
Refining Industrial Scale Systems in Circus

Marcel Oliveira, Ana Cavalcanti, and Jim Woodcock

Computing Laboratory, University of Kent, Canterbury, CT2 7NF, England

Abstract. Circus is a new notation that may be used to specify both
data and behaviour aspects of a system, and has an associated refine-
ment calculus. Although a few case studies are already available in the
literature, the industrial fire control system presented in this paper is,
as far as we know, the largest case study on the Circus refinement strat-
egy. We describe the refinement and present some new laws that were
needed. Our case study makes extensive use of mutual recursion; a sim-
plified notation for specifying such systems and proving their refinements
is proposed here.

1 Introduction

Circus (Concurrent Integrated Refinement CalculUS) [1, 2] characterises systems
as processes that combine constructs that describe data and control behaviour.
The Z notation [3, 4] is used to define most of the data aspects, and CSP [5]
and Dijkstra’s guarded-command language are used to define behaviour. The
semantics of Circus is based on unifying theories of programming [6], a framework
that unifies the science of programming across many different computational
paradigms. Circus, unlike other combinations of data and behavioural aspects,
such as CCS-Z [7, 8], CSP-Z [9], and CSP-OZ [10], supports refinement in a
calculational style similar to that presented in [11].

A refinement strategy for Circus is presented in [2], with the complete de-
velopment of a reactive buffer into a distributed implementation as an example.
Refinement notions and many refinement laws are also presented. In the current
paper, we provide a more significant case study on the Circus refinement calcu-
lus: a safety-critical fire protection system. As far as we know, it is the largest
case study on the Circus refinement calculus.

Throughout the development of our case study there were some problems;
we present the solutions for some of them in this paper. First, the set of laws
presented in [2] was not sufficient; we propose new refinement laws. For instance,
we require some laws for inserting and distributing assumptions, and a new
process refinement law. In total, more than fifty new laws have been identified
during the development of our case study.

In [2], the refinement of mutual recursive actions is not considered; our case
study, however, includes mutually recursive definitions. We present here a no-
tation used to prove refinement of such systems; this results in more concise

and modular proofs. The necessary theorems that justify the notation have been
proved in [12].

The main objective of this paper is to illustrate an application of the refine-
ment strategy in an existing industrial application [13]. We believe that, with the
results in this paper, we provide empirical evidence of the power of expression of
Circus and, principally, that the strategy presented in [2] is applicable to large
industrial systems.

In Section 2, we present an introduction to refinement in Circus: we describe
Circus and the refinement notions for processes and their constituent actions.
Section 3 presents our case study. Finally, we present our conclusions and discuss
future work in Section 4.

2 Refinement in Circus

In what follows, we summarise the Circus notation and its refinement technique.
More details can be found in [1, 2], and an example is presented in Section 3.

2.1 Circus

Circus programs are sequences of paragraphs: channel declarations, channel set
definitions, Z paragraphs, or process definitions. A system is defined as a process
that encapsulates some state and communicates through channels.

A channel declaration declares its name and type; if the channel is used purely
for synchronisation, then no type is needed. The generic channel declaration
channel [T] c : T declares a family of channels c. In this declaration, [T] is
a parameter used to determine the type of the values that are communicated
through channel c. We may introduce sets of channels in a chanset paragraph.

Processes may be defined explicitly or in terms of other processes (compound
processes). An explicit process definition is delimited by the keywords begin and
end: it is formed by a state definition, a sequence of paragraphs, and a nameless
action, which defines its behaviour. In [2], we have introduced the keyword state
before the state declaration in order to make it clear which schema represents a
process state.

Compound processes are defined using the CSP operators of sequence, ex-
ternal (occam ALT) and internal choice, parallelism and interleaving, or their
corresponding iterated operators, event hiding, or indexed operators, which are
particular to Circus specifications. The parallelism follows the alphabetised ap-
proach adopted by [5], instead of that adopted by [14].

An action can be a schema, a guarded command, an invocation of another ac-
tion, or a combination of these constructs using CSP operators. Three primitive
actions are available: Skip, Stop, and Chaos. The prefixing operator is standard,
but a guard construction may be associated with it. For instance, given a Z pred-
icate p, if the condition p is true, the action p & c?x → A inputs a value through
channel c and assigns it to the variable x , and then behaves like A, which has

the variable x in scope. If, however, the condition p is false, the same action
blocks. Such enabling conditions like p may be associated with any action.

The CSP operators of sequence, external and internal choice, parallelism,
interleaving, their corresponding iterated operators, and hiding may also be used
to compose actions. Communications and recursive definitions are also available.

To avoid conflicts in the access to the variables in scope, parallelism and
interleaving of actions declare a synchronisation channel set and two sets that
partition all the variables. In the parallelism A1 |[ns1 | cs | ns2]| A2, the actions
A1 and A2 synchronise on the channels in set cs, unlike occam, where we cannot
determine the synchronisation channel set; both A1 and A2 have access to the
initial values of all variables in both ns1 and ns2. However, A1 and A2 may
modify only the values of the variables in ns1 and ns2, respectively. The changes
made by A1 in variables in ns1 are not seen by A2, and vice-versa.

Finally, an action may also be a variable block. Further operators are available
in Circus [1]; only those that are used in this paper are described here.

2.2 Refinement Strategy

A refinement strategy for Circus is presented [2]. It is based on laws of simulation,
a technique used to prove data refinement in Z, and action and process refine-
ment; some of them are presented in Appendix A. We present further simulation
and refinement laws in Appendix B.

The strategy aims at refining an abstract centralised specification to a dis-
tributed Circus program, which involves only executable constructs. The strategy
consists of possibly many iterations involving simulation, actions, and process
refinement; in each iteration a process is split as presented in Figure 1. In this
figure, each process is represented as a box. For instance, before the simulation,
we have a process with an internal state Sa, and actions ActA1, · · ·, ActAk ; its
behaviour is determined by the main action ActA. First, elements of the concrete
system state are included using simulation; next, the state space and actions are
partitioned in such a way that each partition, represented in the figure by in-
ternal boxes, groups some state components and the actions which access these
components; and, finally, all these partitions become individual processes, which
are combined in the same way as their main actions were in the previous process.

The semantics of Circus is defined using Hoare and He’s unifying theories
of programming. In [2], we have a definition for action refinement; process re-
finement amounts to refinement of the main action, with the state components
taken as local variables. Backwards and forwards simulation are also defined and
proved sound in [2]. Here, we do not use the definitions in [2], but simulation
and refinement laws.

3 Case Study

Our case study consists of a fire control system that covers two separate areas.
Each area is divided into two zones; two different zones cannot be covered by

begin

end

state Sc Sc1 /\ Sc2

• ActC Act1C Act2Cop

Act1C1

Act1Ck

…

Act2C1

Act2Ck

…

begin

end

state Sc1

• Act1C

Act1C1

Act1Ck

…

begin

ActA1

ActAk

end

Sa

a1: TA1; ... an: TAn

• ActA

…

state

begin

ActC1

ActCk

end

Sc

c1: TC1; ... cn: TCn

• ActC

…

state

begin

end

state Sc2

• Act2C

Act2C1

Act2Ck

…

simulation

action refinement

process
refinement

op

=̂ ...

=̂ ...

=̂ ...

=̂ ...

=̂

=̂ ...

=̂ ...

=̂ ...

=̂ ...

=̂

=̂ ...

=̂ ...=̂ ...

=̂ ...

Fig. 1. An iteration of the refinement strategy

two different areas. Two extra zones are used for detection only. Fire detection
happens in a zone, and, in consequence, a gas discharge may occur in the area
that contains that zone.

The system includes a display panel composed of lamps that indicates whether
the system is on or off, whether there are system faults, or a fire has been de-
tected, whether the alarm has been silenced or not, the need to replace the
actuators of the system, and gas discharges.

The system can be in one of three modes: manual, automatic, or disabled. In
manual mode, an alarm sounds when a fire is detected, and the corresponding
detection lamp is lit on the display. The alarm can be silenced, and, when the
reset button is pressed, the system returns to normal. In manual mode, gas
discharge is manually initiated.

System State Abst. FC Action Conc. FC Action Conc. Area Action

fireSysStarts AbstractFireSysStart FireSysStart StartArea

fireSyss AbstractFireSys FireSys AreaCycle

manuals AbstractManual Manual ManualArea

autos AbstractAuto Auto AutoArea

resets AbstractReset Reset ResetArea

countdowns AbstractCountdown Countdown WaitingDischarge

discharges AbstractDischarge Discharge WaitingDischarge

fireSysDs AbstractFireSysD FireSysD AreaD

disableds AbstractDisabled Disabled DisabledArea
Table 1. The System States and Corresponding Actions

In automatic mode, a fire detection is also followed by the alarm being
sounded; however, if a fire is detected in the second zone of the same area,
the second stage alarm is sounded, and a countdown starts. When the count-
down finishes, the gas is discharged and the circuit fault lamp is illuminated in
the display; the system mode is switched to disabled.

In disabled mode, the system can only have the actuators replaced, identify
relevant faults within the system, and be reset. The system is back to its normal
mode after the actuators are replaced and the reset button is pressed.

The system may be in one of the states presented in Table 1. Initially, the
system is on fireSysStarts state. After being switched on, its state is changed
to fireSyss ; in this state, a fire detection yields to the state being changed to
manuals or autos depending on the system mode. In the state resets the system
is waiting to be reset; in countdowns , it is waiting for the clock to finish the
countdown. During gas discharge, the system is on the discharges state, after
which, the state is changed to fireSysDs . Finally, if a fire is detected on fireSysDs ,
the system state is changed to disableds .

Some further requirements should also be satisfied: the system must be
started with a switch event, and, afterwards, the system on lamp should be
illuminated; the system mode can be switched between manual and automatic

mode provided no detection happens. Also, when the system is reset, all fire
detection lamps must be switched off; if a gas discharge occurred, the actuators
need to be replaced, and the system mode is switched to automatic. Following
a fire detection, the corresponding lamp must be lit. After a gas discharge, no
subsequent discharge may happen before the actuators are replaced.

The external channels of the fire control system are presented in Figure 2.
Fire detection is indicated through channel det , which inputs the zone where it

channel switch, silence, reset
channel actuatorsR, ckOn, ckOff
channel det : ZoneId
channel switchM : SwitchMode
channel extDisc : P AreaId
channel fault : FaultId
channel alarm : AlarmStage
channel [T]lamp : T × OnOff
channel buzzer : OnOff
channel sysSt : SystemState

Fig. 2. System External Channels

happened. The system mode can be manually switched using channel switch. In
manual mode, when the conditions that lead to a gas discharge are met, gas can
be manually discharged using the channel extDisc. Faults are reported to the
system through the channel fault . The channel alarm can be used to sound the
alarm, which can be silenced through silence. Channel reset resets the system.
The channel actuatorsR indicates that the actuators have been replaced. The
system indicates that a lamp must be switched using the generic channel lamp;
it provides the type of lamp and the new lamp mode. The buzzer is controlled
using channel buzzer . After each state change, the system reports its current
state using channel sysSt . The fire control system may request a clock to execute
the countdown using channel ckOn; the clock indicates that the countdown is
finished using channel ckOff .

The display is composed of the lamps and the buzzer. The lamps can be of
three different types; however, the three types of lamps are instances of the same
generic process GenericLamp, which has a component status : OnOff . Initially,
all the lamps are switched off ; they can be switched on using an appropriate
instance of channel lamp.

3.1 Abstract Fire Control System

The basic types used within the system are presented in Figure 3. The areas

AreaId ::= 0 | 1
ZoneId ::= 0 | 1 | 2 | 3 | 4 | 5
Mode ::= automatic | manual | disabled
SwitchMode == Mode \ {disabled}
OnOff ::= on | off
AlarmStage ::= alarmOff | firstStage | secondStage
LampId ::= zoneFaultL | earthFaultL | sounderLineFaultL | powerFaultL | sysOnL

| remoteSignalL | actuatorLineFaultL | circuitFaultL | alarmSilencedL
FaultId ::= ZoneF | earthF | sounderLineF | powerF | remoteSignal

| actuatorLineF
SystemState ::= fireSysStarts | fireSyss | fireSysDs | autos

| countdowns | discharges | resets | manuals | disableds

Fig. 3. System Types

and zones are identified by the types AreaId and ZoneId ; the system modes
are represented by the type Mode; the type SwitchMode, is a subset of type
Mode. All the lamps and the buzzer of the display can be either on or off, which
are represented by the type OnOff . The alarm states are represented by the
type AlarmStage. The type LampId contains identifiers for all the lamps in the
system’s display. Faults are represented by the type FaultId . Finally, the system
can be in one of the states of the type SystemState.

Process AbstractFC formalises the requirements previously described. Through-
out this paper we omit some formal definitions for the sake of conciseness; they
can be found in [12]. The abstract state is defined by the Z schema named
AbstractFCSt presented below. Z schemas can either be represented as boxes,
as AbstractFCSt , or in a horizontal notation as we shall see later in this pa-
per. AbstractFCSt is composed of five components, which are declared in the
declaration part of the schema: mode indicates the mode in which the fire con-
trol is running; controlZns is a total function that maps the areas to a set that
contains their controlled zones; actZns maps the areas to the zones in which a
fire detection has occurred; discharge indicates in which areas a gas discharged

happened; finally, active contains the active areas identifications.

process AbstractFC =̂ begin
state

AbstractFCSt

mode : Mode

controlZns, actZns : AreaId → P ZoneId

discharge, active : P AreaId

∀ a : AreaId •
(mode = manual) ⇒ a ∈ active ⇔ #actZns a ≥ 1
∧ (mode = automatic) ⇒ a ∈ active ⇔ #actZns a ≥ 2
∧ actZns a ⊆ controlZns a ∧ controlZns a = getZones a

The state invariant is declared in the predicate part of the schema; it determines
that, if the system is running in manual mode (predicate mode = manual), an
area is active if, and only if, some zone controlled by it is active. On the other
hand, if the mode is automatic, an area is active if, and only if, there is more
than one active zone controlled by it. Finally, for each area, its controlled zones
are defined by the function getZones, whose definition we omit.

Initially, the system is in automatic mode, there is no active zone, and no
discharge occurred in any area. The state invariant guarantees that there is no
active area.

InitAbstractFC

AbstractFCSt ′

mode ′ = automatic ∧ discharge ′ = ∅
actZns ′ = {a : AreaId • a 7→ ∅}

Undashed variables represent the variable values before the execution of an op-
eration; on the other hand, dashed variables represent the variable values after
the execution of an operation. The decoration of a schema

Schema =̂ [x1 : T1 . . . xn : Tn | p]

is defined as the decoration of all the components of the schema, and the mod-
ification of the predicate part of the schema to reflect the new names of these
components. For instance, we have that

Schema ′ =̂ [x ′
1

: T1 . . . x ′
n : Tn | p [x ′

1
/x1, . . . , x ′

n/xn]].

Finally, the inclusion of the schema AbstractFCSt ′ in the declaration part of
InitAbstractFC , merges the declarations of both schemas, and conjoins their
predicates.

Three operations are used to switch the system mode; they leave the other
components unchanged. The first operation receives the new mode as argument.

For any schema State that describes the state of a system, ∆ State is a schema
that includes both Schema and Schema ′. Furthermore, the name of input com-
ponents must end with a query (?) and the name of output components must
end with a shriek (!).

SwitchAbstractFCMode

∆AbstractFCSt ; nm? : Mode

mode ′ = nm? ∧ actZns ′ = actZns ∧ discharge ′ = discharge

SwitchAbstractFC2Auto and SwitchAbstractFC2Dis do not receive arguments;
they switch the mode to automatic and disabled , respectively.

The schema AbstractActivateZone receives a zone nz? and changes actZns

by including nz? in the set of active zones of the area that controls it; active

may also be changed to maintain the state invariant. All other state components
are left unchanged.

AbstractActivateZone

∆AbstractFCSt ; nz? : ZoneId

mode ′ = mode ∧ discharge ′ = discharge

actZns ′ = actZns ⊕ {a : AreaId | nz? ∈ controlZns a •
a 7→ actZns a ∪ {nz?}}

The schema AbstractAutomaticDischarge activates the discharge in the active
areas, only discharge is changed. Finally, AbstractManualDischarge receives the
areas in which the user wants to discharge the gas, but discharges only in those
that are active.

All the other actions are defined using CSP operators. Basically, we have one
action for each possible state within the system as described in Table 1.

The action AbstractFireSysStart starts by communicating the current system
state. Then, it waits for the system to be switched on through channel switch,
switches on the lamp SysOnL, initialises the system state and, finally, behaves
like action AbstractFireSys.

AbstractFireSysStart =̂ sysSt !fireSysStarts → switch →
lamp[LampId].sysOnL!on → InitAbstractFC ; AbstractFireSys

In action AbstractFireSys, after communicating the system state, the mode
can be manually switched between automatic and manual . Furthermore, if any
detection occurs, the zone in which the detection occurred is activated, the cor-
responding lamp is lit, the alarm sounds in firstStage, and then, the system
behaves like AbstractManual or AbstractAuto, depending on the current system
mode. If the actuators are replaced, the circFaultL is switched off, the system is
set to automatic mode, and waits to be reset . Finally, if any fault is identified,

the corresponding lamp is lit, and the buzzer is switched on.

AbstractFireSys =̂
sysSt !fireSyss →

switchM ?nm → SwitchAbstractFCMode; AbstractFireSys

2 det?nz → AbstractActivateZone; lamp[ZoneId].nz !on →
alarm!firstStage →

(mode = manual) & AbstractManual

2 (mode = automatic) & AbstractAuto

2 actuatorsR → lamp[LampId].circFaultL!off →
SwitchAbstractFC2Auto; AbstractReset

2 fault?faultId → lamp[LampId].(getLampId faultId)!on →
buzzer !on → AbstractFireSys

The function getLampId maps fault identifications to their corresponding lamp
in the display.

Throughout this paper, we illustrate the refinement of the fire control system
using these two actions only. For this reason, we omit the definitions of the
remaining actions.

The main action of process AbstractFireSys is defined below.

• AbstractFireSysStart end

In the next section, we refine AbstractFC to a concrete distributed system.

3.2 Refinement

Fig. 4. Refinement Strategy for the Fire Control System

The motivation for the fire control system refinement is the distribution of
the areas, in order to increase efficienct. Section 3.2 presents the target of our

refinement, the concrete fire control system. In the following sections, we present
the refinement steps summarised graphically in Figure 4.

In the first iteration, we split AbstractFC into two process Areas and InternalFC .
The first models the areas of the system, and is split into two interleaved Area

processes in interleaving in the last iteration. The second is the core of the sys-
tem, which is split into a display controller DisplayC and the system controller
FC in the second iteration.

Concrete Fire Control System The concrete fire control system has three
components: the controller, the display, and the detection system. They commu-
nicate through the channels below.

channel display ,manDis : P AreaId

channel switched , autoDis, anyDis,noDis, countdown, counting

channel gasDischarged , gasNotDischarged : AreaId

The controller indicates discharges to the display through display . The display
acknowledges this communication through channel switched . The controller re-
quest gas discharges to the detection process through manDis and autoDis. The
detection process may reply to these requests indicating if the gas has been dis-
charged (anyDis) or not (noDis); it may request a countdown, if it is automatic

mode and the conditions for a gas discharge are met. The controller indicates
that it started counting through counting . In Figure 5, we summarise the internal
communications of the concrete fire control system.

Fig. 5. Concrete Fire Control

Controller The process FC is similar to the abstract specification. However, all
the state components and events related to the detection areas and to the display

are removed. For conciseness, some schemas, as the system state presented below,
are presented in their horizontal form name =̂ [declaration | predicate].

process FC =̂ begin state FCSt =̂ [mode1 : Mode]
InitFC =̂ [FCSt ′ | mode1 = automatic]

The state of the concrete fire control is composed of only one component, mode1,
which indicates the mode in which the system is running. This mode is initialised
to automatic.

Three operations can be used to switch the system mode. The first one re-
ceives the new mode as argument.

SwitchFCMode =̂ [∆FCSt ; nm? : Mode | mode1 = nm?]

The second and third operations do not receive any argument; they simply switch
the system mode to automatic or disabled .

The fire control system is responsible for communicating the current system
state. After being switched on, the fire control initialises its state and behaves
like action FireSys. Where a lamp was switched on in the abstract specification,
an acknowledgment event switched is received from the the display controller.

FireSysStart =̂ sysSt !fireSysStarts → switch → switched → InitFC ; FireSys

Similar to the abstract system, all the other actions corresponds to a possible
state within the system as described in Table 1.

In action FireSys, after communicating the system state, the mode can be
switched. Furthermore, if any detection occurs, the controller waits for a switched

signal, sets the alarm to firstStage, and behaves like Manual or Auto, depending
on the current system mode. Since the areas are the processes which have the
area-zone information, following a det communication, the zone activation is not
part of the controller behaviour. If the actuators are replaced, the system is set
to automatic mode, and waits to be reset . Finally, all the faults are ignored by
this process, except that it waits for a switched signal from the display.

FireSys =̂ sysSt !fireSyss →
switchM ?nm → SwitchFCMode; FireSys

2 det?nz → switched → alarm!firstStage →
(mode1 = manual) & Manual

2 (mode1 = automatic) & Auto

2 actuatorsR → switched → SwitchFC2Auto; Reset

2 fault?faultId → switched → FireSys

• FireSysStart end

As for the abstract system, we omit the definition of the remaining actions. The
main action of process FC is FireSysStart presented above.

Display Controller This process models the display controller requests for the
lamps to be switched on or off after the occurrence of the relevant events. It
waits for the system to be switched on, switches the lamp sysOnL on, and
indicates this to FC through switched . A gas discharge is indicated by FC to
this process through display . If the system is reset , the display switches off the
buzzer and all the lamps, except the lamps circFaultL and sysOnL.

Areas The process Area is parametrised by the area identifier.

process Area =̂ (id : AreaId • begin

The state of an area is composed of the mode in which it is running, its
controlled zones, the active zones in which a fire detection occurred, a boolean
discharge that records whether a gas discharge has occurred or not, and a boolean
active that records whether the area is willing to discharge gas or not.

state
AreaState

mode : Mode

controlZns, actZns : P ZoneId

discharge, active : Bool

controlZns = getZones id ∧ actZns ⊆ controlZns

(mode = automatic) ⇒ active = true ⇔ #actZns ≥ 2
(mode = manual) ⇒ active = true ⇔ #actZns ≥ 1

The invariant establishes that the component actZns is a subset of the controlled
zones of this area, which is defined by getZones. Besides, if running in automatic

mode, an area is active if, and only if, all controlled zone are active. On the other
hand, if running in manual mode, an area is active if, and only if, any controlled
zone is active.

Each area is initialised as follows: there is no active zone; no discharge oc-
curred; and it is in automatic mode. The state invariant guarantees that it is
not active.

InitArea

AreaState ′

actZns ′ = ∅ ∧ discharge ′ = false ∧ mode ′ = automatic

The schema SwitchAreaMode receives the new mode and sets the area mode.
Schemas SwitchArea2Auto and SwitchArea2Dis set the are mode to automatic

and disabled . All other state components are left unchanged. A zone can be
activated using the operation ActivateZone. If the given zone is controlled by
the area, it is included in the actZns.

Initially, an area synchronises in the switch event, initialises its state, and
starts its cycle.

StartArea =̂ switch → InitArea; AreaCycle

During its cycle, if the actuatorsR event occurs, the mode is switched to automatic

and the area waits to be reset . If the system mode is switched, so is the area
mode. Finally, any detection may activate a zone, if it is controlled by this area;
after this, the area behaves like either AutoArea or ManualArea, depending on
its current mode.

AreaCycle =̂ actuatorsR → SwitchArea2Auto;ResetArea

2 switchM ?nm → SwitchAreaMode; AreaCycle

2 det?nz → ActivateZone;

(mode = automatic) & AutoArea

2 (mode = manual) & ManualArea

• StartArea end)

The main action of the process Area is the action StartArea.

The process ConcreteAreas represents all the areas within the system. Basi-
cally, it is a parallel composition of all areas. They synchronise on the channel
set Σareas .

chanset Σareas == {| switch, reset , switchM , det , silence, actuatorsR,
autoDis,manDis, anyDis,noDis, counting |}

process ConcreteAreas =̂ ‖ id : AreaId |[Σareas]| • Area(id)

The internal system is defined as the parallel composition of the fire control
FC and the display controller DisplayC . All the communications between them
are hidden.

chanset DisplaySync == {| display , switched |}
chanset Σ1 == {| switch, reset , det , display , silence, actuatorsR, fault |}
process ConcreteInternalFC =̂ FC |[Σ1]| DisplayC \ DisplaySync

The concrete fire control is the parallel combination of ConcreteInternalFC

and Areas. Internal communications are again hidden.

chanset GSync == {| manDis, autoDis, countdown, counting ,
gasDischarged , gasNotDischarged , anyDis,noDis |}

chanset Σ2 ==
{| switch, reset , det , switchM , silence, actuatorsR |} ∪ GSync

process ConcreteFC =̂ (ConcreteInternalFC |[Σ2]| Areas) \ GSync

In the following sections, we prove that AbstractFC is refined by ConcreteFC ,
or rather, AbstractFC v ConcreteFC .

First Iteration: splitting the AbstractFC into InternalFC and Areas

Data refinement In this step we make a data refinement in order to introduce a
state component that is used by the areas. The new modeA component indicates
the mode in which the areas are running. The process AbstractFC is refined to
the process FC1 presented below.

process FC1 =̂ begin
state

FCSt1
mode1,modeA : Mode

controlZns1, actZns1 : AreaId → P ZoneId

discharge1, active1 : P AreaId

∀ a : AreaId •
(mode1 = automatic) ⇒ a ∈ active1 ⇔ #actZns1 a ≥ 2
∧ (mode1 = manual) ⇒ a ∈ active1 ⇔ #actZns1 a ≥ 1
∧ actZns1 a ⊆ controlZns1 a ∧ controlZns1 a = getZones a

The state FCSt1 is the same as that of AbstractFC , except that it includes
an extra component modeA. In order to prove that the FC1 is a refinement of the
AbstractFC , we have to prove that there exists a forwards simulation between
the main actions of FC1 and AbstractFC . The retrieve relation RetrFC relates
each component in the AbstractFCSt to one in FCSt1.

RetrFC

AbstractFCSt ; FCSt1

mode1 = mode ∧ modeA = mode ∧ controlZns1 = controlZns

actZns1 = actZns ∧ discharge1 = discharge ∧ active1 = active

The laws of Circus establish that simulation distributes through the structure of
an action. The laws used here are in Appendices A and B; we refine each schema
using Law A1. In the concrete initialisation, the new state component modeA is
initialised in automatic mode.

InitFC1

FCSt ′
1

mode ′
1

= automatic ∧ mode ′
A = automatic ∧ discharge ′

1
= ∅

actZns ′
1

= {a : AreaId • a 7→ ∅}

The following lemma states that this is actually a simulation of the abstract
initialisation. The symbol � represents the simulation relation.

Lemma 1. InitAbstractFC � InitFC1

Proof. The application of Law A1 raises two proof obligations. The first one
concerns the preconditions of both schemas.

∀AbstractFCSt ; FCSt1 • RetrFC ∧ pre InitAbstractFC ⇒ pre InitFC1

It is easily proved because the preconditions of both schemas are true. The
second proof obligation concerns the postcondition of both operations.

∀AbstractFCSt ; FCSt1; FCSt ′
1
• RetrFC ∧ pre InitAbstractFC ∧ InitFC1 ⇒

∃AbstractFCSt ′ • RetrFC ′ ∧ InitAbstractFC

This proof obligation can also be easily discarded using the one-point rule. When
this rule is applied, we remove the universal quantifier, and then, we are left with
an implication in which the consequent is present in the antecedent. 2

There is no special rule to handle initialisation operations. This is because
the behaviour of a process is defined by its main action; there is no implicit
initialisation. An initialisation schema is just a simplified way of specifying an
operation like any other.

All other schema expressions are refined in pretty much the same way. Their
definitions are very similar to the corresponding abstract operations except that
the value assigned to mode1 is also assigned to the new state component modeA.

For the remaining actions, we rely on distribution of simulation. The new
actions have the same structure as the original ones, but use the new schemas.
By way of illustration, we present the action FireSysStart1 that simulates the
action AbstractFireSysStart .

FireSysStart1 =̂ sysSt !fireSysStarts → switch →
lamp[LampId].sysOnL!on → InitFC1; FireSys1

To establish the simulation, we need Laws A2 and A3. Since all the output and
input values, and guards are not changed, only their second proviso must be
proved. They follow from Lemma 1 and FireSys � FireSys1.

FireSysStart1 is the main action of FC1, and we have just proved that it
simulates the main action of AbstractFC .

• FireSysStart1 end

This concludes this data refinement step.

Action Refinement In this step we change FC1 so that its state is composed of
two partitions: one that models the internal system and another that models
the areas. We also change the actions so that the state partitions are handled
separately.

process ConcreteFC =̂ begin

The internal system state is composed only by its mode.

InternalFCSt =̂ [mode1 : Mode]

The remaining components are declared as components of the areas partition of
the state.

AreasSt

modeA : Mode

controlZns1, actZns1 : AreaId → P ZoneId

discharge1, active1 : P AreaId

∀ a : AreaId •
(modeA = automatic) ⇒ a ∈ active1 ⇔ #actZns1 a ≥ 2
∧ (modeA = manual) ⇒ a ∈ active1 ⇔ #actZns1 a ≥ 1
∧ actZns1 a ⊆ controlZns1 a ∧ controlZns1 a = getZones a

The state of FCSt1 is declared as the conjunction of the two previously defined
schemas.

state FCSt1 =̂ InternalFCSt ∧ AreasSt

The first group of paragraphs access only mode1. It is initialised to automatic.

InitInternalFC =̂ [InternalFCSt ′; AreasSt ′ | mode ′
1

= automatic]

Another convention is used in the definitions that follow: for any schema
Sch, ΞSch represents the schema that includes both Sch and Sch ′ and leaves
the components values unchanged. The notation θSch denotes the bindings of
components from Sch.

ΞSchema

Sch

Sch ′

θSch = θSch ′

The schema SwitchInternalFCMode receives the new mode as argument, and
switches the InternalFC mode.

SwitchInternalFCMode =̂
[∆InternalFCSt ; ΞAreasSt ; nm? : Mode | mode ′

1
= nm?]

Similarly, SwitchInternalFC2Auto and SwitchInternalFC2Dis set the InternalFC

mode to automatic and disabled , respectively.
The behaviour of this internal system is very similar to that of the abstract

one (Table 1); however, after being switched on, it initialises only mode1 and
behaves like action FireSys2. All the operations related to the areas are no longer
controlled by the internal system actions, but by the areas actions. For instance,
consider the action FireSysStart2 below.

FireSysStart2 =̂ sysSt !fireSysStarts → switch →
lamp[LampId].sysOnL!on → InitInternalFC ; FireSys2

When a synchronisation on switchM happens, only the InternalFC mode is

switched by action FireSys2. Furthermore, since the information about the areas
are no longer part of this partition, following a det communication, this action
does not activate the area in which the detection occurred. If the actuators are
replaced, this action switches the corresponding lamp on, switches only mode1

to automatic, and waits to be reset . The behaviour, if any fault happens, is not
changed.

FireSys2 =̂ sysSt !fireSyss →
switchM ?nm → SwitchInternalFCMode; FireSys2
2 det?nz → lamp[ZoneId].nz !on → alarm!firstStage →

(mode1 = manual) & Manual2
2 (mode1 = automatic) & Auto2

2 actuatorsR → lamp[LampId].circFaultL!off →
SwitchInternalFC2Auto; Reset2

2 fault?faultId → lamp[LampId].(getLampId faultId)!on →
buzzer !on → FireSys2

The second group of paragraphs is concerned with the areas. They are ini-
tialised in automatic mode; furthermore, there are no active zones, no discharge

has occurred, and no area is active.

InitAreas

AreasSt ′; InternalFCSt ′

mode ′
A = automatic ∧ discharge ′

1
= ∅

actZns ′
1

= {a : AreaId • a 7→ ∅}

The areas mode can be switched to a given mode with schema SwitchAreasMode.
The areas mode can also be switched to automatic or disabled mode with the
schema operations SwitchAreas2Auto and SwitchAreas2Dis, respectively.

SwitchAreasMode

∆AreasSt ; ΞInternalFCSt ; nm? : Mode

mode ′
A = nm? ∧ actZns ′

1
= actZns1 ∧ discharge ′

1
= discharge1

The schema ActivateZoneAS includes a given zone nz? in the set of active
zones of the area that controls nz?.

ActivateZoneAS

∆AreasSt ; ΞInternalFCSt ; nz? : ZoneId

mode ′
A = modeA ∧ discharge ′

1
= discharge1

actZns ′
1

= actZns1 ⊕ {a : AreaId | nz? ∈ controlZns1 a •
a 7→ actZns1 a ∪ {nz?}}

Initially, the areas synchronise on switch, initialise the state, and start their
cycle.

StartAreas =̂ switch → InitAreas; AreasCycle

In AreasCycle, the actuators can be replaced, setting the mode to automatic,
and the areas wait to be reset . If the system mode is switched, so is the areas
mode. Any detection in a zone nz leads to the activation of nz ; the behaviour
afterwards depends on the Areas mode.

AreasCycle =̂ actuatorsR → SwitchAreas2Auto;ResetAreas

2 switchM ?nm → SwitchAreasMode;AreasCycle

2 det?nz → ActivateZoneAS ;

(modeA = automatic) & AutoAreas

2 (modeA = manual) & ManualAreas

As for the paragraphs of the internal system, the areas have an action corre-
sponding to each action in the abstract system (Table 1); the remaining actions
are omitted here.

The main action of ConcreteFC is the parallel composition of the actions
FireSysStart2 and StartAreas. These actions actually represent the initial actions
of each partition within the process. They synchronise on the channel set Σ2.
All the synchronisation events between the internal system and the areas are
hidden in the main action.

• (FireSysStart2 |[α(InternalFCSt) | Σ2 | α(AreasSt)]| StartAreas) \ GSync

end

Action FireSysStart2 may modify only the components of InternalFCSt , and
StartAreas may modify only the components of AreasSt .

Despite the fact that this is a significant refinement step, it involves no change
of data representation. In order to prove that this is a valid refinement, we must
prove that the main action of process ConcreteFC refines the main action of
process FC1; however, they are defined using mutual recursion, and for this
reason, we use the result below in the proof. The symbol vA represents the
action refinement relation.

Theorem 1 (Refinement on Mutual Recursive Actions). For a given vec-

tor of actions SS defined in the form SS =̂ [N0, . . . ,Nn], where

Ni =̂ Fi(N0, . . . ,Nn)

we have that:

SS vA [Y0, . . . ,Yn] ⇐

F0[Y0, . . . ,Yn/N0, . . . ,Nn] vA Y0,
. . . ,
Fn [Y0, . . . ,Yn/N0, . . . ,Nn] vA Yn

In order to prove that a vector of actions SS as defined above is refined by a

vector of actions [Y0, . . . ,Yn], it is enough to show that, for each action Ni in
SS , we can prove that its definition Fi , if we replace N0, . . . ,Nn with Y0, . . . ,Yn

in Fi , is refined by Yi . This result is proved in [12].
We want to prove that

FireSysStart1 vA (FireSysStart2 ‖ StartAreas) \ GSync

where ‖ stands for |[α(InternalFCSt) | Σ2 | α(AreasSt)]|. As FireSysStart1 is
defined using mutual recursion, we use the Theorem 1, with SS as the vector
including all actions involved in the definition of FireSysStart1,

SS = [FireSysStart1,FireSys1, . . .]

to prove this refinement. The vector [Y0, . . . ,Yn] includes

(FireSysStart2 ‖ StartAreas) \ GSync

and all the refinements of each action in SS as a parallel composition of the
same form: with the same partition, the same synchronisation set, and the same
hiding.

To prove this refinement, however, using Theorem 1, we need a modified
SS , in which some actions are preceded by an assumption. We introduce these
assumptions using Law B8.

[FireSysStart1,FireSys1, . . .]
vA [B8]
[FireSysStart1, {mode1 = modeA}; FireSys1, . . .]

Although long, the proof obligation raised by this law application is trivial; we
omit it here, for the sake of conciseness. Using Theorem 1 we get the following
result.

[
FireSysStart1,
{mode1 = modeA}; FireSys1, . . .

]

vA

[
(FireSysStart2 ‖ StartAreas) \ GSync,
(FireSys2 ‖ AreasCycle) \ GSync, . . .

]

⇐(
FireSysStart1[subst] vA (FireSysStart2 ‖ StartAreas) \ GSync, (1)
FireSys1[subst] vA (FireSys2 ‖ AreasCycle) \ GSync, . . . (2)

)

Here, subst corresponds to the following substitution.

subst =

(
(FireSysStart2 ‖ StartAreas) \ GSync,
(FireSys2 ‖ AreasCycle) \ GSync, . . .

)
/

(
FireSysStart1,
FireSys1, . . .

)

Below, A1 vA [law1, . . . , lawn]{op1} . . . {opn} A2 denotes that A1 may be re-
fined to A2 using laws law1, . . . , lawn , if op1, . . . , opn holds. Lemmas 2 and 3
prove refinements (1) and (2), respectively.

Lemma 2. (1)FireSysStart1[subst] vA (FireSysStart2 ‖ StartAreas) \ GSync

Proof. We start the refinement using the definitions of FireSysStart1 and substi-
tution.

FireSysStart1[subst]
= [Definition of FireSysStart1,Definition of Substitution]
sysSt !fireSysStarts → switch → lamp[LampId].sysOnL!on →

InitFC1; (FireSys2 ‖ AreasCycle) \ GSync

First, we may expand the hiding since the channels lamp, switch, and sysSt are
not in GSync.

= [A15] {{lamp, switch, sysSt} ∩ GSync = ∅}(
sysSt !fireSysStarts → switch → lamp[LampId].sysOnL!on →

InitFC1; (FireSys2 ‖ AreasCycle)

)
\ GSync

The schema InitFC1 can be written as the sequential composition of two other
schemas as follows. In [2], a refinement law is provided to introduce a schema
sequence; however, in our case, we have a initialisation schema that has no
reference to the initial state. For this reason, we use a new law that is similar to
the one in [2]. Some trivial proof obligations are omitted.

= [B3]

(
sysSt !fireSysStarts → switch → lamp[LampId].sysOnL!on →

InitInternalFC ; InitAreas; (FireSys2 ‖ AreasCycle)

)

\ GSync

Each one of the new inserted schema operations writes in a different partition
of the parallelism that follows them. For this reason, we may distribute them
over the parallelism. Again, two new laws are used: the first moves a (guarded)
schema expression to one side of the parallelism; commutativity of parallelism
is also provided as a new law.

= [B13,B14](
sysSt !fireSysStarts → switch → lamp[LampId].sysOnL!on →

((InitInternalFC ; FireSys2) ‖ (InitAreas; AreasCycle))

)
\ GSync

Next, we move the lamp event to the internal system side of the parallelism.
This step is valid because all the initial channels of AreasCycle are in Σ2, and
lamp is not.

= [A11] {initials(AreasCycle) ⊆ Σ2} {lamp /∈ Σ2}

sysSt !fireSysStarts → switch →((

lamp[LampId].sysOnL!on →
InitInternalFC ; FireSys2

)
‖ (InitAreas; AreasCycle)

)

\ GSync

Now, switch may be distributed over the parallelism because it is in Σ2.

= [A14] {switch ∈ Σ2}

sysSt !fireSysStarts →

switch →

lamp[LampId].sysOnL!on →
InitInternalFC ; FireSys2

‖(
switch → InitAreas;

AreasCycle

)

\ GSync

Since it is not in Σ2, sysSt may be moved to the internal system side of the
parallelism.

= [B1,A11] {sysSt /∈ Σ2}

sysSt !fireSysStarts → switch →

lamp[LampId].sysOnL!on →
InitInternalFC ; FireSys2

 ‖

(
switch → InitAreas;

AreasCycle

)

\ GSync

Finally, using the definitions of FireSysStart2 and StartAreas we conclude this
proof.

= [Definition of FireSysStart2 and StartAreas]
(FireSysStart2 ‖ StartAreas) \ GSync 2

The next lemma we present is the refinement of the action FireSys1.

Lemma 3.

(2)
{mode1 = modeA}; FireSys1[subst]
vA

(FireSys2 ‖ AreasCycle) \ GSync

Proof. We start the proof using the definitions of FireSys1 and substitution.

{mode1 = modeA}; FireSys1[subst]
= [Definition of FireSys1,Definition of Substitution]
{mode1 = modeA};
sysSt !fireSyss →

switchM ?nm → SwitchFCMode1; (FireSys2 ‖ AreasCycle) \ GSync

2 det?nz → ActivateZone1; lamp[ZoneId].nz !on → alarm!firstStage →
(mode1 = manual) & (Manual2 ‖ ManualAreas) \ GSync

2 (mode1 = automatic) & (Auto2 ‖ AutoAreas) \ GSync

2 actuatorsR → lamp[LampId].circFaultL!off →
SwitchFC2Auto1; (Reset2 ‖ ResetAreas) \ GSync

2 fault?faultId → lamp[LampId].(getLampId faultId)!on →
buzzer !on → (FireSys2 ‖ AreasCycle) \ GSync

Next, we expand the hiding to the whole action. This is valid because all the

events involved in the expansion are not in the hidden set of channels.

= [A15]
{GSync ∩ {sysSt , switchM , det , lamp, alarm, fault , buzzer , reset} = ∅}

{mode1 = modeA};
sysSt !fireSyss →

switchM ?nm → SwitchFCMode1; (FireSys2 ‖ AreasCycle) (3)
2 det?nz → ActivateZone1; (4)

lamp[ZoneId].nz !on → alarm!firstStage →
(mode1 = manual) & (Manual2 ‖ ManualAreas)
2 (mode1 = automatic) & (Auto2 ‖ AutoAreas)

2 actuatorsR → lamp[LampId].circFaultL!off → (5)
SwitchFC2Auto1; (Reset2 ‖ ResetAreas)

2 fault?faultId → lamp[LampId].(getLampId faultId)!on → (6)
buzzer !on → (FireSys2 ‖ AreasCycle)

\ GSync

Next, we aim at the refinement of each branch to a parallelism in order to
be able to apply the exchange Law A12. First, we refine (3) as follows: the schema
SwitchFCMode1 can be written as the sequential composition of SwitchInternalFCMode

and SwitchAreasMode.

(3)= [A17] switchM ?nm → SwitchInternalFCMode; SwitchAreasMode;

(FireSys2 ‖ AreasCycle)

Both schemas can be moved to different sides of the parallelism.

= [B14,B13]
switchM ?nm →

((SwitchInternalFCMode; FireSys2) ‖ (SwitchAreasMode; AreasCycle))

Finally, as switchM is in Σ2, we may distribute this event over the parallelism.
Here, a new law (distribution of input channels over parallelism) is used.

= [B2] {switchM ∈ Σ2}(
switchM ?nm →

SwitchInternalFCMode; FireSys2

)

‖(
switchM ?nm →

SwitchAreasMode; AreasCycle

)

For (4), we first use the assumption laws in order to move the assumption
into the action.

(4)vA [B9,A7,A10,A16,B10,B12]
det?nz → ActivateZone1; lamp[ZoneId].nz !on → alarm!firstStage →

{mode1 = modeA}; (mode1 = manual) & (Manual2 ‖ ManualAreas)
2 {mode1 = modeA}; (mode1 = automatic) & (Auto2 ‖ AutoAreas)

Next, we use the assumption to change the guards.

= [A8]
det?nz → ActivateZone1; lamp[ZoneId].nz !on → alarm!firstStage →

{mode1 = modeA};
(mode1 = manual ∧ modeA = manual) &

(Manual2 ‖ ManualAreas)
2 {mode1 = modeA};

(mode1 = automatic ∧ modeA = automatic) &
(Auto2 ‖ AutoAreas)

The assumptions can then be absorbed by the guards.

= [A4,A5,A10,A16]
det?nz → ActivateZone1; lamp[ZoneId].nz !on → alarm!firstStage →

(mode1 = modeA ∧ mode1 = manual ∧ modeA = manual) &
(Manual2 ‖ ManualAreas)

2 (mode1 = modeA ∧ mode1 = automatic ∧ modeA = automatic) &
(Auto2 ‖ AutoAreas)

Now, using a new law, we distribute the guards over the parallelism, slightly
changing them.

= [B5]
det?nz → ActivateZone1; lamp[ZoneId].nz !on → alarm!firstStage →

(
mode1 = modeA ∧
mode1 = manual

)
&

Manual2

 ‖

(
mode1 = modeA ∧
modeA = manual

)
&

ManualAreas

2

(
mode1 = modeA ∧
mode1 = automatic

)
&

Auto2

 ‖

(
mode1 = modeA ∧
modeA = automatic

)
&

AutoAreas

Now, since the guards invalidate each other, we may apply an exchange law.
Furthermore, we simplify the guards.

= [A12,A6]
det?nz → ActivateZone1; lamp[ZoneId].nz !on → alarm!firstStage →(

(mode1 = manual) & Manual2
2 (mode1 = automatic) & Auto2

)

‖(
(modeA = manual) & ManualAreas

2 (modeA = automatic) & AutoAreas

)

Next, we move the outputs channels to the left-hand side of the parallelism.
This follows from the fact that the initial channels of both ManualAreas and

AutoAreas are in Σ2, and alarm and lamp are not.

= [B1,A11]
{initials(ManualAreas) ∪ initials(AutoAreas) ⊆ Σ2}
{Σ2 ∩ {alarm, lamp} = ∅}
det?nz → ActivateZone1;

lamp[ZoneId].nz !on →
alarm!firstStage →

(mode1 = manual) &
Manual2

2 (mode1 = automatic) &
Auto2

‖

(modeA = manual) &
ManualAreas

2 (modeA = automatic) &
AutoAreas

The schema ActivateZone1 can easily be transformed to ActivateZoneAS using
the schema calculus. The resulting schema can also be distributed over the par-
allelism. Finally, channel det can be distributed over the parallelism, since it is
in Σ2.

= [SchemaCalculus,B14,B13,B2] {det ∈ Σ2}

det?nz → lamp[ZoneId].nz !on →
alarm!firstStage →

(mode1 = manual) & Manual2
2 (mode1 = automatic) & Auto2

‖

det?nz → ActivateZoneAS ;

(modeA = manual) &
ManualAreas

2 (modeA = automatic) &
AutoAreas

Using similar strategies, we refine (5) and (6) to the following external choice.

(5, 6)= [. . .]

actuatorsR →

lamp[LampId].circFaultL!off →
SwitchInternalFC2Auto; Reset2

‖

actuatorsR →

SwitchAreas2Auto;

ResetAreas

2

(
fault?faultId → lamp[LampId].(getLampId faultId)!on →

buzzer !on → FireSys2

)

‖ AreasCycle

We are left with the external choice of parallel actions. Since the initial channels
of the first three parallel actions are in the set Σ2, we may apply the exchange
law as follows.

= [A12]
sysSt !fireSyss →

switchM ?nm → SwitchInternalFCMode; FireSys2
2 det?nz → lamp[ZoneId].nz !on → alarm!firstStage →

(mode1 = manual) & Manual2
2 (mode1 = automatic) & Auto2

2 actuatorsR → lamp[LampId].circFaultL!off →
SwitchInternalFC2Auto; Reset2

‖

switchM ?nm → SwitchAreasMode; AreasCycle

2 det?nz → ActivateZoneAS ;

(modeA = manual) & ManualAreas

2 (modeA = automatic) & AutoAreas

2 actuatorsR → SwitchAreas2Auto; ResetAreas

2

(
fault?faultId → lamp[LampId].(getLampId faultId)!on →

buzzer !on → FireSys2

)

‖
AreasCycle

With small rearrangements, we have that the right-hand side of the first paral-
lelism corresponds to the definition of the action AreasCycle. So, we have that
both branches of the external choice have this action as the right-hand side of
the parallelism. Since all the initials of AreasCycle are in Σ2, we may apply the
distribution of parallelism over external choice.

= [A13] {initials(AreasCycle) ⊆ Σ2}
sysSt !fireSyss →

switchM ?nm → SwitchInternalFCMode; FireSys2
2 det?nz → lamp[ZoneId].nz !on → alarm!firstStage →

(mode1 = manual) & Manual2
2 (mode1 = automatic) & Auto2

2 actuatorsR → lamp[LampId].circFaultL!off →
SwitchInternalFC2Auto; Reset2

2 fault?faultId → lamp[LampId].(getLampId faultId)!on →
buzzer !on → FireSys2

‖
AreasCycle

Finally, we can distribute sysSt and use the definition of FireSys2 to conclude
our proof. Again, this is valid because all the initials of AreasCycle are in Σ2,

and sysSt is not.

= [B1,A11] {initials(AreasCycle) ⊆ Σ2} {Σ2 ∩ {sysSt} = ∅}

sysSt !fireSyss →
switchM ?nm → SwitchInternalFCMode; FireSys2
2 det?nz → lamp[ZoneId].nz !on → alarm!firstStage →

(mode1 = manual) & Manual2
2 (mode1 = automatic) & Auto2

2 actuatorsR → lamp[LampId].circFaultL!off →
SwitchInternalFC2Auto; Reset2

2 fault?faultId → lamp[LampId].(getLampId faultId)!on →
buzzer !on → FireSys2

‖
AreasCycle

= [Definition of FireSys2]
(FireSys2 ‖ AreasCycle) \ GSync 2

Using these lemmas, and those related to the remaining actions, which are
omitted here, we prove that FC1 is refined by ConcreteFC .

Process Refinement We partitioned the state of the process FC1 into InternalFCSt

and AreasSt . Each partition has its own set of paragraphs, which are disjoint,
since, no action in one changes a state component in the other. Furthermore,
the main action of the refined process is defined in terms of these two partitions.
Therefore, we may apply Law A18 in order to split process ConcreteFC into two
independent processes as follows.

process ConcreteFC =̂ (InternalFC |[Σ2]| Areas) \ GSync

The ConcreteFC is redefined as the parallel composition of InternalFC and
Areas. Their definitions can be deduced from the definition of ConcreteFC .

Second Iteration: splitting InternalFC into two controllers In this itera-
tion, we split InternalFC into two separated partitions: the first one corresponds
to the FC controller, and the other the DisplayControler (see Figure 4).

Action Refinement We rewrite the actions so that the FC paragraphs no longer
deal with the display events, which are dealt by DisplayC . The fire control state
is left unchanged.

process ConcreteInternalFC =̂ begin
FCSt =̂ [mode1 : Mode]

Furthermore, the display controller has no state at all. The new state is defined
as follows.

state InternalFCSt1 =̂ FCSt

The operations over the InternalFCSt are slightly changed: they are renamed

and affect the FCSt , which is the same as the InternalFCSt . Their definitions,
and those of all actions over FCSt have the same definition and description as
those of FC . The display paragraphs are those of DisplayC , which can be found
in Section 3.2.

The main action of the ConcreteInternalFC is as follows.

• (FireSysStart |[α(FCSt) | Σ2 | α(DisplayCState)]| StartDisplay)
\ DisplaySync

end

We have the parallelism of action FireSysStart and StartDisplay , with the chan-
nels used exclusively for their communication hidden. Again, since FireSysStart2,
FireSysStart , and StartDisplay are defined using mutual recursion, we use The-
orem 1 to prove that the process InternalFC is refined by ConcreteInternalFC .

Process Refinement Each partition in ConcreteInternalFC has its own set of
paragraphs, which are disjoint. Furthermore, we define the main action of the
refined process in terms of these two partitions. Applying Law A18, we get the
following result.

process ConcreteInternalFC =̂ (FC |[Σ1]| DisplayC) \ DisplaySync

The processes FC and the DisplayC were already described in the specification
of the concrete system in Section 3.2.

Third Iteration: splitting the Areas into individual Areas This last iter-
ation aims at splitting Areas in individual processes Area for each area.

Data Refinement First, we must apply a data refinement to the original process
Areas.

process Areas1 =̂ begin

We introduce a local state AreaState of an individual Area. Its definition is very
similar to that of the concrete system, but includes an identifier id : AreaId .
The global state AreasSt is rewritten with a total function from AreaId to local
states. The invariant is slightly changed to handle the new data structure.

state

AreasSt1
areas : AreaId → AreaState

∀ a : AreaId • (areas a).id = a

∧ ((areas a).mode = automatic) ⇒
(areas a).active = true ⇔ #(areas a).actZns ≥ 2

∧ ((areas a).mode = manual) ⇒
(areas a).active = true ⇔ #(areas a).actZns ≥ 1

∧ (areas a).actZns ⊆ (areas a).controlZns

∧ (areas a).controlZns = getZones a

The retrieve relation is very simple and is defined below.

RetrieveAreas

AreasSt ; AreasSt1

∀ a : AreaId • (areas a).mode = modeA
∧ (areas a).controlZns = controlZns1 a

∧ (areas a).actZns = actZns1 a

∧ (areas a).discharge = true ⇔ a ∈ discharge1

∧ (areas a).active = true ⇔ a ∈ active1

The mode in each of the local areas is that of Areas; the controlled and active
zones of an area is defined as the corresponding image in the global state; a
discharge has occurred in an area, if it is in discharge1; and finally, the area is
active if it is in active1.

We introduce the paragraphs related to the local state AreaState. Basically,
we have a corresponding local action for each global action. They are identical to
those presented within the process Area in the concrete system, and are omitted
at this point for conciseness.

Next, we redefine each of the global operations. Basically, all global operations
have an effect in each of the individual local states. For instance, InitAreas is
refined below.

InitAreas1
AreasSt ′

1

∀ a : AreaId • (areas ′ a).actZns = ∅
∧ (areas ′ a).discharge = false

∧ (areas ′ a).mode = automatic

The proof of the simulations are simple, but long. As before, for the main action,
we rely on the fact that forwards simulation distributes through action construc-
tors. The new actions have the same structure as the original ones, but use new
schema actions.

StartAreas1 =̂ switch → InitAreas1; AreasCycle1

AreasCycle1 =̂ actuatorsR → SwitchAreas2Auto1;ResetAreas1
2 switchM ?nm → SwitchAreasMode1; AreasCycle1

2 det?nz → ActivateZoneAS1;

(∀ a : AreaId • (areas a).mode = automatic) &
AutoAreas1

2 (∀ a : AreaId • (areas a).mode = manual) &
ManualAreas1

Since all the output and input values are not changed, in the application of
Law A2 we only rely on distribution. On the other hand, all the guards are
changed. Both provisos raised by Law A3 need to be proved. For instance, to
prove the refinement of AreasCycle1 we need the following lemma.

Lemma 4. For any Mode m,

∀AreasSt ; AreasSt1 • RetrieveAreas ⇒
modeA = M ⇔ ∀ a : AreaId • (areas a).mode = M

Proof. The proof of this lemma follows from predicate calculus, using the retrieve
relation RetrieveAreas to relate modeA with each individual area’s mode. 2

The main action of the areas, Areas1, is the simulation of the original action.

• StartAreas1 end

This concludes this data refinement step.

Action Refinement In order to apply a process refinement that splits the Areas

process into individual areas, we redefine each of the paragraphs within the
processes areas as a promotion of the corresponding original one.

The local paragraphs and the global state remain unchanged. However, a
promotion schema is introduced; it relates the local state to the global one.

Promotion

∆AreasSt1; ∆AreaState; id? : AreaId

θAreaState = areas id? ∧ areas ′ = areas ⊕ {id? 7→ θAreaState ′}

The global operations are refined to a definition in terms of the corresponding
local operations. For instance, the initialisation is refined as follows.

InitAreas1 =̂ ∀ id? : AreaId • InitArea ∧ Promotion

This can be proved using the action refinement laws presented in [12]. The
redefinition of the remaining operations are trivially similar and omitted here.

The function promote2 promotes a given Circus action. The promotion of
schemas is as in Z, and the promotion of Skip, Stop, Chaos, and channels do not
change them.

promote2(c.e → A) =̂ c.promote2(e) → promote2(A)

References to the local components have to become references to the correspond-
ing component in the global state; all other references remain unchanged. An
implicit parameter is a function f that maps indexes to instances of the local
state. Another implicit parameter is the index i that identifies an instance of
the local state in the global state.

promote2(x) =̂ (f i).x provided x is a component ofL.st
promote2(x) =̂ x provided x is not a component ofL.st

This function is very similar to the function promote presented in [2]; however,
it does not promote channels as the original one does.

Each action is defined as an iterated parallelism of the promotion of the
corresponding local operation, but substituting the area id by the indexing vari-
able i . Each branch of the parallelism may change its corresponding local state
areas i ; the remaining branches j , such that j 6= i , may change the remaining
local states areas j . For instance, the actions StartAreas1 and AreasCycle1 can
be rewritten as follows.

StartAreas2 =̂ ‖ i : AreaId |[θ (areas i) | Σareas |
⋃

j :AreaId|j 6=i θ (areas j)]| •

(promote2 StartArea) [id , id? := i , i]

The remaining actions are rewritten in a very similar way. Finally, we replace
the main action.

• StartAreas2 end

Since StartAreas1 and StartAreas2 use mutual recursion, we use Theorem 1
again.

Process Refinement This last process split needs a new process refinement law.
Law 31 presented below applies to processes containing a local and a global
state LState and GState, local paragraphs that do not affect the global state, a
promotion schema, and global paragraphs expressed in terms of the promotion
of local paragraphs to the global state using iterated parallelism. The operation
L.pps ↑ GState conjoins each schema expression in the paragraphs L.pps with
ΞGState; this means that they do not change the components of GState. The
results of this application are two processes: a local process L parametrised by
an identifier id and a global process G defined as an iterated parallelism of local
processes.

Law 31

process G =̂ begin
LState =̂ [id : Range; comps | predl]
state GState =̂

[f : Range → LState | ∀ j : dom f • (f j).id = j ∧ predg]
L.schemaj ↑ GState

L.actionk ↑ GState

L.act ↑ GState

Promotion

∆LState; ∆GState; id? : Range

θLState = f id? ∧ f ′ = f ⊕ {id? 7→ θLState ′}

G .schemaj =̂ ∀ id? : Range • L.schemaj ∧ Promotion

G .actionk =̂ ‖ i : Range |[θ (f i) | cs |
⋃

j :Range|j 6=i θ (f j)]| •

(promote2 L.actionk) [id , id? := i , i]
G .act =̂ ‖ i : Range |[θ (f i) | cs |

⋃
j :Range|j 6=i θ (f j)]| •

(promote2 L.act) [id , id? := i , i]
• G .act end

= process L =̂ (id : Range • begin state LState =̂ [comps | predl]
L.schemaj L.actionk • L.act

end)
process G =̂ ‖ id : Range |[cs]| • L(id)

We can apply this law to Areas1 in order to express the Areas process as the
following parallelism of individual Area processes.

process ConcreteAreas =̂ ‖ id : AreaId |[Σareas]| • Area(id)

The Area definition corresponds to that in the concrete system.

4 Conclusions

In this work, we present a development of a case study on the Circus refinement
calculus. Using the refinement strategy presented in [2], we derive a distributed
fire protection system from an abstract centralised specification. The result of the
refinement presented here does not involve only executable constructs; additional
simple schema refinements using [15] were omitted here. Our case study has
motivated the proposal of new refinement laws; some of them can be found in
Appendix B. There are more than fifty new laws, including process refinement
laws. Their definitions can be found in [12]. Furthermore, some laws presented
in [2] were found to be incorrect and corrected here. For instance, Law B15 did
not have any proviso in its original version in [2].

Refinement has been studied for combinations of Object-Z and CSP [16];
however, as far as we know, nothing has been proposed in a calculational style
like ours. In [17], Olderog presents a stepwise refinement for action systems, in
which most refinement steps involve sequential refinements; the decomposition
of atomic actions introduces parallelism. The main difference of action systems
formalism and Circus is that, using CSP operators, Circus has a much richer
control flow than the flat structure of action systems, where auxiliary variables
simulating program counters guarantee the proper sequencing of actions.

The development of programs is supported by a design calculus for occam-
like [18] communicating programs in [19]; semantics of programs and specifica-
tions are presented in a uniform predicative style, which is close to that used in
the unifying theories of programming. This work is another source of inspiration
for Circus refinement laws.

In this paper, we show that, using Circus, we were able to specify elegantly
both behavioural and data aspects of an industrial scale application. The refine-
ment strategy presented in [2] was also proved to be applicable to large systems.
In our case study, the development consists of three iterations: the first one splits
the system into a system controller and the sensors. In the second iteration, the
control is subdivided into two different controllers: one for the system and one
for the display. Finally, the third iteration splits the sensors into individual pro-
cesses, one for each area.

All the laws presented in [2] and [12] are currently being proved using the
theorem prover ProofPower-Z. These proofs make the basis for a tool that sup-
ports our refinement strategy and the application of a considerable subset of the
existing refinement laws of Circus. By providing this tool, we intend to trans-
form the Circus refinement calculus into a largely used development method in
industry.

A Existing Refinement Laws

Simulation Laws

Law A1 ASExp � CSExp

provided

• ∀P1.st ; P2.st ; L • R ∧ pre ASExp ⇒ pre CSExp
• ∀P1.st ; P2.st ; P2.st

′; L •
R ∧ pre ASExp ∧ CSExp ⇒ (∃P1.st

′; L′ • R′ ∧ ASExp)

Law A2 c!ae → A1 � c!ce → A2

provided ∀P1.st ; P2.st ; L • R ⇒ ae = ce and A1 � A2.

Law A3 ag & A1 � cg & A2

provided ∀P1.st ; P2.st ; L • R ⇒ (ag ⇔ cg) and A1 � A2.

Action Refinement Laws

Law A4 { g }; A = { g }; g & A

Law A5 g1 & (g2 & A) = (g1 ∧ g2) & A

Law A6 g2 & A vA g3 & A provided g2 ⇒ g3

Law A7 {p}; (A1 2 A2) = ({p}; A1) 2 ({p}; A2)

Law A8 { g1 }; (g2 & A) = { g1 }; (g3 & A) provided g1 ⇒ (g2 ⇔ g3)

In the following law we refer to a predicate ass ′. In general, for any predicate
p, the predicate p′ is formed by dashing all its free undecorated variables. We
consider an arbitrary schema that specifies an action in Circus: it acts on a state
St and, optionally, has input variables i? of type Ti , and output variables o! of
type To .

Law A9

[∆St ; i? : Ti ; o! : To | p ∧ ass ′]
=
[∆St ; i? : Ti ; o! : To | p ∧ ass ′]; {ass}

Law A10 {p} vA Skip

Law A11 (A1; A2) |[ns1 | cs | ns2]| A3 = A1; (A2 |[ns1 | cs | ns2]| A3)
provided

• initials(A3) ⊆ cs;
• cs ∩ usedC (A1) = ∅;
• wrtV (A1) ∩ usedV (A3) = ∅

Law A12 (A1 |[cs]| A2) 2 (B1 |[cs]| B2) = (A1 2 B1) |[cs]| (A2 2 B2)
provided A1 |[cs]| B2 = A2 |[cs]| B1 = Stop

Law A13 A1 |[cs]| (A2 2 A3) = (A1 |[cs]| A2) 2 (A1 |[cs]| A3)
provided initials(A1) ⊆ cs and A1 is deterministic

Law A14 c → (A1 |[cs]| A2) = (c → A1) |[ns1 | cs ∪ {|c|} | ns2]| (c → A2)
syntactic restriction c /∈ usedC (A1) ∪ usedC (A2) or c ∈ cs

Law A15 F (A \ cs) = F (A) \ cs provided cs ∩ usedC (F ()) = ∅

Law A16 Skip; A = A = A; Skip

Law A17

[∆S1; ∆S2; i? : T | preS1 ∧ preS2 ∧ CS1 ∧ CS2]
=
[∆S1; ΞS2; i? : T | preS1 ∧ CS1]; [ΞS1; ∆S2; i? : T | preS2 ∧ CS2]

syntactic restrictions

• α(S1) ∩ α(S2) = ∅
• FV (preS1) ⊆ α(S1) ∪ {i?} and FV (preS2) ⊆ α(S2) ∪ {i?}
• DFV (CS1) ⊆ α(S ′

1
) and DFV (CS2) ⊆ α(S ′

2
)

• UDFV (CS2) ∩ DFV (CS1) = ∅.

Process Refinement Laws

Law A18 Let qd and rd stand for the declarations of the processes Q and R,

determined by Q .st, Q .pps, and Q .act, and R.st, R.pps, and R.act, respectively,

and pd stand for the process declaration above. Then

pd = (qd rd process P =̂ F (Q ,R))

provided Q .pps and R.pps are disjoint with respect to R.st and Q .st.

B New Refinement Laws.

Action Refinement Laws.

Law B1 c → A = (c → Skip); A

Law B2 c?x → (A1|[ns1 | cs | ns2]|A2) = (c?x → A1)|[ns1 | cs | ns2]|(c?x → A2)
provided c /∈ usedC (A1) ∪ usedC (A2) or c ∈ cs

Law B3

[S ′
1
; S ′

2
| preS1 ∧ preS2 ∧ CS1 ∧ CS2]

=
[S ′

1
| preS1 ∧ CS1]; [S ′

2
| preS2 ∧ CS2]

provided

• α(S1) ∩ α(S2) = ∅
• FV (preS1) ⊆ α(S1) and FV (preS2) ⊆ α(S2)
• DFV (CS1) ⊆ α(S ′

1
) and DFV (CS2) ⊆ α(S ′

2
)

• UDFV (CS2) ∩ DFV (CS1) = ∅

Law B4 2
i
gi & (Ai |[ns1 | cs | ns2]| A) = (2

i
gi & Ai) |[ns1 | cs | ns2]| A

provided initials(A) ⊆ cs

Law B5 (g1 ∧ g2) & (A1|[ns1 | cs | ns2]|A2) = (g1 & A1)|[ns1 | cs | ns2]|(g2 & A2)
provided g1 ⇔ g2 or initials(A1) ∪ initials(A2) ⊆ cs

In the following law we refer to a predicate assump′.

Law B6 [State ′ | p ∧ assump′] = [State ′ | p ∧ assump′]; {assump}

Law B7 {g1} vA {g2} provided g1 ⇒ g2

Law B8 µP • V (P) vA µP • V (P)[{g}; Fi(P)/Fi(P)]
provided {g}; (F (P) before Xi) vA (F (P) before Xi); {g} for all F (P) in

V (P)
where

P = X1, . . . ,Xn

V (P) = F1(X1, . . . ,Xn), . . . ,Fn(X1, . . . ,Xn)
V (P)[exp/Fi(P)]express the substitution of the i-th element of the vector

V (P) by the expression exp

Law B9 {g}; c!x → A = c!x → {g}; A

Law B10 {g}; c?x → A = c?x → {g}; A provided x /∈ FV (g)

Law B11 {g}; c → A = c → {g}; A

Law B12 {g}; [d | p] = [d | p]; {g} provided g ∧ p ⇒ g ′

Law B13

(2
i
gi & SExpi); (A1 |[ns1 | cs | ns2]| A2)

vA

((2
i
gi & SExpi); A1) |[ns1 | cs | ns2]| A2

provided

•
⋃

i wrtV (SExpi) ⊆ ns1 ∪ ns ′
1

•
⋃

i wrtV (SExpi) ∩ usedV (A2) = ∅

Law B14 A1 |[ns1 | cs | ns2]| A2 = A2 |[ns2 | cs | ns1]| A1

Law B15 A |[cs]| Stop = Stop |[cs]| A = Stop provided initials(A) ⊆ cs

References

1. A. C. A. Sampaio, J. C. P. Woodcock, and A. L. C. Cavalcanti. Refinement in
circus. In L Eriksson and PA Lindsay, editors, FME 2002: Formal Methods - Getting
IT Right, volume 2391 of LNCS, pages 451–470. Springer-Verlag, unknown 2002.

2. A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. A Refinement
Strategy for Circus. Formal Aspects of Computing, 15(2 - 3):146 — 181, 2003.

3. J. C. P. Woodcock and J. Davies. Using Z – Specification, Refinement, and Proof.
Prentice-Hall, 1996.

4. J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, 2nd edition,
1992.

5. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall Series in
Computer Science. Prentice-Hall, 1998.

6. C. A. R. Hoare and J. He. Unifying Theories of Programming. Prentice-Hall, 1998.
7. A. J. Galloway. Integrated Formal Methods with Richer Methodological Profiles for

the Development of Multi-perspective Systems. PhD thesis, University of Teeside,
School of Computing and Mathematics, 1996.

8. K. Taguchi and K. Araki. The state-based ccs semantics for concurrent z spec-
ification. In M. Hinchey and Shaoying Liu, editors, International Conference on
Formal Engineering Methods, pages 283 – 292. IEEE, 1997.

9. A. W. Roscoe, J. C. P. Woodcock, and L. Wulf. Non-interference through deter-
minism. In D. Gollmann, editor, ESORICS 94, volume 1214 of LNCS, pages 33 –
54. Springer-Verlag, 1994.

10. C. Fischer. Csp-oz: a combination of object-z and csp. In H. Bowmann and
J. Derrick, editors, Formal Methods for Open Object-Based Distributed Systems
(FMOODS’97), volume 2, pages 423 – 438. Chapman & Hall, 1997.

11. Carroll Morgan. Programming from Specifications. Prentice-Hall, 1994.
12. M. V. M. Oliveira. The development of a fire control system in circus. Technical

report, University of York, Department of Computer Science, University of York,
York, UK, May 2004. At http://www.cs.york.ac.uk/˜marcel/circus/fcs.pdf.

13. Data sheet mpe.130. At http://www.cs.york.ac.uk/˜marcel/circus/mpe130.html.

14. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
15. A. L. C. Cavalcanti and J. C. P. Woodcock. Zrc - a refinement calculus for z.

Formal Aspects of Computing, 10(3):267 – 289, 1999.
16. G. Smith and J. Derrick. Specification, refinement and verification of concurrent

systems - an integration of Object-Z and CSP. Formal Methods in Systems Design,
18:249–284, May 2001.

17. R. J. R. Back and K. Sere. Stepwise refinement of parallel algorithms. Science of
Computer Programming, 13(2-3):133 – 180, 1990.

18. G. Jones and M. Goldsmith. Programming in occam 2. Prentice-Hall, 1988.
19. E. R. Olderog. Towards a design calculus for communicating programs. In J. C. M.

Baeten and J. F. Groote, editors, CONCUR’91: Proc. of the 2nd International
Conference on Concurrency Theory, pages 61–77. Springer, Berlin, Heidelberg,
1991.

