
Formal Development of

Industrial-Scale Systems in Circus

Marcel Oliveira, Ana Cavalcanti, and Jim Woodcock

Department of Computer Science – The University of York
York, YO10 5DD, England

Abstract. Circus is a new notation that may be used to specify both data
and behavioural aspects of a system, and has an associated refinement cal-
culus. In this work, we present rules to translate Circus programs to Java
programs that use JCSP, a library that implements CSP constructs. These
rules can be used as a complement to the Circus algebraic refinement tech-
nique, or as a guideline for implementation. They are a link between the
results on refinement in the context of Circus and a practical programming
language in current use. The rules can also be used as the basis for a tool
that mechanises the translation. Although a few case studies are already
available in the literature, the industrial fire control system, whose refine-
ment and implementation is discussed in this paper, is, as far as we know,
the largest case study on the Circus refinement strategy.

Keywords: concurrency, refinement, program development, object-orientation.

1 Introduction

Languages like Z [24], VDM [11], Abstract State Machines[2], and B [1], use a model-
based approach to specification, based on mathematical objects from set theory.
Modelling behavioural aspects such as choice, sequence, parallelism, and others,
using these languages, is difficult and needs to be done in an implicit fashion. On
the other hand, process algebras like CSP [9, 18] and CCS [12] provide constructs
that can be used to describe the behaviour of the system; however, they do not
support a concise and elegant way to describe complex data aspects.

Many attempts to join these two kinds of formalism have been made. Com-
binations of Z with CCS [22], Z with CSP [19], and Object-Z with CSP [6] are
some examples. Our work is based on Circus [20, 4], which characterises systems as
processes that combine constructs that describe data and control behaviour. The Z
notation is used to define most of the data aspects, and CSP and Dijkstra’s guarded-
command language are used to define behaviour. The semantics of Circus is based
on the Unifying Theories of Programming [10], a framework that unifies the science
of programming across many different computational paradigms.

Circus, unlike the other combinations of data and behavioural aspects, supports
refinement in a calculational style similar to [13]. A refinement strategy for Circus

is presented in [4], with the complete development of a reactive buffer into a dis-
tributed implementation as an example, and extended in [16], where we discuss the
refinement of a industrial scale fire control system in detail.

The main objective of this paper is to provide a translation strategy for imple-
menting Circus programs in Java. The translation strategy is based on translation
rules, which transform a Circus program into a Java program that uses the JCSP [17]
library. These rules capture and generalise the approach that we took in the imple-
mentation of the fire control system. We believe that, with the results of this work,
we provide empirical evidence of the power of expression of Circus and, principally,
that the refinement strategy presented in [4] and the translation strategy presented
in this paper are applicable to large industrial systems.

2

The result of refining a Circus specification is a program written in a combi-
nation of CSP and guarded commands. In order to implement this program, we
need a link between Circus and a practical programming language. The transfor-
mation rules presented in this paper create this link and can be used as a basis
in the implementation of an automated translation to Java, which makes formal
development based on Circus relevant in practice. We assume that, before applying
the translation strategy, the specification of the system we want to implement has
already been refined into a specification written in the executable subset of Circus,
using the Circus refinement strategy presented in [4].

We describe Circus in the next section. JCSP is presented with some examples in
Section 3 and the translation strategy is presented in Section 4. In Sections 5 and 6,
we describe the fire control system, and discuss its refinement and implementation
in JCSP. Finally, we present our conclusions and discuss future work in Section 7.

2 Circus

Circus programs are formed by a sequence of paragraphs, which can either be a
Z paragraph, a declaration of channels, a channel set declaration, or a process
declaration. In Figure 1, the syntactic categories N, Exp, Pred, SchemaExp, Par, and
Decl are those of valid Z identifiers, expressions, predicates, Z schemas, paragraphs
in general, and declarations, respectively, as defined in [21]. The boxed constructs
in Figure 1, indicate the Circus constructs that are not part of the executable subset
of Circus; the underlined constructs have a constrained syntax in this subset.

We illustrate the main constructs of Circus using the specification of a simple
register (Figure 2). It is initialised with zero, and can store or add a given value to
its current value. It can also output or reset its current value.

All the channels must be declared; we give their names and the types of the values
they can communicate. If a channel is used only for synchronisation, its declaration
contains only its name. For example, Register outputs the current value through
the channel out ; it may also be reset through channel reset . The generic channel
declaration channel [T] c : T declares a family of channels c. In this declaration,
[T] is a parameter used to determine the type of the values that are communicated
through channel c. We may introduce sets of channels in a chanset paragraph.
Channels can also be declared using schemas that group channel declarations, but
do not have a predicate part. This follows from the fact that the only restriction
that may be imposed on a channel is the type of values that it communicates.

The declaration of a process is composed of its name and its specification. A
process may be explicitly defined or compound. An explicit process specification
is formed by a sequence of process paragraphs and a distinguished nameless main
action, which defines the process behaviour. We use Z to define the state; in our
example, RegSt describes the state of the process Register : it contains the current
value stored in the register. Generic processes may also be declared and instantiated.

Indexed processes are particular to Circus specifications. The process i : T � P

behaves likes P but communicates via different channels. For each channel c in P ,
we have a new channel c i that communicates pairs of values: the first element is an
index of type T , and the second element is the original value that was communicated
through c. Such processes may be instantiated: (i : T �P)bec, communicates pairs
of values where the first element is the value of the expression e.

Process paragraphs include Z paragraphs, declarations of (parameterised) ac-
tions, and sets of names. An action can be a schema, a guarded command, or an
invocation of another action; actions can combined using CSP operators.

The primitive action Skip does not communicate any value, nor does it change
the state: it terminates immediately. The action Stop deadlocks, and Chaos diverges;
the only guarantee in both cases is that the state invariant is maintained.

3

Program ::= CircusPar∗

CircusPar ::= Par | channel CDecl | chanset N == CSExp | ProcDecl

CDecl ::= SimpleCDecl | SimpleCDecl; CDecl

SimpleCDecl ::= N+ | N+ : Exp | [N+]N+ : Exp | SchemaExp

CSExp ::= {| |} | {| N+ |} | N | CSExp ∪ CSExp | CSExp ∩ CSExp

| CSExp \ CSExp

ProcDecl ::= process N =̂ ProcDef | process N[N+] =̂ ProcDef

ProcDef ::= Decl • ProcDef | Decl � ProcDef | Proc

Proc ::= begin PPar∗ state SchemaExp PPar∗ • Action end | N

| Proc; Proc | Proc 2 Proc | Proc u Proc

| Proc |[CSExp]| Proc | Proc ||| Proc | Proc \ CSExp

| (Decl • ProcDef)(Exp+) | N(Exp+)

| (Decl � ProcDef)bExp+c | NbExp+c | Proc[N+ := N+] | N[Exp+]

| o
9

Decl • Proc | 2Decl • Proc | uDecl • Proc

| |[CSExp]| Decl • Proc | |||Decl • Proc

| o
9

Decl � Proc | 2Decl � Proc | uDecl � Proc

| |[CSExp]| Decl � Proc | |||Decl � Proc

NSExp ::= { } | {N+} | N | NSExp ∪ NSExp | NSExp ∩ NSExp

| NSExp \ NSExp

PPar ::= Par | N =̂ ParAction | nameset N == NSExp

ParAction ::= Decl • ParAction | Action | µ N • ParAction

Action ::= SchemaExp | CSPAction | Command | N | Action [N+ := N+]

CSPAction ::= Skip | Stop | Chaos | Comm → Action | Pred & Action

| Action; Action | Action 2 Action | Action u Action

| Action |[NSExp | CSExp | NSExp]| Action

| Action ||[NSExp | NSExp]|| Action

| Action \ CSExp | ParAction(Exp+)
| µ N • Action | (µ N • ParAction)(Exp+)

| o
9

Decl • Action | 2Decl • Action | uDecl • Action

| |[CSExp]| Decl • |[NSExp]| Action

| |||Decl •||[NSExp]|| Action

Comm ::= N CParameter∗ | N [Exp+] CParameter∗

CParameter ::= ?N | ?N : Pred | !Exp | .Exp

Command ::= N+ : [Pred, Pred] | {Pred} | [Pred]

| N+ := Exp+ | if GActions fi | var Decl • Action

GActions ::= Pred → Action | Pred → Action 2 GActions

Fig. 1. Circus Syntax

4

The guarded-prefixing operator is standard. For instance, if the condition p is
true, the action p & c?x → A inputs a value through channel c and assigns it to x ,
and then behaves like A, which has the variable x in scope. If, however, p is false,
the same action blocks. The instantiation of generic channels is also possible.

channel store, add , out , read ,write : N; result , reset
chanset RegAlphabet == {| store, add , out , result , reset |}

process Register =̂ begin state RegSt =̂ [value : N]
RegCycle =̂ store?newValue → value := newValue

2 add?newValue → value := value + newValue
2 result → out !value → Skip
2 reset → value := 0

• value := 0; (µX • RegCycle; X) end

process SumClient =̂
begin ReadValue =̂ read?n → reset → Sum(n)

Sum =̂ n : N • (n = 0) & result → out?r → write!r → Skip
2 (n 6= 0) & add !n → Sum(n − 1)

• µX • ReadValue; X end

process Summation =̂ (SumClient |[RegAlphabet]| Register) \ RegAlphabet

Fig. 2. A simple register

The CSP operators of sequence, external and internal choice, parallelism, in-
terleaving, and hiding may also be used to compose actions; each of these has an
iterated counterpart. The process Register has a recursive behaviour: after its ini-
tialisation, it behaves like RegCycle, and then recurses. The action RegCycle is an
external choice: values may be stored or accumulated, using channels store and add ;
the result may be requested using channel result , and output through out ; finally,
the register may be reset through channel reset .

Parallelism follows the alphabetised approach adopted by [18]; we must declare
a synchronisation channel set. In order to avoid conflicts, we must declare two
sets that partition the variables in scope: state components, and input and local
variables. In A1 |[ns1 | cs | ns2]|A2, both A1 and A2 have access to the initial values
of all variables in ns1 and ns2, but A1 may modify only the values of the variables
in ns1, and A2, the values of the variables in ns2. Besides, the actions A1 and A2

synchronise on the channels in the set cs.

References to parameterised actions and recursions need to be instantiated. Ac-
tions may also be defined using recursion, assignment, guarded alternation, or vari-
able blocks. Finally, a calculational approach to development is supported with the
use of specification statements, assumptions, and coercions [13].

The CSP sequence, external and internal choice, parallelism, interleaving, and
hiding may also be used to compose processes as well as actions. Furthermore, the
renaming P [oldc := newc] replaces all the references to channels oldc by the corre-
sponding channels in newc, which are implicitly declared. Parameterised processes
may also be instantiated.

In Figure 2, the process SumClient repeatedly receives a value n through chan-
nel read , interacts with Register to calculate

∑n

i=0
i , and outputs this value through

write. The process Summation is the parallel composition of Register and SumClient .
They synchronise on the set of channels RegAlphabet , which is hidden from the en-
vironment: iterations with Summation can only be made through read and write.

5

3 JCSP

Since the facilities for concurrency in Java do not directly correspond with the
idea of processes in CSP and Circus, we use JCSP, a library that provides a model
for processes and channels. This allows us to abstract from basic monitor con-
structs provided by Java. In JCSP, a process is a class that implements the Java
interface CSProcess{public void run();}, where the method run encodes its
behaviour. We present an Example process below.

import jcsp.lang.*;

class Example implements CSProcess {

// state information, constructors, and auxiliary methods

public void run { /* execution of the process */ } }

After importing the basic JCSP classes and any other relevant classes, we declare
Example, which may have private attributes, constructors, and auxiliary methods.
Finally, we must give the implementation of the method run.

Some JCSP interfaces represent channels: ChannelInput is the type of channels
used to read objects; ChannelOutput is for channels used to write objects; and
AltingChannel is for channels used in choices. Other interfaces are available, but
these are the only ones used in our work.

The simplest implementation of a channel interface is that provided by the class
One2OneChannel, which represents a point-to-point channel; multiple readers and
writers are not allowed. On the other hand, Any2OneChannel channels allow many
writers to communicate with one reader. For any type of channel, a communication
happens between one writer and one reader only.

Mostly, JCSP channels communicate Java objects. For instance, in order to
communicate an object o through a channel c, a writer process may declare c as
a ChannelOutput, and invoke c.write(o); a reader process that declares c as a
ChannelInput invokes c.read().

The class Alternative implements the choice operator. Although other types
of choice are available, we use a fair choice. Only AltingChannelInput channels
may be involved in choices. The code below reads from either channel l or r.

AltingChannelInput[] chs = new AltingChannelInput[]{l,r};

final Alternative alt = new Alternative(chs);

chs[alt.select()].read();

The channels l and r are declared in an array of channels chs, which is given to
the constructor of the Alternative. The method select waits for one or more
channels to become ready, makes an arbitrary choice between them, and returns an
int that corresponds to the index of the chosen channel in chs. Finally, we read
from the channel located at the chosen position of chs.

Parallel processes are implemented using the class Parallel, whose constructor
takes an array of CSProcesses and returns the parallel composition of its process
arguments. A run of a Parallel process terminates when all its component do. For
instance, the code presented below executes two processes P_1 and P_2 in parallel.

(new Parallel(new CSProcess[]{P_1,P_2})).run();

It creates the array of processes which will run in parallel, gives it to the constructor
of Parallel, and finally, runs the parallelism.

The CSP constructors Skip and Stop are implemented by the classes Skip and
Stop. JCSP includes other facilities beyond those available in CSP; here we con-
centrate on those that are relevant for our work.

6

4 From Circus to JCSP

Our strategy for translating Circus programs considers each paragraph individually,
and in sequence. In Figure 3, we present an overview of the translation strategy.
First, for a given Program, we use a rule (Rule 16) that deals with the Z para-
graphs and channel declarations. Each process declaration ProcDecl in the program
is transformed into a new Java class (Rule 1). The next step (Rule 2) declares
the class attributes, constructor, and its run method. Basic process definitions are
translated (Rule 3) to the execution of a process whose private methods correspond
to the translation (Rule 4) of actions of the original Circus process; the transla-
tion (Rules 5-12) of the main Action, which determines the body of the method
run, and of the Action bodies conclude the translation of basic processes. Com-
pound processes are translated using a separate set of rules (Rules 13-15 and 18-20)
that combines the translations of the basic processes.

Fig. 3. Translation Strategy Overview

Requirements. Only executable Circus programs can be translated: the technique
in [4, 23] can be used to refine specifications. Other restrictions are syntactic and
can be enforced by a (mechanised) pre-processing; they are listed below.

• The Circus program is well-typed and well-formed.
• Z paragraphs precede channel declarations, whcih precede process declarations.
• Z paragraphs are axioms v : T | v = e1, free types, or abbreviations.
• The only Z paragraphs inside a process declaration are axioms as above.
• Variable declarations are of the form x1 : T1; · · · ; xn : Tn ; no name is reused.
• There are no nested external choices or nested guards.
• There are no nested declarations of parametrised and indexed processes.
• A synchronisation set is the intersection of the relevant sets of channels.
• No channel is used by two interleaved actions or processes.
• The types used are already implemented in Java.
• Only free types, abbreviations, and segments of Z are used for indexing variables.
• There are no guarded outputs.
• Multi-synchronisation channels are neither generic nor simple synchronisations.

Axiomatic definitions can be used to define only constants. All types, abbreviations
and free types, need a corresponding Java implementation. If necessary, the Circus

7

data refinement technique should be used. In [14] we present rules to translate some
forms of abbreviations and free types. Nested external choices, guarded actions, and
parametrised actions can be eliminated with simple refinement laws.

The JCSP parallel construct does not allow the definition of a synchronisation
channel set, and so the intersection of the alphabets determines this set. Guarded
outputs are not implementable in JCSP. Before applying the translation strategy
they must be removed applying refinement strategies as in [23].

The types of indexing variables in iterated operators are considered to be finite,
because their translation uses loops. A different approach in the translation could
make it possible to remove this restriction.

The output of the translation is Java code composed of several class declarations
that can be split into different files and allocated in packages. For each program, we
require a project name proj. The translation generates six packages: proj contains
the main class, which is used to execute the system; proj.axiomaticDefinitions
contains the class that encapsulates the translation of all axiomatic definitions;
the processes are declared in the package proj.processes; proj.typing contains
all the classes that implement types; and proj.util contains all the utility classes
used by the generated code. For example, class RandomGenerator is used to generate
random numbers; it is used in the implementation of internal choice.

The translation uses a channel environment δ. For each channel c, it maps c to
its type, or to Sync, if c is a synchronisation channel. We consider δ to be avail-
able throughout the translation. In order to simplify the definitions throughout this
paper, we use a non-standard representation of a channel type. For instance, the
generic channel declared as channel [T]c : N × N is represented in this environ-
ment as the mapping c 7→ ([T], [T , N]). The first list contains the typying variables
and the second contains the types used in the declaration of the channel. Untyped
channels are mapped to ([], [Sync]).

For each process, two environments store information about channels: ν and ι

for visible and hidden channels. They both map channel names to an element of
ChanUse ::= I | O | A. The constant I is used for input channels, O for output
channels, and A for input channels that take part in external choices. Synchronisa-
tion channels must also be associated to one of these constants, since every JCSP
channel is either an input or an output channel. If a channel c is regarded as an
input channel in a process P , then it must be regarded as an output channel in any
process parallel to P , and vice versa.

A type environment is also considered available in the translation: the environ-
ment τ : seqExpression lists all the types that are used in the Circus program which
is being translated. This list includes all the basic types, free types, abbreviations,
and possible types created for encapsulating multiple inputs and outputs.

JType defines the Java type corresponding to each of the used Circus types; and
JExp translates expressions. The definitions of these functions are simple, and so
for conciseness we omit them. For example, we have that JType(N) =Integer, and
JExp(x > y) = x.intValue() > y.intValue().

Table 1 presents a summary of the environments that are used throughout
the translation strategy. The environments λ, ς, and ω, have not yet been de-
scribed; they are used in the translation of parallelism, generic channels, and multi-
synchronisation, respectively; further details will be given as they are used.

This section is organised as follows: the rules of translation of processes declara-
tions are presented in Section 4.1. Section 4.2 presents the translation of the body
of basic processes, which is followed by the translation of the CSP actions (Sec-
tion 4.3), and commands (Section 4.4). The translation of compound processes is
presented in Section 4.5. Finally, Section 4.6 presents how to run the program. In
Section 4.7, we discuss the translation of synchronisation channels, which is fol-
lowed by a discussion on the translation of the indexing operator. The translation

8

Table 1. Environments used in the Translation Strategy

Env Description Granularity

δ Type of every channel in the system

ν Usage of visible channels (input, output, or alting) Processes

ι Usage of visible channels (input, output, or alting) Processes

τ Types used in the system

λ Type of every local variable and state component in scope Actions

ς Usage of channels (communication of values or not) Processes

ω Information about channel involved in multi-synchronisations Processes

of generic channels and channels that take part in multi-synchronisation are pre-
sented in Sections 4.8 and 4.9, respectively. For conciseness, we omit some of the
formal definitions of our translation strategy. They can be found in [14].

4.1 Processes Declarations

Each process declaration is translated to a Java class that implements the JCSP
interface CSProcess. For a process P in a project proj , we declare a class P that
imports the Java util package, the basic JCSP package, and the project packages.

Rule 1 |[process P =̂ ParProc]|ProcDecl
proj =

package proj.processes; import java.util.*;

import jcsp.lang.*; import proj.axiomaticDefinitions.*;

import proj.typing.*; import proj.util.*;

public class P implements CSProcess { |[ParProc]|ParProc
P }

The function |[]|ProcDecl
takes a Circus process declaration and a project name to

yield an Java class definition; our rule defines this function. The body of the class
is determined by the translation of the paragraphs of P .

As an example, we translate Register , SumClient , and Summation (Figure 2); the
resulting code is in [14]. Besides the package and import declarations, the trans-
lation of Register yields public class Register implements CSProcess {· · ·};
the body of this class is |[begin · · · • value := 0; (µX • · · ·) end]|ParProc

Register.
The translation the body of a parameterised process is captured by the function

|[]|ParProc
: ParProc 7→ N 7→ JCode. The process parameters D are declared as

attributes: for each x : T , the function ParDecl yields private (JType T) x;.
The visible channels are also declared as attributes: for each channel c, with use t ,
VisCDecl gives private (TypeChan t) c;, where TypeChan t gives ChannelInput
for t = I , ChannelOutput for t = O , and AltingChannelInput for t = A.

Rule 2 |[D • P]|ParProc
N =

(ParDecl D) (VisCDecl ν) (HidCDecl ι)
public N (ParArgs D,VisCArgs ν) {(MAss (ParDecl D) (ParArgs D))

(MAss (VisCDecl ν) (VisCArgs ν))
HidCC ι }

public void run(){ |[P]|Proc
}

For Register , we have declarations for the channels in the set RegAlphabet corre-
spond to private AltingChannelInput store;...;ChannelOutput out; ...;.

Hidden channels are also declared as attributes, but they are instantiated within
the class. We declare them as Any2OneChannel, which can be instantiated. The
process Summation hides all the channels in the set RegAlphabet . For this reason,
within Summation they are declared to be of type Any2OneChannel.

9

The constructor receives the processes parameters and visible channels as ar-
guments (ParArgs D and VisCArgs ν generates fresh names). The arguments are
used to initialise the corresponding attributes (MAss (ParDecl D) (ParArgs D)
and MAss (VisCDecl ν) (VisCArgs ν)), and hidden channels are instantiated lo-
cally (HidCC ι). In our example, we have the result below.

public Register(AltingChannelInput newstore, ...)

{ this.store = newstore; ... }

For Summation, we have the instantiation of all channels in the set RegAlphabet .
For instance, this.store = new Any2OneChannel(); instantiates store.

Finally, the method run implements the process body translated by |[]|Proc
.

In our example, we have public void run(){|[begin · · · end]|Proc
}. For a non-

parameterised process, like Register , we actually do not use Rule 1, but a simpler
rule. The difference between the translation of parameterised and non-parameterised
processes are the attributes corresponding to parameters.

4.2 Basic Processes

Each process body is translated by |[]|Proc
: Proc 7→ JCode to an execution of an

anonymous inner class that implements CSProcess. Inner classes are a Java feature
that allows classes to be defined inside classes. The use of inner classes allows the
compositional translation even in the presence of nameless processes.

Basic processes are translated as follows.

Rule 3 |[begin PPars1 state PSt PPars2 • A]|Proc
=

(new CSProcess(){ (StateDecl PSt) (|[PPars1 PPars2]|
PPars

)

public void run(){ |[A]|Act
}}).run();

The inner class declares the state components as attributes (StateDecl PSt). Each

action gives rise to a private method (|[PPars1 PPars2]|
PPars

). The body of run is
the the translation of the main action A. Our strategy ignores any existing state
invariants, since they have already been considered in the refinement of the process.
It is kept in a Circus program just for documentation purposes.

As an example, we present the translation of the body of Register . For concise-
ness, we name its paragraphs PPars, and its main action Main.

(new CSProcess(){ private Integer value; |[PPars]|PPars

public void run() { |[Main]|Act
}}).run();

The function |[]|PPars
: PPar∗ 7→ JCode translates the paragraphs within a

Circus process, which can either be axiomatic definitions, or (parameterised) ac-
tions. The translation of an axiomatic definition v : T | v = e1 is a method
private (JType T) v(){return (JExp e1);}. Since the paragraphs of a process
p can only be referenced within p, the method is declared private. We omit the
relevant rule, and a few others in the sequel, for conciseness.

Both parameterised actions and non-parameterised actions are translated into
private methods; however, the former requires that the parameters are declared as
arguments of the new method.

Rule 4 |[N =̂ (D • A) PPars]|PPars
=

private void N(ParArgs D){ |[A]|Act
} |[PPars]|PPars

The function ParArgs declares an argument for each of the process parameters. The
body of the method is defined by the translation of the action body.

By way of illustration, the translation of RegCycle generates the Java code
private void RegCycle(){|[body]|Act

}. We use body to denote the body of the ac-

tion. The function |[]|Act
: Action 7→ JCode translates CSP actions and commands.

10

4.3 CSP Actions

For each action translation, the environment λ is records the local variables in scope
and state components; it is used in the translation of parallel and recursive actions.
For each variable and state component, λ maps its name to its type. We also have
channel environments ν and ι to store information about each channel is used.

The translations of Skip and Stop use basic JCSP classes: Skip is translated to
(new Skip()).run();, and Stop is translated to (new Stop()).run();. Chaos is
translated to an infinite loop while(true){};, which is a valid refinement of Chaos.
For input communications, we declare a new variable whose value is read from the
channel. A cast is needed, since the type of the objects transmitted through the
channels is Object; we use the channel environment δ.

Rule 5 |[c?x → Act]|Act
= { t x = (t)c.read(); |[Act]|Act

}

where t = JType(last (snd (δ c))). 2

For instance, the communication add?newValue → · · · used in the action RegCycle

is translated to { Integer newValue = (Integer)add.read(); ... }

An output communication c!x is easily translated to c.write(x);. For synchro-
nisation channels, we need to know whether it is regarded as an input or output
channel; this information is retrieved either from ν or ι. If it is an input channel then
it is translated to c.read();; otherwise it is translated to c.write(null);. For ex-
ample, in SumClient , the action reset → · · · is translated to reset.write(null);· · ·.
On the other hand, in Register , the translation of reset is reset.read();.

Sequential compositions are simply translated to a Java sequential composi-
tion. The translation of external choice uses the corresponding Alternative JCSP
class; all the initial visible channels involved take part.

Rule 6 |[A1 2 · · · 2 An]|Act
=

Guard[] g = new Guard[]{ICAtt A1, · · · ,ICAtt An};

final Alternative alt = new Alternative(g);

(DeclCs (ExIC A1) 0) · · · (DeclCs (ExIC An) (#(ExIC An−1)))
switch(alt.select()){Cases (ExIC A1) A1 · · · Cases (ExIC An) An}

provided A1, · · ·, An are not guarded actions gi & Ai . 2

By way of illustration, we present below the translation of the body of RegCycle.

Guard[] guards = new Guard[]{store,add,result,reset}; (1)

final Alternative alt = new Alternative(guards); (2)

final int C_STORE = 0; ... ; final int C_RESET = 3; (3)

switch(alt.select()) (4)

{ case C_STORE:{...} break; ...; case C_RESET:{...} break; } (5)

It declares an array containing all initial channels of the choice (1). The function
ICAtt returns a ,-separated list of all initial channels of an action; these are the first
channels through which the action is prepared to communicate. The array is used in
the instantiation of the Alternative process (2). Next, an int constant is declared
for each channel (3). The function DeclCs returns a comma-separated list of int
constant declarations. The first constant is initialised with 0, and each subsequent
constant with the previous constant incremented by one. Finally, a choice is made,
and the chosen action executed. We use a switch block (4); the body of each case

is the translation of the corresponding action (5).
For guarded actions 2

i
gi & Ai , we declare an array g of boolean JExp gi ,

which we use in the selection alt.select(g). Unguarded actions Ai are refined to
true & Ai . If the guards are mutually exclusive, we can apply a different rule to
obtain an if-then-else; this does not require the guarded actions to be explored

11

in the translation of the external choice. The translation of A1 u · · · u An chooses a
random number between 1 and n (RandomGenerator.generateNumber(1,n)). This
choice is used in a switch block to execute the translation of the the chosen action.

To translate a parallel construct, we define an inner class for each parallel action,
because the JCSP Parallel constructor takes an array of processes as argument. To
deal with the partition of the variables, we use auxiliary variables to make copies of
each state component. The body of each branch is translated and each reference to a
state component is replaced with its copy. After the parallel composition, we merge
the values of the variables in each partition. Local variables need to be copied as
well, but since they are not translated to attributes, they cannot be directly accessed
in the inner classes created for each parallel action. So their copies are not initialised
when declared; they are initialised in the constructor of each parallel action, and
the initial values are passed to the constructor. The names of the inner classes are
defined in the translation. To avoid clashes, we use a fresh index ind in the name of
inner classes and local variables copies. In the following rule, LName and RName

stand for the names of the classes that implement A1 and A2.
The function IAuxVars declares and initialises an auxiliary variable for each

state component in the partition of A1. Next, DeclLcVars declares one copy of
each local variable; the initial values are taken by the constructor (LcVarsArgs).
In the constructor, the function ILcVars initialises each local variable with the
corresponding value received as argument. The body of the method run is the
translation of the action. The function RenVars is used to replace occurrences of
the state components and variables in scope with their copies.

After the declaration of the inner class LName, we create an object of LName

(the translation of A2 is similar). Next, we run the parallel processes, and then merge
the results to get the final values of the state and the variables in scope (MergeVars).

Rule 7 |[A1 |[ns1 | cs | ns2]| A2]|
Act

=

class LName implements CSProcess {

(IAuxVars (ns1 \ (dom λ)) ind L) (DeclLcVars λ ind L)
public LName((LcVarsArg λ)) {ILcVars λ ind L }

public void run(){RenVars |[A1]|Act
(ns1 ∪ (dom λ)) ind L} }

CSProcess l_ind = new LName(JList (ListFirst λ));
\\class RName declaration, process r_ind instantiation

CSProcess[] procs_ind = new CSProcess[]{ l_ind,r_ind };

(new Parallel(procs_ind)).run();

(MergeVars LName ns1 ind L) (MergeVars RName ns2 ind R)

where LName = ParLBranch_ind and RName = ParRBranch_ind

For instance, we present the translation of x := 0 |[{x} | ∅ | {y}]| y := 1 below. The
action is in a process with one state item x : N, and local y : N in scope.

class ParLBranch_0 implements CSProcess { (1)

public Integer aux_l_x_0 = x; public Integer aux_l_y_0; (2)

public ParLBranch_0(Integer y) { this.aux_l_y_0 = y; } (3)

public void run() { aux_l_x_0 = new Integer(0); } } (4)

CSProcess l_0 = new ParLBranch_0(y); (5)

* Right-hand side of the parallelism *\ (6)

CSProcess[] procs_0 = new CSProcess[]{l_0,r_0}; (7)

(new Parallel(procs_0)).run (); (8)

x = ((ParLBranch_0)procs_0[0]).aux_l_x_0; (9)

y = ((ParRBranch_0)procs_0[1]).aux_r_y_0; (10)

The state component x is declared in the left partition of the parallelism. For this
reason, the class ParLBranch_0 has two attributes: one copy of x and one copy of

12

y (2), whose initial value is received in the constructor (3). All the occurrences of
x are replaced by its copy in the body of run (4). This concludes the declaration
of ParLBranch_0, which is followed by the creation of an object of this class (5).
For conciseness, we omit the declaration of the class related to the right-hand side
of the parallelism (6). Its declaration is very similar to the left-hand side: the only
copy aux_l_y_0 is declared and initialised as in ParLBranch_0; the body run is the
assignment aux_r_y_0 = new Integer(1);. After running the parallelism (7,8),
the final values of x and y are those of their left (9) and right (10) copies, respectively.

A Circus action invocation is translated into a method call. If no parameter
is given, the method invocation has no parameters. If any parameter is given, we
use the java expression corresponding to it in the method invocation. For instance,
Sum(n − 1) translate to Sum(new Integer(n.intValue()-1));.

In order to avoid the need of indexing recursion variables, we also use inner
classes to declare the body of recursions. As for parallelism, this requires the use
of copies of local variables, which are declared as attributes of the inner class, and
initialised in its constructor with the values given as arguments. The run method
of this new inner class executes the body of the recursion, instantiates a new object
of this class, where the recursion occurs, and executes it.

Rule 8 |[µX • A(X)]|Act
=

class I_ind implements CSProcess {

DeclLcVars λ ind L

public I_ind(LcVarsArg λ) { ILcVars λ ind L }

public void run()

{RenVars |[A(RunRec ind 〈〉)]|Act
(dom λ) ind L}};

(RunRec ind 〈〉)

The function RunRec instantiates a recursion process possibly using the given re-
cursion arguments, invokes its run method, and finally collects the values of the
auxiliary variables. We also use a fresh index in the name of the inner class created
for the recursion to avoid name clashes. Besides, since we are also using a inner class
to express the recursion, the local variables must be given to the constructor of this
inner class, and their final values retrieved after the execution of the recursion.

We present below the translation of the main action of process Register .

value:=new Integer(0); (1)

class I_0 implements CSProcess { (2)

public Integer aux_l_value_0; (3)

public I_0(Integer value){ this.aux_l_value_0 = value; } (4)

public void run() { (5)

RegCycle(); (6)

I_0 i_0_1 = new I_0(aux_l_value_0); i_0_1.run(); (7)

aux_l_value_0 = i_0_1.aux_l_value_0; } }; (8)

I_0 i_0_2 = new I_0(value); i_0_2.run(); (9)

value = i_0_2.aux_l_value_0; (10)

First, we initialise value with 0 (1). Next, we declare the class I_0, which im-
plements the recursion. It has a copy of the state component value as its at-
tribute (3), which is initialised in the constructor (4). The method run calls the
method RegCycle (6), instantiates a new recursion (7), and executes it (8); this
concludes the declaration of the recursion class. Next, we instantiate an object of
this class, and execute it (9). Finally, we retrieve the final value.

We consider two cases for parametrised recursion: actions may be declared as
parametrised recursion (i.e., A =̂ µX • (y : N • A(X (y)))), or actions may have in-
stantiations of parametrised recursion (i.e., (µX • (y , z : N • A(X (y , z))))(0, 0)). In

13

the first case, we simply consider it as a parametrised action, in which the recursion
corresponds to invocation of the action name itself, using the given argument (A(y)).
In the second case, we consider the translation of the recursion using an extension
of the local variables environment in which the names of the recursion parameters
y and z are included. The instantiation of the recursion in the recursion body uses
the expressions list x , y used in the recursion call. However, the first execution of
the recursion uses the expressions list 0, 0 used in the recursion instantiation.

The translation of parameterised action invocations also makes use of inner
classes. Each of the local variables in scope has a corresponding copy as an attribute
of the new class; the action parameters are also declared as attributes of the new
class; both local variable copies attributes and parameters are initialised within
the class constructor with the corresponding values given as arguments. The run

method of the new class executes the parameterised action. However, the references
to the local variables are replaced by references to their copies. Next, the translation
creates an object of the class with the given arguments, and calls its run method.
Finally, it restores the values of the local variables.

The translation of iterated sequential composition is presented below.

Rule 9 |[o
9 x1 : T1; · · · ; xn : Tn • Act]|Act

=

InstActions pV_ind (x1 : T1; · · · ; xn : Tn) Act ind

for(int i = 0; i < pV_ind.size(); i++)

{ ((CSProcess)pV_ind.elementAt(i)).run(); }

The function InstActions declares an inner class I_ind that implements the action
Act parameterised by the indexing variables. It creates a vector pV_ind of actions
using a nested loop over the possible values of each indexing variable: for each itera-
tion, an object of I_ind is created using the current values of the indexing variables,
and stored in pV_ind . Each action in pV_ind is executed in sequence. Iterated inter-
nal choice uses the RandomGenerator to choose a value for each indexing variable.

4.4 Commands

Single assignments are translated to x = (JExp e);. Multiple assignments where
no expression mentions any variable on the left-hand side are implemented as a
sequence of single assignments. Otherwise, we create an initial copy of every relevant
variable, and use these copies in the assignment. The types of the copies are the
same as the original variables; they are retrieved from the variables environment λ.

Rule 10 |[x1, · · · , xn := e1, · · · , en]|Act
=

(JType (λ x1)) aux_ind_x_1 = (JExp e1); · · · ;
(JType (λ xn)) aux_ind_x_n = (JExp en);
x_1=aux_ind_x_1; · · · ; x_n=aux_ind_x_n;

provided {x1, · · · , xn} ∩ (FV (e1) ∪ · · · ∪ FV (en)) 6= ∅ 2

Variable declarations only introduce the declared variables in scope.

Rule 11 |[var x1 : T1; · · · ;xn : Tn • Act]|Act
=

{ (JType T1) x_1; · · · ; (JType Tn) x_n; |[Act]|Act
}

Alternations are translated to if-then-else blocks, choosing the first true

guard. If none of the guards is true, the action behaves like Chaos (while(true){}).

Rule 12 |[if g1 → A1 2 · · · 2 gn → An fi]|Act
=

if(JExp g1){ |[A1]|Act
} · · · else if(JExp gn){ |[An]|Act

}

else { while(true){} }

Finally, an assumption {g} is implemented using an if block: it behaves like
Skip if the predicate JExp g is true and like Chaos otherwise.

14

4.5 Compound Processes

For a single process name N , we must instantiate the process N, and then, invoke
its run method. The visible channels of the process are given as arguments to the
process constructor. The function ExtChans returns a list of all channel names in
the domain of the environment ν.

Rule 13 |[N]|Proc
= (new CSProcess(){

public void run(){(new N(ExtChans ν)).run();}

}).run();

The invocation of (parameterised) processes is translated to a new inner class that
runs the process instantiated with given arguments. The new class names are in-
dexed by a fresh ind to avoid clashes.

The sequential composition of processes is easily translated. External choice has
a similar solution to that presented for actions. The idea is to create an alternative
in which all the initial channels of both processes, that are not hidden, take part.
However, all auxiliary functions used in the previous definitions take actions into
account. All we have to do is use similar functions that take processes into account.

P1 u · · · u Pn randomly chooses a process. Its definition is very similar to the
corresponding one for actions.

The translation of parallelism executes a Parallel process that executes all
the processes that are elements of the array given as argument to its constructor.
Furthermore, the translation of parallelism of processes does not have to take into
account variable partitions.

Rule 14 |[P1 |[cs]| P2]|
Proc

=

(new CSProcess(){ public void run() {

new Parallel(new CSProcess[]{ |[P1]|Proc
, |[P2]|Proc

}).run();

}}).run();

It is important to notice that, when using JCSP, the intersection of the alphabets
determines the synchronisation channels set. For this reason, cs is actually ignored.

The renaming operation P [x1, · · · , xn := y1, · · · , yn] is translated by replacing all
the x_is by the corresponding y_is in the translated Java code of P .

As for actions, the iterated operators are translated using for loops. The same
restrictions apply for processes. The first iterated operator on processes is the se-
quential composition o

9 . As for actions, we use an auxiliary function to create a
vector of processes, and execute in sequence each process within this vector. The
iterated internal choice chooses a value for each indexing variable, and runs the
process with the randomly chosen values for the indexing variables.

The translation of iterated parallelism of processes are simpler than that of
actions, since we do not need to deal with partitions of variables in scope.

Rule 15 |[|[cs]| x1 : T1; · · · ; xn : Tn • P]|Proc
=

(new CSProcess(){

public void run(){

InstProcs pV_ind (x1 : T1; · · · ; xn : Tn) P ind

CSProcess[] pA_ind = new CSProcess[pV_ind.size()];

for (int i = 0; i < pV_ind.size(); i++)

{ pA_ind[i] = (CSProcess)pV_ind.get(i); }

(new Parallel(pA_ind)).run(); } }).run();

It uses the function InstProcs to instantiate a vector pV_ind containing each of
the processes obtained by considering each possible value of the indexing variables.
Then, it transforms this pV_ind in an array pA_ind , which is given to the constructor
of a Parallel process. Finally, we run the Parallel process.

15

4.6 Running the program

The function |[]|Program
summarises our translation strategy. Besides the Circus

program, this function also receives a project name, which is used to declare the
package for each new class. It declares the class that encapsulates all the axiomatic
definitions (DeclAxDefCls), and translates all the declared processes.

Rule 16 |[Types AxDefs ChanDecls ProcDecls]|Program
proj =

(DeclAxDefCls proj AxDefs) (|[ProcDecls]|ProcDecls
proj)

In order to generate a class with a main method, which can be used to execute
a given process, we use the function |[]|Run

. This function is applied to a Circus

process, and a project name. It creates a Java class named Main, which is created
in the package proj . After the package declaration, the class imports the packages
java.util, jcsp.lang, and all the packages within the project. The method main

is defined as the translation of the given process.
For instance, in order to run the process Summation, we have to apply the

function |[]|Run
to this process and give the project name sum as argument. This

application results in the following Java code.

(new CSProcess() {

public void run(){(new Summation()).run();} }).run();

For conciseness, we present only the body of the main method, and omit the package,
import, class, and main method declarations.

4.7 Synchronisation Channels and Indexing Operator

In this section, we extend the types of communications considered in our strat-
egy; we deal with communication events of the form N.Expression. Our strategy
implements synchronisation using array of channels. We consider the declaration of
the channel gasDischarged , which is used throughout this section to illustrate the
definitions: channel gasDischarged : AreaId .

By way of illustration, the synchronisation gasDischarged .0, which represents a
gas discharge in area 0, is implemented as the 0th element in an array of channels
gasDischarged (gasDischarged[0]). Basically, each synchronisation .exp is imple-
mented as an additional dimension in an array of channels. In order to simplify our
definitions, we consider that the use of such channels first declare possible synchro-
nisation of the form .Exp, and finally possible communications of the form ?N or
!Exp. Our strategy still constrains the channels to have only one input or output
value. Multiple inputs and outputs must be encapsulated in Java objects. Thus,
channels access like c!0?x and c!0.0 are not considered in this translation strategy.

Another important constraint is that if a channel c is used in a synchronisation
of the form N.Exp, it must be declared as channel c : T , where T is finite. This
constraint arises from the fact that our strategy uses arrays of channels for repre-
senting synchronisation events. In order to determine the dimension of the arrays,
we use the maximum and the minimum values of the type of the channel. In the
case of infinite types, we would not be able to calculate the dimension of the arrays.

A very important add-on in this extension is the use of a new channel environ-
ment ς : N → SC . It maps each channel used in the system to a value of type SC ,
which indicates if the channel is a communication channel (C), or a synchronisation
channel (S). In our example, the channel gasDischarged is mapped to the value S .
Basically, the changes in the translation strategy are concerned with the declara-
tion, instantiation, and use of these channels; all the previously defined functions
that are used to translate these aspects of the Circus programs are redefined.

16

First, the function VisCDecl is changed in order to deal with the possibility
of channel array declarations. Besides the type and the name of the channel, this
function, and others that follow, use an auxiliary function ArrayDimSync in order
to check the dimension of the array of channels that implements the given chan-
nel. If this dimension is equal to zero, the channel is implemented, as in previous
definitions, as a single channel.

The function ArrayDimSync receives three arguments: the type of the channel,
tps, a value sc of type SC , and a gap that can be used to decrease the final array
dimension; later on in this section, the need for this argument is explained.

If the channel is untyped, the list tps is a singleton with the element Sync. In this
case, the dimension is zero. However, the dimension for typed channels is as follows.
If the channel is a communication channel (C), the last type indicates the type that
is communicated, and therefore, we remove one from the final array dimension.
Otherwise, if no value is communicated through a channel (S), the dimension of the
array is equal to the size of the tps list. We return as many [], as the dimension
we calculated for the array. We use the notation (code)n to represent n repetitions
of code; if n ≤ 0, (code)n is the empty string ε.

ArrayDimSync tps sc gap =

let dim =

(
if (tps = [Sync]) then 0
else if (sc = C) then #tps − 1 else #tps

)
in []dim−gap

A local definition is used to make the definition more concise: we use the notation
let n = e in p to represent the substitution in p of n by e.

For channel gasDischarged , we have that tps = [AreaId], sc = S . Besides, ev-
ery calculation of an array dimension starts with a gap equals to zero. The ap-
plication of function ArrayDimSync with these arguments returns the string [].
For this reason, in the process FC , the function VisCDecl returns the Java code
private ChannelInput[] gasDischarged.

We also redefine the function HidCDecl . The definition of the dimension of pos-
sible arrays of channels is the same as for the visible channels. However, we declare
the channels as Any2OneChannel channels. The redefinition of function VisCArgs

is very similar to the original one. However, it also takes into account the existence
of possible channel arrays, using the auxiliary function ArrayDimSync.

If a hidden channel is not declared as an array the channel is instantiated as a
Any2OneChannel channel. Otherwise, we use the auxiliary function InstArraySync

to instantiate the channel as an array of channels. The function InstArraySync

instantiates an array of channels. It receives the types (tps) used in the declaration
of the channel, and a value sc of type SC . If we have only one type in the list of
types used in the channel declaration, we use the function BaseCase to declare either
a channel (C) or a array of channels (S) instantiation. Otherwise, we instantiate
an array of channels with dimension defined by the function ArrayDimSync. The
function TypeInstSync is used to instantiate each of the elements in the array.

InstArraySync tps sc =
let tp = (head tps), dim = (ArrayDimSync tps sc 0) in

if (#tps = 1) then BaseCase tp sc else

new Any2OneChannel dim

{TypeInstSync tps sc (Max (JType(tp))) − (Min(JType(tp))) + 1}

Our example falls in the first case: we have that BaseCase AreaId S instantiates
this channel. If the channel is a communication channel (C), the function BaseCase

instantiates a single Any2OneChannel() channel; otherwise (S), it uses the expres-
sion Any2OneChannel.create((Max (JType(T)))-(Min(JType(T)))+1)to instanti-
ate an array of channels with the number of elements equals to the number of possi-
ble values of the type T given as argument. The functions Max and Min return the

17

code MAX_T and MIN_T, which represent the maximum and the minimum values in
the Java type T given as argument, respectively. The channel gasDischarged is in-
stantiated with Any2OneChannel.create(MAX_AREA_ID - MIN_AREA_ID +1);.The
function TypeInstSync invokes the function InstArraySync for the remaining types
of the channel declaration (tail tps) as many time as given as argument.

Most of the translation of actions remain the same; only those that are concerned
with communications and external choice must be extended. For instance, for a given
input channel c, the type of the communicated value is given by the Java type of
the last element in the list (last) of types of c. This is the type used to declare the
new declared variable. Each synchronisation .i is translated to an access of the i -th
element in an array of channels.

Rule 17 |[c .e0 · · · .em?x → Act]|Act
=

let commType = JType(last (snd (δ c))) in

{commType x=(commType)c[JExp e0] · · · [JExp en].read(); |[Act]|Act
}

Given a triple (a, b, c), the functions fst , snd , and trd return a, b, and c, respectively.
The translation of output and synchronisation channels is simply changed in the
same way; we omit the rule definitions for conciseness.

In the case of external choice, we must redefine some of the auxiliary func-
tions (ICAtt ,ExIC ,DeclCs,Cases) to take into account the existence of arrays of
channels; each channel in an array of channels is considered as a different initial
channel. For instance, the function DeclCs, used to declare one constant for each
channel that takes part in the external choice, returns, for each synchronisation
c.x0 · · · .xm , a declaration of a constant CONST_C_X_0_ · · · X_m.

For example, in the choice a.0 → · · · 2 a.1 → · · ·, we consider a[0] and a[1] as
initial channels; this is reflected in the declaration of the guards, the constants, and
the switch block, as presented below.

Guard[] guards = new Guard[]{a[0],a[1]};

final Alternative alt = Alternative(guards);

final int CONST_A_0 = 0; final int CONST_A_1 = 1;

switch(alt.select(g)){case CONST_A_0: { a[0].read(); ... } break;

case CONST_A_1: { a[1].read(); ... } break;}

This concludes the translation of our example.

An indexed process can be seen as a kind of parameterised process. The differ-
ence, however, is that a syntactic substitution on the channels is made. It is very
important to notice that the creation of the channels environment already takes into
account the indexed processes. So, the channels implicitly created by the indexed
operator are already within the channel environment. For instance, consider the
following channel environment δ =̂ {c 7→ ([], [N])} that has a channel c of type N.
In the translation of the process i : T1 � Proc, we consider that the environment δ

is changed to δ =̂ {c i 7→ ([], [T1, N])}.
The renaming in the channels within a given indexed process Decl � Proc is

reflected in the way the channels are instantiated, referenced, and used. An in-
dexed process x1 : T1; · · · ; xn : Tn � Proc is translated as a parametrised process
x1 : T1; · · · ; xn : Tn • Proc but, for every channel c used within the process, we
replace every reference to c, by a reference to c x 1 · · · x n.x1. · · · .xn .

Rule 18 |[x1 : T1; · · · ; xn : Tn � Proc]|ParProc
P =

|[(x1 : T1; · · · ; xn : Tn • Proc)

[c : used(Proc) • c x 1 · · · x n.x1. · · · .xn]]|ParProc
P

18

The process P [c : used(Proc) • c x 1 · · · x n.x1. · · · .xn] is that obtained from P

by changing all the references to a used channel c by a reference to the channel
c x 1 · · · x n, with synchronisation x1. · · · .xn .

An instantiation of an indexed process is translated as an invocation of a pa-
rameterised process. However, the same syntactic substitution as the one present in
the rule above is made before the translation.

Rule 19 |[(x1 : T1; · · · ; xn : Tn � Proc)bv1, · · · , vnc]|Proc
=

|[((x1 : T1; · · · ; xn : Tn • Proc)

[c : used(Proc) • c x 1 · · · x n.x1. · · · .xn]) (v1, · · · , vn)]|Proc

If the instantiation uses the process name N bv1, · · · , vnc, we simply translate it as

|[N (v1, · · · , vn)]|Proc
. As the process N is defined as an indexed process, its trans-

lation takes into account the new channels created by the indexing operator.
The iterated indexed sequential composition over the indexed operator can be

simply translated as an iterated sequential composition. However, the process has
all the references to the channels within it changed before the translation.

Rule 20 |[(o
9 x1 : T1; · · · xn : Tn � Proc)]|Proc

=

|[(o
9 x1 : T1; · · · xn : Tn •

(Proc[c : used(Proc) • c x 1 · · · x n.x1. · · · .xn]))]|Proc

For the same reasons as those for iterated external choices, the iterated indexed
external choice must be expanded before being translated. The iterated indexed
internal choice can also be simply translated as an iterated internal choice with
the process having all the references to the channels within it changed before the
translation. Its definition is very similar to that of the iterated indexed sequen-
tial composition. The same strategy applies to the translation of iterated indexed
parallelism and interleaving.

4.8 Generic Channels

In this section, we deal with generic channels. We consider the declaration of the
channel lamp used in our case study, which is used throughout this section to illus-
trate the definitions: channel[T] lamp : T × OnOff . This declaration introduces a
family of channels lamp, used in our case study by the system to switch a given lamp
on or off; T is used as a parameter to determine the type of the lamp that is used in
the communication of a value of type OnOff . The syntax used for synchronisation
channels still holds throughout this section; the only difference from Section 4.7 is
the possibility of generic channel instantiation.

Basically, each generic typing variable in a generic channel declaration is imple-
mented as an additional dimension in an array of channels: each element represents
a possible instance of the channel. For example, the instantiation of the generic
channel lamp[AreaId] from our example, is implemented as lamp[Type.AREA_ID].

Our translation strategy assumes that every type used within the system is al-
ready implemented in Java. Besides, these must inherit from the class Type, which
has an integer constant for each type used within the system. The translation strat-
egy translates references to a type into a reference to the corresponding constant in
class Type, as in the example presented above where the reference to type AreaId

is translated to Type.AREA_ID.
A generic process declaration is translated as a process parameterised by the

types used in the declaration. For this reason, if we have a generic process P ,
we consider the type arguments as arguments of P in its translation, and replace
every reference to that type identifier, by the primitive value of the integer given
as argument. Besides, any reference to the generic type variable is replaced by a

19

reference to the superclass Type. The typing variables are not types; we assume that
JType returns the names given as arguments in these cases.

Rule 21 |[process P [T0, · · · ,Tn] =̂ Decl • Proc]|Proc
proj =

ReplTRefs (|[process P =̂ t0 : N; · · · ; tn : N; Decl • Proc]|Proc
proj)

Given a Java code c and for every type T used to instantiate a generic process,
the function ReplTpRefs replaces every occurrence of JType T in c by Type, and
every occurrence of Type.CJType(T) in c by t.intValue(). For a given type T ,
the function CJType, returns the name of the Java type of T with all the letters
capitalised. This is far from essential, but is kept in the translation in order to follow
the Java coding standards.

Instead of using the previously defined function ArrayDimSync, the functions
VisCDecl , HidCDecl , VisCArgs, and the instantiation of hidden channels, use the
function ArrayDim defined below in order to find out the dimension of the possi-
ble array of channels. It receives four arguments: a list genTypes of the generic
type arguments of the channel, and the three arguments used by the function
ArrayDimSync. This function adds the number of generic types used in the decla-
ration of a given channel to the result of ArrayDimSync.

ArrayDim genTypes tps sc gap =

let dim = #genTypes + (ArrayDimSync tps sc gap) in []dim−gap

For channel lamp, we have genTypes = [T], tps = [T ,OnOff], sc = C , and
gap = 0. The application of function ArrayDim with these arguments returns the
string [][]. The array dimension for this channel is two, one for being a single
generic channel and another for being a synchronisation channel; VisCDecl returns
the Java code private ChannelOutput[][] lamp.

As in Section 4.7, the changes in the translation are in the declaration, instanti-
ation, and use of the generic channels. In the channel declaration and instantiation,
the only difference from Section 4.7 is that we replace the use of InstArraySync by
the use of InstArray . First, it deals with the dimensions related with the generic
variables, and then it uses the previously defined function InstArraySync, in order
to deal with dimensions that are originated from synchronisation. It receives the
generic type arguments (genTypes) and the types (tps) used in the declaration of
the channel, a value sc of type SC indicating if the channel is a synchronisation or
a communication channel, an a list of all types used within the system (τ).

For each generic type variable, this function instantiates an array of channels
with a dimension determined by the function ArrayDim. This instantiation uses
an auxiliary function GenericInst , which declares an element in the array for each
type Tn used within the system (τ). Finally, when all the generic type variables
have been dealt with, the function invokes the function InstArraySync, in order to
instantiate any further arrays related to possible synchronisation.

InstArray genTypes tps sc τ =
let dim = (ArrayDim genTypes tps sc 0) in

if (#genTypes > 0) then

new Any2OneChannel dim{ GenericInst genTypes tps sc τ τ }

else InstArraySync tps sc

The expression InstArray (tail genTypes) (replace(head genTypes,T , tps)) sc τ is re-
cursively invoked by function GenericInst , for each type T in τ , in order to deal with
the remaining (if any) generic type variables. Each of these invocations corresponds
to an instantiation of the first generic variable in the list with T ; for this reason,

20

we replace in tps every reference to the first variable in the list (head genTypes) by
the type T using the function replace.

Our example falls in the first case of function InstArray . As previously discussed,
for this channel, we have genTypes = [T], and so #[T] = 1 > 0. As we already know
the array dimension for this channel is two, so we have the following instantiation
for channel lamp: new Any2OneChannel[][]{GenericInst [T] [T ,OnOff] C τ τ };.
One of the eight types used in our case study was the one related to the identification
of the areas, AreaId . By way of illustration, part of code generated by GenericInst

is InstArray (tail [T]) [AreaId ,OnOff] C τ · · ·. Each of these lines corresponds to
a certain type within the system. Notice that the function replace has replaced
the variable T , in the types list [T ,OnOff] by the corresponding type (AreaId

in our example). Besides, we have that tail [T] = []. For this reason, the invoca-
tion of function for each of the eight elements above, we have that the function
InstArray above yields InstArraySync [AreaId ,OnOff] C . The same happens to
the remaining types of the system. By applying the definition of InstArraySync,
we notice that the dimension of the array is now one. Hence, we have the fol-
lowing: new Any2OneChannel[]{ TypeInstSync [AreaId ,OnOff]C 2 }. The result
of the function TypeInstSync contains two comma-separated invocations to the func-
tion InstArraySync: InstArraySync [OnOff]C,InstArraySync [OnOff]C . Again, fol-
lowing the definition of InstArraySync, each invocation leads to the base case, which,
since we have a communication channel (C), returns a single channel instantiation
new Any2OneChannel(). This concludes the instantiation of the channel lamp. A
illustration of the instantiation of this channel is presented below; its full instanti-
ation can be found in [14].

this.switchLamp = new Any2OneChannel[][]{

// Type AreaId

new Any2OneChannel[]{new Any2OneChannel(),

new Any2OneChannel()},...};

We are left now with the usage of these channels.
As for synchronisation channels, just a few rules must be redefined. These redef-

initions are straightforward. Basically, we extend the definitions for synchronisation
channels, by taking into account possible generic channel instantiations. For a given
input or output channel c, the type of communicated value (commType) is given
by the Java type of the last element in the list (last) of types of c. This is the type
used to declare the new variable.

Rule 22 |[c [T0, · · · ,Tn].e0 · · · .em?x → Act]|Act
=

let commType = JType(last (snd (δ c))) in

{ commType x = (commType)c[Type.(CJType T0)] · · ·
[Type.(CJType Tn)]
[JExp e0] · · · [JExp en].read();

|[Act]|Act
}

The translations of output and synchronisation channels is simply changed in the
same way and are omitted.

As for synchronisation channels, in the case of external choice, we must rede-
fine some of the auxiliary functions to take into account the existence of arrays of
channels; each channel in an array of channels is considered as a different visible
channel. These redefinitions are pretty straightforward. For instance, the function
ICAtt , which is used in the declaration of the array of channels that take part in the
external choice, takes into account possible generic channels and synchronisation val-
ues in the channels. The translation of channels in the form c.[T0, · · · ,Tn]x0 · · · .xm

yield c[Type.(CJType T0)]· · ·[Type.(CJType Tn)][JExp x0]· · ·[JExp xm].

21

For each channel in the form presented above that take part in a external choice,
the function DeclCs yields the declaration of a constant as follows.

final int CONST_C_(CJType(T0))_ · · · _(CJType(Tn))_X_0_ · · · X_m = n

Finally, the redefined function Cases, which returns a sequence of Java case blocks,
one for each initial channel in given channel list, returns a different case block for
each element in an array of channel that takes part in the external choice.

As discussed before, the types are declared as arguments of a generic process.
For this reason, we must use the constants which represent each of the types used
in the instantiation. These are given as Java Integers, which are constructed using
the corresponding constants, to the constructor of the class corresponding to the
process that is being instantiated.

Rule 23 |[N [T0, · · · ,Tn](e0, · · · en)]|Proc
=

(new CSProcess(){

public void run() {

(new N(new Integer(Type.(CJType T0)), · · · ,
new Integer(Type.(CJType Tn)),
(JExp e0), · · · (JExp en), ExtChans ν)).run(); }

}).run();

For parametrised processes, we have that JExp e is also given to the constructor, for
each parameter e, used to instantiate the process. Finally, as expected, a ,-separated
list of visible channels of the process is also used to instantiate the process.

4.9 Multi-synchronisation

In this section, we deal with multi-synchronisation channels. First, we present some
Java components that were implemented by us for use in this translation. Then, we
present the translation rules.

We implement multi-synchronisation using a centralised solution based on the
work presented in [23]: the distribution of a multi-synchronisation is replaced by
a process that controls the multi-synchronisation in a given channel, and by client
processes that potentially synchronise on the channel.

Two components are used: a process that represents the synchronisation con-
troller (MultiSyncControl) and a process that represents the synchronisation client
(MultiSyncClient). For each channel involved in a multi-synchronisation, we have
a controller; each time a process is willing to engage in a multi-synchronisation,
we must instantiate a new client process and run it. At the end of the execution,
possibly communicated values can be retrieved from the client.

In Figure 4, we illustrate an architecture using these components for two chan-
nels involved in a multi-synchronisation and four processes. In this example, we
have one MultiSyncControl for each channel, and each process instantiates its own
MultiSyncClient . The controllers use an array of channels fromSync to communi-
cate with each of their clients. The clients share a channel toSync to communicate
with their controller. This channel is not multi-synchronised since is JCSP commu-
nications happens only between two processes only.

The three top-most clients synchronise on the channel that is controlled by
right-hand side controller, and the three bottom clients synchronise in the chan-
nel controlled by the left-hand side controller. Each of the clients have a different
identification regarding each of the controllers. For instance, the second client from
the top, is identified as client zero on the left, and as client 1 on the right. In this
paper, we extend the work presented [23]: clients may take part in more than one

22

Fig. 4. Architecture for the Multi-synchronisation components

multi-synchronisation, in non-multi-synchronised communications, and values may
be carried through channel involved in a multi-synchronisation.

Another environment is considered to be available throughout the translation
strategy: the environment ω : N 7→ ((N 7� N) × N × N) includes a triple for
every name of channel involved in a multi-synchronisation. The first element is
function that gives an identification number for every process involved in the multi-
synchronisation. Our strategy considers that these identifications start from zero,
and are incremented by one for each process. For instance, consider a channel c,
in which processes P0, P1, and P2 synchronise. A possible identification function
would be ID = {P0 7→ 0,P1 7→ 1,P2 7→ 2, }. The second element in the triple is
the number of processes that are involved in the multi-synchronisation. This can be
easily calculated from the cardinality of the domain of the identification function,
but we keep it for conciseness in the definitions. The third, and last, element in the
triple is the name of the process that is writing to the channel; following a limitation
from JCSP, all other processes are considered readers.

Consider a system with only one channel c used for multi-synchronisation and
three process P0, P1, and P2, the writer, that synchronise on c. In this case, the
environment ω could be defined as {c 7→ {ID , 3,P2}}, where ID is as above.

In order to create a MultiSyncControl process that controls the synchronisation
of channel c, the user must give the array of channels from_c, and the channel to_c
that the clients use to communicate with the controller, as arguments. The number
of clients can be easily retrieved from the ω environment (JExp(snd(ω c))).

Any2OneChannel[] from_c = Any2OneChannel.create(3);

Any2OneChannel to_c = new Any2OneChannel();

MultiSyncControl c = new MultiSyncControl(from_c, to_c);

The instantiation of the clients requires a little bit more of information. For
each multi-synchronisation c on which the process takes part we must create a
synchronisation object that contains the channel used by this client in the array of
channels from_c, the channel to_c, the identification of the process in this multi-
synchronisation (JExp((fst(ω c))P) = 0), and the identification of the writer in that
channel (JExp((fst(ω c)) (trd(ω c))) = 2). For instance, in the translation of process
P0, we create the following synchronisation object for channel c.

Object[] sync = new Object[]{from_c[0], to_c, 0, 2};

Next, we create a Vector that contains all these multi-synchronisation objects.

Vector sqOfSyn = new Vector(); sqOfSyn.addElement(sync);...

A Vector of channels that are not involved in a multi-synchronisation is also used
in the instantiation of a client.

23

For instance, consider we have a channel nm, which is not multi-synchronised.
We have the following Java code.

Vector sqOfNSyn = new Vector(); sqOfSyn.addElement(nm);

Finally, we instantiate the client and execute it as follows.

MultiSyncClient client = new MultiSyncClient(sqOfSyn,sqOfNSyn,v);

client.run();

The last argument v is the value communicated through the channel. If this client
is the writer, this is the value that will be communicated to the readers once the
synchronisation happens. If this process is not the writer, we have that v=null.

Most of the extension for dealing with multi-synchronisation is done simply by
replacing code in the Java code generated by the translation of the previous rules.
These replacements change only those parts of the Java code that are related to
the multi-synchronisation channels. Basically, every reference to a channel involved
in a multi-synchronisation is replaced by a reference to the channels use in the
communication with the multi-synchronisation controller.

Furthermore, the translation of external choice is changed in order to deal with
channels involved in a multi-synchronisation, and the translation of the body of a
process is also changed in order to include the execution of the controllers for the
channels involved in a multi-synchronisation that are hidden within that process.
All the changes are discussed later in this section.

The first code substitution deals with the declaration of every hidden channel c

involved in a multi-synchronisation within a process. We replace every declaration
of such channel by the declaration of a channel private Any2OneChannel to_c

and the channel array private Any2OneChannel[] from_c used to communicate
with the multi-synchronisation controller.

In a similar way, we also make a substitution of the declarations of visible chan-
nels involved in a multi-synchronisation. However, since the control of reading and
writing in a channel involved in a multi-synchronisation is now left to the syn-
chronisation controller, we do not make any distinction between input and output
channels. The same applies in the declaration of the class constructors arguments
that are related to the channels involved in a multi-synchronisation.

Next, we replace instantiations of these channels by instantiations of the chan-
nels that make the communications between servers and clients as follows. The
environment ω gives how many processes take part in the multi-synchronisation.

this.from_c = Any2OneChannel.create(JExp(fst(ω c)));
this.to_c = new Any2OneChannel();

The initialisation of visible channels in the constructor is also replaced by the as-
signment of both channels related to c:

this.from_c = newFrom_c; this.to_c = newTo_c;

Every access to a channel involved in a multi-synchronisation must be made in
the ways explained before. Each time that a multi-synchronisation is used, we must
instantiate a client and execute it. Given an index ind , the function InstMultiSync

returns the Java code that implements a multi-synchronisation on channel c within
a process P . The index of the right channel within the array from_c is the result
of the expression JExp((fst(ω c))P), which is the Java expression corresponding
to the identity of the process in the synchronisation. The identity of the writer is
given as the application of the identity function to name of the writer process, thus
JExp((fst(ω c)) (trd(ω c))).

24

We present below how a multi-synchronisation within P0 must be implemented.

Vector sqOfSyn_0 = new Vector();

Object[] sync_0 = new Object[]{from_c[0],to_c,0,2};

sqOfSyn.addElement(sync_0);

MultiSyncClient client_0 =

new MultiSyncClient(sqOfSyn_0, new Vector(),null);

client_0.run();

First, we replace any channel reading that stores the read value, and the we
replace the remaining communications. The reading T x=(T)c.read() from ev-
ery multi-synchronised channel c, where T is any java type, is replaced by the
following: we execute a client, as the one presented above, and finally, we retrieve
the communicated value from the client T x=(T)client_ind.getValueTrans();.
Writing (c.write(x)) to a channel and reading (c.read()) from a channel (if we
do not store the read value) are also replaced by a client execution. Processes that
write a value x are considered to be the channel writer; therefore, in this case, we
also replace the null value used in the instantiation of the client, by x .

The only rules that need changes are those for parameterised processes and for
external choice. The new translation of external choice is very similar to the one pre-
sented before. The only change from Rule 6, is that it does not use the Alternative
JCSP class, but a multi-synchronisation client. For every multi-synchronised chan-
nel c involved in the external choice, we create a synchronisation object corre-
sponding to c and insert it the vector sqOfSync_ind ; the remaining channels are
inserted in the vector sqOfNSync_ind . Finally, as explained before, we create a
multi-synchronisation client client_ind and execute it. At the end of its execu-
tion, client_ind has the index of the chosen channel, and possibly a communicated
value. Since there is no guarded output, every channel that takes part in an exter-
nal choice is not willing to write anything to the channel, hence, the communicated
value used to instantiate the MultiSyncClient is null. Finally, the translation of
switch block remains almost the same: the choice is actually retrieved from the
client using the method getChosen, which returns the index of the chosen channel.

In the previous translation of external choice, after choosing a channel in the
switch block, the first line of the code is the translation of the channel reading.
However, in the case of multi-synchronisation, this is already done by the multi-
synchronisation client. For this reason, the translation of the case bodies related
to the channels involved in a multi-synchronisation are slightly changed: we replace
(T)x = (T)c.read() by (T)x =(T)client_ind.getValueTrans() and remove
the remaining readings c.read();.

Every channel is instantiated within the process that hides it; otherwise it is re-
ceived and initialised in the constructor. For this reason, we chose to instantiate the
multi-synchronisation controller for a given channel in the same class in which c is in-
stantiated. First, we need to retrieve the information of which multi-synchronisation
channels are hidden within a process. This can be easily defined as the intersection
of the hidden channels of a process (dom ι) and the multi-synchronisation chan-
nels (dom ω). We emphasise that the environment ι stores information for every
hidden channel in a certain process. For a given process whose multi-synchronisation
channels are c1,· · ·,cn , we have that the process that represents the parallelism of
controllers of c1,· · ·,cn is defined as follows.

Controllers =̂ MultiSyncControl(from c1, to c1)
‖ · · · ‖ MultiSyncControl(from cn , to cn)

We redefine Rule 2 for parametrised processes, by changing the translation of the run
method body. Instead of simply translating the process definition, we translate the

25

parallel composition of the process body with the controllers. Furthermore, we use
the function ReplMultiSync, in order to apply all the substitutions previously dis-
cussed to the Java code related to the channels involved in a multi-synchronisation.

public void run(){ ReplMultiSync (dom ω) |[Proc ‖ Controllers]|Proc
}

For every channel c in a set of channels s, the application ReplMultiSync s jc, where
jc is a Java code, applies the substitution described in this section to jc.

One last rule that must be changed is the rule that translates process invoca-
tions. This is needed to deal with the fact that we actually have invocations of a
very special process (MultiSyncControl), which needs a slightly different translation
strategy: we do not need to give each of the external channels to this process. We use
only two arguments: the array of channels used by the controller to communicate
with the clients, and the channel used to communicate with the controller.

Rule 24 |[MultiSyncControl(from c, to c)]|Proc
=

(new CSProcess(){

public void run(){(new MultiSyncControl(from_c,to_c)).run();}

}).run();

This extension of the translation strategy presented in [15] was vital in the im-
plementation of our case study since multi-synchronisation plays a major role in
our system. The implementation of the whole system can be found in [14]. For
conciseness, we omit the translation of free types and abbreviations [14].

5 Case Study

Our case study [16] consists of a fire control system that covers two separate areas.
Each area is divided into two zones; two different zones cannot be covered by two
different areas. Fire detection happens in a zone and a gas discharge may occur in
the area that contains that zone. The system includes a display panel composed
of lamps that indicates whether the system is on or off, whether there are system
faults, or a fire has been detected, whether the alarm has been silenced or not, the
need to replace the actuators of the system, and gas discharges.

The system can be in one of three modes: manual, automatic, or disabled. In
manual mode, an alarm sounds when a fire is detected, and the corresponding
detection lamp is lit on the display. The alarm can be silenced, and, when the reset
button is pressed, the system returns to normal. In manual mode, gas discharge
is manually initiated. In automatic mode, a fire detection is followed by the alarm
being sounded; however, if a fire is detected in the second zone of the same area,
the second stage alarm is sounded, and a countdown starts. When it finishes, the
gas is discharged and the circuit fault lamp is lit on the display; the system mode
is switched to disabled. In disabled mode, the system can only have the actuators
replaced, identify relevant faults in the system, and be reset. The system is back to
its normal mode after the actuators are replaced and the reset button is pressed.

The motivation for the fire control system refinement is the distribution of the
areas, in order to increase efficiency. In [16], we discuss in details the refinement
steps summarised graphically in Figure 5.

In the first iteration, we split the abstract fire control AbstractFC into two pro-
cess Areas and InternalFC . The first models the areas of the system, and is split
into two interleaved Area processes in the last iteration. The second is the core of
the system, which is split into a display controller DisplayC and the system con-
troller FC in the second iteration. After the last iteration, additional simple schema

26

Fig. 5. Refinement Strategy for the Fire Control System

refinements using [5] were needed; this refinement yield an executable specification
of the system, whose translation to Java used the strategy presented here and is
discussed in the next section.

6 Implementing the Fire Control System

After translation, the classes that implement the processes are located in the pack-
age processes. Figure 6 presents a UML class diagram of this package after the
translation strategy was applied to our case study [16]. We highlight the core of the
system which was presented in this paper, the process ConcreteFC. This process
hides multi-synchronisation channels, and for this reason, it is the one responsible
for instantiating the multi-synchronisation controllers for each of these channels.
On the other hand, the process that implements each of the areas in the fire control
system (Area), the process that implements the display controller (DisplayC), and
the process that implements the core of the fire control (FC) take part in multi-
synchronisation, and hence, instantiate multi-synchronisation clients.

Fig. 6. Fire Control System Class Diagram (processes only)

In order to run the whole system, we have created a parallel composition of the
ConcreteFC with a process that represents a Clock. The external devices where also
implemented. A Keyboard may be used to input signal to the system. The Output

process encapsulates all the output processes which are the Alarm and the Display.

27

The last is composed by a buzzer and by the lamps. There are three different instan-
tiations of the lamps: the FireLamps indicate where a fire has been detected; the
GasReleasedLams indicate where gas has been discharged; and the remaining lamps
are implemented within process SimpleLamps. All the lamps are instantiation of the
generic process GenericLamp. The parallel composition of the ConcreteTimedFC

with the ExternalDevices represents the whole system, ConcreteMain.
The implementation has also included typing classes, utilities classes, which are

also part of our translation strategy (e.g., RandomGenerator), and graphic interface
classes, which, although not arising from the translation, where implemented in
order to allow us to interact with the system.

In Figure 7, we present a snapshot of the execution of the process ConcreteMain.
This interface contains the following elements: gas lamps for areas 0 and 1, fire lamps
for zones 0 to 5, one fault lamp for each possible fault within the system, the lamp
that indicates that system is on, an alarm in the form of a progress bar (an empty
bar indicates that the alarm is off, an half filled bar indicates a first stage alarm,
and a full filled bar indicates a second stage alarm), a clock that shows if the clock
is counting down, and a keyboard that can be used by the user to simulate inputs
to the system. Besides, a sound is also played if the display buzzer is switched on.

In this snapshot, we have that fire has been detected in zones 0, 1, and 2, and that
three faults have been detected: secondline fault, power fault, and isolate remote
signal. In this example, the system is running in automatic mode. As specified,

Fig. 7. Fire Control System Graphic Interface

the fact that fire has been detected in two zones in the same area, has started the
counting down of the clock and has set the alarm to its second stage. After the
conclusion of the counting down, the gas is charged in area 0 and this is indicated
in the display by switching the gas lamp 0 on.

The implementation of the fire control system using the translation strategy
yielded to 5400 lines of Java code [14]. Most of this implementation could have

28

been mechanised if tool support, which is already under development, were already
available. Throughout the translation of the case study, we could verify the cor-
rectness of our translation strategy, and even simplify the definitions of some rules.
Furthermore, the translation of the case study also provided us with a industrial
scale example of application of the strategy.

7 Conclusions

The translation strategy presented in this work extends the one presented in [16],
by including synchronisation and generic channels, indexing operators, generic pro-
cesses, and multi-synchronisation. It has been used to implement several programs,
including a quite complex fire control system developed from its abstract centralised
specification [14], which is also presented here. The application of the translation
rules was straightforward; only human errors, which could be avoided if a transla-
tion tool were available, raised problems. The choice of JCSP was motivated by the
local support of the JCSP implementors. Furthermore, the direct correspondence
between many CSP and Circus constructs is a motivation for extending JCSP to
support Circus, instead of creating another library from scratch.

In [7], Fischer formalises a translation from CSP-OZ to annotations of Java
programs. A CSP-OZ specification is composed mostly of class definitions that
model processes. They contain Z schemas that describe the internal state and its
initialisation, and CSP processes that model the behaviour of the class. For each
channel, an enable schema specifies when communication is possible, and an effect

schema specifies the state changes caused by the communication.
In the translation, enable and effect schemas become pre and postconditions;

the CSP part becomes trace assertions, which specify the allowed sequences of
method calls; finally, state invariants become class invariants. The result is not an
implementation of a CSP-OZ class, but annotations that support the verification of
a given implementation. The treatment of class composition is left as future work.
Differently, our work supports the translation from Circus specifications, possibly
describing the interaction between many processes, to correct Java code.

The translation from a subset of CSP-OZ to Java is also considered in [3], where
COZJava, which includes CSP-OZ and Java, is used. A CSP-OZ specification is first
translated to a description of the structure of the final Java program, which still
contains the original CSP processes and Z schemas; these are translated afterwards.
The library that they use to implement processes is called CTJ [8], which is in many
ways similar to JCSP. The architecture of the resulting Java program is determined
by the architecture of CSP-OZ specifications, which keep communications and state
update separate. As a consequence, the code is usually inefficient and complicated.
It was this difficulty that motivated the design of Circus.

In Circus, communications are not attached to state changes, but are freely
mixed as exemplified by the action RegCycle of process Register . As a consequence,
the reuse of Z and CSP tools is not straightforward. On the other hand, Circus

specifications can be refined to code that follow the usual style of programming in
languages like occam, or JCSP, and are more efficient.

Certainly, code generated by hand could be simpler. For instance, the translation
of compound processes do not always need anonymous inner classes; they are used
in the rules for generalisation purposes. However, our experiments have shown no
significant improvement in performance after simplification.

Due to JCSP limitations, we consider a restricted set of communications: un-
typed inputs, outputs, and synchronisations. In this paper, we treat generic channels
and synchronisations c.e over a channel c with expression e. Strategies to refine out
the remaining forms of communication and guarded outputs are left as future work.

29

A strategy to remove a special case of multi-synchronisation, in which it is not part
of an external choice, is presented in [23].

JCSP itself restricts our strategy in the translation of parallelism. It does not
support the definition of a synchronisation channel set: the intersection of the al-
phabets determines the synchronisation channels set.

We have considered the type of indexing variables of iterated operators to be
finite. Furthermore, not all iterated operators are treated directly. The translation of
iterated parallelism and interleaving of actions requires their expansion. For external
choice, expansion is required for both the action and the process operator, due to
the need to determine their initials. Furthermore, we left the investigation into the
translation of nested parametrised and indexing processes is left as future work.

An important piece of future work is the implementation of a tool to support
the translation strategy. In order to prove the soundness of such a tool, the proof
of the translation rules presented here would be necessary. This, however, is a very
complex task, as it involves the semantics of Java and Circus. We currently rely on
the validation of the implementation of our industrial-scale case study [16] and on
the fairly direct correspondence of JCSP and Circus.

References

1. J.-R. Abrial. The B-book: assigning programs to meanings. Cambridge University
Press, 1996.

2. E. Börger and R. F. Stärk. Abstract State Machines—A Method for High-Level System
Design and Analysis. Springer-Verlag, 2003.

3. A. L. C. Cavalcanti and A. C. A. Sampaio. From csp-oz to java with processes (ex-
tended version). Technical report, Centro de Informática/UFPE, 2000. Available at
http://www.cin.ufpe.br/~lmf.

4. A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. A refinement strategy
for circus. Formal Aspects of Computing, 15(2-3):146–181, 2003.

5. A. L. C. Cavalcanti and J. C. P. Woodcock. Zrc - a refinement calculus for z. Formal
Aspects of Computing, 10(3):267 – 289, 1999.

6. C. Fischer. Csp-oz: a combination of object-z and csp. In H. Bowmann and J. Derrick,
editors, Formal Methods for Open Object-Based Distributed Systems (FMOODS’97),
volume 2, pages 423 – 438. Chapman & Hall, 1997.

7. C. Fischer. Combination and Implementation of Processes and Data: from CSP-OZ
to Java. PhD thesis, Fachbereich Informatik, Universität Oldenburg, Oldenburg -
Germany, 2000.

8. G. Hilderink, J. Broenink, W. Vervoort, and A. Bakkers. Communicating java threads.
In Parallel Programming and Java Conference, 1997.

9. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
10. C. A. R. Hoare and J. He. Unifying Theories of Programming. Prentice-Hall, 1998.
11. C. B. Jones. Systematic Software Development Using VDM. Prentice-Hall Interna-

tional, 1986.
12. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
13. Carroll Morgan. Programming from Specifications. Prentice-Hall, 1994.
14. M. V. M. Oliveira. A Refinement Calculus for Circus - PhD Thesis Additional Mate-

rial, Dez 2005. http://www.cs.york.ac.uk/˜marcel/phd/.
15. M. V. M. Oliveira and A. L. C. Cavalcanti. From circus to jcsp. In J. Davies et al.,

editor, Sixth International Conference on Formal Engineering Methods, volume 3308
of LNCS, pages 320 – 340. Springer-Verlag, November 2004.

16. M. V. M. Oliveira, A. L. C. Cavalcanti, and J. C. P. Woodcock. Refining industrial
scale systems in circus. In Ian East, Jeremy Martin, Peter Welch, David Duce, and
Mark Green, editors, Communicating Process Architectures, volume 62 of Concurrent
Systems Engineering Series, pages 281 – 309. IOS Press, 2004.

17. P.H.Welch, G.S.Stiles, G.H.Hilderink, and A.P.Bakkers. Csp forjava:multithreading
for a ll.

30

18. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall Series in
Computer Science. Prentice-Hall, 1998.

19. A. W. Roscoe, J. C. P. Woodcock, and L. Wulf. Non-interference through determinism.
In D. Gollmann, editor, ESORICS 94, volume 1214 of LNCS, pages 33 – 54. Springer-
Verlag, 1994.

20. A. C. A. Sampaio, J. C. P. Woodcock, and A. L. C. Cavalcanti. Refinement in circus.
In L Eriksson and PA Lindsay, editors, FME 2002: Formal Methods - Getting IT Right,
volume 2391 of LNCS, pages 451–470. Springer-Verlag, unknown 2002.

21. J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, 2nd edition, 1992.
22. K. Taguchi and K. Araki. The state-based ccs semantics for concurrent z specifica-

tion. In M. Hinchey and Shaoying Liu, editors, International Conference on Formal
Engineering Methods, pages 283 – 292. IEEE, 1997.

23. J. C. P. Woodcock. Using circus for safety-critical applications. In VI Brazilian Work-
shop on Formal Methods, pages 1–15, Campina Grande, Brazil, 12th–14st October
2003.

24. J. C. P. Woodcock and J. Davies. Using Z – Specification, Refinement, and Proof.
Prentice-Hall, 1996.

