Under consideration for publication in Formal Aspects of Computing

ArcAngel: a Tactic Language For
Refinement

Marcel Oliveiral, Ana Cavalcanti!, and Jim Woodcock?

1Centro de Informética, Universidade Federal de Pernambuco, Brazil
2Computing Laboratory, University of Kent, UK

Abstract. Morgan’s refinement calculus is a successful technique for developing software in a
precise and consistent way. This technique, however, can be hard to use, as developments may
be long and repetitive. Many authors have pointed out that a lot can be gained by identifying
commonly used development strategies, documenting them as tactics, and using them as single
transformation rules. Also, it is useful to have a notation for describing derivations, so that they
can be analysed and modified. In this paper, we present ArcAngel, a language for defining such
refinement tactics; we present the language, its semantics, and some of its algebraic laws. Apart
from Angel, a general-purpose tactic language that we are extending, no other tactic language has
a denotational semantics and proof theory of its own.

Keywords: Formal methods, program development, refinement calculus.

1. Introduction

The refinement calculus of Morgan [Mor94] is a modern technique for formal program development.
By repeatedly applying transformation rules to an initial specification, we produce a program that
implements it correctly; however, this may be a hard task, since developments are often long and
repetitive. Some development strategies may be captured as sequences of rule applications, and
used in different developments, or even several times within a single development. Identifying
these strategies, documenting them as refinement tactics, and using them as single transformation
rules brings a profit in time and effort. Also, a notation for describing derivations can be used for
modifying and analysing formal derivations.

In this paper we present a refinement-tactic language called ArcAngel, derived from the more
general tactic language, Angel [MGW96, Mar96]. In [OC00], we give an informal description of
ArcAngel and use it to formalise commonly used refinement strategies; here we provide a formal

Correspondence and offprint requests to: Marcel Oliveira, Centro de Informética, Universidade Federal de Per-
nambuco, Brazil. e-mail: mvmo@cin.ufpe.br

2 Marcel Oliveira, Ana Cavalcanti, and Jim Woodcock

semantics. Based on these definitions, we have proved over seventy laws of reasoning, which support
a strategy of reduction to a normal form for a subset of ArcAngel. We discuss this work here; all
the laws, their proofs, and a detailed account of the reduction strategy may be found in [Oli00].

Angel is a general-purpose tactic language that is not tailored to any particular proof tool;
it assumes only that rules transform proof goals. A refinement-tactic language must take into
account the fact that, when applying refinement laws to a program, we get not only a program,
but proof obligations as well. So, the result of applying a tactic is a program and a list of all
the proof obligations generated by the individual law applications. ArcAngel’s constructs are sim-
ilar to Angel’s, but are adapted to deal with the application of refinement laws to programs. In
particular, ArcAngel’s structural combinators are used to apply tactics to program components.
Angel is distinctive because it is the only tactic language to have a denotational semantics and an
accompanying proof theory. In this paper, the semantics and laws are specialised to ArcAngel.

In Section 2, we give an overview of the refinement calculus. In Section 3, we introduce ArcAngel,
and in Section 4, we give its formal semantics and present some of its laws. In Section 5, we give
some examples of tactics and their application. Finally, in Sections 6 and 7 we discuss related and
future work. Appendix A presents the model used in the semantics of ArcAngel for infinite lists,
and Appendix B presents the refinement laws used in this paper.

2. Refinement Calculus

Morgan’s refinement calculus [Mor94] is based upon a unified language for specification, design,
and implementation; its syntax is presented in Figure 1. The syntactic category mame is the
set of valid names; we use name* to denote a possibly empty list of (comma-separated) names,
and similarly for expression™. The syntactic categories predicate and expression are, as expected,
those of first-order predicates and expressions over data types like integers, sets, and others; their
definitions are standard and are omitted.

A program may be a specification statement, and program development is the application
of a sequence of refinement laws to transform a specification into program code that correctly
implements it. Specification statements take the form w : [pre, post], where the frame w lists the
variables that may be changed, pre is the precondition, and post is the postcondition. When a state
satisfies the precondition, the execution of the specification statement changes the variables listed
in the frame so that the final state satisfies the postcondition. References in the postcondition to
the initial value of a variable z are written zp; O-subscripted variables like this are called initial
variables. A precondition true may be omitted.

The language of the refinement calculus includes all the constructs of Dijkstra’s language of
guarded commands [Dij76]. Local variables, logical constants, and procedures may be declared
in block constructs that restrict the scope of definitions. For procedures, we follow the approach
in [Bac87, CSW97, CSW98|, which is based on parameterised commands. Arguments may be
passed by value, by result, or by value-result. A recursive procedure is declared using a variant
block, which declares the procedure, a variant, and the main program. The variant may be used
to develop a recursive implementation for the procedure’s specification.

A detailed presentation of the refinement calculus can be found in [Mor94]; we introduce
refinement laws as we need them in examples. Appendix B lists the refinement laws we use here.
Related work on refinement calculi can be found in [Bac78, Mor87, BvW98].

3. ArcAngel

The syntax of ArcAngel is displayed in Figure 2. The syntactic category args is the set of possibly
empty comma-separated lists of arguments enclosed in parentheses; an argument is a predicate
or an expression; and pars is the set of possibly empty comma-separated lists of (parameter)
names enclosed in parentheses. The definitions of these syntactic categories are standard and are
omitted. Finally, the notation tactict is used to represent a non-empty list of tactics; in examples
we number this list. A pair of square brackets represents optional clauses.

ArcAngel: a Tactic Language For Refinement 3

program = name* : [predicate, predicate] [specification statement]
| name* := expression* [multiple — assignment]
| program; program [sequence]
| if [i e predicate — program fi [conditional]
| do [i e predicate — program od [loop]
| [var varDec o program || [variable block]
| [conwvarDec e program || [constant block]
| [proc name = procBody e program | [procedure block]
|

proc name = procBody variant name is expression e program ||
[variant block]

| name [procedure call]
| name(eapression™) | (parDec o program)(expression™)
procBody = program | (parDec o program)
parDec ::= val varDec | res varDec ’ val-res varDec ‘ parDec; parDec 1g
varDec ::= mname™ : Type ‘ varDec; varDec

Fig. 1. Abstract Syntax of the language of Morgan’s Refinement Calculus

There are three distinct kinds of tactics: basic tactics are the simplest tactics; tacticals are
combination of tactics; and structural combinators are tactics used to handle parts of a program.
Some of the basic tactics and most of the tacticals are original to ArcAngel; most of the structural
combinators in ArcAngel do not exist in Angel.

The most basic tactic is a simple law application: law n(a). The application of this tactic
to a program has two possible outcomes. If the law n with arguments a is applicable to the
program, then the application actually occurs and the program is changed, possibly generating
proof obligations. If the law is not applicable to the program, then the application of the tactic
fails. The construct tactic n(a) applies a previously defined tactic as though it were a single law.
The trivial tactic skip always succeeds, and the tactic fail always fails; neither generates any
proof obligations. The tactic abort neither succeeds nor fails, but runs indefinitely.

3.1. Tacticals

In ArcAngel, tactics may be sequentially composed: t;; . This tactic first applies ¢ to the
program, and then applies ty to the outcome of the application of ¢;. If either ¢ or ¢y fails, then
so does the whole tactic. When it succeeds, the proof obligations generated by the application of
this tactic are those resulting from the application of ¢; and ts.

For example, consider the program z : [z > 1]. We could implement this by first strengthening
the postcondition to x = 1, and then replacing it with a simple assignment. The necessary tactic
is law strPost(x = 1); law assign(z := 1). After the application of the first tactic, the resulting
program is z : [z = 1] and the proof obligation is £ = 1 = z > 1. After the application
of the assignment introduction law, we get the program z := 1 with the two proof obligations
r=1=2z>1and true = 1= 1.

As already explained, arguments are expressions or predicates. In examples, however, for clarity,
sometimes we use programs and declarations as arguments as a syntactic sugar. For instance,

4 Marcel Oliveira, Ana Cavalcanti, and Jim Woodcock

tactic = law name args | tactic name args [law and tactic application]
skip | fail | abort

tactic; tactic [sequence]
tactic | tactic [alternation]
ltactic [cut]
1 name o tactic [recursion]
succs tactic | fails tactic [assertions]
tactic tactic [structural combinators]

|

|

|

|

|

|

|

| fltactict [fi tactict

| W tactzc m tactzc

| tactzc I ‘ tactic
| tactic | tactic
| tacticBody tacticMain

I

|

|

ipmainvariantbody|tacticBody tacticMain

tactic | tactic ‘ tactic

con v e tactic [constants]
appliesto program do tactic [patterns]
tacDec ::= Tactic name pars tactic

[proof obligations predicate™ |
[program generated program] end

tacProg = tacDec"tactic

Fig. 2. Abstract Syntax of ArcAngel

above, we write law assign(z := 1), but the arguments are actually z and 1. We use the same
sort of notation for parameter names, and for arguments and parameters of tactics.

Tactics may also be combined in alternation: # | t. First ¢ is applied to the program. If the
application of #; leads to success, then the composite tactic succeeds; otherwise t is applied to
the program. If the application of t; leads to success then the composite tactic succeeds; otherwise
the composite tactic fails. If one of the tactics aborts, the whole tactic aborts. When a tactic
contains many choices, the first choice that leads to success is selected. It is the angelic nature of
this nondeterminism, in which alternative tactics that lead to success are chosen over those that
lead to failure, that earned Angel and ArcAngel (A Refinement Calculus for Angel) their names.

For example, suppose that we have a useful tactic ¢ that relies on the frame containing only
the variable z, and that we want to generalise it to ¢/, which applies to specification statements
with frame z,y. We could define ¢’ to be law contractFrame(y); t . Unfortunately, the resulting
tactic no longer applies where we found ¢ to be useful, since contracting the frame will surely fail
in such cases. Instead, we can use the compound tactic (law contractFrame(y) | skip); t. Now,
if contracting the frame works, we do it; if it does not, then we ignore it; either way, we apply
t next. The tactic (skip | law contractFrame(y)); t has the same effect. In this case, the tactic
t is applied without any prior change to the specification statement. If this application does not
succeed, the law contractFrame is applied before a new attempt to apply t.

The angelic nondeterminism can be implemented through backtracking: in the case of failure,
law applications are undone to go back to the last point where further alternatives are available and
can be explored. This, however, may result in inefficient searches. Some control over this is given to

ArcAngel: a Tactic Language For Refinement 5

the programmer through the cut operator. The cut tactic ! £ behaves like ¢, except that it returns
the first successful application of . If a subsequent tactic application fails, then the whole tactic
fails. Consider our previous example once more, supposing that law contractFrame(y) succeeds,
but that ¢ subsequently does not. There is no point is applying the trivial tactic skip and then
trying t again. Instead, we should cut [CM81] the search: !(law contractFrame(y) | skip); t.

Suppose that we have a tactic u that performs some simple task, like identifying an equation
in a specification postcondition and then applying the rule of following-assignment. Such a simple
tactic may be made more useful by applying it repeatedly, until it can be applied no more. ArcAngel
has a fixed-point operator that allows us to define recursive tactics. Using this operator, we can
define a tactic that applies u exhaustively: the tactic u X o (w; X | skip) applies u as many
times as possible, terminating with success when the application of u fails. Recursive application
of a tactic may lead to nontermination, in which case the result is the same as the trivial tactic
abort.

The tactic conv e ¢ introduces v as a set of free variables ranging over appropriate syntactic
classes in ¢, angelically chosen so that as many choices as possible succeed. An example of its use
is presented in Section 4.

The tactic appliesto p do ¢ is used to define a pattern for the programs to which the tactic ¢
can be applied. It introduces a meta-program p that characterises the programs to which this tactic
is applicable; the meta-variables used in p can then be used in . For example, the meta-program
w : [pre, post; V postz] characterises those specifications whose postcondition is a disjunction;
here, pre, post;, and post, are the meta-variables. Consider as an example a commonly used
refinement tactic: strengthening a postcondition by dropping a disjunct. This tactic is formalised
as appliesto w : [pre, post; V posty| do law strPost(posty).

Two tactics are used to make tactic assertions that check the outcome of applying a tactic. The
tactic succs ¢ fails whenever ¢ fails, and behaves like skip whenever ¢ succeeds. On the other hand,
fails ¢t behaves like skip if ¢ fails, and fails if ¢ succeeds. If the application of ¢ runs indefinitely,
then these tacticals behave like abort. A simple example is a test to see whether a program is a
specification statement. We know that it is always possible (but seldom desirable) to strengthen
a specification statement’s postcondition to false; however, the tactic applies only to specification
statements. So our test may be coded as succs(law strPost(false)).

3.2. Structural Combinators

Very often, we want to apply individual tactics to subprograms. The tactic t1t2 applies to
programs of the form pi; po. It returns the sequential composition of the programs obtained by
applying ¢ to p; and ty to po; the proof obligations generated are those arising from both tactic
applications. Combinators like |;| are called structural combinators. These combinators correspond
to the syntactic structures in the programming language. Essentially, there is one combinator for
each syntactic construct.

For alternation, there is the structural combinator t1 @ @tn , which applies to an al-

ternation if g — p1 || ... [gn — pn fi. It returns the result of applying each tactic t; to the
corresponding program p;. For example, if we have the program

ifa<b—oz:[z<0]la=b—2ax:[z=0]la>b—z:[z>0]1fi
and tactic
law assign(z = —1) @law assign(z = 0) mlaw assign(z = 1)

we obtain three proof obligations true = —z < 0 and true = 0 = 0, and true = 1 > 0, and the
resulting program is

ifa<b—oz:=-1la=b—o2z:=0]a>b—z:=11

For iterations do g1 — p1 || ... [9» — pn od, we have a similar structural combinator

dolt1[] . .. [[]tn[od].

6 Marcel Oliveira, Ana Cavalcanti, and Jim Woodcock

The structural combinator t applies to a variable block, and t|]| to a logical constant
block; each applies its tactic ¢ to the body of the block. For example, if we apply to

[var z :Nez: [z >0]]

the structural combinator

law strPost(z > 0)

we get the new variable block
[var z :Nez: [z > 0]]

and the proof obligation z > 0=z > 0.
In the case of procedure blocks and variant blocks, the structural combinators t and

t are used, respectively; they apply ¢ to the main program of the blocks. For

example, applying the tactic

law strPost(x > 0)
to the procedure block

[proc nonNeg =z : [z >0]ex:[z>0]]
we get the program

[proc nonNeg =z : [z >0]ex:[z>0]]

and the proof obligation z > 0 = z > 0.
To apply a tactic to a procedure body, we use the structural combinators [pbody t and

pbodyvariant t, which apply to procedure and variant blocks, respectively. For argument decla-

ration, the combinators t, t, and [val-res|t are used, depending on whether the arguments
are passed by value, result, or value-result. For example, when the following tactic

law strPost(z > 0)

is applied to the procedure block

[proc nonNegArg = (val-resz : Nez: [z >0])ez: [z >0]]
it returns the proof obligation z > 0 = z > 0 and the program
[proc nonNegArg = (val-resz :Nez: [z >0]) ez :[z>0]]

It is also possible to apply tactics to a procedure body and to the main program of a proce-
dure block, or a variant block, at the same time. For this. we use the structural combinators
ty tm ||| and ‘pmainvariantbody‘ ty tm , which apply to procedure blocks and vari-
ant blocks, respectively. They apply ¢, to the body of the procedure, and t,, to the main program.

We may declare a named tactic with arguments using the construct Tacticn(a) ¢ end. For
documentation purposes, we may include clauses proof obligations and program generated;
the former lists the proof obligations generated by the application of ¢, and the latter shows the
program generated. These two clauses are optional as this information can be inferred from the
tactic itself. The effect of Tactic n(a) ¢t end is that of ¢ which is named n and uses the arguments
a; the presence of the optional clauses does not affect the behaviour.

A tactic program consists of a sequence of tactic declarations followed by a tactic that usually
makes use of the declared tactics. Several examples of the use of ArcAngel can be found in Section 5
and in [OC00].

ArcAngel: a Tactic Language For Refinement 7

4. Semantics of ArcAngel

Tactics are applied to a pair: the first element of this pair is a program to which the tactic is
applied; the second element is the set of proof obligations generated to obtain this program. This
pair is called RCell (refinement cell), and is defined as follows:

RCell == program x P predicate

The result of a tactic application is a possibly infinite list of RCells that contains all possible
outcomes of its application: every program it can generate, together with the corresponding proof
obligations (existing obligations and those generated by the tactic application). Different possibil-
ities arise from the use of alternation, and the list can be infinite, since the application of a tactic
may run indefinitely. If the application of some tactic fails, then the empty list is returned.

Tactic == RCell - pfiseq RCell

The type pfiseq RCell is that of possibly infinite lists of RCells. We use the model for infinite lists
proposed in [Mar95]; this is summarised in the Appendix A. In this model, finite, partial, and
infinite lists are considered. A partial list ends in an undefined list, denoted 1. An infinite list is
a limit of a directed set of partial lists.

In order to give semantics to named laws and tactics, we need to maintain two appropriate
environments.

LEnv == name -+ seq argument —+ program -+ RCell
TEnv == name -+ seq argument - Tactic

A law environment records a set of known laws; it is a partial function whose domain is the set of
known laws. For a law environment I';, and a given law name n, I';, n is also a partial function: it
relates all valid arguments of n to yet another function. For a valid argument a, I'j, n a relates all
the programs to which n can be applied when given arguments a; the result is a refinement cell.

For example, let I';, be an environment that records the law strPost. For a predicate post’ and
a program w : [pre, post | we have

T strPost post’ (w : [pre, post]) = (w : [pre, post’], { post’ = post })

This means that if we apply strPost with argument post’ to the program w : [pre, post |, we change
its postcondition to post’, but we must prove that post’ = post. We are interested in environments
that record at least the laws of Morgan’s refinement calculus in [Mor94].

Similarly, a tactic environment is a function that takes a tactic name and a list of arguments,
and returns a tactic.

4.1. Tactics

We define the semantic function for tactics inductively; it has the type
[-1 : tactic = LEnv — TEnv — Tactic

The basic tactic law n(a) is that which applies a simple law to an RCell.
[law n(a) [T T 7 (p, pobs) =

if n € domI';, A a € dom(T';n) A p € dom(T' n a)
then

let (newp, npobs) = T'r, n a pin [(newp, pobs U npobs)]
else []

We check to see if the law name n is in the law environment 'y, and if the arguments a and
program p are appropriate. If these conditions hold, then the tactic succeeds, and returns a list
with a new RCell. The program is transformed by applying the law to the program p; the new

8 Marcel Oliveira, Ana Cavalcanti, and Jim Woodcock

proof obligations are added to the proof obligations pobs of the original RCell. Otherwise, the
tactic fails with the empty list as result. We use angle brackets to delimit finite lists; possibly
infinite lists are delimited by square brackets.

The semantics of tactic n(a) is similar to that of the law construct. Its definition is

[tacticn(a) [T Trr=

if n e¢domI't A a € domI'rn
thenI'rnar
else []

If the tactic is in the tactic environment, and if the arguments are valid, then the tactic succeeds;
it returns the result of applying the tactic to the arguments. Otherwise, the tactic fails.
The tactic skip returns its argument unchanged; the tactic fail always fails.

[skip|TLTpr=Ir]
[fail] T T rr =]

The sequence operator uses a construction known as the Kleisli composition [Lan91]. It applies
its first tactic to its argument, producing a list of cells; it then applies the second tactic to each
member of this list; finally, this list-of-lists is flattened to produce the result.

[ti;] TLTr =" ([]To0r)* - ([64]T.T7)

For a total function f : A — B, fx : pfiseq A — pfiseq B is the map function that operates on a
list by applying f to each of its elements; the operator - is used to compose functions; and %/ is
the distributed concatenation operation. Formal definitions of these operators and others to follow
can be found in Appendix A.

The semantics of the alternation operator is given by concatenation: the possible outcomes of
each individual tactic are joined to give the list of possible outcomes of the alternation.

[t &]TLTr =%/ [([t]TeTr), ([]T2Tr)]°

The function ° applies a list of functions to a single argument and returns a list containing the
results of the applications.

The cut operator applies its tactic to its argument, taking the first result (if it exists) and
discarding the rest; if there is no first result, then the cut tactic fails.

[1t]0LTp = head’ - ([t]TpTr)

The function head’ is just like the usual head operator on lists, except that it is total: head’ [] = [].
The recursion operator p has a standard definition [DP90] as a least fixed point. For a contin-
uous function f from tactics to tactics, we have that

(nX o f(X))=|]{i:Nefi(abort)}

where f* represents i applications of f.

This definition makes sense if the set of tactics is a complete lattice. First, we define a partial
order for lists: the completely undefined list L is the bottom element. One list is less than another,
$1 B 82, whenever they are equal, or the first is a partial list that forms an initial subsequence
of the second.

For tactics, as they are partial functions, we may lift the ordering on lists of RCells to an
ordering on tactics. We can say that ty Cp to < (Vr : RCell @ ty 7 T tor). As the set of
lists of RCells is a complete lattice, the set of tactics is also a complete lattice, using the order
above [DP90].

The bottom element is used in the semantics of abort, which runs indefinitely.

[abort [T, T = L

The tactics succs ¢t and fails ¢ are defined as follows. While abortion arises from a tactic that does

ArcAngel: a Tactic Language For Refinement 9

not terminate, failure arises from the application of a law or tactic to a program that is not in its
domain, or with inappropriate arguments. In this case, the result is the empty list, as no program
or proof-obligation is generated.

succstr = (if t r = L then abort else (if ¢ r = [] then fail else skip) r)
failstr = (if ¢t r = L then abort else (if ¢ r = []| then skip else fail) r)

If the application of ¢ aborts, so do succst and fails ¢. If it fails, then succs ¢ fails and fails ¢
skips. Finally, if it succeeds, succs ¢ skips and fails ¢ fails.

4.2. Structural Combinators

The structural combinators apply tactics to components of a program independently (and so can
be thought of as in parallel), and then reassemble the results in all possible ways. There is one
combinator for each construct in the programming language.

The structural combinator t1t2 applies to a sequential composition p;; ps. Independently,
t, is applied to p; and t, is applied to po; the resulting alternatives are assembled into pairs, so
that the first is an alternative outcome from #; and the second is an alternative outcome from ty;
finally, these pairs are combined with the sequential composition tactical.

[t [{t2]TLT 7 (pr; p2, pobs) = Qx (IL((([t]TLT) (p1,pobs), ([t2]TLT 1) (p2, pobs))))

The distributed cartesian product operator II is defined in Appendix A. The sequential combina-
tion function €2, sequentially composes the programs and unites the proof obligations.

Q. : RCellx + RCell
Q. ((p1, pobsi), (p2, pobsa)) = (p1; p2, pobsi U pobsy)

The symbol + indicates that {2, is a partial function since it is defined only for lists with two
elements.

The semantics of the structural combinators , and , use a few functions which are
explained and defined in [Oli00]; we start by giving a simple example. Consider the RCell

(fz>0—2:[z2>0,z>y]lz<0—z:[z<0,z<z]|fi{z>1})
and the tactic
law weakPre(true) |law assign(z =z + 1)@ law assign(z := x — 1)

First of all, we extract the commands from each branch of the conditional; the function extractP
does this for us.

extractP(z >0 —z:[z>0,z>y]lz<0—z: [z <0,z < z])
=(z:[z>0,z>yl,z:[z<0,z<z])

The function ®,. constructs an RCell with a given program p and an empty set of proof obligations.
We map P, over our list of commands.

. x ((z:[z>0,z>yl,z:[z<0,z<2z2]))=
{(z:(z>0,2>yl,0),(z:[z<0,z<2],0))

Now, we need to apply each tactic to its corresponding command.
We use the function apply that takes two lists: the first is a list of functions, and the second
is a list of elements to which the functions are applied; it returns list of the results applying each

10 Marcel Oliveira, Ana Cavalcanti, and Jim Woodcock

function in the first list to the corresponding element in the second list. In our example we have

apply (law weakPre(true) |law assign(z := y + 1),law assign(z =2 —1))
((z:]z>0,z>y],0),(z:[z<0,z<z],0))

= (law weakPre(true) |law assign(z:=y+1) (z: [z >0,z > y],0),
law assign(z:=z—1)(z: [z <0,z < 2],0))

=([(z:[z>yl,{z >0=true}), (z:=y+1L,{z>0=y+1>y})],
[(z=z-1{z<0=2z—-1<2})])

Now, we have to take the distributed cartesian product of this list to get all the possible combi-
nations of the cells of the first list with the cells of the second list.

I{[(z:[z>y],{z>0=true}),(z:=y+1,{z>0=y+1>y})],
[(z=2z-1{z<0=z—-1<2z})])

=[((z:[z>yl,{z>20=true}),(z:=2-1,{z<0=>2—-1<2})),
((z=y+1{z>0=>y+1>y})(z:=2—-1,{s <0=2—-1<2z}))]

The function extractG makes a list of guards of the guarded command. In the example we have
extractG(z >0 —z: [z >0,z =20+ 1]z <0—z:[z<0,z=2—1])=(z >0,z <0)

We combine the list of guards with each element of the list of RCells we get from the distributed
cartesian product above. The function insertG takes a list of guards g;, a list of RCells (p;, pobs;),
and returns a pair, where the first element is a guarded command and the second is a set of proof
obligations.

The guarded command associates each guard g; to the program p;:itisgr — p1 [go = p2 [-
The set of proof obligations is the union of the pobs;.

We use the function mkGC' to apply insertG (z > 0,z < 0) to each element of the cartesian
product above.

mkGC (x > 0,z < 0)
[((z:[z>yl,{z>0=true}),(z:=2—-1,{z<0=>2—-1<2})),
((z:=y+1{z>0=>y+1>y})(z:=2-1{z<0=>2-1<2z2}))]

=[(z>0—z:[z>y]lz<0—-z:=2—-1,{z>0=true,z <0=2—-1<2z}),
(z20—-z:=y4+1lz<0—-2z:=2-1,{z>20=>y+1>y2<0=>2—-1<z})]

The last step, to rebuild the RCells, uses the function €2;r. The arguments of this function are the
original set pobs of proof obligations and the list of RCells (gc;, pobs;) generated in the previous
step. The result is the list of RCells (if gc; fi, pobs U pobs;); each guarded command in the
argument list is turned into a conditional, and the set of original proof obligations is added to
those generated by the tactic.

In our example we have

Qif{CCZI}
[(z>20—z:[z>y] [2<0—z:=2-1{z2>0=true,z <0=2—-1<2z}),
(z>20—-z:=y+1lz<0—-z:=2-1{z>20=>y+1>y,2<0=2—-1<2z2})]
=[(ifz>0—-z:[z>y] [2<0—z:=2—14,
{x>20=>true,z <0=z—-1<z,2 >1}),
(ifz>0—-2:=y+1]az<0—-z:=2z—14f,
{t>0=y+1>y,2<0=>z2-1<z,2>1})]

With this example as motivation, we present the definition of the combinator for the conditional.

([I[if]tacs[f]] T T 7)(if ge fi, pobs) =
Qi pobs (mkGC (extractG ge) (I(apply ([~ TLT 1) * tacs) (®, x (extractP gc)))))

First, we extract the commands from the branches gc of the conditional (extractP). Then, we

ArcAngel: a Tactic Language For Refinement 11

construct a list of RCells with these commands as their programs, and an empty set of proof
obligations (®,).

We apply each element of the list tacs of tactics to the corresponding element in the list
of RCells we constructed (apply (=] Tz T7) * tacs)). The next step is to take the distributed
cartesian product of the resulting list (II).

Finally, we rebuild the conditionals with the resulting commands (mkGC (extractG gc)) and
add the original proof obligations pobs to the new sets of proof obligations (2;s pobs). The similar

definition of |[do|_jod] may be found in [O1i00].

The structural combinator , applies a tactic to the program in a variable block and
rebuilds the variable blocks. Its formal definition is

([var|t[JJI0. Tr) ([var d o p]. pobs) = (var d) + ([¢] T2 Tz (p, pobs))

The function var rebuilds the variable block after the application of the tactic to its body. It takes
as arguments a variable declaration and an RCell. The result is a new RCell containing a variable
block built from the declaration and the program. The proof obligations are not changed.

var : Declaration — RCell — RCell
var d (p, pobs) = ([var d e p]|, pobs)

The structural combinator , is defined similarly.

The structural combinator , is used to apply a tactic to the main program of a
procedure block. Its definition is as follows.

([[pmain|¢[JJ] T Tz) ([proc n = p1 & pa], pobs) = (procmnpy) * ([¢] TrT 1 (pa, pobs))
where
procm : name — program — RCell — RCell

procm n p1 (p2, pobs) = ([proc n = p; e p2], pobs)

The function procm is similar to var; it rebuilds the procedure block. The definitions of the other
combinators that apply to procedure and variant blocks are very much like those shown here.
For parameter passing, we give as an example the semantics of ,. Its definition is

[Vallt [T, T ((val v: T o p) (a), pobs) = (valv T a) ([£] T Tr (p, pobs))
where

val : name — Type — args — RCell — RCell

valv T a (p, pobs) = ((val v : T e p)(a), pobs)

This structural combinator applies the tactic to the body of the parameterised command and then
rebuilds it, using the function wval.

The tactic conv e t introduces v as a set of variables whose values are taken from an ap-
propriate syntactic class denoted TERM below. These variables are used in ¢ as elements of its
syntactic class. Their values are angelically chosen so that the tactic succeeds. Its semantics is

[convet|I',T'r = [|verermt(v) [T LT 7

where |,crrrMt(v) is an alternation of all tactics that can be obtained from ¢, with v ranging
over all values in TERM . This is an infinite alternation, which can be defined as follows.

| zo f(i) = pX o F(Xo)

where F(X;) = f(i) | F(Xit1).
The tactic appliesto p do t needs to consider all ways in which the given program can match

12 Marcel Oliveira, Ana Cavalcanti, and Jim Woodcock

p. Its semantics uses the function equals, that yields a tactic that succeeds only if it is presented
with a RCell matching the given program:

equals : RCell — Tactic

equals 7 = [r]
equals rh = [],if h £ r

The definition of the tactic appliesto p do ¢ is
[appliesto p do t|I'I'r (p1, pobs) = [[con p e equals (p, pobs); t|T'LT 7 (p1, pobs)

For simplicity, we use the meta-program p as a variable itself; the alternative is to consider the
individual variables of p. In con p e equals (p, pobs); t, an instantiation of p is angelically chosen
to ensure the success of equals (p, pobs); t. The tactic equals (p, pobs) succeeds only for those
instantiations that match its argument: (p;, pobs); so equals (p, pobs) is a filter for the instantiations
of p: only those that match p; are considered. If there is none, the tactic fails. If a successful
instantiation can be chosen, the instantiated values are used in ¢, which is applied to (p1, pobs).

4.3. Tactic Declarations and Programs

A tacDec includes a tactic name n in the domain of the tactics environment. This element is
mapped to a new function that, for each possible argument v € TERM , gives the semantics of the
tactic when the arguments of the tactic are replaced by v. The clauses proof obligations and
program generated do not change the semantics of a tacDec given below.

[-] : tacDec — LEnv — TEnv — TEnv
[Tacticn(a)tend [T Ty =Tr @& {n—{ve TERM e v — [tla\ v]|T.Tr}}

where @ is the overriding operator.

A tacProg is a sequence tds of tacDec followed by a main tactic ¢. The semantics is that of
t, when evaluated in the environment determined by the tactic declarations and the given laws
environment. The definition is as follows.

[-1 : tacProg — LEnv — TEnv — TEnv
[tdst) T Tr = [t] T (decl tdsT 1, D)
This environment is defined by the function decl.
decl : tacDecx — LEnv — TEnv — TEnv
decl)T, Tp=Tr
decl (tdy tds) T, Ty = (decltdsTp ([tdi [T T 7))

In the case that we have an empty tactic declaration, this function returns the tactics environ-
ment given as argument. Otherwise, it uses the tactic environment resulting from the first tactic
declaration to evaluate the rest of the declarations.

4.4. Laws of ArcAngel

We have proved most of the laws proposed in [MGW96] for Angel in the context of ArcAngel [O1i00].
Some of these laws are used to reduce tactics to a normal form proposed for a subset of ArcAngel.
As examples of these laws, we have associativity laws for tactic sequences and alternations, and
distributive laws for alternation over sequence, and vice-versa. We have that skip is a neutral
element in sequential composition, as fail is for alternation; the sequential composition of fail

ArcAngel: a Tactic Language For Refinement 13

with any tactic is the same as fail itself. A few more interesting laws are shown below.

Law 'tl, 'tg :'('tl, 'tg)

Law succst; t =1t

Law t[|(t | t3) = (tltg) | (t1[]ts)
Law (11 | t2) [t = (t.[J/t3) | (2]; 1)

The first law shows that it is unnecessary to avoid backtracking in a sequential composition that
already avoids backtracking in each of its parts. The second shows that to verify that ¢ succeeds
and then to apply ¢ is the same as applying ¢ directly. Finally, the third and the fourth laws show
that the structural combinator |;| distributes over alternation.

We have proved in [Oli00] that tactics written in the subset of ArcAngel, using basic laws,
alternation, sequential composition, skip, fail, and !, have a normal form and that it is unique.
This normal form provides a notion of completeness for the set of laws we have proved. This
normal form is similar to that presented in [MGW96], and since we proved that the Angel’s laws
are valid for ArcAngel, we can adopt a similar normal-form reduction strategy.

5. Examples

In this section we give a few examples of ArcAngel programs. The first two, followingAssign
and leadingAssign, implement two derived rules from Morgan’s calculus. Their implementations
demonstrate the usefulness of ArcAngel’s logical constants in pattern-matching. The third program
formalises a strategy from the literature for developing a loop.

5.1. Following assignment

In [Mor94, p.32], the derived rule of following assignment is presented as a combination of the
assignment and sequential composition laws; in other words, it is rather like a tactic for using the
more basic laws of the calculus. Of course, there is a big difference between a tactic and a derived
rule. The former is a program that applies rules; proof obligations arise from the law applications.
A derived rule is a law itself, that is proved in terms of applications of other laws. Tactics are
much more flexible, since they can make choices about the form of the resulting program.

Following assignment splits a specification statement into two pieces, the second of which is
implemented by the assignment z := E. If we apply seqComp(post[z \ E]) to w,z : [pre, post]
we get the program

w,x : [pre, post[z \ E]|; w,z : [post[z \ E], post]

If we now apply assign(x := F') to the second statement, we get our assignment z := F and the
proof obligation post[z \ E] = post[z \ E]. This is a simple tautology, but remains part of the
documentation of the tactic, as the proof obligation is raised every time the tactic is applied.

Tactic followingAssign (z, E)
appliesto w,z : [pre, post] do

law seqComp(post[z \ E)); (Skip law assign(z :=E))
proof obligations

1. post[z \ E] = post[z \ E]
program generated

w,x : [pre, post[z \ E]];
r:=F
end

There is a further restriction on the use of this tactic: it uses a simple form of the law of sequential

14 Marcel Oliveira, Ana Cavalcanti, and Jim Woodcock

composition that forbids initial variables in postconditions. If applied to a specification statement
that does not satisfy this restrictions, followingAssign fails.

5.2. Leading assignment

In [Mor94, p.71], the presentation of the derived rule for leading assignment is a little more
complicated than that of the following assignment:

Law 13.1 § leading assignment For any expression E,

z : [pre[z \ EJ, post[zo \ Eq]]
C z:=E;
,x : [pre, post]

The expression FEy is that obtained from F by replacing all free occurrences of x and w with
and wy, respectively. The complication arises from the need to find predicates pre and post, such
that, when appropriate substitutions are made, they match the current goal. The solution in

ArcAngel is to use logical constants.
Tactic leadingAssign (z, X, F)
appliesto w,z : [pre[z \ E], post[zo \ Ep]] do

law seqComplV (z, X, pre A x = Fy);
law assignlV (z := E)[| law strPostIV (post); law weakPre(pre) [}

law removeCon(X

proof obligations
1-($=$o)/\pre[$\E] (pre Nz = Elz \ z])[z\ E]
2.(pre Nz = E[z\ X])[z,w \ 29, wo] A post = post[z \ Epl[zo \ X]
3.(pre Nz =E|[z\ X]) = pre

program generated

z:=F; w,z: [pre, post]
end

If applied to a specification statement w,z; [pre[z \ E], post[zy \ Ep]] this tactic first splits
it using the law seqComplV . As seqComp, this law introduces sequences, but it applies to speci-
fication statements that make use of initial variables; it declares a logical constant to record the
initial value of z. This gives:

[con X e
]] z:[prelz \ El,pre N\e = E [z \ 2] |; w,x: [pre A x = E[z \ X], post[zo \ Eo][zo \ X]]

The first specification statement is refined to z := F, using the assignIV law: a law for introducing
assignments that considers the presence of initial variables. The precondition and postcondition
of the second specification statement are changed to pre and post, respectively, and finally the
logical constant is removed. The law strPostIV is the strengthening postcondition law that takes
initial variables into account. The proof obligations are generated by the applications of the laws
assignl V', strPostlV | and weakPre, respectively; they always hold.

5.3. Tactic replConsByVar

n [OC00], several well-known strategies for developing loops [Gri81, Kal90] are formalised in
ArcAngel, and we give an example of one of the resulting tactics here. The tactic replConsByVar

ArcAngel: a Tactic Language For Refinement 15

allows the user to choose an iteration invariant by replacing a constant in the postcondition by a
variable.

The tactic replConsByVar has five arguments: the declaration of the fresh loop-index variable
newv : T; the constant to be replaced cons; an invariant on the loop indexes invBound; the loop
initialisation ‘war := wal; and an integer-valued variant.

Tactic replConsByVar (newv : T, cons, invBound, war := wal, variant)
appliesto w : [pre, post]| do

law varInt(newv : T);
law strPost(post[cons \ newv] A newv = cons);
tactic take ConjAsInv(invBound, ivar := ial, variant);

proof obligations

1. post[cons \ newv] A newv = cons = post
2. post[cons \ newv] A newv = cons A invBound = post[cons \ newv] A newv = cons
3. pre = (post[cons \ newv] A invBound)[war \ ival]

program generated

[var newv : T o
war = ival;
do - newv = cons —
newv, w : [post[cons \ newv] A invBound N\ — newv = cons,

post[cons \ newv] A invBound A 0 < variant < variant[newv \ newv] |
od

I

end

This tactic first introduces the new variable, then it strengthens the postcondition to replace
the constant by the new variable. Afterwards it calls the tactic takeConjAsInv to introduce the
iteration. The proof obligation 1 is generated by the law strPost, and the others are generated by
the tactic takeConjAsInv. The proof obligations 1 and 2 always hold. The tactic takeConjAsinv
implements another, simpler strategy for loop development: taking a conjunct of the postcondition
as the main part of the invariant.

Tactic takeConjAsInv (invBound, war := wal, variant)
appliesto w,ivar : [pre, invConj A notGuard] do

law strPost(invConj A notGuard A invBound);
law seqCom(invConj A invBound);
(law assign(ivar := ival)m law iter((— notGuard), invConj A invBound, variant));

proof obligations

1. invConj A notGuard N invBound = invConj N notGuard
2. pre = (invConj A invBound)[war \ ival]

program generated

war = iwal;
do - notGuard —
w : [invConj A invBound A — notGuard,
invConj A invBound A 0 < variant < varianty |
od
end

This transforms a specification w : [pre, invconj A notGuard] into an initialised iteration, and has
three arguments: an invariant invBound on the loop indexes; the loop initialisation war := ival;
and the integer-valued variant.

16 Marcel Oliveira, Ana Cavalcanti, and Jim Woodcock

It first strengthens the postcondition using the argument invBound, then introduces a se-
quential composition. Next, the law assign is applied to the first program of the composition to
introduce the initialisation, and the law iter is applied to the second program in order to introduce
the iteration. The first proof obligation is generated by the application of law strPost, and the
second by the application of law assign. The first proof obligation always holds.

Consider the problem described in [WD96, p.314, Example 19.15]: “We would like to develop
an algorithm that converts numbers from a base (8 to the base 10. For an n + 1 digit number, a
solution that requires more than n multiplications is not acceptable.” The problem is to compute
the value of a polynomial Y " | a; * 3°! efficiently, where the a;s are the digits in base 3. The
solution, well-known to numerical analysts, involves Horner’s rule: the polynomial has the same
value as H ., where H, ,, = ay, and H; ,, = a; + B * H;1 1, for i < n.

The specification statement d : [d = H; , | may be refined to a program that initialises d to
H, ,, and then repeatedly multiplies d by 3 and adds the next coefficient, until it finally adds a;.
To develop this program, we use the tactic of replacing a constant by a variable. We first introduce
a fresh loop-index variable, j, that ranges between n and 1, requiring that, at any instant, d will
have the value Hj ,; this is our invariant for the loop.

Our specification is refined to code by the tactic

replConsByVar(j : 2,1,1 <j < n,(j,d:=n,a,),j —1);
skipassign(j, d=j—1a_1+0x d)

It generates the following proof obligations:

I d=H,Nj=1=d=H,
9 d=Hj,Aj=1A1<j<n=d=H,Aj=1
3. true=(d=H;, AN1<j<n)[j,d\n,a,)

and the following program.

[varj:Ze
J,d =, ay;
dO_\jZ1—>j,d:=j—1,aj_1+ﬂ*d0d

|

The first two proof-obligations are trivial, and the last one follows from the definition of H, .

6. Related work

Gardiner and Vickers developed the refinement tool Red, reported in [Vic90]. It is implemented
in Prolog and maintains three interactive windows: one contains the state of the program text
being developed; the second contains the proof obligations; and the third contains a tree of the
refinement operations performed to obtain the program. In [Vic94], the authors describe a lan-
guage for representing the refinement tree. The key idea is that, for every construct of the target
programming language, there is a corresponding construct in the transformation language. This
work is the origin of Angel’s structural combinators [MGW93]. The language presented, however,
is not a language to describe tactics; it is, as already said, a language to describe refinement. There
are no constructs for alternation or recursion.

Grundy [Gru92] proposes a refinement tool based on window inference. The tool runs on top
of the HOL theorem prover; because the HOL system is programmable, users can add their own
commands to automate refinements that they frequently repeat, although this is not the main
focus of the work. Tactics are written using simple tacticals, such as THEN, ORELSE, and REPEAT.

Later, Grundy and his colleagues [BGLT97] extended that work to produce a more user-
friendly tool with a graphical interface. The authors mention that ML can be used to package
transformations, but point out themselves that this brings the difficulty of requiring knowledge
of HOL and ML. While ML does have a formal semantics, it is difficult to reason about tactics
written in such a general language.

ArcAngel: a Tactic Language For Refinement 17

Groves, Nickson, and Utting [GNU92, Nic94] describe a refinement tool, placing special em-
phasis on tactics. The tool is implemented in Prolog, whose programming capabilities are available
to the user. Nickson’s thesis [Nic94] contains a collection of examples showing how various com-
mon development patterns (like introducing various kinds of loops) may be encoded as tactics.
These tactics are expressed directly in Prolog, rather than a special tactic language. This means
that tactics have all the normal Prolog control mechanisms and can do arbitrary computations
in deciding what steps to take, and constructing new components, but all modifications to the
program being constructed are done by applying refinement rules. In their tool, the rule for leading
assignment is programmed as

-- Leading Assignment
tactic leading_assignment(V := E) [get_assignment(V := E)]
when free_of_var(V, Pre):
Vars: [Pre, Post] <<
(
refine Vars: [Pre, Post]
using split_spec(Pre and V = E)
giving (AssSpec; Rest),
refine AssSpec using intro_assign(V := E)

).

If the parameter to the tactic V := E is not supplied, the user is prompted to supply it interactively.
The subject of this tactic will match any specification statement that does not mention the target
of the assignment in its precondition. The body of the tactic is a sequence of two refinement steps.
The first uses a rule of sequential composition to split the specification statement into two parts:
AssSpec, the assignment specification, and the Rest of the specification. The giving clause is
used to associate names to components of programs resulting from law applications and allow
subsequent law applications to these components; this is a role similar to that of ArcAngel’s. The
second step of leading_assignment applies a rule of assignment introduction to AssSpec; as there
is nothing further to refine from this sub-program, there is no giving clause.

Van de Snepscheut [vdS94] describes a notation for formula manipulation and an associated
editor that together provide support for the development of programs by stepwise refinement
(Proxac). Although the idea seems not to have been taken further, van de Snepscheut suggested
viewing the program transformations as the commands in a programming language for formula
manipulation including function composition, conditionals, and a fixed-point operator.

Queensland University’s program refinement tool, PRT [CHNT98], originally had a tactic lan-
guage inherited from Ergo, on which it was based. Later, a tactic language based on Angel was
added; this language, Gumtree, is described in [MNU97b, MNU97a].

Back and von Wright [BW90] show how to use HOL to prove refinement rules correct and how
to apply such rules to formalise program refinement. In [WHLL93], von Wright and his colleagues
continue this work by describing how the HOL theorem prover may be used to apply the rules
from a refinement calculus. They formalise methods for data refinement, proving the validity of
refinement rules within their theory. The main aim of the work is to use HOL to generate the
verification conditions for refinement steps. Simple tactics for refinement are programmed in ML.

A survey of various early refinement tools may be found in [CHN194].

7. Conclusions

We have presented ArcAngel, a refinement-tactic language. Using this language, it is possible to
specify commonly used strategies of program development. Tactics can be used as transformation
rules, which shortens developments and improves their readability.

We defined the semantics of ArcAngel based on Angel semantics. The difference is that Angel is
a very general language and its goals have no defined structure. For us, a goal is called an RCell,
which is a pair with a program as its first element and a set of proof obligations as its second

18 Marcel Oliveira, Ana Cavalcanti, and Jim Woodcock

element. The application of a tactic to an RCell returns a list of RCells containing the possible
output programs with their corresponding set of proof obligations.

We have shown the soundness of algebraic laws for reasoning about ArcAngel tactics. We
covered most of the laws that have been proposed for Angel. For the vast majority of them, proofs
are not available in the literature and are provided in [Oli00] in the context of ArcAngel. Since
these laws are valid, the strategy proposed to reduce finite Angel tactics to a normal form can be
applied to ArcAngel tactics. In [Oli00] we have expanded the proofs of the lemmas and theorems
involved, exemplifying some of the procedures.

Generalising the normal form to encompass the rest of the language is not trivial and is still to
be done. Basically, there are three points to conclude this task. We must include the basic tactic
tactic n. The idea is to introduce the body of n wherever this tactic is applied. The other points
consist of including recursion and the structural combinators. We have to extend the normal form
to handle these. In the case of structural combinators, we believe we should allow their occurrence
wherever a basic law is allowed in the presented normal form, and require that the component
tactics in the structural combinators are already in the normal form.

As well as carrying on further work on the proof of laws and on defining a normal form for
the whole of ArcAngel, we intend to implement a tool to support the definition and application of
ArcAngel tactics. This tool is going to be provided as an extension to Refine [CRC99], a refinement
tool developed by our group.

Our work, however, has shown that there are very interesting issues in specialising Angel to
the refinement calculus, and this is independent of any particular tool. These issues are worthy of
further investigation in their own right.

Acknowledgements

We are grateful to Lindsay Groves for very detailed comments and insights. We also thank Andrew
Martin, and Ray Nickson for valuable discussions about refinement, mechanisation, and tactics.

References

[Bac78] R. J. R. Back. On The Correctness of Refinement Steps in Program Development. PhD thesis,
Department of Computer Science, University of Helsinki, 1978. Report A-1978-4.

[Bac87] R. J. R. Back. Procedural Abstraction in the Refinement Calculus. Technical report, Department of

Computer Science, Abo - Finland, 1987. Ser. A No. 55.

[BGL197] M. J. Butler, J. Grundy, T. Langbacka, R. Ruksénas, and J. Wright. The Refinement Calculator: Proof
Support for Program Refinement. In Proceedings of FMP’97 — Formal Methods Pacific, Discrete
Mathematics and Theoretical Computer Science. Springer-Verlag, 1997.

[BvW98| R. J. R. Back and J. von Wright. Refinement Calculus: A Systematic Introduction. Graduate Texts
in Computer Science. Springer-Verlag, 1998.

[BW90] R. J. R. Back and J. Wright. Refinement Concepts Formalised in Higher Order Logic. Formal Aspects
of Computing, 2:247-274, 1990.

[CHNt94] David Carrington, Ian Hayes, Ray Nickson, Geoffrey Watson, and Jim Welsh. A review of existing
refinement tools. Technical Report 94-8, Software Verification Research Centre, The University of
Queensland, 1994.

[CHNt98] D. Carrington, I. Hayes, R. Nickson, G. Watson, and J. Welsh. A program refinement tool. Formal
Aspects of Computing, 10(2):97-124, 1998.

[CM81] W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer-Verlag, 1981.

[CRC99] S. L. Coutinho, T. P. C. Reis, and A. L. C. Cavalcanti. Uma Ferramenta Educacional de Refinamentos.
In XIII Simpdésio Brasileiro de Engenharia de Software, pages 61 — 64, Floriandpolis - SC, 1999. Sessao
de Ferramentas.

[CSWO7] A. L. C. Cavalcanti, A. Sampaio, and J. C. P. Woodcock. Procedures, Parameters, and Substitution
in the Refinement Calculus. Technical Report TR-5-97, Oxford University Computing Laboratory,
Oxford - UK, February 1997.

[CSW98] A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. Procedures and Recursion in the
Refinement Calculus. Journal of the Brazilian Computer Society, 5(1):1-15, 1998.

[Dij76] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

ArcAngel: a Tactic Language For Refinement 19

[DP90]
[GNU92]
[Grisl]
[Gru92]

[Kal90]
[Lan91]

[Mar95]
[Mar96]

[MGW93]
[MGW96]

[MNU97a]

[MNU97b]

[Mor87]

[Mor94]
[Nic94]

[0C00]
[01i00]

[vdS94]

[Vic90)
[Vic94)

[WD96]
[WHLL93)

B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge University Press,
1990.

L. Groves, R. Nickson, and M. Utting. A Tactic Driven Refinement Tool. In C. B. Jones, R. C.
Shaw, and T. Denvir, editors, 5th Refinement Workshop, Workshops in Computing, pages 272 — 297.
Springer-Verlag, 1992.

D. Gries. The Science of Programming. Springer-Verlag, 1981.

J. Grundy. A Window Inference Tool for Refinement. In C. B. Jones, R. C. Shaw, and T. Denvir,
editors, 5th Refinement Workshop, Workshops in Computing, pages 230 — 254. Springer-Verlag, 1992.
A. Kaldewaij. Programming: The Derivation of Algorithms. Prentice-Hall, 1990.

Saunders Mac Lane. Categories for the Working Mathematician. Graduate Texts in Mathematics.
Springer, 1991.

A. Martin. Infinite Lists for Specifying Functional Programs in Z. Technical report, University of
Queensland, Queensland - Australia, March 1995.

A. P. Martin. Machine-Assisted Theorem Proving for Software Engineering. PhD thesis, Oxford
University Computing Laboratory, Oxford, UK, 1996. Technical Monograph TM-PRG-121.

A. P. Martin, P. H. B. Gardiner, and J. C. P. Woodcock. Tactic Semantics and Reasoning. Technical
report, Oxford University Computer Laboratory, Oxford - UK, December 1993. Draft version.

A. P. Martin, P. H. B. Gardiner, and J. C. P. Woodcock. A Tactical Calculus. Formal Aspects of
Computing, 8(4):479-489, 1996.

Andrew Martin, Ray Nickson, and Mark Utting. Improving Angel’s parallel operator: Gumtree’s
approach. Technical Report 97-15, Software Verification Centre, School of Information Technology,
The University of Queensland, December 1997.

Andrew Martin, Ray Nickson, and Mark Utting. A tactic language for Ergo. Technical Report 97-
16, Software Verification Centre, Department of Computer Science, The University of Queensland,
February 1997.

J. M. Morris. A Theoretical Basis for Stepwise Refinement and the Programming Calculus. Science
of Computer Programming, 9(3):287 — 306, 1987.

Carroll Morgan. Programming from Specifications. Prentice-Hall, 2nd edition, 1994.

Raymond George Nickson. Tool Support for the Refinement Calculus. PhD thesis, Victoria University
of Wellington, 1994.

M. V. M. Oliveira and A. L. C. Cavalcanti. Tactics of Refinement. In XIV Simpdsio Brasileiro de
Engenharia de Software, pages 117 — 132, 2000.

M. V. M. Oliveira. Tactics of Refinement. Technical report, Centro de Informética - Universidade
Federal de Pernambuco, Pernambuco - Brazil, December 2000. At http://www.cin.ufpe.br/ lmf.

Jan L. A. van de Snepscheut. Mechanised support for stepwise refinement. In Jiirg Gutknecht, editor,
Programming Languages and System Archtectures, volume 782 of Lecture Notes in Computer Science,
pages 35—48. Springer, March 1994. Zurich, Switzerland.

T. Vickers. An Overview of a Refinement Editor. In 5th Australian Software Engineering Conference,
pages 3944, Sydney - Australia, May 1990.

Trevor Vickers. A language of refinements. Technical Report TR-CS-94-05, Computer Science Depart-
ment, Australian National University, 1994.

Jim Woodcock and Jim Davies. Using Z — Specification, Refinement, and Proof. Prentice-Hall, 1996.
J. Wright, J. Hekanaho, P. Luostarinen, and T. Langbacka. Mechanizing Some Advanced Refinement
Concepts. Formal Methods in System Design, 3:49-81, 1993.

A. Infinite Lists

We present the model for infinite lists adopted here from [Mar95]. The set of the finite and partial
sequences of members of X is defined as

pfseq X ::= partial{(seq X)) | finite((seq X))

We define an order C on these pairs such that for a, b : pfseq X, if a is finite, then a C b if, and
only if, b is also finite and equal to a. If a is partial, then a C b if, and only if, a is a prefix of b.

C:

pfseq X < pfseq X

Vgs,hs:seqX e
finite gs C finite hs < gs = hs
finite gs C partial hs < false
partial gs C finite hs < gs prefix hs
partial gs C partial hs < gs prefix hs

20 Marcel Oliveira, Ana Cavalcanti, and Jim Woodcock

A chain of sequences is a set whose elements are pairwise related.

chain : P(P(pfseq X))

Ve :P(pfseq X) @ ¢ € chain < (Vz,y:cexCyVyLlux)
The set pchain contains all downward closed chains.

pchain : P chain[X]

Vc: chain[X] e c € pchain < (Vz:c¢; y:plseq X |y Tz oy €)

The set pfiseq contains partial, finite, and infinite list of elements of X, which are prefixed-
closed chains of elements in pfseq X.

pfiseq X == pchain[X]

The idea is that L = partial (), the empty list [] = finite (), the finite list [eq, €2, ..., €,] is repre-
sented by the set containing finite (e1, ea, ..., e,) and all approximations to it. An infinite list is
represented by an infinite set of partial approximations to it. The infinite list itself is the least
upper bound of such a set.

The definitions of the functions used in this paper are as follows.

1. The map function maps a function f to each element of a possibly infinite list.
pfmap : (X — Y) — pfseq X — plseq Y
Vis:seqX; f: X = Y e
pfmap f (finite zs) = finite (f o zs) A
pfmap f (partial zs) = partial (f o xs)

x: (X — Y) — pfiseq X — pfiseq ¥V
Ve:pfiseqX; f: X > Y e
fxLl=_1
fxec={z:coepfmapfz}
The function pfmap maps the function f to the second element of z.
2. The distributed concatenation returns the concatenation of all the elements of a possibly
infinite list of possibly infinite lists.
/- pfiseq(pfiseq X) — pfiseq X
V s : pfiseq(pfiseq X) o
O”<\3/s:|_| {c:sen/c}

It uses the function 3\0/ , which is the distributed concatenation for pfseq(pfiseq X). The function
cat is the standard concatenation function for X*.

A/ : pfseq(pfiseq X) — pfiseq X

A 91" gp,) .

OAO/ f,957 hs) = (Qo/(f,QS))QQ (;/(ﬁfw))
A (f,gs 7 hs) = (N (f.95) X (M (p, hs))
%

—~

<

=
Il

The function ~~ is the concatenation function for possibly infinite lists. Its definition is

_x pfiseq X x pfiseq X — pfiseq X

Va,b:ggfisequ
a”~b={z:a;,y:bex Ny}

ArcAngel: a Tactic Language For Refinement 21

where the function " is the concatenation function for pfseq X defined as
N:pfseq X x pfseq X — pfseq X
YV gs,hs :seq X; s :pfseq X o
finite gs " finite hs = finite (gs ™ hs)
finite gs /* partial hs = partial(gs ~ hs)
partial gs * s = partial gs
3. The function head’ returns a list containing the first element of a possibly infinite list.
head’ : pfiseq X — pfiseq X
head’ xs = take 1 s

It uses the function take that returns a list containing the first n elements of a possibly infinite
list.

take : N — pfiseq X — pfiseq X

taken L = 1

take 0 zs = []

taken[] =] .
take n zs = [head xs] ™ (take (n — 1) (tail zs))

For a list (z : xs), the function head returns z and the function tail returns xs. For a pair
(a, b), the function first returns a and the function second returns b.

4. The function ° applies a possibly infinite list of functions to a single argument.
_°:pliseq(X + Y) —» X — pfiseq Y
Loa—]
=]
[f]°x = [f =]
(fs "~ gs)°x=fs°x " gs°x
5. The function II is the distributed cartesian product for possibly infinite lists.
IT : seq(pfiseq X) — pfiseq(seq X)
[1{zs) = €2l * xs
[I(zs : 2ss) = [(a: as) | a < xs, as «— [l ass]

where
e2lz = [z]

B. Refinement Laws

Law strPost(posty).
w : [pre, posty] T w: [pre, posty]
provided posty = posty

Law strPostIV (posty).
w : [pre, posty] T w: [pre, posts]
provided pre[w \ wg] A posta = posty

Law weakPre(pres).
w : [prer, post] T w : [prea, post]
provided pre; = pres

Law assign(w, E).
w: [pre,post] C w:=F
provided pre = post[w \ E]

22

Marcel Oliveira, Ana Cavalcanti, and Jim Woodcock

Law assignlV(w, E).
w,z : [pre,post] C w:=F
provided (w = wp) A pre = post[w \ E|

Law fassign(z, E).
w,z : [pre,post] T w,x : [pre,postlz \ E]]; z :=E

Law seqComp(mid).
w : [pre, post] T w: [pre, mid]; w : [mid, post]
provided mid and post have no free initial variables.

Law seqCompIV (z, X, mid).
w,x : [pre,post] C [con X ez : [pre, mid]; w,x : [mid[zy \ X], post[zo \ X]]
provided mid does not contain other initial variables beyond xy.

Law wvarlnt(n: T).
w: [pre,post] C [varz: T e w,z : [pre, post]]
provided x does not occurs in w, pre, and post.

Law contractFrame(z).
w, z : [pre, post] C w : [pre, post[zy \]|

Law removeCon(z).
[conc: Tep|Cp
provided ¢ does not occur in p.

