
Unifying Theories in ProofPower-Z

Marcel Oliveira, Ana Cavalcanti, and Jim Woodcock

Department of Computer Science, The University of York
Heslington, York, YO10 5DD, United Kingdom

Abstract. The increasing interest in the combination of different com-
putational paradigms is very well represented by Hoare & He in the
Unifying Theories of Programming. In this paper, we present a mech-
anisation of part of that work in a theorem prover, ProofPower-Z; the
theories of alphabetised relations, designs, reactive and CSP processes
are in the scope of this paper. An account of how this mechanisation
is done, and more interestingly, of what issues were raised and of our
decisions, is presented here. We aim at providing tool support for fur-
ther explorations of Hoare & He’s unification, and for the mechanisation
of languages based on this unification. More specifically, Circus, a spec-
ification language that combines Z, CSP, specification statements, and
Dijkstra’s guarded command language is our final target.

Keywords: Unifying Theories of Programming, theorem prover.

1 Introduction

Researchers have concentrated their interest in the combination of programming
paradigms, which consider different aspects and stages of software development.
Hoare & He did one of the most significant works towards unification [9]. In the
Unifying Theories of Programming (UTP), they use Tarski’s relational calculus
to give a denotational semantics to constructs from several programming para-
digms. Relations between an initial and a subsequent observation of computer
devices are used to give meaning to specifications, designs, and programs. Ob-
servational variables and associated healthiness conditions characterise theories
for imperative, communicating, or sequential processes and their designs.

Following this trend of research, Circus [21,2] combines a model-based lan-
guage, Z [22], a process algebra, CSP [8], Dijkstra’s language of commands, and
specification statements [10]. It differs from other combinations [19,16,5,20] in
that it has an associated refinement theory [2,14,13]. The mechanical proof of
more than one hundred refinement laws requires the mechanisation of the Circus

semantics, and will be the basis for its theorem prover. In previous work [21],
we define a Z semantics for Circus. Although usable for reasoning about systems
specified in Circus, it is not appropriate to prove properties of the language itself.

In early work [18], Sherif and He present a time model for Circus. Qin
et.al. [15] used the UTP to formalise the semantics of TCOZ and capture some
of its new features for the first time. This semantics is being used as a reference

document in the development of tools for TCOZ and as a semantics founda-
tion for proving soundness of these tools. Woodcock and Hughes use the UTP
model [23] in order to give a formal semantics to a programming language that
contains shared variables. Our work provides mechanical support not only to
Circus, but also to any language that has the UTP as its theoretical basis.

In recent work [3], we summarise the alphabetised relational calculus, and
the theory of precondition-postcondition specifications, called designs. A detailed
theory for reactive processes is presented, and then combined with the theory of
designs, to provide the model for CSP. By mechanising the theories of reactive
processes and CSP, we enable a further exploration on these results.

We present here the first step towards mechanising the Circus semantics and
the proof of its refinement laws: the mechanisation of the UTP in the theorem
prover ProofPower-Z [1]. The definitions of the theories of relations, designs,
reactive processes, and CSP, and more than three-hundred and seventy theorems,
is the result of our work. Many issues arose from the existence of an alphabet
and from our intention of proving refinement laws; we discuss them here.

Section 2 presents the UTP and ProofPower-Z. In Section 3, we discuss design
issues and describe the theory hierarchy we created. Section 4 describes the
mechanisation of the UTP relations, designs, reactive processes, and CSP. The
proof of one theorem illustrates our approach. Finally, in Section 5, we draw our
conclusions and describe future work.

2 Preliminaries: UTP and ProofPower-Z

The UTP is a framework based on an alphabetised extension of Tarski’s rela-
tional calculus. Every program, design, and specification is interpreted in the
UTP as a relation between an initial observation and a single subsequent ob-
servation, which may be either an intermediate or a final observation of the
behaviour of a program execution. The relations are defined as predicates over
observational variables. The initial observations of each variable are undecorated,
and subsequent observations are decorated with a dash.

Several theories share common ideas; sequential composition, conditional,
nondeterminism, and parallelism are some of them. Refinement is interpreted as
inclusion of relations: reverse implication. Every relation is a pair (αP ,P), where
αP is the alphabet: set of observational variables that can be free in the predicate
P . Healthiness conditions are used to test a specification or design for feasibility,
and reject it, if it makes implementation impossible in the target language. They
are often expressed in terms of an idempotent function φ that makes a program
healthy. Every healthy program P must be a fixed point P = φP).

Figure 1 presents how some UTP theories [9] are related. Relations are predi-
cates with an input and an output (dashed) alphabet. Designs are specifications
written in terms of pre and postconditions. Reactive processes are programs
whose behaviour may depend on interactions with an environment. Finally, CSP
processes is a failures-divergences model for CSP, enriched with state; they can
be characterised as relations that result from applying R to designs.

Fig. 1. Theories in the UTP

ProofPower-Z is a higher-order tactic based theorem prover implemented
using New Jersey SML, that supports specifications and proofs in Z. It extends
ProofPower-HOL, which builds on ideas arising from research at the Universities
of Cambridge [7] and Edinburgh [6]. Some of the extensions provided by the New
Jersey SML were used in ProofPower-Z, in order to achieve features such as a
theory hierarchy, extension of the character set accepted by the metalanguage
ML, and facilities for quotation of object language (Z or HOL) expressions, and
for automatic pretty-printing of the representation of such expressions.

As it is an extension of ProofPower-HOL, definitions can be made using
Z, HOL, and even SML, which is the input command language. ProofPower-Z
also offers the possibility of defining proof tactics, which can be used to reduce,
and modularise proofs. Among other analysis support, ProofPower-Z provides
syntax and type checking, schema expansion, precondition calculation, domain
checking, and general theorem proving. Using the subgoal package, goals can be
split in simpler subgoals. The Z notation used in ProofPower-Z is almost the
same as that of the Z standard. We explain the differences as needed.

ProofPower-Z comes with a large number of verified theories. However, as
it supports a powerful logic, the level of automation is lower than in theorem
provers that support, for example, first-order logic. On the other hand, it has
been successfully used in industry, and was a natural choice as a basis for a
Circus theorem prover, as it is routinely used by our industrial partner: QinetiQ.

3 Design Issues

This section describes the issues raised during the automation of the UTP. The
first difficulty that we faced was that the name of a variable is used to refer both

to the name itself and to its value. For instance, in the relation ({x}, x = 0), the
left-most x indicates the name x , while the right-most x stands for the value of
x . We make explicit the difference between a variable name and a variable value.

We discarded the option of giving an axiomatic semantics to relations, since
we would not be able to use most of the theorems that are built-in in ProofPower-
Z to reason about sets and other models. Our relations are pairs of sets.

Since we want to prove refinement laws, our mechanisation gives the possi-
bility of expressing and proving meta-theorems. A shallow-embedding, in which
the mapping from language constructs to their semantic representation is part of
the meta-language, would not allow us to express such theorems. We use a deep-
embedding, where the syntax and the semantics of the alphabetised relations
is formalised inside the host language. The deep-embedding has the additional
advantage of providing the possibility of introducing new predicate combinators.

The syntax of relations and designs could be expressed as a data type (Z free
types), say PRED , for the relations. In this case, the semantics would be given
as a partial (7→) function f : PRED 7→ PRED . If we took this approach, most
of the proofs would be by induction over PRED . Any extension to the language
would require proving most of the laws again. Instead, we express the language
constructors as functions; this is a standard approach in functional languages.
Extensions require only the definition of the new constructors, and that they
preserve any healthiness conditions; no proofs need to be redone.

Using SML as a meta-language would not give us a deep-embedding. We were
left with the choice of Z or HOL. If we used HOL as meta-language, reusing the
definitions of Z constructs would not be possible, because they are written in
SML. Because of our knowledge of Z, and the expressiveness of its toolkit, we
have used Z as our meta and target language.

In Figure 2, we present our hierarchy of theories. In order to handle sequences,
we extend the ProofPower-Z’s theory z-library; the result is utp-z-library. The
theory utp-rel is that of general UTP relations. It includes basic alphabetised
operators like conjunction and existential quantification; relational operators like
alphabet extension, sequential composition, and skip; and refinement. Like all
our theories, it includes the operator definitions and their laws.

Two theories inherit from utp-rel : utp-okay is concerned with an observa-
tional variable okay, and utp-wtr with wait , trace, and ref . These are the main
variables of the theory of reactive processes. The theory utp-okay is the parent of
utp-des, the theory for designs. Along with utp-wtr, utp-okay is also the parent
of the reactive processes theory (utp-rea), which redefines part of utp-rel. The
theory for CSP processes, utp-csp, inherits from both utp-rea and utp-des. The
theory for Circus (utp-circus) inherits from utp-csp; it is under development. Our
proofs of the laws of a theory does not expand definitions of its parent theory;
it uses the parent’s laws. This provides modularisation and encapsulation.

4 Mechanisation

In this section we describe in detail our ProofPower-Z theories. For the sake of

Fig. 2. Theories in the UTP

presentation, we do not present the Z generated by the ProofPower-Z document
preparation tool, which has an awkward indentation for expressions. Instead, we
present a better indented copy of the pretty-printed ProofPower-Z expressions.

4.1 Relations

A name is an element of the given set [NAME]. Each relation has an alphabet
of type ALPHABET =̂ P NAME (the Z abbreviation N == A is provided as
N =̂ A in ProofPower-Z; it gives a name N to the mathematical object A).
Every alphabet a contains an input alphabet of undashed names, and an out-
put alphabet of dashed names. Instead of using free types, which would lead
to more complicated proofs in ProofPower-Z, we use the injective (�) function
dash : NAME � NAME to model name decoration. The set of dashed names is
defined as the range of dash. The complement of this set is the set of undashed

names; hence, names are either dashed or undashed , but multiple dashes is al-
lowed. For the sake of conciseness, we omit the definitions of the functions in a

and out a, which return the input and the output alphabets of a given alphabet.
All the definitions and proof scripts can be found elsewhere [12].

An alphabet a in which n ∈ a ⇔ n ′ ∈ a, for every undashed name n, is called
homogeneous . For us, n ′ is mechanised as dash n. Similarly, a pair of alphabets
(a1, a2) is composable if n ∈ a2 ⇔ n ′ ∈ a1, for every undashed name n.

A value is an element of the free-type VALUE , which can be an integer, a
boolean, a set of values, a sequence of values, a pair of values, a channel, or a
special synchronisation value.

VAL ::= Int(Z) | Bool(BOOL) | Set(PVAL) | Seq(seq VAL)
| Pair(VAL × VAL) | Channel(NAME) | Sync

In ProofPower-Z,Bool(BOOL) stands for the Z constructor Bool〈〈BOOL〉〉, which

introduces a collection of constants, one for each element of the set BOOL. The
ProofPower-Z type BOOL is the booleans. The type VAL can be extended with-
out any impact on the proofs.

Although we are defining an untyped theory, the observational variables have
types; for instance, okay is a boolean. For this reason, we specify some types; for
instance, booleans are in the set BOOL VAL =̂ {Bool(true),Bool(false)}, chan-
nels are in the set CHANNEL VAL =̂ {n : NAME • Channel(n)}, and events
are in the set EVENT VAL =̂ {c : CHANNEL VAL; v : VAL • Pair(c, v)}.

Three definitions allow us to abstract from the syntax of expressions. The
set of relations (↔) between values is RELATION =̂ VAL ↔ VAL. The set of
unary functions is UNARY F =̂ VAL 7→ VAL; similarly, for binary functions
we have the set BINARY F =̂ (VAL × VAL) 7→ VAL, which defines the set of
partial functions from pairs of values to values. For instance, the sum function
is {(Int(0), Int(0)) 7→ Int(0), (Int(0), Int(1)) 7→ Int(1), . . .}. An expression can
be a value, a name, a relation, or a unary or binary function application.

EXP ::= Val(VAL) | Var(NAME) | Rel(RELATION × EXP × EXP)
| Fun1(UNARY F × EXP) | Fun2(BINARY F × EXP × EXP)

The definitions for unary functions, binary functions, and relations only deal
with values; Fun1(f , e) can only be evaluated once e is evaluated to some VAL.

A binding is defined as BINDING =̂ NAME 7→ VAL, and BINDINGS is
the set of bindings. Given a binding b and an expression e with free-variables in
the domain (dom) of b, Eval(b, e) gives the value of e in b (beta-reduction). A
relation is modelled in our work by the type REL PRED defined below. Basi-
cally, a relation is a pair: the first element is its alphabet, and the second is a set
of bindings, which gives us all bindings that satisfy the UTP predicate modelled
by the relation. The domain of the bindings must be equal to the alphabet. Op-
tional models in which this restriction could be relaxed are possible; however,
they would lead us to more complex definitions as we discuss in Section 5. The
set-comprehension {x : s | p • e} denotes the set of all expressions e such that
x is taken from s and satisfies the condition p. Usually, e contains one or more
free occurrences of x . The true condition and the constructor x may be omitted.

REL PRED =̂
{a : ALPHABET ; bs : BINDINGS | (∀ b : bs • dom b = a) • (a, bs)}

This follows directly from the definition of alphabetised predicates of the UTP.
In our work, we use Z axiomatic definitions, which introduce constrained

objects, to define our constructs. For instance, let us consider the following ax-
iomatic definition.

x : s

p

It introduces a new symbol x , an element of s , satisfying the predicate p.

Our first construct represents the truth. For a given alphabet a, TrueR a is
defined as the pair with alphabet a, and with all the bindings with domain a.

TrueR : ALPHABET → REL PRED

∀ a : ALPHABET • TrueR a = (a, {b : BINDING | dom b = a})

In our work, we subscript the constructs in order to make it easier to identify to
which theory they belong to; we use R for the theory of relations.

Nothing satisfies false: the second element of FalseR a is the empty set.

FalseR : ALPHABET → REL PRED

∀ a : ALPHABET • FalseR a = (a, ∅)

This operator is the main motivation for representing relations as pairs. If we
had defined relations just as a set of bindings with the same domain a, which
would be considered as the alphabet, we would not be able to tell the difference
between FalseR a1 and FalseR a2, since both sets would be empty. Besides, it is
important to notice the difference between TrueR ∅ and FalseR ∅: the former
has a set that contains one empty set of bindings as its second element, and the
latter has the empty set as its second element.

As we are working directly with the semantics of predicates, we are not able
to give a syntactic characterisation of free variables. Instead, we have the concept
of an unrestricted variable.

UnrestVar : REL PRED → PNAME

∀u : REL PRED •
UnrestVar u = {n : u.1 | ∀ b : u.2; v : VAL • b ⊕ {n 7→ v} ∈ u.2}

For a relation u, a name n from its alphabet is unrestricted if, for every binding
b of u, all the bindings obtained by changing the value of n in b are in u. In Z,
f ⊕ g stands for the relational overriding of f with g; furthermore, t .n refers to
the n-th element of a tuple t .

All usual predicate combinators are defined. Conjunctions and disjunctions
extend the alphabet of each relation to the alphabet of the other. The function
⊕R is alphabet extension; the values of the new variables are left unconstrained.
In the following definition we make use of the Z domain restriction A C R: it
restricts a relation R : X ↔ Y to a set A, which must be a subset of X , ignoring
any member of R whose first element is not a member of A.

⊕R : REL PRED × ALPHABET → REL PRED

∀u : REL PRED ; a : ALPHABET

• u ⊕R a = (u.1 ∪ a, {b : BINDING | (u.1 C b) ∈ u.2 ∧ dom b = u.1 ∪ a})

The conjunction is defined as the union of the alphabets and the intersection

of the extended set of bindings of each relation.

∧R : REL PRED × REL PRED → REL PRED

∀u1, u2 : REL PRED •
u1 ∧R u2 = (u1.1 ∪ u2.1, (u1 ⊕R u2.1).2 ∩ (u2 ⊕R u1.1).2)

The definition of disjunction is similar, but the union of the extend set of bindings
is the result. We have proven that these definitions are idempotent, commutative,
and associative, and that they distribute over each other. We have also proven
that TrueR is the zero for disjunction and the unit for conjunction; similar laws
were also proved for FalseR. However, restrictions on the alphabets must be
taken into account. For example, we have the unit law for conjunction. The
ProofPower-Z output notation n ` t gives name n to a theorem t . Besides, in Z,
the quantification ∀ x : a | p • q corresponds to the predicate ∀ x : a • p ⇒ q.

REL True ∧R id thm1
` ∀ a : ALPHABET ; u : REL PRED | a ⊆ u.1 • u ∧R TrueR a = u

As expected, the conjunction of a relation u with TrueR is u, but the alphabet
of TrueR must be a subset of the alphabet of u. Otherwise, the conjunction may
have an alphabet other than that of u and the theorem does not hold.

The negation of a relation r does not change its alphabet. Only those bindings
b that do not satisfy r (b /∈ r .2) are included in the resulting bindings. For the
sake of conciseness, we omit the trivial definitions of implication (⇒R),
equivalence (⇔R), conditional (CR BR), that can be trivially be defined
in terms of the previously defined operators.

The function −R removes variables from the alphabet of a relation using
domain anti-restriction (domain removal) to remove names from the set of bind-
ings. It is defined as u −R a = (u.1 \ a, {b : u.2 • a −C b}). Complementary to
domain restriction, the domain anti-restriction A −C R, ignores any member of
R, whose first element is a member of A. Existential quantification ∃−R simply
removes the quantified variables from the alphabet and changes the bindings
accordingly.

∃−R : (ALPHABET × REL PRED) → REL PRED

∀ a : ALPHABET ; u : REL PRED • ∃−R(a, u) = u −R a

Universal quantification ∀−R(a, u) is defined as ¬ R ∃−R(a,¬ Ru).
In the definition of the CSP SKIP , Hoare and He seem to use another exis-

tential quantification, in which the quantified variables are not removed from the
alphabet. We define this new quantifier ∃R(a, u) as (∃−R(a, u)) ⊕ a. Basically,
we remove the quantified variables from the alphabet and include them again,
leaving their values unrestricted.

Our sequential composition u1; u2 is not defined as in the UTP [9], an ex-
istential quantification on the intermediary state; the motivation is simplifying
our proofs. In the UTP definition [9], the existential quantification is described

using new 0-subscripted names to represent the intermediate state. Its mechani-
sation requires two functions: one for creating new names, and another one for
expressing substitution of names. Any proof on sequential composition would
require induction on both functions.

Relations can only be combined in sequence if their alphabets are composable.
If we defined sequential composition as a partial function, domain checks would
be required during proofs. Instead, we define a total function on well-formed
pairs of relations, WF SemiR, which have composable alphabets.

;R : WF SemiR → REL PRED

∀u1 u2 : WF SemiR •
u1 u2.1 ;R u1 u2.2 =

(in a u1 u2.1.1 ∪ out a u1 u2.2.1,
{b1 : u1 u2.1.2; b2 : u1 u2.2.2
| (∀n : dom b2 | n ∈ undashed • b2(n) = b1(dash n))
• (undashed C b1) ∪ (dashed C b2)})

The alphabet of a sequential composition is composed of the input alphabet of
the first relation and the output of the second relation. For each pair of bindings
(b1,b2) from u1 and u2, respectively, we make a combination of all input values
in b1 (undashed names) with output values in b2(dashed names). However, only
those pairs of bindings in which the final values of all names in b1 correspond to
their initial values in b2 are taken into consideration in this combination.

The UTP defines an alphabet extension that enables sequential composition
to be applied to operands with non-composable alphabets. The function +R dif-
fers from ⊕R in that it restricts the value of the new name to be left unchanged.
For a given predicate P and name n, it returns the predicate P ∧R (n ′ ={n′,n} n).

Although useless for practical purposes, the Π (skip) is very useful for rea-
soning about programs. In our work it is defined as the function defined below.
Given a well-formed alphabet a, it does not change the alphabet and returns
all the bindings b with domain a, in which for every undashed name n in a,
b n = b n ′. The type WF SkipR is the set of all homogeneous alphabets.

ΠR : WF SkipR → REL PRED

∀ a : WF SkipR •
ΠR a = (a, {b : BINDING

| dom b = a

∧ (∀n : a | n ∈ undashed • b(n) = b(dash n))})

Other programming constructs like variable blocks and assignments are also
included in this theory; their definitions can also be found in [12].

We now turn to the definition of refinement as the universal implication of
relations. The universal closure used in UTP [9] is defined 〈R u 〉R = ∀−R(u.1, u).
For a pair of relations (u1,u2), such that (u1, u2) ∈ WF REL PRED PAIR (both
have the same alphabet), we have that u1 is refined by u2, if, and only if, for all
names in their alphabets, u2 ⇒ u1. This is expressed by the definition below.

vR : WF REL PRED PAIR → REL PRED

∀u1 u2 : WF REL PRED PAIR •
u1 u2.1 vR u1 u2.2 = 〈R (u1 u2.2 ⇒R u1 u2.1) 〉R

We have proved that our interpretation of refinement is, as expected, a partial
order [12]. Moreover, the set of relations with alphabet a is a complete lattice.

Only functions f : REL PRED 7→ REL PRED whose domain is a set of
relations with the same alphabet are considered in the theory of fixed points. We
call the set of such functions REL FUNCTION . The definition of the weakest
fixed point of a function f : REL FUNCTION is standard. The greatest fixed
point is defined as the least upper bound of the set {X | X v f (x)}. This is
different from Hoare and He’s definition [9], which is not convenient for proofs.
However, it is trivial to prove that we have an equivalent definition.

4.2 Proving Theorems

We have built a theory with more than two-hundred and seventy laws on al-
phabets, bindings, relational predicates, and laws from the predicate calculus.
In what follows, we illustrate our approach in their proofs.

The proof of one of our laws is shown in Figure 3: the weakest fixed point
law (∀F ,Y • F (Y) v Y ⇒ µF v Y). We set our goal to be the law we want
to prove using the SML command set goal . It receives a list of assumptions and
the proof goal. In our case, since we are not dealing with standard predicates,
we must explicitly say that relations are TrueR.

We start our proof by rewriting the Z empty set definition (rewrite tac) and
stripping the left-hand side of the implication into the assumptions (z strip tac).
The SML command a applies a tactic to the current goal; the tactical REPEAT

applies the given tactic as many times as possible. The next step is to rewrite the
definition of least fixed point in the conclusion: we use forward chaining in the
assumptions (all asm fc tac), giving our Z definition of least fixed point as argu-
ment, and use the new assumption to rewrite the conclusion(asm rewrite tac).

The application of a previously proved theorem, REL lower bound thm,
concludes our proof. However, it requires some assumptions, before being ap-
plied. We introduce them in the assumption list using the tactic lemma tac. The
first condition is that Y is an element of the set of relations u, with an alpha-
bet a, such that F (u) vR u. We use the tactical PC T1 to stop ProofPower-Z
from rewriting our expression by using the proof context initial , which is the
most basic proof context. Furthermore, to avoid a new subgoal, we use the tac-
tical THEN 1 that applies the tactic in the right-hand side to the first subgoal
generated by the tactic in the left-hand side. In our case, this proves that the
assumption we are introducing is valid. The validity of the introduction of the
first assumption is proved using the tactic asm prove tac, a powerful tactic that
uses the assumptions in an automatic proof procedure. Next, after introducing
the first condition explained above in the list of assumptions, we use forward
chaining again to state the fact that the alphabet of Y is a.

SML SML

set goal([], p
Z
∀F : REL FUNCTION ;

Y : REL PRED
| Y ∈ dom F

∧ (F(Y) vR Y = TrueR∅)
•µ R(F) vR Y = TrueR∅ q);

a (rewrite tac[]);
a (REPEAT z strip tac);
a (all asm fc tac[z get spec p

Z
µR q]);

a (asm rewrite tac[]);
a ((PC T1 “initial”

lemma tac
p
Z
Y ∈ {u : REL PRED

| a = u.1 ∧ F u vR u = TrueR{}} q)
THEN1 (asm prove tac[]));

a (all asm fc tac[]);

a ((lemma tac
p
Z
{u : REL PRED

| a = u.1 ∧ F u vR u = TrueR{}}
∈ P REL PRED q)

THEN1 (PC T1 “z sets ext” asm prove tac[]));
a ((lemma tac

p
Z
(a, {u : REL PRED

| a = u.1 ∧ F u vR u = TrueR{}})
∈ WF GlbR LubR q)

THEN1
((rewrite tac[z get spec p

Z
WF GlbR LubR q])

THEN
(PC T1 “z sets ext” asm prove tac[])));

a (apply def REL lower bound thm

p
Z
(a=̂a, u=̂Y ,

us=̂{u : REL PRED
| a = u.1 ∧ F u vR u = TrueR{}}) q);

Fig. 3. Proof script for the weakest fixed point theorem

The next step introduces the fact that the set to which Y belongs is in
fact a set of REL PRED . The proof of the validity of this assumption uses
ProofPower-Z’s proof context z sets ext , an aggressive complete proof context
for manipulating Z set expressions. The last assumption that is needed is the
fact that the pair composed by the alphabet a and the set to which Y belongs,
is indeed of type WF GlbR LubR, which contains all set of pairs (a, bs), in
which every binding in the set bs has a as its alphabet. Its proof rewrites the
conclusion using the Z definition of WF GlbR LubR, and then, uses the tactic
asm prove tac in the z sets ext proof context. Finally, we use a tactic defined
by us, apply def , to instantiate the theorem REL lower bound thm with the
given values. The tactic apply def instantiates the given theorem with the values
given as arguments, and tries to rewrite the conclusion, using this instantiation.

ProofPower-Z has provided us with facilities that resulted in a rather short
proof, for a quite complex theorem. Some of the facilities we highlight are forward
chaining, use of existing and user-defined tactics, proof contexts, and automated
proof tactics, such as asm rewrite tac.

4.3 Okay and Designs

The UTP theory of pre and postcondition pairs (designs) introduces an extra
observational variable okay: it indicates that a program has started, and okay ′

indicates that the program has terminated. In our theory utp-okay, we define
okay as an undashed name (okay : NAME | okay ∈ undashed) ranging over the
booleans. We restrict the type BINDING by determining that okay and okay ′

are only associated with boolean values.

∀ b : BINDING | {okay, dash okay} ⊆ dom b •
{b okay, b(dash okay)} ⊆ BOOL VAL

We could have introduced this restriction when we first defined BINDING, but

as we intend to have modular independent theories, we postponed the restriction
on observational variables used by specific theories.

Designs are defined in the theory utp-des. The set ALPHABET DES is the
set of all alphabets that contain okay and okay ′. First we define DES PRED , the
set of relations u, such that u.1 ∈ ALPHABET DES . Designs with precondition
p and postcondition q are written p ` q and defined as okay ∧ p ⇒ okay ′ ∧ q.
The expression okay is the equality okay =a true, which is mechanised in our
work as =R (a, okay,Val(Bool(true))). For a given alphabet a, name n, and
expression e, such that n ∈ a and the free-variables of e are in a, the function
=R (a,n, e) returns a relational predicate (a, bs), in which for every binding b

in bs , b n = Eval(b, e). A design is defined as follows.

`D : WF DES PRED PAIR → REL PRED

∀ d : WF DES PRED PAIR •
d .1 `D d .2 = (=R (d .1.1, okay,Val(Bool(true))) ∧R d .1) ⇒R

(=R (d .1.1, dash okay,Val(Bool(true))) ∧R d .2)

The members of WF DES PRED PAIR are pairs of relations (r1, r2) from
DES PRED with the same alphabet. The turnstile is used by both ProofPower-
Z and the UTP. The former uses it to give names to theorems, and the later uses
it to define designs. In our work, we have kept both of them, but we underscore
the UTP design turnstile with a D .

The most important result for designs, which is the motivation for its defin-
ition, has also been proved in our mechanisation: the left-zero law for TrueR.

In this new setting, new definitions for ΠR and assignment are needed. The
skip for designs ΠD is defined in terms of the relational skip ΠR as follows.

ΠD : WF SkipD → REL PRED

∀ a : WF SkipD • ΠD a = TrueR a `D (ΠR a)

The type WF SkipD is formed by all the homogeneous alphabets that contain
okay and okay ′. The new definition of assignment uses the relation assignment
in a very similar way and is omitted here.

Designs are also characterised by two healthiness conditions. The first, H 1,
guarantees that observations cannot be made before the program starts. We de-
fine H 1(d) = okay ⇒ d as H 1(d) = (=R ({okay}, okay,Val(Bool(true)))) ⇒R d .
The set of relations that satisfy a healthiness condition h is the set of relations r

such that h(r) = r . For instance, H 1 healthy = {d : REL PRED | H 1(d) = d}.
An H 2 healthy relation does not require non-termination. In previous re-

search [3], we presented a way of expressing H 2 in terms of an idempotent
function: H 2(P) = P ; J , where J =̂ (okay ∧ okay ′ ⇒ v ′ = v). We express
v ′ = v as the relational skip ΠR on the alphabet containing the names in the
lists v and v ′. We define J as a function that takes an alphabet a′ containing
only dashed variables, and yields the relation presented below, where A = a∪a′,

and a is obtained by undashing all the names in a′.

(okay =A true ⇒R okay ′ =A true) ∧R ΠR(A \ {okay, okay ′})

Our definition of the function H 2 is presented below.

H 2 : REL PRED 7→ REL PRED

∀ d : REL PRED | dash okay ∈ d .1 • H 2 d = (d ;R(J (out a d .1)))

The function H 2 is partial because J defines a relation that includes okay and
okay ′ in its alphabet, and hence, the alphabet of a relation d that can be made
H 2 healthy must contain okay ′ in order to be composable with J (out a d .1). In
order to reuse our previous results [3], we use this definition for H 2.

More than thirty laws from previous work [9,3], involving design and their
healthiness conditions, have been included in our theory of designs. Their proofs
do not expand any definition in the relations theory. Many laws were included
in the relations theory, in order to carry out proofs in the designs theory.

4.4 WTR and Reactive Processes

The behaviour of reactive processes cannot be expressed only in terms of their
final states; interactions with the environment (events) need to be considered.
Besides okay, in the theory of reactive processes we have the observational vari-
ables tr ,wait , and ref . The variable wait records whether the process has ter-
minated or is interacting with the environment in an intermediate state. Since
it is a boolean, the definition of wait is similar to that of okay. The variable
tr records the sequence of events in which the process has engaged; it has type
SEQ EVENT VAL. The variable ref is a set of events in which the process may
refuse to engage; its type is SET EVENT VAL. The definitions of these vari-
ables are in the theory utp-wtr. In the theory utp-rea, we define REA PRED , the
set of relations whose alphabet is a member of ALPHABET REA. This is the
set of alphabets that contain okay, tr , wait , ref , and their dashed counterparts.

As for designs, healthiness conditions characterise the reactive processes. The
first healthiness condition R1 states that the history of interactions of a process
cannot be changed, therefore, the value of tr can only get longer. Our definition
uses a function ≤R (sequence prefixing), which, is the Z prefixing relation lifted
to VALues.

≤R : VAL ↔ VAL

(≤R) = {s1, s2 : SEQ VAL | ((Seq∼) s1) prefixZ ((Seq∼) s2)}

The type SEQ VAL is defined as the {s : seqVAL | Seq(s)} and the Z sequence
prefixing prefixZ is defined in utp-z-library. Furthermore, in Z, ∼ stands for the
relational inverse operator.

The definition of R1 below mechanises the function R1(P) = P ∧ tr ≤ tr ′.

R1 : REL PRED → REL PRED

∀ r : REL PRED •
R1 r = r ∧R (=+R ({tr , dash tr},

Rel((≤R),Var(tr),Var(dash tr)),
Val(Bool(true))))

In order to transform the expression tr ≤ tr ′ into a relational predicate, we
assert that the expression Rel((≤R),Var(tr),Var(dash tr)) is equals to
Val(Bool(true)). We adopt the same strategy to lift all needed Z relational oper-
ators (∈,/∈,⊆, . . .) and functions (using Fun1 and Fun2) to relational predicates.

The second healthiness condition establishes that a reactive process should
not rely on events that happened before it started. We mechanise the formu-
lation R2(P(tr , tr ′)) = P(〈〉, tr ′ − tr) [3]; this requires that P is not changed
if tr is taken to be the empty sequence, and tr ′ is taken to be tr ′ − tr , the se-
quence obtained from tr ′ by removing its prefix tr . The notation P(〈〉, tr ′− tr) is
implemented using substitution; R2 is defined as R2(P) = P [〈〉/tr][tr ′− tr/tr ′].

The final healthiness condition R3 defines the behaviour of a process that is
still waiting for another process to finish: it should not start. In UTP [9], R3 is
defined as R3(P) = ΠREA Cwait BP , and is mechanised in our work as follows.

R3 : REA PRED 7→ REA PRED

∀ r : REA PRED | r .1 ∈ WF SkipREA •
R3 r = (ΠREA r .1) CR (=R ({wait},wait ,Val(Bool(true)))) BR r

This definition of R3 uses a conditional and the reactive skip ΠREA. Conditionals
are defined only if both branches have the same alphabet and ΠREA is only
defined for homogeneous reactive alphabets (WF SkipREA). For this reason, our
definition reveals that R3 is not a total function: it can only be applied to
homogeneous reactive relations.

A reactive process is a relation with a reactive alphabet a, which is R healthy;
the function R is defined as R(r) = R1(R2(R3(r))). Based on these definitions,
more than sixty laws, including those we presented previously [3], are part of
our theory of reactive processes. Among other properties, they prove that the
healthiness conditions for reactive processes are idempotent and commutative,
and the closure of some of the program operators with relation to the healthi-
ness conditions. They also explore relations between healthiness conditions for
reactive processes and designs.

4.5 CSP Processes

Our mechanisation of the CSP theory is based on our earlier research [3]. Ba-
sically, CSP processes are reactive processes that satisfy two other healthiness
conditions; they can all be expressed as reactive designs: the result of applying

R to a design. The first healthiness condition states that the only guarantee in
the case of divergence (¬ okay) is that the trace can only be extended. It is
mechanised as CSP1 r =̂ r ∨ (¬ okay ∧ tr ≤ tr ′).

The second healthiness condition is a recast of H 2, presented in Section 4.3,
with an extended reactive alphabet. The mechanisation of CSP2 in ProofPower-
Z reveals, as it does for H 2, that this function is not total: it is only applicable to
relational predicates which contain okay ′, tr ′, wait ′, and ref ′ in their alphabet.

CSP2 : REL PRED 7→ REL PRED

∀ r : REL PRED | {dash okay, dash tr , dash wait , dash ref } ⊆ r .1
• CSP2 r = r ;RJ (out a r .1)

A CSP PROCESS is a CSP1 healthy and CSP2 healthy reactive process.
The SKIP process terminates immediately. The initial value of ref is irrele-

vant, and it is quantified in the definition of SKIP .

SKIP : CSP PROCESS

SKIP = R(∃R ({ref }, ΠREA ALPHABET CSP))

The ALPHABET CSP contains only okay, tr , wait , ref , and their dashed coun-
terparts. The existential quantification does not remove ref from the alphabet,
as opposed to that used in the definition, for instance, of variable blocks.

Besides the definition for simple prefixing (e →CSP SKIP , where e is an
event) originally given by the UTP, we mechanise a simpler definition which was
proven equivalent: e →CSP SKIP = R(true ` doC e). The following function is
a simplified version of doA presented in the UTP.

doC e =̂ tr ′ = tr ∧ e /∈ ref ′ C wait ′ B tr ′ = tr a 〈e〉

The simplification was possible because we express prefixing as a reactive design.
An event has either not happened, and the trace has not changed and the process
is willing to engage in e, or it has happened and the trace has been extended.

By expressing all operators as reactive designs, we bring uniformity to proofs,
and foster reuse of existing results. All of our CSP theorems [3] and Hoare and
He’s UTP theorems [9] are part of our utp-csp theory. It is currently being used
as a basis of a Circus theory.

5 Conclusions

In this paper we give a set-based model to relations, and use it as a basis for the
development of four theories: relations, designs, reactive processes, and CSP. For
us, a relation is a pair, whose first element is a set that represents its alphabet
and whose second element is a set of functions from names to values.

This is not the only possible model for relations. Our choice was based on the
fact that any restriction that applies to the relations has a direct impact on the

complexity of the proofs. Our model imposes a simple restriction: the domain of
the bindings must be equal to the alphabet. This restriction results in simpler
definitions, and hence proofs. For instance, in [4], we defined a relation as a pair
formed by an alphabet and a set of pairs of bindings: for every pair (b1, b2) of
bindings in a relation, the domain of b1 has only undashed names and that of
b2 only dashed names. Such a restriction has to be enforced by the definition of
every operator. There is, however, an isomorphism between our model and this
one. By joining and splitting the sets of bindings, we can move from one model to
another; our concern is only with the practicality of mechanical theorem proving.

We also could have used bindings whose domains could be different from the
relation alphabet. However, the alphabet is the set of names about which the
relation describes something. Hence, the alphabet a of a relation would have to
be either a subset or equal to the domain of each binding b. Values of names that
were not in the alphabet would actually have no meaning. We chose bindings
whose domain is the alphabet because, by taking the other approach, we have
a more complex definition for alphabet extension: bindings for names that are
not in the alphabet need to be removed before being left unrestricted. Alphabet
extension is at the heart of the definitions of conjunction and disjunction.

If, in the hope to find simplifications in other points, we accepted the more
complex definition of alphabet extension, then we would need to determine how
to handle the names that are not in the alphabet of the relation. For example,
bindings could be total functions which map these names to an undefined value
⊥; or we could leave these names unrestricted. These restrictions on relations
are in fact more complex than that in our model, and lead to more complex
definitions and proofs. We also have an isomorphism between our model and
each of these; by applying a domain restriction to the bindings in these models
and extending our model’s bindings, we can change the representations.

As an industrial theorem prover, ProofPower-Z proved to be powerful (and
helpful). The support provided by hundreds of built-in tactics and theories, as
libraries for Z constructs and set theory, made our work much simpler. The
axiomatisation of the theorems proved in our work in other theorem provers, like
Z/Eves [17], and the development of new theories based on these axioms makes
the use of our results in different theorem provers possible. In ProofPower-Z, the
tactics that can be created are more powerful than in Z/Eves; however, the level
of expertise needed for initial users of Z/Eves is not as high as for ProofPower-Z.

The discussion above of alternative models is based on our experience with
ProofPower-Z; some of them could make proofs easier in another theorem prover.
An investigation of alternative theorem provers is a topic for future research.

Nuka and Woodcock [11] formalised the alphabetised relational calculus in
Z/EVES. We extend that work by including many other operations, such as se-
quencing, assignment, refinement, and recursion. The hierarchical mechanisation
of the theories of designs, reactive processes, and CSP is also a contribution of
our work that provides a powerful tool for further investigations on them.

Hoare and He [9], although dealing with alphabetised predicates, often leave
it quite implicit. For example, true is often seen unalphabetised, while in fact, it

is alphabetised. This abstraction simplifies things, but is not suitable for theorem
provers. With the obligation to deal with alphabets, our work gives more details
on how the alphabets are handled within the UTP.

The alphabet extension used in the UTP constrains the values of the new
variables: they cannot be changed. However, our set-based model for relations
needed a different alphabet extension that leaves their values unconstrained.
Furthermore, in the UTP, existential quantifications are used in two different
ways: in the definition of variable blocks, the authors explicitly state that the
quantified variables are removed from the alphabet; and in the definition of the
reactive SKIP , the alphabet is, implicitly, left unchanged. Our implementation
defines two existential and two universal quantifications: one of them removes
the quantified variables from the alphabet, and the other one does not. We also
redefined some of the UTP definitions in order to facilitate our proofs.

Our work also reveals details that are left implicit in the UTP regarding the
domain of the healthiness conditions. By mechanising the healthiness conditions,
R3 for instance, we make it explicit that R3, and consequently R, is a partial
function that can only be applied to homogeneous reactive processes.

We expressed the language constructors as functions. For this reason, they
can be simply extended without loosing the previous proofs; the syntax of ex-
pressions was abstracted by using three simple definitions. Furthermore, the
strategy that we adopted for lifting Z functions and relations to relational pred-
icates, for instance ≤R, makes the Z toolkit directly available in our theory. Our
work provides a mechanical support not only to Circus, but to any other work
theoretically based on any of the UTP theories.

The current number of laws on sequential composition may need to be in-
creased to allow users of our theory of relation not to expand its definition in
the proof of theorems. The proof of more laws on sequential composition that
will make this possible is an important piece of future work.

We aim at providing a mechanisation of the UTP that can support the de-
velopment of other languages theoretically based on the UTP; Circus is such a
language. Our next step is to mechanise the Circus theory, which will be based
on the CSP theory, and will mechanise not only the final version of the seman-
tics of Circus, but also all the refinement laws proposed so far. This will provide
Circus with a mechanised refinement calculus that can be used in the formal
development of State-Rich Reactive Programs.

Acknowledgements

We are grateful for the financial support of QinetiQ and the Royal Society. Philip
Clayton, Rob Arthan, Roger Bishop Jones, Mark Adams, and Will Harwood
provided valuable advice for our work.

References

1. ProofPower. At http://www.lemma-one.com/ProofPower/index/index.html.

2. A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. A refinement
strategy for Circus. Formal Aspects of Computing, 15(2–3):146–181, 2003.

3. A. L. C. Cavalcanti and J. C. P. Woodcock. A tutorial introduction to CSP in
Unifying Theories of Programming. In Proceedings of the Pernambuco Summer
School on Software Engineering: Refinement 2004, 2004.

4. A. L. C. Cavalcanti and J. C. P. Woodcock. Angelic nondeterminism and Uni-
fying Theories of Programming. Technical Report 13-04, Computing Laboratory,
University of Kent, June 2004.

5. C. Fischer. CSP-OZ: A combination of Object-Z and CSP. In H. Bowmann and
J. Derrick, editors, Formal Methods for Open Object-Based Distributed Systems
(FMOODS’97), volume 2, pages 423–438. Chapman & Hall, 1997.

6. M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF . volume 78 of LNCS.
Springer-Verlag, 1979.

7. M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A Theorem
Proving Environment for Higher Order Logic. Cambridge University Press, 1993.

8. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
9. C. A. R. Hoare and H. Jifeng. Unifying Theories of Programming. Prentice-Hall,

1998.
10. C. Morgan. Programming from Specifications. Prentice-Hall, 1994.
11. G. Nuka and J. C. P. Woodcock. Mechanising the alphabetised relational calculus.

In WMF2003: 6th Braziliam Workshop on Formal Methods, volume 95, pages 209–
225, Campina Grande, Brazil, October 2004.

12. M. V. M. Oliveira. Formal Derivation of State-Rich Reactive Programs using Cir-

cus – Additional Material, 2006. At http://www.cs.york.ac.uk/circus/refinement-
calculus/oliveira-phd/.

13. M. V. M. Oliveira and A. L. C. Cavalcanti. From Circus to JCSP. In J. Davies et
al., editor, Sixth International Conference on Formal Engineering Methods, volume
3308 of LNCS, pages 320–340. Springer-Verlag, November 2004.

14. M. V. M. Oliveira, A. L. C. Cavalcanti, and J. C. P. Woodcock. Refining indus-
trial scale systems in Circus. In Ian East, Jeremy Martin, Peter Welch, David
Duce, and Mark Green, editors, Communicating Process Architectures, volume 62

of Concurrent Systems Engineering Series, pages 281–309. IOS Press, 2004.
15. S. C. Qin, J. S. Dong, and W. N. Chin. A semantic foundation of TCOZ in Unifying

Theories of Programming. In K. Araki, S. Gnesi, and D. Mandrioli, editors, FME
2003: Formal Methods, volume 2805 of LNCS, pages 321–340. Springer-Verlag,
September 2003.

16. A. W. Roscoe, J. C. P. Woodcock, and L. Wulf. Non-interference through De-
terminism. In D. Gollmann, editor, ESORICS 94, volume 1214 of LNCS, pages
33–54. Springer-Verlag, 1994.

17. M. Saaltink. The Z/EVES System. In J. P. Bowen, M. G. Hinchey, and D. Till,
editors, ZUM’97: The Z Formal Specification Notation, volume 1212 of LNCS,
pages 72–85, Reading, April 1997. Springer-Verlag.

18. A. Sherif and H. Jifeng. Towards a time model for Circus. In C. George and H. Miao,
editors, Formal Methods and Software Engineering: 4th International Conference
on Formal Engineering Methods, ICFEM 2002, volume 2495 of LNCS, pages 613–
624. Springer-Verlag, June 2002.

19. K. Taguchi and K. Araki. The state-based CCS semantics for concurrent Z spec-
ification. In M. Hinchey and Shaoying Liu, editors, International Conference on
Formal Engineering Methods, pages 283–292. IEEE, 1997.

20. H. Treharne and S. Schneider. Using a process algebra to control B operations. In
K. Araki, A. Galloway, and K. Taguchi, editors, Proceedings of the 1st International
Conference on Integrated Formal Methods, pages 437–456. Springer, June 1999.

21. J. C. P. Woodcock and A. L. C. Cavalcanti. Circus: a concurrent refinement lan-
guage. Technical report, Oxford University Computing Laboratory, Wolfson Build-
ing, Parks Road, Oxford OX1 3QD UK, July 2001.

22. J. C. P. Woodcock and J. Davies. Using Z—Specification, Refinement, and Proof.
Prentice-Hall, 1996.

23. J. C. P. Woodcock and A. Hughes. Unifying Theories of Parallel Programming. In
H. Miao C. George, editor, Formal Methods and Software Engineering: 4th Inter-
national Conference on Formal Engineering Methods, ICFEM 2002, volume 2495

of LNCS, pages 24–37. Springer-Verlag, June 2002.

