name enumerations enclosed in { and }, and expressions formed by some of
the Z set operators are the elements of the syntactic category NSExp. In our example, the set SyncCustomer
groups the channels through which a customer may interact with the pump and the set SyncEmployee groups
the channels through which an employee may interact with the pump.

A process may be explicitly defined or defined in terms of other processes (compound processes). An
explicit process definition is delimited by the keywords begin and end, and is formed by a sequence of
process paragraphs; a nameless action at the end defines the process behaviour. The process Pump in Figure 1
is defined in this way. The schema PState describes the internal state of the Pump: it contains a natural
number fuel@ that stores the current quantity of fuel in the pump. The behaviour of Pump is described by
the unnamed action after the e. It is recursive: after a request to initialise, it performs the initialisation of
the state, and behaves recursively, executing Pumpldle. The state component fuel( is initialised with 5000
using the Z operation PInit. The Z operation Reload adds an input value ¢? to the current quantity of fuel
fuel@; Supply subtracts (not below zero) the input ¢? from the current quantity of fuel.

Compound processes are defined using the CSP operators of sequence, external and internal choice,
parallel composition and interleaving, or their corresponding iterated operators, event hiding, or indexed
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operators, which are particular to Circus specifications, and are described later in this section. We can also
instantiate a parametrised process by providing values for each of its parameters.

The parallel operator follows the alphabetised approach adopted by [Ros98]; we must declare a syn-
chronisation channel set. By way of illustration, the process Single PumpStation presented below is a parallel
composition of an employee and a pump. The employee initialises the pump and reloads it with an additional
1000 litres. The employee and the pump synchronise on the set of events SyncEmployee.

Processes can also be composed in interleaving. For instance, a process that represents two pumps running
independently can be defined as follows.

process TwoPumps = Pump || Pump

In this case the occurrence of any event in SyncCustomer or SyncEmployee in the environment leads to
a non-deterministic choice of which Pump will synchronise with that event. For instance, if an event init
occurs, one of the processes initialises, and the other one does not.

The event hiding operator P \ cs is used to encapsulate the events that are in the channel set cs. This re-
moves these events from the interface of P, which become no longer visible to the environment. For instance,
the process Single PumpStation encapsulates the interaction between the processes Single PumpEmployee and
Pump (SyncEmployee); the only way to interact with Single PumpStation is via the channels in SyncCustomer.

Circus introduces a new operator that can be used to define processes. The indexed process i : T ® P
behaves exactly like P, but for each channel ¢ of P, we have a freshly named channel c_i, where ¢ is the
name of the variable. These channels are implicitly declared by the indexed operator, and communicate
pairs of values: the first element, the index, is a value i of type T, and the second element is the value of
the original type of the channel. An indexed process P can be instantiated using the instantiation operator
P|e]; it behaves just like P, however, the value of the expression e is used as the first element of the pairs
communicated through all the channels.

For instance, we may define a process similar to TwoPumps, in order to have the same process that
represents two pumps running independently, but with an identification of which pump is initialised. In
order to interact with the indexed process below we must use the channels init_i, lift Nozzle_i, and so on.

process IndexPump = i : {1,2} ©® Pump

We may instantiate the process IndexPump: the process IndexPump|1], for instance, inputs pairs through
channel enterAmount_i whose first elements are 1 and the second elements are the amount of fuel requested
by the customer. It may be initialised by sending the value 1 through the channel init_i. Similarly, we have
the process IndezPump|2|. Finally, we have the process presented below that represents a pair of pumps: the
first element of the pairs that are communicated through channels like enterAmount_i identifies the pump.

process TwoPumpsld = IndezPump|1] || IndexPump|2]

The renaming operator P[oldc := newc] replaces all the communications that are done through channels
oldc by communications through channels newc, which are implicitly declared, if needed.

An action can be a schema expression, a guarded command, an invocation of any action, or a combination
of these constructs using CSP operators. Also, three primitive actions are available: Skip, Stop, and Chaos.
The action Skip does not communicate any value nor changes the state: it terminates immediately. The
action Stop deadlocks, and the action Chaos diverges.

The prefixing operator is standard, but a guard construction may be associated with it. For instance,
if the condition p is true, the action p & ¢?z — A inputs a value through channel ¢ and assigns it to the
variable x, and then behaves like A, which has the variable x in scope. If, however, the condition p is false,
the same action blocks. Such enabling conditions like p may be associated with any action.

The CSP operators of sequence, external and internal choice, parallel composition, interleaving, their
corresponding iterated operators, and hiding may also be used to compose actions. Communications and
recursive definitions are also available. In Pump we use an external choice to define Pumpldle: the nozzle
can be lifted, in which case the Pump behaves like PumpActive, or the pump can be reloaded, using channel
reload, or the pump can be initialised using channel init. In PumpActive, we have another external choice: the
nozzle can be put back in the pump, in which case the pump recurses, or an amount of fuel may be requested
via channel enterAmount, in which case the pump waits for the trigger to be pressed, and then it supplies
the amount of fuel requested, releases the trigger, and recurses.

To avoid conflicts in the access to the variables in scope, parallel composition and interleaving of actions
must declare a synchronisation channel set and two disjoint sets of variables. In the parallel composition
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A |[ns1 | es | nsg]| Az, the actions A; and Ay synchronise on the channels in the set c¢s. Both A; and Ao
have access to the initial values of all variables in both ns; and nse, but A; and As may modify only the
values of the variables in ns; and nss, respectively. The changes made by A; in the variables in ns; are not
seen by As, and vice-versa.

Finally, an action may also be a variable block, a specification statement, an assumption, a coercion, an
alternation, or an assignment. The semantics of Circus is an enriched failures-divergences model expressed
in the UTP. It caters for communication and reaction, like the model of CSP, but also for data and data
operations. The details of this semantics is the subject of the next section.

3. Circus denotational semantics

The original semantics given as a translation from Circus to Z [WC02] only allowed the proof of properties of
particular Circus specifications, rather than general properties of Circus constructs, like the refinement laws.
The denotational semantics of Circus that we present in the sequel provides a framework to prove properties
of Circus as well as of Circus specifications; its summary can be found in Appendix B.

3.1. Circus actions

A Circus action can be a CSP process, a guarded command, an invocation of any action, a schema expression,
or a combination of these constructs using CSP operators. The following sections present the semantics of
each one of them.

8.1.1. Basic actions

The first action we define is the deadlock Stop: it is incapable of engaging in any events and is always waiting.
Stop = R(true - tr' = tr A wait’)

Stop has a true precondition because it never diverges. Furthermore, it never engages in any event and is
indefinitely waiting; therefore, its trace is left unchanged and wait’ is true. Since it represents deadlock, Stop
must refuse all events: the final value of the refusal set, ref’, is left unconstrained because any refusal set is
a valid observation. As state changes do not decide a choice, in order to be the unit for external choice, Stop
must leave the values of the state components unconstrained. In [CWO06], we have proven that this definition
corresponds to that of the UTP.

Skip is the action that terminates immediately and makes no changes to the trace or to the state com-
ponents: its reactive design has a true precondition and &' = tr A = wait’ A v’ = v as postcondition. The
value of ref’ is left unspecified because it is irrelevant after termination.

The worst Circus action is Chaos; it has an almost unpredictable behaviour and has R(false F true) as
its semantics. Since it is defined as a reactive design, Chaos cannot undo the events of a process history. For
this reason, it is not the right zero for sequential composition.

3.1.2. Sequence

The Circus sequential composition is not defined as a reactive design but as the relational sequence, which
is defined in the UTP as an existential quantification on the intermediary state.

Al; A2 = dag e Al[xo/l'/] A AQ[ZL'()/%]

In this definition, besides the state components and local variables v, the list of variables z also contains the
four UTP observational variables.

3.1.8. Guarded action

The guarded action g & A deadlocks if ¢ is false, and behaves like A otherwise. For conciseness, in
the definition that follows and throughout this paper, we abbreviate A[b/okay’][c/wait] as A%. Basically,
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Formal Representation Description
CSP1 CSP1(P)= PV (- okay A tr < tr')  Extension of the trace is the
only guarantee on divergence.
CSP2 CSP2(P)= P;J A process may not require
J = (okay = okay’) A tr/ = tr non-termination.
A wait’ = wait A ref’ = ref
ANV =w
CSP3 CSP3(P)= SKIP; P A process does not depend on
ref.
CSP4 CSP4(P)= P; SKIP A terminating process does not
restrict ref’.
CSP5 CSP5(P)= P || SKIP A deadlocked process that is

refusing some events offered by
the environment is still dead-
locked in an environment that
offers even fewer events.

Table 2. Healthiness Conditions — CSP Processes

Al =
!
cessor to finish, and A} = A[true/okay'][false/wait] are the conditions in which A does not diverge when it

is not waiting for its predecessor to finish.

g& A= R((g= A (gAAL)V (=g Atr' = tr A wait')))

Alfalse/okay'][false/wait] are the conditions in which A diverges when it is not waiting for its prede-

If the guard g is false, this definition can be reduced to Stop. However, if g is true, we are left with the
reactive design R(— A; H A}); the following theorem shows us that this reactive design is exactly A itself.

Theorem 3.1 (from [HJ98]). For every CSP process A, A = R(— A}C = Af).

This theorem is proved in [HJ98] and applies to CSP processes. These processes are defined in the UTP
as reactive processes that satisfy two other healthiness conditions presented in Table 2: the only guarantee
on divergence of a CSP1 process is the extension of the trace, and CSP2 processes may not require non-
termination. In the definition of CSP2 we take the approach of [CWO06] instead of that in [HJ98]. We make
use of an idempotent function CSP2, which is defined in terms of a predicate J defined as follows:

J = (okay = okay’) A tr' = tr A wait’ = wait A ref’ =ref ANv' =

Besides CSP1 and CSP2, processes that can be defined using the notation of CSP satisfy other healthiness
conditions. The first one of them, CSP3, requires that the behaviour of a process does not depend on the
initial value of ref; only the value of ref’ is relevant to determine which events can be refused. Intuitively, the
set of events that were previously refused (ref) should not be of any concern to the current process. Next, a
terminating CSP4 process does not restrict ref’. Finally, a deadlocked CSP5 process that is refusing some
events offered by the environment is still deadlocked in an environment that offers even fewer events.

The definition of CSP3 refers to the CSP SKIP!, which is defined as R(3ref @ II). The UTP model
of CSP processes, that is, those that satisfy CSP1 and CSP2, is not isomorphic to the failures-divergences
model [CWO06]; it includes extra processes, and for those SKIP is not necessarily an identity. These extra
processes may exhibit, for example, miraculous behaviour. They are useful for a theory that combines data
operations, CSP constructs, and a refinement notion.

3.1.4. External and internal choice

An external choice A; O As does not diverge if neither A; nor As do. We capture this behaviour in the
precondition of the following definition of external choice. The postcondition establishes that if the trace has

L Tt is important to notice the difference between the CSP SKIP (capital letters) and the Circus Skip (capital S).
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not changed and the choice has not terminated, the behaviour of a choice is given by the conjunction of the
effects of both actions; otherwise, the choice has been made and the behaviour is either that of A; or As.

A, O Ay = R(" A1§ A= AQ}C H (Aljtc AN AQ;‘) Qtr' = tr A wait’ > (Aljtc \ AQJtc))

It is a direct and important consequence of this definition that a state change does not resolve a choice; this
would be expressed by including v = v in the condition of the postcondition.

For example, let us consider the choice (z := 0; ¢; — Skip) O (z := 1; ¢o — Skip). It does not happen
instantly, but only when either ¢; or ¢ happens. The final value of z depends on which communication actu-
ally happens. We have chosen state changes not to resolve an external choice because states are encapsulated
within a Circus process, and so their changes should not be noticed by the external environment.

The internal choice is not defined as a reactive design: it is the disjunction of both actions. This is a
simple definition, and the use of reactive designs to define an internal choice gives rise to a slightly more
complicated definition.

8.1.5. Prefized action

Our semantics for prefixed actions uses the function do presented below, which gives the behaviour of the
prefixed action regarding ¢r and ref’. For us, an event is a pair (c, €), where the first element is the name
of the channel and the second element is the value that is communicated. For events that do not model
the communication of any specific value, we have the special value Sync. While waiting, an action that is
willing to synchronise on an event (¢, e) has not changed its trace and cannot refuse this event. After the
communication (— wait’), the event is included in the trace of the action.

do(c,e) = tr' =tr A (c,e) & ref’ Qwait’ > tr' = tr ~ {(c, e))
This function is much simpler than the function do4 used in the UTP [HJ98] to define the CSP prefixing.
Basically, the function do4 is a result of applying R to do. Lemma 3.1 presented below states this property;
its proof and the proof of other lemmas used in this paper can be found in Appendix A.

Lemma 3.1. doyq = R(do)

In what follows, we use this lemma to calculate the definition of the CSP prefixing as a reactive design.
Our calculation is presented in Figure 3. In the first step, we use Theorem 3.1 to write the CSP prefixing
as a reactive design. Now, our concern is to transform the pre and the postcondition into more intuitive
predicates. We use the two following lemmas.

Lemma 3.2. (¢ — SKIP); = = okay A tr < tr’
Lemma 3.3. (¢ — SKIP); = CSP1(do (c, Sync))

First, prefixing only diverges if it has already started in a divergent state, in which case, it only guarantees that
the trace is not forgotten. At the end, the prefixing establishes the expected result given by the expression
do (¢, Sync); the properties on divergence are guaranteed by CSP1. We continue our transformation by
using both lemmas to transform the pre and the postcondition. Next, the definition of designs and simple
predicate calculus can be used to simplify the precondition. Furthermore, the simple expansion of designs
shows us that we may include (or remove) okay in (or from) the postcondition of any design. We use this
fact, to introduce okay in the postcondition. The last lemma that we use in this calculation states that the
application of CSP1 is innocuous if we have that okay is true.

Lemma 3.4. okay A CSP1(P) = okay N P

The expansion of CSP1 and simple predicate calculus is enough to prove this lemma. We use this lemma
and the freedom to remove okay from the postcondition to conclude the calculation in Fig. 3.

O

The CSP prefixing never diverges and establishes the result of do on termination. This definition cor-

responds directly to the Circus one presented below; the only difference is that in Circus we must consider
state variables: the Circus prefixing does not diverge nor does it change the state.

¢ — Skip = R(true F do (¢, Sync) A v’ = v)

An input prefixing considers every possible value that can be communicated through the channel. Besides,
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¢ — SKIP

= R(~ (¢ — SKIP)} b (c — SKIP)!) [Theorem 3.1]
= R(= (= okay A tr < tr') F CSP1(do (¢, Sync))) [Lemmas 3.2 and 3.3]
= R(true - okay N CSP1(do (¢, Sync))) [Designs and predicate calculus]
= R(true + do (¢, Sync)) [Lemma 3.4]

Fig. 3. Calculation of prefixing as a reactive design

once the communication happens, the value of the input variable changes accordingly. The function doz takes
these aspects into account. We use an environment ¢ that records for each channel c¢ its type d(c). Before
the communication, c?x : P cannot refuse any communication in the set composed by the events on ¢ that
communicate values of the type of ¢ that satisfy the predicate P. After the communication the trace is
extended by one of these events. Besides, the final value of z is that which is communicated. The function
snd returns the second element of a pair, and the function last returns the last element of a non-empty list.

doz (¢,z,P)= tr' =tr AN{e:d(c)| Pe(c,e)}Nref =0
Qwait' >
tr' —tre{e:0(c)| Pe{(c,e))} Az’ = snd(last(ir’))
Similarly to non-input prefixed action, we define the input prefixed action in terms of dor; however,

c?x : P — A(z) implicitly declares a new variable z and, after the communication, uses the communicated
value in A. We consider below that variable lists v and v’ do not contain z and z’, respectively.

c?r: P — A(x) = var z e R(true b doz (¢, z, P) A v' = v); A(x)

In [Oli05b], we show that if the set {e : d(c¢) | P} is finite, the input prefixing above corresponds to the
external choice Oz : {e : 6(¢) | P} e c.x — A(z). In this paper, we do not consider all the possible
combinations of inputs and outputs in a prefixing; their semantics is lengthy, but not illuminating.

8.1.6. Parallel composition and interleaving

The parallel composition A4, [ns; | ¢s | ns2]| A2 models interaction between the two concurrent actions 4; and
As. Here, we assume that references to channel sets have already been expanded using their corresponding
definitions. We present the semantics of the parallel operator as a reactive design in two parts: first we discuss
its precondition, and then, we discuss its postcondition.

Divergence can only happen if it is possible for either of the actions to reach divergence. This is charac-
terised by a trace that leads one of the actions to divergence and on which both actions agree regarding cs.
For instance, 31.tr',2.tr" o (Ali,c; (Ltr" = tr)) A (Agg; (2.t = tr)) A Ltr' | cs = 2.tr' | cs characterises
possibility of divergence for A;. If there exist two traces 1.tr" and 2.tr', defined as a trace of A; after diver-
gence and as a trace of Ay, and if these two traces are equal modulo cs, then it is possible for A; to reach
divergence. First, we define the trace 1.tr' on which A; diverges as Alﬁ; (L.¢r" = tr). The first predicate
of the sequence give us the conditions under which A; diverges; we record the final trace in 1.tr’ in the
second predicate of the sequence, which ignores the final values of the other variables. In this case, we are
not interested in the divergence of A5 because A; is already divergent; hence, we do not replace okay’ by
any particular value. Similarly, we define 2.t for Ay as Aay; (2.tr' = tr). Finally, we compare these traces
after removing all the events that are not in c¢s (using the sequence filtering function [). These can occur
independently, but for the communications that require synchronisation, 1.tr" and 2.tr’ have to agree.

In a very similar way as we presented above for A;, we can also express the possibility of divergence for
As. The parallel composition diverges if either of these conditions are true; hence, the precondition of the
reactive design for the parallel composition is the conjunction of the negation of both conditions.

The postcondition uses the parallel by merge from [HJ98]. Conceptually, it runs both actions indepen-
dently and merges their results afterwards:

((Alﬁ; Ul(outa A1) A (AQ;; U2(outa Ag)))+{1,7t,«}; M (cs)

To express their independent executions, we use a relabelling function Ul: the result of applying Ul to a set
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{v{,..., v} of dashed names is l.v] = v; A ... A l.v], = v,. For instance, the application of U1 to {wait'}
yields the predicate 1.wait’ = wait. Before the merge, however, we extend the alphabet of the predicate that
expresses the independent execution of both actions with v and ¢r and their dashed counterparts; in this
way, we record the initial values of the trace tr and of the state components and local variables v in tr’ and
v, respectively. For a predicate P and name n, the alphabet extension P, is equivalent to P A n' = n.
The initial values of ¢r and v are used by the merge function M|, as we explain in the sequel.

The function M receives a channel set and merges the traces of both actions, the state components, local
variables, and the UTP observational variables.

My(cs) = tr' —tr € (Ltr —tr ||, 2.4r —tr) A Ltr [ cs = 2.tr | cs
((Lowait V 2.wait) A ref’ C ((1.ref U2.1ef) Nes) U ((L.ref N2.ref) \ ¢s))
A ( <wait'> )
(= L.wait A = 2.wait A MSt)

The trace is extended with the merge of the new events that happened in both actions. The function ||,
takes the individual traces and gives a set containing all the possible combinations of these two traces taking
c¢s into consideration. The expression before the merge gives us all the possible behaviours of running A; and
As independently; however, only those combinations that are feasible regarding the synchronisation on cs
should be considered (1.t [ ¢s = 2.tr | ¢s). The definition of || ., is omitted here but can be found in [Oli05b];
it is similar to that presented in [Ros98] for CSP. Finally, the parallel composition has not terminated if any
of the actions have not terminated. In this case, the parallel composition refuses all events in cs that are
being refused by any of the actions and all the events not in ¢s which are being refused by both actions. In
order to terminate, both actions in the parallel composition must terminate; we merge the state as follows.

MSt= Vve(vensy = v =1v)A(vEns=v =29v)A (v ¢ nsgUnsy = v' =)

For every variable v, if it is declared in nsy, its final value is that of A;; if, however, it is declared in nss, its
final value is that of A,. Finally, if it is declared in neither ns; nor nss, its value is left unchanged.
We present below the whole of the semantics of parallel composition.

Ay |[nsy | cs| nsa] Az =
- 3Lt 2.4r" e (Al}c; (Ltr" =tr)) A (Azg; (2.tr" = tr)) A Ltr' [ cs =2.tr" | cs
r| A 3L 200 e (A (Ltr' = tr)) A (Agf; (2.tr' =tr)) ANLtr' [ es =2.0r" | ¢cs
|_
((Alﬁ-; Ul(outa A1) A (AQ;‘; U2(outa Ag)))+{v7tr}; M (cs)

The interleaving does not have to consider any synchronisation channel. An interesting aspect regarding
the differences between the definitions of parallel composition and interleaving is the much simpler precondi-
tion for interleaving. Since both actions may execute independently, the interleaving of two actions diverges if
either of the actions does. Therefore, its precondition is the same as that for external choice — Al}c A~ Ag?.
Its postcondition is very similar to that of the parallel operator, but uses a different merge function M.
Interleaving is equivalent to parallel composition on an empty synchronisation channel set.

8.1.7. Hiding

The hiding operator is also not defined as a reactive design. The calculations to express hiding as a reactive
design pointed out that the final definition would be quite complicated and extensive; hence, we preferred
to base our definition on that presented in [HJ98] for the CSP hiding. In the definition presented below,
EVENT denotes the universal set of events.

A\ es = R(Is e Als,csUref'[tr',ref'| A (¢r' —tr) = (s — tr) | (EVENT — cs)); Skip

If A reaches a stable state in which it cannot perform any further events in c¢s, than the action A \ cs has
also reached such state. The new events (¢r' — tr) performed by A \ c¢s are those new events performed
by A (in this definition, we rename the final trace of A to s; so s — tr gives us the new events of A), but
filtered by the set of all events but those in cs. We also include the events in c¢s in the final refusal set of
A by replacing ref’ by cs U ref’. Skip guarantees that possible divergences introduced by hiding events in a
recursive action are actually captured.
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3.1.8. Recursion

We consider only the explicit definition (X e F(X)) of recursion; the implicit definition using action
invocation can be syntactically transformed to it. The semantics of recursion is standard: for a monotonic
function F' from Circus actions to Circus actions, the weakest fixed-point is defined as the greatest lower
bound (the weakest) of all the fixed-points of F ([ [{X | F(X) C4 X}); in a similar way, mutually recursive
actions are defined as weakest fixed-points, but the functions are vectorial and so is the refinement order. In
our work, C 4 denotes action refinement; its definition can be found in [CSW03].

3.1.9. Iterated operators

Iterated operators are used to generalise the binary operators of sequence, external and internal choice,
parallel composition, and interleaving; only finite types can be used for the indexing variables. Basically, the
semantics of all the iterated operators is given by the expansion of the operator.

8.1.10. Action invocation, parametrised action and renaming

The semantics of a reference to an action name is given by the copy rule: it is the body of the action. Invocation
of an unnamed parametrised action (d e A)(e) is defined simply as the substitution of the argument e for
the formal parameter declared in d. The renaming of the local variables and state components is simply the
syntactic substitution of the new names for the old ones.

3.1.11. Commands

The semantics of assignment is rather simple: it never diverges, terminates successfully leaving the trace
unchanged, and sets the final values of the variables in the left-hand side to their new corresponding values.
The remaining variables, denoted in the definition below by u (v = v \ {z1,...,2,}), are left unchanged.

TlyeoyTpi=€1,...,6, = Rtruebtr' =tr A—wait’ ANz{ =eg A... ANz, = e, ANu' = u)

A specification statement only terminates successfully establishing the postcondition if its precondition
holds; only the variables in the frame can be changed. Furthermore, on successful termination, the trace is
left unchanged. Now, we use u to denote the variables that are not in the frame (v = v \ w).

w : [pre,post]| = R(pre bk post A = wait’ A tr' =tr Au' = u)

Assumptions {g} and coercions [ g] are simply syntactic sugaring for specification statements : [g, true] and
: [true, g], respectively.

Alternation can only diverge if none of the guards is true, or if any action guarded by a valid guard
diverges; any of the guarded actions whose guard is valid can be chosen for execution.

if]ieg— Afis R((Vieg)A(Nieg = —Al)F\ieg AAj)

Variable block is defined in terms of the UTP constructors var and end; the former begins the scope of
a variable, and the latter ends it.

Parametrisation by value, result, or by value-result are defined in terms of variable blocks and assignments.
For instance, in a parametrisation by value, the formal parameter receives the value of the actual argument,
which is actually used by the action; that is, we define (val z : T o A)(e) asvar z : T o z := e; A. If]
however, the parametrisation is neither by value, result, nor by value-result, the parameter is considered as
a local variable and its instantiation is the substitution of the argument for the formal parameter. This is
the parametrisation mechanism of CSP.

3.1.12. Schema expression

We use the basic conversion rule of [CW99] to characterise schema expressions as specification statements. We
assume that the schema expressions have already been normalised using the techniques presented in [WD96].
Besides, in Circus, the Z notations for input (?) and output (!) variables are syntactic sugaring for undashed
and dashed variables, respectively. This means that we actually have schemas containing the declaration of
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dashed (ddecl’) and undashed (udecl) variables, and, of course, a predicate that determines the effect of the
action. As a small abuse of notation, ddecl also stands for a comma-separated list of undashed variables
introduced as dashed variables in ddecl’.

[udecl; ddecl’ | pred] = ddecl : [ ddecl’ o pred, pred]

In this case, we are concerned with the Z constructs in Circus; the semantics is given by Z normalisation and
conversion to a specification statement, both justified by the Z theory and refinement calculus [CW99], and
by the use of R as a link to embed a data operation into the theory of reactive processes.

This definition concludes the semantics of the Circus actions. We are now left with the semantics of Circus
process, which we present in the sequel.

3.2. C(ircus processes

An explicitly defined process has an encapsulated state, a sequence PPars of paragraphs, and a main action
A. Tts meaning is that of a variable block that declares the state components and whose body is A.

begin state [decl | pred] PPars o A end = var decl o A

The invariant only plays a role when it is explicitly included in an operation schema. In other words, just like
in Z, types are maximal and invariants, therefore, only play a role in arguments of correctness. Constructs
like Skip, Stop, and Chaos, for example, do not enforce the maintenance of the invariant.

All compound processes are defined in terms of an explicit process specification. For instance, sequence,
external and internal choice are defined as follows; we use op to stand for any of ; , O or M.

begin state State = P.State A Q.State
P.PPar A= Q.State
Pop@= Q.PPar Nz P.State
e P.Act op Q. Act
end

The state of the process P op () is defined as the conjunction of the individual states of P and @; for
simplicity, we assume that name clashes are avoided through renaming. Furthermore, every schema in the
paragraphs of P (Q), specify an operation on P.State (Q.State); they are not by themselves operations
on P op Q. For this reason, we need to lift them to operate on the global State. For a sequence of process
paragraphs P.PPar, the operation P.PPar Az Q.State stands for the conjunction of each schema expression
in the paragraphs P.PPar with Z@Q.State; this indicates that they do not change the components of the
state of process @ (@Q.State). The main actions are composed in the same way using op.

For parallel composition and interleaving the only difference is that we must determine the state partitions
of the operators. These are the state components of each individual process. The semantics of hiding includes
all the process paragraphs as they are, but the main action includes the hiding.

Our semantics for an indexed process ¢ : T ® P is that of a parametrised process i : T e P. However,
all the communications within the corresponding parametrised processes are changed. For every channel ¢
used in P, we have a freshly named channel c¢_i, which communicates pairs of values: the first element is an
index ¢ of type T', and the second element is the value of the original type of the channel. The semantics of
the corresponding parametrised process is given using an extended channel environment ¢ that includes the
new implicitly declared channels c_i.

i:TOP= (i:TeP)c:usedC(P) e c_i.i

The notation P[c : usedC(P) e c_i.i] denotes the change, in P, of all the references to every used channel ¢
by a reference to c_i.i. Since our semantics for indexed processes are parametrised processes, the semantics
for their instantiation is simply a parametrised process invocation.

All the predicates used to give semantics to Circus constructs satisfy a number of healthiness conditions
that are important in the proof of laws. They are discussed in the next section.
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Formal Representation Description

C1 C1(A) = A; Skip The value of the variable ref’ has no rele-
vance after termination

C2 C2(A)= Al | 0] Skip A deadlocked process that refuses some
events offered by its environment will still
be deadlocked in an environment which of-
fers even fewer events

C3 C3(A) = R(- A];, true - A}) The precondition of a Circus process ex-
’ pressed as a reactive design contains no
dashed variables

Table 3. Healthiness Conditions — Circus Processes

4. Healthiness conditions

The vast majority of the Circus actions are defined as reactive designs of the form R(pre b post). Those
which are not defined in this way, reuse the results of [HJ98] and were proved to be reactive. As a direct
consequence of this, we have that the following theorem holds; its proof is by induction on the structure of
the Circus actions.

Theorem 4.1. Every Circus action is R (R1, R2, and R3) healthy.

In Section 3, we used Theorem 3.1 to reason about the behaviour of guarded actions. The following theo-
rem guarantees that Circus actions are indeed CSP1, CSP2 and CSP3 healthy, and therefore, Theorem 3.1
is applicable to them.

Theorem 4.2. Every Circus action is CSP1, CSP2, and CSP3 healthy.

Part of the proof of this theorem is a direct result from the fact that reactive designs are indeed CSP1 and
CSP2 [CWO06]. The rest of the proof is done by induction on the syntax of the language; for the sake of
conciseness, it is omitted here. This proof and the proof of all the new theorems presented in this paper can
be found in [Oli05al.

From Theorems 4.1 and 4.2, we already know that every Circus action is R and CSP1-CSP3 healthy.
However, processes that can be defined using the notation of CSP also satisfy other healthiness conditions: the
value of ref’ has no relevance after termination of CSP4 processes, and a deadlocked CSP5 process that
refuses some events offered by its environment will still be deadlocked in an environment that offers even
fewer events. Both CSP4 and CSP5 are expressed in terms of CSP constructs that have a slightly different
definitions in Circus: CSP4 processes satisfy the right unit law (P; SKIP = P) and CSP5 processes satisfy
the unit law of interleaving (P || SKIP = P) [HJ98]. The healthiness conditions C1 and C2 presented in
Table 3 lift these two healthiness conditions to state-rich Circus processes.

The last of the Circus healthiness conditions, C3, guarantees that every Circus action, when expressed as a
reactive design, has no dashed variables in the precondition. The sequential composition of the precondition
with true guarantees that only those actions with no dashed variables in the precondition will be a fixed-point
of the function C3.

The last theorem regarding healthiness conditions guarantees that every Circus operator is C1-C3 healthy.

Theorem 4.3. Every Circus action is C1, C2, and C3 healthy.

As for the similar theorems for R and CSP, the proof of this theorem is done by induction on the language.

Based on this new semantics, we proved over ninety percent of the one-hundred and forty-six proposed
refinement laws. The mechanical proof of these laws requires the mechanisation of the Circus semantics,
which is the subject of the next section.

5. Mechanising the Circus semantics

Our aim is to provide a mechanisation that can support the development of Circus programs using the Circus
refinement laws. In order to achieve such result, we mechanised the Circus semantics in a theorem prover,
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ProofPower-Z. In [OCWO06b], we presented the first step towards our objective, which is summarised in
Section 5.1: the mechanisation of the UTP in ProofPower-Z.

5.1. The UTP theories

A very important part of that work is the theory of relations. It provides a set-based model for alphabetised
relations. In this theory, we define alphabets, relations, and basic programming constructs as we briefly
describe in the sequel.

A name is an element of the given set NAME. Each relation has an ALPHABET, which is defined
as P NAME. Every alphabet a contains an input alphabet of undashed names, and an output alphabet of
dashed names. Instead of using free-types, which would lead to more complicated proofs in ProofPower-Z, we
use the injective (—) function dash : NAME — NAME to model name decoration. The set of dashed names
is defined as the range of dash. The complement of this set are the undashed names; hence, names are either
dashed or undashed, but multiple dashes is allowed. For the sake of conciseness, we omit the definitions of
the functions in_a and out_a, which return the input and the output alphabets of a given alphabet.

An alphabet a in which n € a & n’ € a, for all undashed names n, is called homogeneous. For us, n’ is
mechanised as dash(n). Similarly, a pair of alphabets (al, a2) is composable if n € a2 < n' € al, for every
undashed name n; this notion is used in the definition of relational sequence.

A value is an element of the free-type VALUE, which can be an integer, a boolean, a channel, a sequence
of values, a set of values, a pair of values, or a special synchronisation value.

VALUE ::= Int(Z) | Bool(B) | Channel(NAME) | Seq(seq VALUFE)
| Set(F VALUE) | Pair(VALUE x VALUE) | Sync

In ProofPower-Z, Bool(B) stands for the Z constructor Bool({(B)), which introduces a collection of constants,
one for each element of the set B. The ProofPower-Z type B is the booleans. The type VALUE can be
extended without any impact on the proofs because they do not depend on its structure.

Although we are defining an untyped theory, the observational variables have types; for instance, okay is
a boolean. For this reason, we have defined some restricted sets; for instance, boolean values are in the set
BOOL_VAL = {Bool(true), Bool(false)}.

Three definitions allow us to abstract from the syntax of expressions. The set of relations between values is
RELATION = VALUE « VALUE. The set of unary functions is UNARY _F = VALUFE -+ VALUEF; sim-
ilarly, for binary functions we have the set BINARY_F = (VALUE x VALUE) - VALUE, which defines
the set of partial functions from pairs of values to values. An expression can be a value, a name, a relation,
or a unary or binary function application.

EXPRESSION ::= Val(VALUE) | Var(NAME)
| Rel(RELATION x EXPRESSION x EXPRESSION)
| Puny(UNARY_F x EXPRESSION)
| Funy(BINARY _F x EXPRESSION x EXPRESSION)

The definitions for unary functions, binary functions, and relations only deal with values. For instance, for a
given unary function f, the expression Fun;(f, e) can only be evaluated once e is evaluated to some VALUE.

A binding is a partial function from NAME to VAL, and therefore we define the set of all bindings,
BINDING, as NAME - VAL. The type BINDINGS represents sets of bindings, P BINDING. Given a
binding b and an expression e with free variables in the domain (dom) of b, Eval(b, ) gives the value of e
in b (beta-reduction).

A relation is modelled in our work by the type REL_PREDICATE defined below. A relation is a pair: the
first element is its alphabet, and the second is a set of bindings, which gives us all bindings that satisfy the
UTP predicate modelled by the relation. The domain of the bindings must be equal to the alphabet.

REL_PREDICATE = {a: ALPHABET; bs : BINDINGS | (Vb : bs e dom(b) = a) e (a, bs)}

This corresponds directly to the definition of alphabetised predicates of the UTP.
In [OCWO06b], each predicate construct is defined as an alphabetised relation. One of them is true: for a
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given alphabet a, Trueg a is as the pair with alphabet a, and with all the bindings with domain a.

Truer : ALPHABET — REL_PREDICATE

Va: ALPHABET e Trueg(a) = (a,{b: BINDING | dom(b) = a})
In our work, we subscript the names of the constructs in order to make it easier to identify to which theory
they belong; we use R for the theory of relations.

Nothing satisfies false: the second element of Falser(a) is the empty set. This operator is the main
motivation for representing relations as pairs. If we had defined relations just as a set of bindings with the
same domain a, which would be considered as the alphabet, we would not be able to tell the difference
between Falser(ay) and Falser(as), since both sets would be empty. Besides, it is important to notice the
difference between Trueg(()) and Falseg(()): the former has a set that contains one empty set of bindings as
its second element, and the latter has the empty set as its second element.

All usual predicate combinators are defined. Conjunctions and disjunctions extend the alphabet of each
relation to the alphabet of the other. The function @ g is alphabet extension; the values of the new variables
are left unconstrained. In the following definition we make use of the Z domain restriction A <1 B: it restricts

a relation B : X < Y to a set A, which must be a subset of X, ignoring any member of B whose first
element is not a member of A.

_®pr_: REL_PREDICATE x ALPHABET — REL_PREDICATE

Yu: REL_ PREDICATE; a: ALPHABET
e u®ra=(ulUa,{b: BINDING | (u.l1<1b) € u.2 A dom(b) = u.1U a})

The conjunction is defined as the union of the alphabets and the intersection of the extended set of
bindings of each relation.

_ AR _: REL_PREDICATE x REL_PREDICATE — REL_PREDICATE
Vul,u2: REL_PREDICATE e ul Ap u2 = (ul.1Uu2.1, (ul ®p u2.1).2N (u2 &g ul.1).2)
The definition of disjunction is similar, but the union of the extend set of bindings is the result.
An alphabetised equality compares the values of variables and expressions. It is modelled as a function

from WF_FEqualsp to UTP relations. The type WF_FEqualsg is the set of triples (a, n, ¢) where the name n
is a member of the alphabet a and the free variables of the expression e are a subset of a.

=pr: WF_Equalsg — REL_PRED

Va_n_e: WF_Equalsy
=g (a_n_e) = (a_n_e.1,{b : BINDING | dom(b) = a_n_e.1 A b(a_n_e.2) = Fval(b, a_n_e.3)})

The alphabet of an equality is simply the alphabet given as argument. In Z, t.n refers to the n-th element of a
tuple ¢; for instance, a_n_e.1 represents the first element of a_n_e, which corresponds to the alphabet. For a
given alphabet a, name n, and expression e, such that n € a and the free variables of e are in a, the function
=g (a, n, ) returns a relational predicate (a, bs), in which for every binding b in bs, b(n) = Eval(b, e).

The negation = r of a relation 7 does not change its alphabet. Only those bindings b that do not satisfy
r (b ¢ r.2) are included in the resulting bindings. For the sake of conciseness, we omit the definitions of the
remaining relational operations like conditional (_ <1z _>g _), which can be trivially defined in terms of the
previously defined operators. All the definitions and proof scripts can be found in [Oli05a].

In [OCWO06b], we describe theories that contains definitions and properties of the observational variables
okay, wait, tr, and ref. For instance, in the theory utp-okay, we define okay as an undashed name.

okay : NAME
okay € undashed
We restrict the type of values which okay and okay’ can be associated with: they can only be boolean values.

Vb : BINDING | okay € dom(b) e b(okay) € BOOL_VAL
AV b : BINDING | dash(okay) € dom(b) e b(dash(okay)) € BOOL_VAL

The same restriction is valid for wait and wait’. Besides, only sequences of events can be associated with tr
and ¢r’, and ref and ref’ can only be associated with sets of events.
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Designs are defined in the theory utp-des. The set ALPHABET_DES is the set of all alphabets that
contain okay and okay’. First we define DES_PREDICATE, the set of relations u, such that u.1 is a
ALPHABET_DES. Designs with precondition p and postcondition ¢ are written p + ¢ and defined as
okay A p = okay’ A q. The expression okay is the equality okay =, true, which is mechanised in our work
as =g (a, okay, Val(Bool(true))). A design is defined as follows.

_Fp_: WF_DES_PREDICATE_PAIR — REL_PREDICATE

Vd: WF_DES_PREDICATE_PAIR e
d.1Fp d.2= (=g (d.1.1, okay, Val(Bool(true))) Ar d.1) =g
(=r (d.1.1, dash(okay), Val(Bool(true))) Ag d.2)

The members of WF_DES_PREDICATE_PAIR are pairs of relations (71, r2) of the type DES_PREDICATE
with the same alphabet. The turnstile is used by both ProofPower-Z and the UTP. The former uses it to
give names to theorems, and the later uses it to define designs. In our work, we have kept both of them, but
we subscript the UTP design turnstile with a D.

In the theory utp-rea, we define REA_PREDICATE, the set of relations whose alphabet is a member of
ALPHABET_OWTR; this is the set of alphabets that contain okay, tr, wait, ref, and their dashed coun-
terparts. Finally, a CSP_PROCESS is defined in the theory utp-csp as a CSP1_healthy and CSP2_healthy
reactive process: the sets containing all the CSP1 healthy and CSP2 healthy processes, respectively.

CSP_PROCESS = {p : REA_PROCESS | p € CSP1_healthy N p € CSP2_healthy}

The definitions of the theories of relations, designs, reactive processes, and CSP, and around five-hundred
theorems, is the result of the work in [OCWO06b]. This work was the basis for mechanising the Circus semantics
in [Oli05b]. In what follows, we present the automation of some of the Circus constructors.

5.2. The Circus theory

Although the constructors of CSP do not contain state variables, the set of processes described by the theory
of CSP contains processes that might have state components. The only restriction on the alphabet is that
it must contain the observational variables okay, wait, tr, and ref and their dashed counterparts in the
alphabet, but there may be more variables. Therefore, for us, Circus actions are modelled by predicates that
are in the set CSP_PROCESS; we do not define a new set of predicates.

The definitions of the ProofPower-Z theory of Circus, utp-circus, follow directly from the semantics pre-
sented in this paper. The Circus operators that are inherited from CSP have very similar definitions to their
CSP counterparts; however, the state components of the Circus processes must be taken into account in these
new definitions.

The first ProofPower-Z definition that we present is the one for Stop. For a given homogeneous al-
phabet a that contains the four observational variables and their dashed counterparts (WF_hom_alphac),
Stop is the reactive design with a true precondition, which we mechanise using the relational Trueg, and
with the conjunction tr' =, #r Ar wait’ as its postcondition; the predicate tr’ =, tr is mechanised as
=g (a, dash(tr), Var(tr)).

Stop : WF_hom_alphac — CSP_PROCESS

Va: WF_hom_alphac e
Stop(a) = R(Truer(a) Fp ((=r (a, dash(ir), Var(tr))) Ar (=g (a, dash(wait), Val(Bool(true))))))

Four auxiliary functions mechanise the substitutions P?; in order to make it more alike the textual
notation, we use a prefix notation for them. For instance, P oy wy mechanises the predicate PJ{ .

wf,wi,0p,0¢ : CSP_PROCESS — CSP_PROCESS

V¢ : CSP_PROCESS o coy = [g(c, Val(Bool(false)), dash(okay))
A coy = /r(e, Val(Bool(true)), dash(okay))
A cwy = [/r(c, Val(Bool(false)), wait) A cw, = /gr(c, Val(Bool(true)), wait)

The expression /g(p, e, n) automates the substitution of a variable n for an expression e in a predicate p.
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Fig. 4. Using the library to prove refinement laws

Using these auxiliary functions, we can define the external choice as follows. The pairs of CSP processes
with the same alphabet compose the set WF_CSP_PROCESS_PAIR.

_O¢ —: WF_CSP_PROCESS_PAIR — CSP_PROCESS

Y PQ : WF_CSP_PROCESS_PAIR e
PQ.10¢s PQ.2= R((F(ﬁ rPQ.1orwr) AR (= rPQ.20y wf))
D
(((_\ RPQl ¢ wf) /\R (ﬂ RPQ.QO't Wf))
<dr((=r (PQ.1, dash(tr), Var(tr)))
Ar (=g (PQ.1, dash(wait), Val(Bool(true)))))>r
((mrPQ.lows) Vi (- RPQ.20,wy))))

Although long, this definition is a direct mechanisation of the previously presented reactive design represen-
tation of external choice.

Besides making it possible to prove the refinement laws, the semantics presented here defines most of
the operators as reactive designs. For the proofs of the refinement laws we created a vast library of laws and
lemmas on the UTP theories, and more specifically reactive designs, that is discussed in the next section.

6. The library - proof of refinement laws

In this section, we discuss the strategy adopted in our proofs and the structure of our library of laws and
lemmas, which fosters reuse of our results in the proof of other laws and properties of Circus and reactive
designs in general. The full library and the respective proofs can be found in [Oli05b]. At the end of this
section, we discuss some issues that were raised during the application of this strategy in the automated
proof of Circus refinement laws.

6.1. The proof strategy

The strategy for proving that a program P is equal (or refined) to @ is illustrated graphically in Figure 4.
It involves three stages:

(1) Flatten program P to a single reactive design R(prep - postp).

(2) Flatten program (@ to a single reactive design R(preg F postg).

(3) Use lemmas and theorems from the library and predicate calculus to transform the first reactive design
into the second one; in the case of refinement, an inverse implication is the required result.

The stage (3) does not involve transformations on the healthiness condition R; rather, it is simply a proof of
equivalence (or refinement) between de designs prep - postp and preg b postg to which R is being applied
to. This simplification is supported by the following lemma.

Lemma 6.1. R(P) C R(Q) provided P C @

The proofs of this lemma and others that follow in this section can be found in Appendix A.
The flattening stage involves definitions and theorems that transform program structures into a single
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reactive design. For example, if P is a sequence, the lemma below transforms it into a single reactive design.

Lemma 6.2.

R(P1F Q1); R(P2 - Q)

R(P1 A = ((okay’ A — wait’ A Q1); = Pa) F ((wait’ A Q1) V ((okay’ A = wait’ A Q1); @2)))
for P; not mentioning dashed variables, and P;, @1, P> and @2 R2-healthy.

It establishes that the sequence of two reactive designs R(P; F @1); R(Py F Q2) diverges if either Py is
already violated in the very beginning or if, on termination of the first reactive design (okay’ A — wait’),
P, is violated. Otherwise, the whole sequence is either in an intermediate state that satisfies @; or in a
state that results from the execution of the second reactive design after the completion of the first one. This
lemma applies to reactive designs. This is useful in the context of our strategy because it is based on reactive
designs, which are used as the semantics of the vast majority of the Circus operators. In the proviso, we
require that P; does not have free occurrences of dashed variables. This is not too restrictive because, from
Theorem 4.3, our reactive designs are C3-healthy. For conciseness, we omit here the proof of this lemma; it
can be found in [Oli05b].

6.1.1. Sequence zero

By way of illustration, we present one out of over a hundred proofs we presented in [Oli05b]: the sequence
zero law (Stop; A = Stop). We start the proof of this refinement law (stage (1)) by applying the definition
of external choice to the left hand-side of the law.

(1)
Stop; A
= R(true b tr' = tr A wait’); A [Stop]

Theorem 3.1 guarantees that every CSP process can be written as a reactive design; the application of this
theorem transforms A into another reactive design.

= R(true F tr' = tr A wait’); R(— A; = Af) [Theorem 3.1]

Now we have two reactive designs and, in order to complete stage (1), we must flatten these into a single
reactive design. The Lemma 6.2 can be used to give us the desired result.

true A (= ((okay’ A = wait’ A tr' = tr A wait’); = (= A;)))
=R| F [Lemma 6.2]
(wait’ A tr' = tr A wait’) vV ((okay' A = wait’ A tr' = tr A wait'); A})

[LHS]
The definition of Stop establishes the stage (2) of the proof strategy.
(2)
Stop
= R(true b tr' = tr A wait’) [Stop]
[RHS]

We start the stage (3) of our proof strategy by applying trivial predicate calculus to the pre and the
postcondition of the design.

3)
LHS

= R(— (false; A;) E(tr' = tr A wait’) V (false; A})) [Predicate Calculus]

In the UTP, sequence is defined as an existential quantification on the intermediary state. For this reason,
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it is trivial that the following lemma is valid.
Lemma 6.3. false; P = P; false = false
We use this lemma to simplify both the pre and the postcondition.

= R(- false b (tr' = tr A wait’) V false) [Lemma 6.3]
Finally, by using simple predicate calculus we can conclude this proof.

—=RHS [Predicate calculus]

O

Another example of a lemma on reactive designs that can be used to flatten programs into a single
reactive design is presented below; it flattens the non-deterministic choice between two reactive designs.

Lemma 6.4. R(P1F Q) MR(PoF Q) =R((PLAP)F (Q1V Q2))

The internal choice between two reactive designs diverges if either Py or P, is violated; otherwise, the final
state of the internal choice satisfies either @ or Q.

6.1.2. Internal choice zero

Lemma 6.4 can be used in the stage (1) of the simple proof of the internal choice zero law (A M Chaos)
presented below. This stage of this proof is very similar to the one of the previous proof, but uses Lemma 6.4.

(1)

A1 Chaos

= AN R(false - true) [Chaos]

=R(~ A}c = Af) N R(false & true) [Theorem 3.1]

=R((— A; A false) = (A} V true)) [Lemma 6.4]
|

[LHS

The stage (2) is also very similar to the one of the previous proof, but uses the definition of Chaos instead.

(2)

Chaos
= R(false - true) [Chaos]
[RHS]
The last stage of this proof is extremely simple and can be achieved with the application of predicate calculus.
LHS
—=RHS [Predicate calculus]

O

Two other lemmas give the conditions under which a reactive design diverges and the conditions under

which a reactive design does not diverge when it is not waiting for its predecessor to finish. They are useful

in the transformation stage (3) of proofs that involve operators (after using Theorem 3.1) and healthiness

conditions like C3, which refer explicitly to these conditions. A reactive design diverges if started in a

divergent state or in a state that does not satisfy its precondition. Provided its precondition is satisfied and
hence, it does not diverge, a reactive design establishes its postcondition.

Lemma 6.5. (R(PF Q)); = R1(— (okay A R2(P))), provided wait and okay’ are not free in P and Q.
Lemma 6.6. (R(P I Q)); = CSP1(R1(R2(P = Q))), provided wait and okay’ are not free in P and Q.

These lemmas can be proved by applying the definitions of the healthiness conditions.
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6.1.3. External choice unit

In what follows, we discuss the proof of the external choice unit law (Stop O A = A), which besides
illustrating the use of our library, shows the reasons for defining that Stop leaves the state unconstrained.
Before presenting this proof, we present two lemmas that are used in the proof. These lemmas are also
part of our library and are proved using Lemmas 6.5 and 6.6 discussed above. Lemmas 6.7 and 6.8 give the
conditions on which Stop diverges and the effects of Stop when it does not diverge, respectively.

Lemma 6.7. Stopjjf = = okay A tr < tr’
Lemma 6.8. Stop; = CSP1(tr' = tr A wait’)

Since the precondition of Stop is true, it only diverges if its predecessor has done so and, in this case,
only guarantees that the trace history is not forgotten. Secondly, Stop does not change the trace and waits
indefinitely; CSP1 guarantees the expected behaviour on divergence of the predecessor.

We start the proof of the external choice unit law (stage (1)) by applying the definition of external choice
to the left hand-side of the law.

(1)

Stop O A
(- Stopjjf A - A;)
=R| F [External choice]
((Stopf A A}) < tr’ = tr A wait’ > (Stopf V A}))
[LHS]
The application of theorem 3.1 establishes the stage (2) of the proof strategy.
(2)
A
=R(— A; = Af) [Theorem 3.1]
[RHS]

We start the stage (3) of our proof strategy by transforming the precondition of the reactive design originated
by step (1). Using Lemmas 6.7 and 6.8, we transform Stop}c and Stop}, respectively.

(3)
LHS
(CSP1(tr' = tr A wait’) A\ A})
=R | (= (= okay Atr <tr') A - Aji) F | <’ =tr A wait'> [Lemmas 6.7 and 6.8]
(CSP1(tr' = tr A wait’) vV At)
f
The application of predicate calculus gives us the following result.

(CSP1(tr' = tr A wait’) A\ Af)
=R | (= ((—=okay ANtr <tr') Vv A}r)) F | <t = tr A wait'> [Predicate calculus]
(CSP1(tr' = tr A wait’) V A})

At this point we have exactly the definition of CSP1 applied to A; in the precondition.

(CSP1(tr' = tr A wait’) A\ A})
=R | (~(CSP1(4})F | <tr’ = tr A wait'> [CSP1]
(CSP1(tr' = tr A wait’) V A})

Another lemma from our library can be used at this point. It states that the substitutions of okay’ and wait
for any value commute with CSP1.

Lemma 6.9. CSP1(A4%) = (CSP1(4))?



22 Marcel Oliveira, Ana Cavalcanti, and Jim Woodcock

The predicate A corresponds to the substitution of okay’ and wait in A; however, the disjunct = okay A tr < tr'
that is used in the definition of CSP1 does not mention either of these variables. Therefore, we may commute
the substitution with CSP1; the use of this lemma leaves us with the following reactive design.

(CSP1(tr' = tr A wait') A Af)
=R | ~(CSP1(A)} F | <ty = tr A wait'>> [Lemma 6.9]
(CSP1(tr' = tr A wait’) V A})

Since every Circus action is CSP1-healthy (Theorem 4.2), the application of CSP1 to A can be removed.

(CSP1(tr' = tr A wait') A Af)
=R| - AJ; | <t = tr A wait'> [Theorem 4.2]
(CSP1(tr' = tr A wait') V Af)

At this point, we have already shown that the preconditions of the left-hand side and the right-hand side
are the same. We now turn our attention to the postcondition.

As previously explained, we may include (or remove) okay in (or from) the postcondition of any design.
Furthermore, using the definition of conditional and simple predicate calculus, we may distribute okay to
both branches of the conditional as follows.

okay A CSP1(tr' = tr A wait’) A A}
=R|[| - AJ; F | <t = tr A wait'> [Designs and predicate calculus]
okay A CSPL(tr" = tr A wait’) vV A}

The use of Lemma 3.4 and the previously explained freedom to remove okay from the postcondition leaves
us with the following reactive design.

=R(— A; F(tr' = tr A wait’ N Af < tr' = tr A wait’ > (' = tr A wait’) V A})) [Lemma 3.4]

The next step in our proof is to remove the disjunction of the right-hand side of the condition and leave just
the predicate A%; this can be done because the predicate tr’ = tr A wait’ is false: it is in the else-part of a
conditional on the same predicate. The conditional comes directly from our definition of external choice, in
which, as explained in Section 3, state changes have no direct consequence. If we had chosen state changes to
decide the choice, this would be expressed by including the predicate v" = v in the condition of the choice.
If this were the case, then Stop would also have to leave the state unchanged.

=R(~ Aj,c E((tr'" = tr A wait’ N Af) vV A})) [Conditional]

Using absorption we can remove the predicate tr’ = tr A wait’ A Ajtc. We are left with the reactive design
originated by step (2); this concludes our proof.

=RHS [Predicate calculus]
0O

6.1.4. Library summary

In total, our library contains one-hundred an twenty-two theorems and more than two-hundred lemmas,
which are structured into three groups. With the exception of the lemmas used in stages (1) and (2), in our
proof strategy, they are used in the following order.

e Lemmas on Circus operators: these are the lemmas that involve some particular structure resulting
from each of the Circus operators. They are first used in the stage (3) of the proof strategy to remove
references to Circus operators in the pre and the postcondition. In this paper, we have presented (and used)
two lemmas (6.8 and 6.7) on Stop; both of them transform the substitution of observational variables on
Stop into much simpler predicates.

e Lemmas on the healthiness conditions: they are directly related to the healthiness conditions dis-
cussed in Section 3. The vast majority of them, like Lemmas 3.4 and 6.9, are used during the stage (3)
of our proof strategy to remove references to healthiness conditions in the pre and the postcondition.
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Number of Theorems Lines of Proof Script

utp-z-library 23 1293
utp-rel 360 22794
utp-okay 30 1197
utp-des 57 4263
utp-wtr 41 1829
utp-rea 129 7046
utp-csp 46 5885
utp-circus 15 3195
Total 701 47502

Table 4. Theories Mechanisation

e Lemmas on UTP theories: these are related to particular UTP theories and are subdivided into
relations, designs, reactive designs, and CSP. Most lemmas of this category, like Lemmas 6.3, 6.5, and 6.6
are also used during the stage (3) of the proof strategy; however, some lemmas on reactive designs, like
Lemmas 6.2 and 6.4, are used to flatten the programs into a single reactive design in the stages (1)
and (2).

As expected, there is a dependence between the lemmas of these categories. Most lemmas on Circus operators
use lemmas on healthiness conditions in their proofs, and most of these lemmas use lemmas on the UTP
theories in their proofs. The mechanical proofs of these lemmas is currently under development.

6.2. Proof automation

As expected, the proof of the Circus refinement laws requires further work on the UTP theories discussed
in Section 5. In Table 4 we summarise the amount of effort required so far. The new theorems exploit
properties of the UTP theories that are the theoretical basis of Circus, which were not a major concern
in [Oli05b, Oli05a]. Basically, they involve properties on the healthiness conditions (specially R, R1, R2,
R3, and CSP1). This includes properties of expressions like ¢r < ¢r/, that are used in the definitions of
the healthiness conditions and the Circus operators, properties of substitution, conditional, and equalities,
and properties of the substitution functions wy, wy, oy, o like distribution over predicate constructors and
commutativity with healthiness conditions (that is Lemma 6.9).

An important aspect that has a direct impact on the effort spent in these proofs and on the size of
the proof scripts is the typing requirements to use previously proved theorems. Although we have used
strategies to reduce these requirements (see [OCWO06b] for details), there are some requirements that are
still needed and are very time consuming. For instance, suppose we have the goal presented below. In our
work, the type REL_PREDICATE represents the alphabetised predicates from the UTP. In what follows,
we use Py,...,P,7F G, to represent a list of premises P;,..., P, and the goal G of the proof.

P e REL_PREDICATE N Q € REL_PREDICATE
R e REL_PREDICATE N S € REL_PREDICATE
(PVQ)A(RVS)

7k

(PV@)AR)V((PVQ)AS)
It is clear that we may apply the following distribution theorem to conclude the proof.
VX,Y,Z:REL PREDICATE e X N(YANZ)=(XANY)V(XAZ)

However, in order to use this lemma in the proof, we need to instantiate it with X = PV @, Y = R, and
7 = S; hence, we need to assert that P V @ is a member of REL_PREDICATE. In this case, using forward
chaining and a theorem that is already defined in our theory of relations we may include this information.
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This task of including inductive typing information in the premisses, however, becomes very time consuming
when we have more complex predicates. Furthermore, this task cascades to all the theories. A solution for
this problem is the creation of a ProofPower-Z tactic that makes an inductive analysis on the structure of
the goal and uses previously defined theorems to include the typing information needed in the assumption
of the goal. This tactic can be used right at the beginning of any proof, reducing considerably the effort
needed; we intend to implement it in the near future.

The mechanical proofs pointed out that some information was missing in the UTP theories presented
in [OCWO06b]. First, in that work, we declared that the observational variables were members of the type
NAME. We did not, however, declare that they were different names. This was left implicit in [OCW06a],
but needed to be explicitly stated in order to guarantee, for instance, that the substitution of wait for true
on okay is innocuous (okayy = okay). A proviso of these lemmas was also left implicit in [OCWO06a]: the
observational variables wait and okay’ are not free in neither P nor @. This proviso guarantees that, for any
boolean values b and ¢, P’ = P and Q° = Q.

Another point is that in our theory of relations, the substitution Ple/n] is defined only if the free-
variables of the expression e and the name n are in the alphabet of the predicate P, which are the names
that characterise a range of external observations of P. Intuitively, it makes no sense to replace a name by
anything in a predicate, if that name is not of any concern for the predicate. Because of this restriction
on substitutions, extra provisos relating the observational variables and the alphabets of the predicates are
often needed. Another consequence of this restriction was the need to change the alphabet of tr < tr’ in
the definition of R1, which was previously defined as {tr,tr’'}. For example, we use the commutativity
theorem (R1(P))! = R1(P?) and, in order to prove it, we expand the definition of R1 and distribute the
substitution over the conjunction. However, as previously explained, the predicate (tr < tr')[true/okay’] is
only well defined if okay’ is in the alphabet of ¢r < ¢r’. For this reason, in the definition of R1, we changed
the alphabet of tr < tr’ to be an alphabet that contains all the four observational variables (and their dashed
counterparts) needed to describe reactive processes.

So far, the proof strategy presented in Section 6 has proved to be extremely useful to modularise proofs
and, as a direct consequence, to reduce effort in the mechanical proofs.

7. Conclusions

This paper presents an example of the application of the UTP to a practical language of some complexity. We
have taken into consideration issues related to the design of a refinement, to program development, and to
practical use through the provision of tools. Furthermore, it presents the CSP part of Circus as a collection of
explicit reactive designs that clarify the link between the theories of designs and reactive processes, a library
of lemmas, and a theorem prover.

The Circus semantics presented in [WC02] did not allow us to prove meta-theorems in the Circus theory
and, as a direct consequence, refinement laws. For this reason, a new denotational semantics was presented
in this paper; it is a final reference for the Circus denotational semantics.

We now have proved over ninety-two percent of the one-hundred and forty-six refinement laws, and we are
working to complete all the proofs. These proofs are of soundness with respect to the semantics presented
in this paper. If we were to find any invalid law, then either we would propose an alternative law or, if
the invalid law is particularly attractive, we would consider changing the semantics to accommodate. We
understand that the latter would involve considerable regression in our work. Nevertheless, we have improved
our confidence on this semantics in three ways: by studying its relationship to the UTP CSP theory as in
Section 3, by proving the refinement laws, and by proving the soundness of the Circus operational semantics
published in [WCFO05].

Although based on the definitions from [WC02] and [HJ98] this new semantics follows the style of [CW06],
where we express the semantics of the vast majority of the Circus constructs as reactive designs. The structural
uniformity of the semantics given to the Circus operators is reflected in the proofs of the refinement laws,
which use the strategy discussed in this paper. For instance, Lemma 6.1 that is analogous to a factorisation
result, can only be used because our definitions are reactive designs. Our work shows that we can use a pre-
postcondition style to specify processes and gives a foundation to reason about them in a familiar assertional
style. The uniformity also facilitates mechanisation. Together, the library of lemmas presented in this paper
and in [CWO06], and the proof strategy fosters the reuse of our results in the mechanisation of other languages
that have a UTP semantics like TCOZ [MD98, QDCO03].
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The semantic model for Circus processes presented in [WC02] was a Z specification, and every Circus
operator was defined by a Z schema that included the state definition, and therefore, the invariant as well.
For this reason, the state invariant was maintained by all constructs, including Skip, Stop, and Chaos, for
example. As already mentioned, this is no longer the case. This ensures, for instance, that there are really
no guarantees about the behaviour of Chaos.

The definitions of most control constructs are also affected by the presence of data. For example, we have
addressed how data operations affect choice: as a direct consequence of our definition for external choice and
the need for Stop to be its unit, our semantics of Stop does not keep the state unchanged, but unconstrained.
An alternative would be to allow state changes to resolve external choices, in which case, Stop would keep
the state unchanged; however, the states of the processes are encapsulated and state changes should not be
noticed by the external environment.

We have addressed sharing concerns in the definitions of the several forms of parallelism: state partitions
in the parallel composition and interleaving remove the problems intrinsic to shared variables and were
suggested in [CSWO03]. These partitions also have a direct impact on the semantics of the parallel composition
and interleaving of processes. In [WC02], the parallel composition P [[¢s]| @ conjoins each paragraph in P (Q)
with AQ.State (AP.State); this lifts the paragraphs in P (@) to a state containing also the elements of @ (P),
but with no extra restrictions. For us, in the semantics of parallel composition and interleaving, each side of
the composition has a copy of all the variables in scope. They may change the values of all these variables,
but only the changes to those variables that are in their partition have an effect in the final state of the
composition. For this reason, we do not need to leave @.State unconstrained. We use a definition that is very
similar to the other binary process combinators; the only change is the consideration of state partitions.

Besides the healthiness conditions satisfied by reactive processes (R1-R3) and by CSP processes (CSP1-
CSP3), Circus processes also satisfy three further healthiness conditions: the first two, C1 and C2, have a
direct correspondence with two of the extra CSP healthiness conditions, CSP4 and CSP5. However, C3 is
novel; it guarantees that our designs do not contain any dashed variables in the precondition.

The semantics presented in this paper has been mechanised in ProofPower-Z [Oli05b]; this work was
based on a mechanisation of the UTP theories [OCWO0Gb]. Based on this result, we are currently developing
the mechanical proof of Circus refinement laws. This work has already shown us the need of tactics to reduce
considerably the amount of effort needed; furthermore, it has shown subtleties on alphabets and free-variables
that were left implicit during the hand-proofs, but needed to be made explicit.

Circus, however, is not the first specification language of concurrent systems that has its semantics mech-
anised in a theorem-prover. In [Cam90b], the CSP trace model is mechanised in HOL. This work was later
extended in [Cam90a], where the failures-divergence model is considered. In both cases, besides mechanising
the semantics, the author also proved some standard CSP laws based on his mechanisation. A semantic
embedding of CSP’s trace semantics in PVS was presented in [DS97] and used to verify the correctness
of a verification protocol. This embedding is a little more general than Camilleri’s one because they use
parametric types for events instead of considering events as atomic symbols represented by strings. Their
CSP variant also differs: [DS97] mechanises Roscoe’s CSP [Ros98] whereas [Cam90b] mechanises Hoare’s
CSP [Hoa85]. In order to be able to mechanise the semantics of Circus, we need to use the mechanisation of
a semantic model that is able to combine the notions of refinement for CSP and for imperative programs.
For this reason, differently from [DS97] and [Cam90a], we mechanise Circus semantics based on our previous
mechanisation of the UTP [OCWO06b]. In [CWO06], we relate our model to Roscoe’s standard model.

Nuka and Woodcock formalised the alphabetised relational calculus in Z/EVES [NW04]. They did not
restrict the set of bindings in the same way as we do, but the restriction on the domain of the bindings
is satisfied by all the constructors. By including the restriction on the set of bindings, we make this in-
formation available in all the proofs, and not only in those including some particular operators. Moreover,
we extend [NWO04] by including many other operations, such as sequencing, assignment, refinement, and
recursion. The hierarchical mechanisation of the theories of designs, reactive processes, CSP, and Circus is
also a contribution of our work that provides a powerful tool for further investigation.

In [NWO06], the authors present the same mechanisation that was presented in [NWO04] but, this time, in
ProofPower-Z. They also extend [NW04] by mechanising a specification language that includes, among other
operators, skip, abort, miracle, Hoare triples, assertions, coercions, weakest preconditions, and iterations.
However, their syntax is defined using Z free types; any extension to the language would require proving
most of the laws again making it harder to extend their specification language.

Ultimately, we intend to mechanise the proofs of all refinement laws. This will provide both academia
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and industry with a mechanised refinement calculus that can be used in the formal development of state-rich
reactive programs as the one presented in [OCWO05].
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A. Proof of lemmas

Lemma 3.1. dos = R(do).

Proof.
doy(a) [Definition of do4]
=®(tr' =tr Aa ¢ ref <wait’' >’ =tr ™ (a) [Definition of @]
= (Roandp)(tr' =tr A a & ref’ <Qwait’ > tr' = tr ™ (a)) [Definition of andp]
=R(BA (tr' =tr A a ¢ ref <wait' > tr' =tr ™ (a))) [Definition of B]
=R(((tr' = tr ANwait") vV tr < tr') A (tr' = tr A a ¢ ref’ <wait’ > tr' = tr ™ {a))) [Distribution]
_ (tr' = tr A wait’ A (tr' =tr A a ¢ ref’ <wait’ > tr' = tr ™ (a))) o
- R( V(tr <’ A’ =tr A a ¢ ref <wait’ > tr' =tr ™ (a))) [Conditional]
_ (tr' = tr A wait’ A a & ref’) e
-R ( V(tr <tr' A(tr' =tr Aa ¢ ref <wait’ > tr' =tr ™ (a))) [Distribution]
_ (tr' = tr A wait’ A a ¢ ref’) .
-R ( V (tr < tr' Atr' =tr A a & ref Qwait' > tr < tr' A tr' = tr ™ (a)) [Predicate Calculus]
=R((tr' =tr AN wait’ A a & ref’) V (false < wait’ > tr < tr' A tr' = tr ™ (a))) [Predicate Calculus]
=R((tr' = tr N wait’ A a & ref’) V (= wait’ A tr' =tr " (a))) [Conditional]
=Rt =tr A a ¢ ref’ <wait' > tr' = tr ™ (a)) [Definition of do]
= R(do(a))

Lemma 3.2. (¢ — SKIP); = - okay A tr < tr'.
Proof.

(¢ — SKIP)]

= (CSP1(okay’ A doA(a))); [Definition of Prefix]
= CSP1((okay’ A doA(a))ﬁ) [Lemma 6.9]
= CSP1((false A doa(a))y) [Substitution]
= CSP1(false) [Predicate calculus]
= (= okay A tr < tr') V false [CSP1]

]

= = okay A tr < tr' [Predicate calculus
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Lemma 3.3. (¢ — SKIP); = CSP1(do (c, Sync)).
Proof.

(¢ — SKIP)]

= (CSP1(okay’ A doA(a)))}c [Definition of Prefix]
= CSP1((okay’ A doA(a))ﬁ) [Lemma 6.9]
= CSP1((true A doa(a))s) [Substitution]
= CSP1((doa(a )) ) [Predicate calculus]
= CSP1((R(do(a)))s) [Lemma 3.1]
_ CSP1((R3(R2(R1(do(a)));) R)
= CSP1((I eq < wait > R2(R1(do(a))))s) [R3]
= CSP1((R2(R1(do(a))))s) [Substitution and conditional]
= CSP1(R2(R1(do(a)))) [R1, R2, and do do not mention wait]
= CSP1(R2(do(a))) [Lemma A.1]
= CSP1(do(a)) [Lemma A.2]
Lemma A.1. R1(do(a)) = do(a).
Proof.
R1(do(a))
=(tr' =tr A a ¢ ref’ <wait’ > tr' =tr " (a)) A tr < tr' [R1 and do]
=tr'=tr ANad¢ref Ntr <tr' <wait' > tr' =tr 7 (a) A tr < tr’ [Conditional and predicate calculus]
=tr' =tr A a ¢ ref <wait' > ' =tr " {(a) [Sequences and predicate calculus]
= dola) o]
Lemma A.2. R2(do(a)) = do(a).
Proof.
R2(do(a))
= (tr' =tr A a ¢ ref’ <wait’ > tr' = tr 7 (a)[(), tr' — tr/tr, tr'] [R2 and do]
=tr'—tr={)Aa¢ref Qwait' >tr' —tr= )" (a) [Substitution]
=tr' =tr A a ¢ ref <wait’ > tr' =tr " (a) [Sequences]
= do(a) [do]
Lemma 3.4. okay A CSP1(P) = okay A P.
Proof.
okay N CSP1(P)
= okay A ((— okay N tr < tr') vV P) [CSP1]
= (okay A (= okay A tr < tr'")) V (okay A\ P) [Predicate calculus]
= false V (okay N P) [Predicate calculus]
|

= okay N P [Predicate calculus
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Lemma 6.1. R(P) C 4 R(Q), provided P C 4 Q.

Proof.
R(Q)
— R3(R2(R1(Q))) R)
= I yeq < wait > Q[(), tr' — tr/tr, tr'] A tr < tr! [R3, R2, and R1]
= I e < wait > P[(), tr' — tr/tr, tr'] Atr < tr' [Assumption and Predicate calculus]
=R3(R2(R1(P))) [R3, R2, and R1]
=R(P) [R]

Lemma 6.4. R(P;F Q) MR(PoF Q) =R((Py A Po) - (Q1 V Qo).
Proof.

R(P,F Q) MR(Py+ Q)
=R(P1F Q) VR(PyF Q) (]

=(R2(R3(P1F Q) Atr <tr') Vv (R2(R3(Pa F Qo)) A tr < tr') [R and R1]
=R1(R2(R3((P1 F @1))) VR2(R3((P2 F Q2)))) [Predicate calculus and R1]
=RI(R3((P1 F Q))[(), tr' — tr/tr,tr'] V R3((P2 F @Q2))[(), tr’ — tr/tr, tr']) [R2]
=RI1I(R2(R3((P1+F Q1)) VR3((P2 F Q2)))) [Predicate calculus and R2
=R1(R2((IT yee < wait > (P Q1)) V (T req < wait > (P2 b Q2)))) [R3
=RI(R2((Tyeq Qwait > (P F Q1) V (P2 F Q2))))) [Predicate calculus

=R((P1F Q) V (P2 @)
=R((PiF Q)N (P F Qo))
=R((PL A P2)F (Q1V Q)

M

]
]
]
[R3 and R]
]
[UTP - Theorem 3.1.4 (1)]

Lemma 6.5. (R(PF Q))} = R1(— okay A R2(P)).

Proof.

(R(PFQ));
~ (R3R2(RL(PF Q)] R
= (I yeq <wait > (P F Q)[(), tr' — tr/tr,tr'] A tr < tr')? [R3, R2, and R1]
=((PF Q[0 tr' —tr/tr tr'] A tr < tr')] [Substitution and conditional]
= (P[(), tr' — tr/tr, tr'| = Q[(), tr' — tr/tr, tr'])] A tr < tr' [Substitution]
= (= (okay A P[(), tr — tr/tr,tr'])) A tr < tr’ [Design, Substitution and predicate calculus]

= R1(— (okay A R2(P))) [R2 and R1]

Lemma 6.6. (R(P+ Q))} = CSP1(R1(R2(P = Q))).
Proof.

(R(P - Q))}

= (R3(R2(R1(PF Q)))); [R]
= (I yea < wait > (P = Q)[(), tr' — tr/tr, tr'] Atr < tr')} [R3, R2, and R1]
=P+ Q[), tr' —tr/tr, tr'] Atr < tr')t [Substitution and conditional]
= (PF Q)Y(), tr' —tr/tr tr'| A tr < tr' [Substitution]
= (okay A P = Q)[(), tr' — tr/tr,tr'] A tr < tr' [Designs and predicate calculus]

= (= okay vV = PNV Q)[(), tr' — tr/tr,tr']| A tr < tr' [Predicate calculus]

= (mokay AN tr < tr') vV ((P = Q)[(), tr' — tr/tr,tr'] A tr < tr') [Predicate calculus]
]

— CSP1(R1(R2(P = Q))) [CSP1,R1,R2
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Lemma 6.7. StopJ]: = = okay A tr < tr'.
Proof.

f

Stop;

— — AN

= (R(true b tr' = tr A wait'));

= R1(— (okay A R2(true)))

= = okay A tr < tr'
Lemma 6.8. Stop; = CSP1(tr' = tr A\ wait').
Proof.

Stop; = (R(true = tr' = tr A wait'))}

= CSP1(R1(R2(true = tr' = tr A wait’)))

= CSP1(ir' = tr A wait’)

29

[Stop]
[Lemma 6.5]
[R2, R1, Predicate calculus]

[Stop]
[Lemma 6.6]
[R1, R2, Predicate calculus]
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B. Summary of the Circus semantics

Marcel Oliveira, Ana Cavalcanti, and Jim Woodcock

Circus Actions Semantics

Stop R(true b tr' = tr A wait’)

Skip R(true b tr' = tr A = wait’ A v/ = v)

Chaos R (false & true)

Ay Ag Jazp @ Ai[zo/z'] A Az[z0/ ]

g& A R((g= - A F (g A ALV (- g Atr' = tr A wait')))
(Al} A Az})

Ay O Ay R (= Aﬂ; A - AQ;) - Qtr! = tr A wait’ >
(A1} Vv Az))

A1 Az AV Az

¢ — Skip R(true - do (¢, Sync) A v' = v)

c.e — Skip R(true - do (c,e) A v =)

cle — Skip c.e — Skip

c?z: P — A(z)

var z e R(true - doz (¢,z, P) A v’ = v);

A(z)

c?tr — A(z)

c?z : true — A(x)

Ai[ns1 | es| ns2] A2

A 1.tr’

R A (A}
A 1.tr!

'7
(A1f, Ul(outa A1))
A (A2f7 U2(outa A2))

- 31.tr',2.tr" e (A1;, 1.tr' =

A (Aggp; 2.0 = tr
I cs = 2.tr'
A= 3L, 2.0 e (Ary; 1tr’ =

I cs = 2.tr'

tr)

[ cs
tr)

2.tr" = tr)

| cs

) 7 M”(CS)
+{v,tr}

A [[ns2 | ns2]l A2

A1 VANl Agf)

(A1j, Ul(outa A1))
A (A2f7 U2(outa A2))

&
/—\T/]\

+{v,tr}

A\ cs R [s, cs Uref'[tr', ref’] ; Skip
A (tr' —tr) = (s —tr) | (EVENT — cs)
pX e F(X) [1{x | F(X)Ca X}

Iterated operators

By expansion of the operators

Action invocation

By the copy-rule

(d e A)(e) Ale/z]
Alold := new] Alnew/old]
! __ - g/
Tlyeooy Ty = €1,y...,Cn R(t’l"ue'*(tr_tr/\ wait :en/\u/=u> )

/\x{:el/\...

’
Nz,

w : [ pre, post ]

R(pre b post A = wait’ A tr' = tr A u' = u)

{9} g, true]
[9] : [true, g]
ifieg — A8 (Vieg)A(Niegi=—Af)F\ie(gAAl)
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Circus Actions

Semantics

varz: T e A

varz: T; Ajend z : T

(val z : T o A)(e)

(varz: T ez :=e; A)

(resz: T e A)(y)

(varz: T e A; y :=zx)

(vres z: T o A)(y)

(varz: T ez :=vy; A} y:=1z)

[udecl; ddecl’ | pred)

ddecl : [ ddecl’ o pred, pred)

Circus Processes

Semantics

begin state [decl | pred] PPars o A end

var decl @ A

Pop Q@
ope{;,d,Mn}

begin
state State = P.State A Q.State
P.PPar Nz Q.State
Q.PPar Nz P.State
e P.Act op Q.Act
end

Plles] @

begin
state State = P.State A Q.State
P.PPar Nz @Q.State
Q.PPar ANz P.State
e P.Act
la(P.State) | cs | a(Q.State))
Q.Act

end

Pl e

begin
state State = P.State A Q.State
P.PPar Nz Q.State
Q.PPar A= P.State
e P.Act
[e(P.State) | a(Q.State)]|
Q.Act

end

P\ cs

begin
state State = P.State
P.PPar
e P Act\ cs

end

i1: TOP

(i: T e P)[c:usedC(P) e c_i.i]

(i: T®P)|v)

(1: TOP)(v)

Iterated operators

By expansion of the operators

Process invocation

By the copy-rule

(z: T e P)(e)

Ple/z]

Ploldc := newc]

P[newc/oldc]

Plteg, ..., ten]

By instantiating the type variables
with the corresponding te; in the
body of P
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