
From Circus to JCSP

Marcel Oliveira and Ana Cavalcanti

Department of Computer Science – The University of York
York, YO10 5DD, England

Abstract. Circus is a combination of Z, CSP, and Morgan’s refinement
calculus; it has an associated refinement strategy that supports the devel-
opment of reactive programs. In this work, we present rules to translate
Circus programs to Java programs that use JCSP, a library that imple-
ments CSP constructs. These rules can be used as a complement to the
Circus algebraic refinement technique, or as a guideline for implementa-
tion. They are a link between the results on refinement in the context of
Circus and a practical programming language in current use. The rules
can also be used as the basis for a tool that mechanises the translation.

Keywords: concurrency, object-orientation, program development.

1 Introduction

Languages like Z, VDM, Abstract State Machines, and B, use a model-based
approach to specification, based on mathematical objects from set theory. Al-
though possible, modelling behavioural aspects such as choice, sequence, paral-
lelism, and others, using these languages, is difficult and needs to be done in an
implicit fashion. On the other hand, process algebras like CSP and CCS provide
constructs that can be used to describe the behaviour of the system. However,
they do not support a concise and elegant way to describe complex data aspects.

Many attempts to join these two kinds of formalism have been made. Com-
binations of Z with CCS [4, 17], Z with CSP [15], and Object-Z with CSP [2]
are some examples. Our work is based on Circus [19], which combines Z [20] and
CSP [6, 14] and, distinctively, includes refinement calculi constructs and provides
support for refinement in a calculational style, as that presented in [9].

Circus characterises systems as processes, which group constructs to describe
data and behaviour. Z is used to define the data aspects, and CSP, Z schemas,
and guarded commands are used to define behaviour. The semantics of Circus is
based on the unifying theories of programming [7], a relational framework that
unifies the programming theory across many different computational paradigms.

The main objective of this work is to provide a strategy for implementing
Circus programs in Java. The strategy is based on a number of translation rules,
which, if applied exhaustively, transforms a Circus program into a Java program
that uses the JCSP [13] library. These rules capture and generalise the approach
that we took in the implementation of a large case-study in Circus.

The result of refining a Circus specification is a program written in a combi-
nation of CSP and guarded commands. In order to implement this program, we

need a link between Circus and a practical programming language. The trans-
formation rules presented in this paper create this link. The existence of tool
support for refinement and automated translation to Java makes formal devel-
opment based on Circus relevant in practice. Our rules can be used as a basis in
the implementation of a translation tool.

We assume that, before applying the translation strategy, the specification
of the system we want to implement has been already refined, using the Circus

refinement strategy presented in [?]. The translation strategy is applicable to
programs written in the executable subset of Circus.

In Section 2, we use an example to introduce the main constructs of Circus.
Section 3 presents JCSP with some examples. The strategy to implement Circus

programs using JCSP is presented in Section 4. Finally, in Section 5 we conclude
with some considerations about the strategy, and describe some future work.

2 Circus

Circus programs are formed by a sequence of paragraphs, which can either be a
Z paragraph, a declaration of channels, a channel set declaration, or a process
declaration. In Figure 1, the syntactic categories N, Exp, Pred, SchemaExp, Par,
and Decl are those of valid Z identifiers, expressions, predicates, Z schemas,
paragraphs in general, and declarations, respectively, as defined in [16].

We illustrate the main constructs of Circus using the specification of a simple
register (Figure 2). It is initialised with zero, and can store or add a given value
to its current value. It can also output or reset its current value.

All the channels must be declared; we give their names and the types of the
values they can communicate. If a channel is used only for synchronisation, its
declaration contains only its name. For example, Register outputs the current
value through the channel out ; it may also be reset through channel reset .

The declaration of a process is composed by its name and by its specification.
A process may be explicitly defined or compound: defined in terms of other
processes. An explicit process specification is formed by a sequence of process
paragraphs and a distinguished nameless main action, which defines the process
behaviour. We use Z to define the state; in our example, RegSt describes the
state of the process Register : it contains the current value stored in the register.

Process paragraphs include Z paragraphs and declarations of (parametrised)
actions. An action can be a schema, a guarded command, an invocation to
another action, or a combination of these constructs using CSP operators.

The primitive action Skip does not communicate any value or changes the
state: it terminates immediately. The action Stop deadlocks, and Chaos diverges;
the only guarantee in both cases is that the state invariant is maintained.

The prefixing operator is standard. However, a guard construction is also
available. For instance, if the condition p is true, the action p & c?x → A inputs
a value through channel c and assigns it to x , and then behaves like A, which
has the variable x in scope. If, however, p is false, the same action blocks.

Program ::= Par∗ CDecls∗ ProcDecl∗

CDecls ::= channel CDecl

CDecl ::= SimpleCDecl |SimpleCDecl; CDecl

SimpleCDecl ::= N+ | N+ : Exp

CSExp ::= {| |} | {| N+ |} | N | CSExp ∪ CSExp | CSExp ∩ CSExp

| CSExp \ CSExp

ProcDecl ::= process N =̂ ParProc

ParProc ::= Decl • Proc | Proc

Proc ::= begin PPar∗ state SchemaExp PPar∗ • Action end | N

| Proc; Proc | Proc 2 Proc | Proc u Proc

| Proc |[CSExp]| Proc | Proc ||| Proc | Proc \ CSExp

| Proc[N+ := N+] | ParProc(Exp+)

| o
9

Decl • Proc | uDecl • Proc

| ‖Decl |[CSExp]| • Proc | |||Decl • Proc

NSExp ::= { } | {N+} | N | NSExp ∪ NSExp | NSExp ∩ NSExp

| NSExp \ NSExp

PPar ::= Par | N =̂ ParAction

ParAction ::= Decl • Action | Action

Action ::= SchemaExp | CSPAction | Command | N

CSPAction ::= Skip | Stop | Chaos | Comm → Action | Pred & Action

| Action; Action | Action 2 Action | Action u Action

| Action |[NSExp | CSExp | NSExp]| Action

| Action ||[NSExp | NSExp]|| Action

| Action \ CSExp | µ N • Action | ParAction(Exp+)

| o
9

Decl • Action | uDecl • Action

Comm ::= N?N |N!Expression |N

Command ::= N := Exp | if GActions fi | var Decl • Action

GActions ::= Pred → Action | Pred → Action 2 GActions

Fig. 1. Executable Circus Syntax

The CSP operators of sequence, external and internal choice, parallelism,
interleaving, hiding may also be used to compose actions. Communications and
recursive definitions are also available. The process Register has a recursive be-
haviour: after its initialisation, it behaves like RegCycle, and then recurses. The
action RegCycle is an external choice: values may be stored or accumulated,
using channels store and add ; the result may be requested using channel result ,
and output through out ; finally, the register may be reset through channel reset .

The parallelism and interleaving operators are different from those of CSP.
We must declare a synchronisation channel set, and, to avoid conflicts, two sets
that partition the variables in scope: state components, and input and local vari-
ables. In a parallelism A1 |[ns1 | cs | ns2]|A2, the actions A1 and A2 synchronise
on the channels in the set cs. Both A1 and A2 have access to the initial values of

channel store, add , out : N

channel result , reset
process Register =̂ begin state RegSt =̂ [value : N]

RegCycle =̂ store?newValue → value := newValue
2 add?newValue → value := value + newValue
2 result → out !value → Skip
2 reset → value := 0

• value := 0; (µX • RegCycle; X) end

channel read ,write : N

process SumClient =̂
begin ReadValue =̂ read?n → reset → Sum(n)

Sum =̂ n : N • (n = 0) & result → out?r → write!r → Skip
2 (n 6= 0) & add !n → Sum(n − 1)

• µX • ReadValue; X end

chanset RegAlphabet == {| store, add , out , result , reset |}
process Summation =̂ (SumClient |[RegAlphabet]| Register) \ RegAlphabet

Fig. 2. A simple register

all variables in ns1 and ns2, but A1 may modify only the values of the variables
in ns1, and A2, the values of the variables in ns2.

References to parametrised actions need to be instantiated. Actions may also
be defined using assignment, guarded alternation, or variable blocks. Finally, in
the interest of supporting a calculational approach to development, an action
can be a Morgan’s specification statement [9].

The CSP operators of sequence, external and internal choice, parallelism,
interleaving, and hiding may also be used to compose processes. Furthermore,
the renaming P [oldc := newc] replaces all the references to channels oldc by
the corresponding channels in newc, which are implicitly declared. Parametrised
processes may also be instantiated.

In Figure 2, the process SumClient repeatedly receives a value n through
channel read , interacts with Register to calculate the sum

∑n

i=0
i , and finally

outputs this value through write. The process Summation is the parallel com-
position of Register and SumClient . They synchronise on the set of channels
RegAlphabet , which is hidden from the environment: iterations with Summation

can only be made through read and write.
Some other operators are available in Circus, but are omitted here for con-

ciseness. The translation of these operators is either trivial or left as future work.
They are discussed in Section 5.

3 JCSP

Since the facilities for concurrency in Java do not directly correspond with the
idea of processes in CSP and Circus, we use JCSP, a library that provides a

model for processes and channels. This allows us to abstract from basic monitor
constructs provided by Java. In JCSP, a process is a class that implements the
interface CSProcess{public void run();}, where the method run encodes
its behaviour. We present an Example process below.

import jcsp.lang.*; // further imports

class Example implements CSProcess {

// state information, constructors, and auxiliary methods

public void run { /* execution of the process */ } }

After importing the basic JCSP classes and any other relevant classes, we de-
clare Example, which may have private attributes, constructors, and auxiliary
methods. Finally, we must give the implementation of the method run.

Some JCSP interfaces represent channels: ChannelInput is the type of chan-
nels used to read objects; ChannelOutput is for channels used to write objects;
and AltingChannel is for channels used in choices. Other interfaces are avail-
able, but these are the only ones used in our work.

The simplest implementation of a channel interface is that provided by the
class One2OneChannel, which represents a point-to-point channel; multiple read-
ers and writers are not allowed. On the other hand, Any2OneChannel channels
allow many writers to communicate with one reader. For any type of channel, a
communication happens between one writer and one reader only.

Mostly, JCSP channels communicate Java objects. For instance, in order to
communicate an object o through a channel c, a writer process may declare c

as a ChannelOutput, and invoke c.write(o); a reader process that declares c

as a ChannelInput invokes c.read().

The class Alternative implements the choice operator. Although other types
of choice are available, we use a fair choice. Only AltingChannelInput channels
may be involved in choices. The code below reads from either channel l or r.

AltingChannelInput[] chs = new AltingChannelInput[]{l,r};

final Alternative alt = new Alternative(chs);

chs[alt.select()].read();

The channels l and r are declared in an array of channels chs, which is given to
the constructor of the Alternative. The method select waits for one or more
channels to become ready, makes an arbitrary choice between them, and returns
an int that corresponds to the index of the chosen channel in chs. Finally, we
read from the channel located at the chosen position of chs.

Parallel processes are implemented using the class Parallel. Its construc-
tor takes an array of CSProcesses and returns a CSProcess that is the par-
allel composition of its process arguments. A run of a Parallel process ter-
minates when all its component processes terminate. For instance, the code
(new Parallel(new CSProcess[]{P_1,P_2})).run(); runs two processes P_1
and P_2 in parallel. It creates the array of processes which will run in parallel,
gives it to the constructor of Parallel, and finally, runs the parallelism.

Fig. 3. Translation Strategy Overview

The CSP constructors Skip and Stop are implemented by the classes Skip

and Stop. JCSP includes other facilities beyond those available in CSP; here we
concentrate on those that are relevant for our work.

4 From Circus to JCSP

Our strategy for translating Circus programs considers each paragraph individ-
ually, and in sequence. In Figure 3, we present an overview of the translation
strategy. First, for a given Program, we use a rule (Rule 22) that deals with the Z
paragraphs and channel declarations. Each process declaration ProcDecl in the
program is transformed into a new Java class (Rule 1). The next step (Rule 2)
declares the class attributes, constructor, and its run method. Basic process
definitions are translated (Rule 3) to the execution of a process whose private
methods correspond to the translation (Rule 4) of actions of the original Cir-

cus process; the translation (Rules 5-17) of the main Action, which determines
the body of the method run, and of the Action bodies conclude the translation
of basic processes. Compound processes are translated using a separate set of
rules (Rules 18-21) that combines the translations of the basic processes.

Only executable Circus programs can be translated: the technique in [?,18]
can be used to refine specifications. Other restrictions are syntactic and can be
enforced by a (mechanised) pre-processing; they are listed below.

• The Circus program is well-typed and well-formed.
• Paragraphs are grouped in the following order: Z paragraphs, channel dec-

larations, and process declarations.
• Z paragraphs are axiomatic definitions of the form v : T | v = e1, free types,

or abbreviations.
• The only Z paragraphs inside a process declaration are axiomatic definitions

of the above form.

• Variable declarations are of the form x1 : T1; x2 : T2; . . . ; xn : Tn , and
names are not reused.

• There are no nested external choices or nested guards.
• The synchronisation sets in the parallelisms are the intersection of the sets

of channels used by the parallel actions or processes.
• No channel is used by two interleaved actions or processes.
• The types used are already implemented in Java.
• Only free types, abbreviations, and finite subsets of N and Z with equally

spaced elements, are used for typing indexing variables of iterated operators.
• There are no multi-synchronisations or guarded outputs.

Axiomatic definitions can be used to define only constants. All types, abbrevi-
ations and free types, need a corresponding Java implementation. If necessary,
the Circus data refinement technique should be used. In [10] we present rules to
translate some forms of abbreviations and free types. Nested external choices
and guarded actions can be eliminated with simple refinement laws.

The JCSP parallel construct does not allow the definition of a synchronisation
channel set. For this reason, the intersection of the alphabets determines this
set: if it is not empty, we have a parallelism; otherwise, we have actually an
interleaving. JCSP does not have an interleaving construct; when possible we
use the parallel construct instead.

Multi-synchronisation channels and guarded outputs are not implementable
in JCSP. Before applying the translation strategy they must be removed applying
refinement strategies as those presented in [18, 8].

The types of indexing variables in iterated operators are considered to be fi-
nite, because their translation uses loops. A different approach in the translation
could make it possible to remove this restriction.

The output of the translation is Java code composed of several class dec-
larations that can be split into different files and allocated in packages. For
each program, we require a project name proj. The translation generates six
packages: proj contains the main class, which is used to execute the system;
proj.axiomaticDefinitions contains the class that encapsulates the trans-
lation of all axiomatic definitions; the processes are declared in the package
proj.processes; proj.typing contains all the classes that implement types;
and proj.util contains all the utility classes used by the generated code. For
example, class RandomGenerator is used to generate random numbers; it is used
in the implementation of internal choice.

The translation uses a channel environment δ. For each channel c, it maps
c to its type, or to sync, if c is a synchronisation channel. We consider δ to be
available throughout the translation.

For each process, two environments store information about channels: ν and
ι for visible and hidden channels. They both map channel names to an element
of ChanUse ::= I | O | A. The constant I is used for input channels, O for
output channels, and A for input channels that take part in external choices.
Synchronisation channels must also be associated to one of these constants,
since every JCSP channel is either an input or an output channel. If a channel c

is regarded as an input channel in a process P , then it must be regarded as an
output channel in any process parallel to P , and vice-versa.

The function JType defines the Java type corresponding to each of the used
Circus types; and JExp translates expressions. The definitions of these func-
tions are simple; for conciseness, we omit them. For example, we have that
JType(N) =Integer, and JExp(x > y) = x.intValue() > y.intValue().

This section is organised as follows: the rules of translation of processes dec-
larations are presented in Section 4.1. Section 4.2 presents the translation of
the body of basic processes, which is followed by the translation of the CSP ac-
tions (Section 4.3), and commands (Section 4.4). The translation of compound
processes is presented in Section 4.5. Finally, Section 4.6 presents how to run
the program. For conciseness, we omit some of the formal definitions of our
translation strategy. They can be found in [10].

4.1 Processes Declarations

Each process declaration is translated to a Java class that implements the JCSP
interface jcsp.lang.CSProcess. For a process P in a project named proj , we
declare a Java class P that imports the Java utilities package, the basic JCSP
package, and all the project packages.

Rule 1 |[process P =̂ ParProc]|ProcDecl
proj =

package proj.processes; import java.util.*;

import jcsp.lang.*; import proj.axiomaticDefinitions.*;

import proj.typing.*; import proj.util.*;

public class P implements CSProcess { |[ParProc]|ParProc
P }

The function |[]|ProcDecl
takes a Circus process declaration and a project name

to yield an Java class definition; our rule defines this function. The body of the
class is determined by the translation of the paragraphs of P .

As an example, we translate Register , SumClient , and Summation (Figure 2);
the resulting code is in [11]. The translation of Register is shown below; we omit
package and import declarations.

public class Register implements CSProcess

{ |[begin . . . • value := 0; (µX • . . .) end]|ParProc
Register }

The translation the body of a parametrised process is captured by the func-
tion |[]|ParProc

: ParProc 7→ N 7→ JCode.

Rule 2 |[D • P]|ParProc
N = (ParDecl D) (VisCDecl ν) (HidCDecl ι)

public N (ParArgs D,VisCArgs ν) {

(MAss (ParDecl D) (ParArgs D))
(MAss (VisCDecl ν) (VisCArgs ν))
HidCC ι }

public void run(){ |[P]|Proc
}

The process parameters D are declared as attributes: for each x : T , the func-

tion ParDecl yields a declaration private (JType T) x;. The visible channels
are also declared as attributes: for each channel c, with use t , VisCDecl gives
private (TypeChan t) c;, where TypeChan t gives ChannelInput for t = I ,
ChannelOutput for t = O , and AltingChannelInput for t = A. For Register ,
we have declarations for the channels in the set RegAlphabet .

private AltingChannelInput store;...; ChannelOutput out; ...;

Hidden channels are also declared as attributes, but they are instantiated
within the class. We declare them as Any2OneChannel, which can be instantiated.
The process Summation hides all the channels in the set RegAlphabet . For this
reason, within Summation they are declared to be of type Any2OneChannel.

The constructor receives the processes parameters and visible channels as ar-
guments (ParArgs D and VisCArgs ν generates fresh names). The arguments are
used to initialise the corresponding attributes (MAss (ParDecl D) (ParArgs D)
and MAss (VisCDecl ν) (VisCArgs ν)), and hidden channels are instantiated
locally (HidCC ι). In our example, we have the result below.

public Register (AltingChannelInput newstore, ...)

{ this.store = newstore; ... }

For Summation, we have the instantiation of all channels in the set RegAlphabet .
For instance, this.store = new Any2OneChannel(); instantiates store.

Finally, the method run implements the process body translated by |[]|Proc
.

In our example, we have public void run(){|[begin . . . end]|Proc
}. For a

non-parametrised process, like Register , we actually do not use Rule 1, but a
simpler rule. The difference between the translation of parametrised and non-
parametrised processes are the attributes corresponding to parameters.

4.2 Basic Processes

Each process body is translated by |[]|Proc
: Proc 7→ JCode to an execution of

an anonymous inner class that implements CSProcess. Inner classes are a Java
feature that allows classes to be defined inside classes. The use of inner classes
allows the compositional translation even in the presence of nameless processes.

Basic processes are translated as follows.

Rule 3 |[begin PPars1 state PSt PPars2 • A]|Proc
=

(new CSProcess(){ (StateDecl PSt) (|[PPars1 PPars2]|
PPars

)

public void run(){ |[A]|Action
}}).run();

The inner class declares the state components as attributes (StateDecl PSt).

Each action gives rise to a private method (|[PPars1 PPars2]|
PPars

). The body of
run is the the translation of the main action A. Our strategy ignores any existing
state invariants, since they have already been considered in the refinement of the
process. It is kept in a Circus program just for documentation purposes.

As an example, we present the translation of the body of Register . For con-
ciseness, we name its paragraphs PPars, and its main action Main.

(new CSProcess(){ private Integer value; |[PPars]|PPars

public void run() { |[Main]|Action
} }).run();

The function |[]|PPars
: PPar∗ 7→ JCode translates the paragraphs within

a Circus process, which can either be axiomatic definitions, or (parametrised)
actions. The translation of an axiomatic definition v : T | v = e1 is a method
private (JType T) v(){return (JExp e1);}. Since the paragraphs of a pro-
cess p can only be referenced within p, the method is declared private. We omit
the relevant rule, and a few others in the sequel, for conciseness.

Both parametrised actions and non-parametrised actions are translated into
private methods. However, the former requires that the parameters are declared
as arguments of the new method. The reason for the method to be declared
private is the same as that for the axiomatic definitions above.

Rule 4 |[N =̂ (D • A) PPars]|PPars
=

private void N(ParArgs D){ |[A]|Action
} |[PPars]|PPars

The function ParArgs declares an argument for each of the process parameters.
The body of the method is defined by the translation of the action body.

For instance, the translation of action RegCycle generates the following Java
code. We use body to denote the body of the action.

|[RegCycle =̂ body]|PPars
= private void RegCycle(){ |[body]|Action

}

The function |[]|Action
: Action 7→ JCode translates CSP actions and commands.

4.3 CSP Actions

In the translation of each action, the environment λ is used to record the local
variables in scope in the translation of parallel and recursive actions. For each
variable, λ maps its name to its type. Besides, as for processes, we have channel
environments ν and ι to store information about how each channel is used.

The translations of Skip and Stop use basic JCSP classes: Skip is translated to
(new Skip()).run();, and Stop is translated to (new Stop()).run();. Chaos

is translated to an infinite loop while(true){};, which is a valid refinement of
Chaos. For input communications, we declare a new variable whose value is read
from the channel. A cast is needed, since the type of the objects transmitted
through the channels is Object; we use the channel environment δ.

Rule 5 |[c?x → Act]|Action
= { t x = (t)c.read(); |[Act]|Action

}

where t = JType(δ c). 2

For instance, the communication add?newValue used in the action RegCycle is
translated to Integer newValue = (Integer)add.read();

An output communication is easily translated as follows.

Rule 6 |[c!x → Act]|Action
= c.write(x); |[Act]|Action

For synchronisation channels, we need to know whether it is regarded as an
input or output channel; this information is retrieved either from ν or ι.

Rule 7 |[c → Act]|Action
= c.read();

provided ν c ∈ { I ,A } ∨ ι c ∈ { I ,A } 2

Rule 8 |[c → Act]|Action
= c.write(null);

provided ν c = O ∨ ι c = O 2

For example, in the process SumClient , the action reset → Sum(n) is trans-
lated to reset.write(null);, followed by the translation of Sum(n). Within
Register , the translation of reset is reset.read();. The difference is because
reset is an output channel for SumClient , and an input channel for Register .

Sequential compositions are translated to a Java sequential composition.

Rule 9 |[A1; . . . ; An]|Action
= |[A1]|Action

; . . . ; |[An]|Action

The translation of external choice uses the corresponding Alternative JCSP
class; all the initial visible channels involved take part.

Rule 10 |[A1 2 . . . 2 An]|Action
=

Guard[] g = new Guard[]{ICAtt A1, . . . ,ICAtt An};

final Alternative alt = new Alternative(g);

(DeclCs (ExIC A1) 0) . . . (DeclCs (ExIC An) (#(ExIC An−1)))
switch(alt.select())

{ Cases (ExIC A1) A1 . . . Cases (ExIC An) An }

provided A1, . . ., An are not guarded actions gi & Ai . 2

In Figure 4 we present the translation of the body of RegCycle. It declares an
array containing all initial visible channels of the choice (1). The function ICAtt

returns a ,-separated list of all initial visible channels of an action; informally,
these are the first channels through which the action is prepared to communicate.
The array is used in the instantiation of the Alternative process (2). Next, an
int constant is declared for each channel (3). The function DeclCs returns a ;-
separated list of int constant declarations. The first constant is initialised with
0, and each subsequent constant with the previous constant incremented by
one. Finally, a choice is made, and the chosen action executed. We use a switch

block (4); the body of each case is the translation of the corresponding action (5);
the function Cases takes the initial visible channel as argument (ExIC).

For guarded actions 2
i
gi & Ai , we have to declare an array g of boolean

JExp gi . We use this array in the selection alt.select(g). Each unguarded
action Ai can be easily refined to true & Ai .

If the guards are mutually exclusive, we can apply a different rule to obtain
an if-then-else. This simplifies the generated code, and does not require the
guarded actions to be explored in the translation of the external choice.

Guard[] guards = new Guard[]{store,add,result,reset}; (1)
final Alternative alt = new Alternative(guards); (2)
final int C_STORE = 0; ... ; final int C_RESET = 3; (3)
switch(alt.select()) (4)

{ case C_STORE:{ . . . } break; . . . ; case C_RESET:{ . . . } break; } (5)

Fig. 4. Example of External Choice Translation

The translation of an internal choice chooses a random number between 1
and n. It uses the static method generateNumber of class RandomGenerator.
Finally, it uses a switch block to choose and run the chosen action.

Rule 11 |[A1 u . . . u An]|Action
=

switch(RandomGenerator.generateNumber(1,n))

{case 1:{ |[A1]|Action
}break; . . . case n:{ |[An]|Action

}break;}

To translate a parallelism, we define an inner class for each parallel action,
because the JCSP Parallel constructor takes an array of processes as argument.
To deal with the partition of the variables, we use auxiliary variables to make
copies of each state component. The body of each branch is translated and each
reference to a state component is replaced with its copy. After the parallelism,
we merge the values of the variables in each partition.

Local variables need to be copied as well, but since they are not translated
to attributes, as state components are, they cannot be directly accessed in the
inner classes created for each parallel action. For this reason, their copies are not
initialised when declared; they are initialised in the constructor of each parallel
action. Their initial values are given to the constructor as arguments.

The names of the inner classes are defined in the translation. To avoid clashes,
we use a fresh index ind in the name of inner classes and local variables copies.
In the following rule, LName and RName stand for the names of the classes that
implement A1 and A2. We omit RName, which is similar to LName.

The function IAuxVars declares and initialises an auxiliary variable for each
state component in the partition of A1. Next, DeclLcVars declares one copy of
each local variable; the initial values are taken by the constructor (LcVarsArgs).
In the body of the constructor, the function ILcVars initialises each local variable
with the corresponding value received as argument. The body of the method
run is the translation of the action. The function RenVars is used to replace
occurrences of the state components and variables in scope with their copies.

After the conclusion of the declaration of the inner class LName, we create an
object of LName. A similar approach is taken in the translation of A2 to RName

and an object creation. The next step is to run the parallelism. Afterwards, a
merge retrieves the final values of the state components and the variables in
scope from their copies (MergeVars).

class ParLBranch_0 implements CSProcess { (1)
public Integer aux_l_x_0 = x; (2)
public Integer aux_l_y_0; (3)
public ParLBranch_0(Integer y) { this.aux_l_y_0 = y; } (4)
public void run() { aux_l_x_0 = new Integer(0); } } (5)

CSProcess l_0 = new ParLBranch_0(y); (6)
* Right-hand side of the parallelism*\ (7)
CSProcess[] procs_0 = new CSProcess[]{l_0,r_0}; (8)
(new Parallel(procs_0)).run (); (9)
x = ((ParLBranch_0)procs_0[0]).aux_l_x_0; (10)
y = ((ParRBranch_0)procs_0[1]).aux_r_y_0; (11)

Fig. 5. Example of Parallelism Translation

Rule 12 |[A1 |[ns1 | cs | ns2]| A2]|
Action

=

class LName implements CSProcess {

(IAuxVars (ns1 \ (dom λ)) ind L) (DeclLcVars λ ind L)
public LName((LcVarsArg λ)) { ILcVars λ ind L }

public void run()

{ RenVars |[A1]|Action
(ns1 ∪ (dom λ)) ind L }}

CSProcess l_ind = new LName(JList (ListFirst λ));
\\class RName declaration, process r_ind instantiation

CSProcess[] procs_ind = new CSProcess[]{ l_ind,r_ind };

(new Parallel(procs_ind)).run();

(MergeVars LName ns1 ind L) (MergeVars RName ns2 ind R)

where LName = ParLBranch_ind and RName = ParRBranch_ind

For instance, we present the translation of x := 0 |[{x} | ∅ | {y}]| y := 1
in Figure 5. We consider that the action occurs within a process with one state
component x : N, and that there is one local variable y : N in scope.

The state component x is declared in the left partition of the parallelism.
For this reason, the class ParLBranch_0 has two attributes: one corresponding
to the state component x (2) and one corresponding to the local variable y (3),
whose initial value is received in the constructor (4). The body of the method
run (5) replaces all the occurrences of x by its copy aux_l_x_0. This concludes
the declaration of the class ParLBranch_0, which is followed by the creation of
an object l_0 of this class (6). For conciseness, we omit the declaration of the
class related to the right-hand side of the parallelism (7). Its declaration, how-
ever, is very similar to the left-hand side: its only auxiliary variable aux_l_y_0

is declared and initialised as in class ParLBranch_0; the body of method run is
the assignment aux_r_y_0 = new Integer(1);. Finally, after running the par-
allelism (8,9), the final value of x is that of its left branch copy (10), and the
final value of y is that of its right branch copy (11).

value:=new Integer(0); (1)
class I_0 implements CSProcess { (2)

public Integer aux_l_value_0; (3)
public I_0(Integer value){ this.aux_l_value_0 = value; } (4)
public void run() { (5)

RegCycle(); (6)
I_0 i_0_1 = new I_0(aux_l_value_0); i_0_1.run(); (7)
aux_l_value_0 = i_0_1.aux_l_value_0; } }; (8)

I_0 i_0_2 = new I_0(value); i_0_2.run(); (9)
value = i_0_2.aux_l_value_0; (10)

Fig. 6. Example of Recursion Translation

If we have a Circus action invocation, all we have to do is to translate it to
a method call. If no parameter is given, the method invocation has no parame-
ters. However, if any parameter is given, we use a Java expression correspond-
ing to each parameter in the method invocation. In our example, Sum(n) and
Sum(n − 1) translate to Sum(n); and Sum(new Integer(n.intValue()-1));.

In order to avoid the need of indexing recursion variables, we also use inner
classes to declare the body of recursions. As for parallelism, this requires the use
of copies of local variables, which are declared as attributes of the inner class,
and initialised in its constructor with the values given as arguments. The run

method of this new inner class executes the body of the recursion, instantiates
a new object of this class, where the recursion occurs, and executes it.

Rule 13 |[µX • A(X)]|Action
=

class I_ind implements CSProcess {

DeclLcVars λ ind L

public I_ind(LcVarsArg λ) { ILcVars λ ind L }

public void run(){

RenVars |[A(RunRec ind)]|Action
(dom λ) ind L}};

(RunRec ind)

The function RunRec instantiates a recursion process, invokes its run method,
and finally collects the values of the auxiliary variables. For the same reason as
for the translation of parallelism, we use a fresh index in the name of the inner
class created for the recursion. Besides, since we are also using a inner class to
express the recursion, the local variables must be given to the constructor of this
inner class, and their final values retrieved after the execution of the recursion.

For instance, in Figure 6, we present the translation of the main action of
process Register . First, we initialise value with 0 (1). Next, we declare the class
I_0, which implements the recursion. It has a copy of the state component value
as its attribute (3), which is initialised in the constructor (4). The method run

calls the method RegCycle (6), instantiates a new recursion (7), and executes

it (8); this concludes the declaration of the recursion class. Next, we instantiate
an object of this class, and execute it (9). Finally, we retrieve the final value.

The translation of parametrised action invocations also makes use of inner
classes. Each of the local variables in scope has a corresponding copy as an
attribute of the new class; the action parameters are also declared as attributes of
the new class; both local variable copies attributes and parameters are initialised
within the class constructor with the corresponding values given as arguments.
The run method of the new class executes the parametrised action. However,
the references to the local variables are replaced by references to their copies.
Next, the translation creates an object of the class with the given arguments,
and calls its run method. Finally, it restores the values of the local variables.

The translation of iterated sequential composition is presented below.

Rule 14 |[o
9 x1 : T1; . . . ; xn : Tn • Act]|Action

=

InstActions pV_ind (x1 : T1; . . . ; xn : Tn) Act ind

for(int i = 0; i < pV_ind.size(); i++)

{ ((CSProcess)pV_ind.elementAt(i)).run(); }

The function InstActions declares an inner class I_ind that implements the
action Act parametrised by the indexing variables. Then, it creates a vector
pV_ind of actions using a nested loop over the possible values of each indexing
variable: for each iteration, an object of I_ind is created using the current val-
ues of the indexing variables, and stored in pV_ind . Finally, each action within
pV_ind is executed in sequence.

The translation of iterated internal choice uses the RandomGenerator to
choose a value for each indexing variable. Then, it instantiates an action us-
ing the chosen values, and runs it.

4.4 Commands

Single assignments are directly translated to Java assignments.

Rule 15 |[x := e]|Action
= x = (JExp e);

Variable declarations only introduce the declared variables in scope.

Rule 16 |[var x1 : T1; . . . ;xn : Tn • Act]|Action
=

{ (JType T1) x_1; . . . ; (JType Tn) x_n; |[Act]|Action
}

Alternations(if fi) are translated to if-then-else blocks. The possible non-
determinism is removed by choosing the first true guard. If none of the guards
is true, the action behaves like Chaos (while(true){}).

Rule 17 |[if g1 → A1 2 . . . 2 gn → An fi]|Action
=

if(JExp g1){ |[A1]|Action
} . . . else if(JExp gn){ |[An]|Action

}

else { while(true){} }

At this point, we are able to translate basic process. By way of illustration,
Figure 7 presents a skeleton of the complete translation of process Register .

// Package declaration and imports (Rule 1)

public class Register implements CSProcess {

private AltingChannelInput store; ...

public Register (AltingChannelInput newstore, ...) { ... }

public void run(){

(new CSProcess(){

private Integer value;

private void RegCycle(){

Guard[] guards = new Guard[]{store,add,result,reset};

final Alternative alt = new Alternative(guards);

final int C_STORE = 0; ...; final int C_RESET = 3;

switch(alt.select()) { case C_STORE: { ... } break;

case C_ADD: { ... } break;

case C_RESULT: { ... } break;

case C_RESET: { ... } break; } }

public void run() { /* Figure 6 */ } }).run(); } }

Fig. 7. Translation of Process Register

4.5 Compound Processes

We now concentrate in the translation of the processes that are defined in terms
of other processes. At this stage, we are actually translating the body of some
process (Figure 3). This means, we are translating the body of its method run.

For a single process name N , we must instantiate the process N, and then,
invoke its run method. The visible channels of the process are given as arguments
to the process constructor. The function ExtChans returns a list of all channel
names in the domain of the environment ν.

Rule 18 |[N]|Proc
= (new CSProcess(){

public void run(){(new N(ExtChans ν)).run();}

}).run();

The invocation of (parametrised) processes is translated to a new inner class.
It runs the parametrised process instantiated with the given arguments. The new
classes names are also indexed by a fresh ind to avoid clashes.

The sequential composition of processes is also easily translated to the se-
quential execution of each process.

Rule 19 |[P1; . . . ; Pn]|Proc
= |[P1]|

Proc
; . . . ; |[Pn]|Proc

External choice has a similar solution to that presented for actions. The idea
is to create an alternative in which all the initial channels of both processes, that
are not hidden, take part. However, all auxiliary functions used in the previous
definitions take actions into account. All we have to do is use similar functions
that take processes into account.

As the internal choice for actions, the internal choice P1 u . . . u Pn for
processes randomly chooses a process, and then, starts to behave as such. Its
definition is very similar to the corresponding one for actions.

The translation of parallelism executes a Parallel process. This process
executes all the processes that are elements of the array given as argument to
its constructor in parallel. In our case, this array has only two elements: each
one corresponds to a process of the parallelism. Furthermore, the translation of
parallelism of processes does not have to take into account variable partitions.

Rule 20 |[P1 |[cs]| P2]|
Proc

=

(new CSProcess(){ public void run() { new Parallel(

new CSProcess[]{ |[P1]|Proc
, |[P2]|Proc

}).run();}}).run();

It is important to notice that, when using JCSP, the intersection of the alphabets
determines the synchronisation channels set. For this reason, cs may be ignored.

The renaming operation P [x1, . . . , xn := y1, . . . , yn] is translated by replacing
all the x_is by the corresponding y_is in the translated Java code of P .

As for actions, the iterated operators are translated using for loops. The
same restrictions apply for processes. The first iterated operator on processes
is the sequential composition o

9 . As for actions, we use an auxiliary function to
create a vector of processes, and execute in sequence each process within this
vector. The iterated internal choice chooses a value for each indexing variable,
and runs the process with the randomly chosen values for the indexing variables.

The translation of iterated parallelism of processes are simpler than that of
actions, since we do not need to deal with partitions of variables in scope.

Rule 21 |[‖ x1 : T1; . . . ; xn : Tn |[cs]| • P]|Proc
=

(new CSProcess(){

public void run(){

InstProcs pV_ind (x1 : T1; . . . ; xn : Tn) P ind

CSProcess[] pA_ind = new CSProcess[pV_ind.size()];

for (int i = 0; i < pV_ind.size(); i++)

{ pA_ind[i] = (CSProcess)pV_ind.get(i); }

(new Parallel(pA_ind)).run(); } }).run();

It uses the function InstProcs to instantiate a vector pV_ind containing each
of the processes obtained by considering each possible value of the indexing
variables. Then, it transforms this pV_ind in an array pA_ind , which is given to
the constructor of a Parallel process. Finally, we run the Parallel process.

The indexed operator translation uses array of channels. Its definition can be
found in [10]. Furthermore, the translation of free types, abbreviations, generic
channels, and further types of communications are also present in [10].

4.6 Running the program

The function |[]|Program
summarises our translation strategy. Besides the Circus

program, this function also receives a project name, which is used to declare

the package for each new class. It declares the class that encapsulates all the
axiomatic definitions (DeclAxDefCls), and translates all the declared processes.

Rule 22 |[Types AxDefs ChanDecls ProcDecls]|Program
proj =

(DeclAxDefCls proj AxDefs) (|[ProcDecls]|ProcDecls
proj)

In order to generate a class with a main method, which can be used to
execute a given process, we use the function |[]|Run

. This function is applied to
a Circus process, and a project name. It creates a Java class named Main, which
is created in the package proj . After the package declaration, the class imports
the packages java.util, jcsp.lang, and all the packages within the project.
The method main is defined as the translation of the given process.

For instance, in order to run the process Summation, we have to apply the
function |[]|Run

to this process and give the project name sum as argument. This
application results in the following Java code.

(new CSProcess() {

public void run(){(new Summation()).run();} }).run();

For conciseness, we present only the body of the main method, and omit the
package, import, class, and main method declarations.

5 Conclusion

The translation strategy presented in this work has been used to implement
several programs, including a quite complex fire control system developed from
its abstract centralised specification [10]. The application of the translation rules
was straightforward; only human errors, which could be avoided if a translation
tool were available, raised problems. The choice of JCSP was motivated by the
local support of the JCSP implementors. Furthermore, the direct correspondence
between many CSP and Circus constructs is a motivation for extending JCSP to
support Circus, instead of creating another library from scratch.

Certainly, code generated by hand could be simpler. For instance, the trans-
lation of compound processes do not always need anonymous inner classes; they
are used in the rules for generalisation purposes. However, our experiments have
shown no significant improvement in performance after simplification.

In [3], Fischer formalises a translation from CSP-OZ to annotations of Java
programs. A CSP-OZ specification is composed mostly by class definitions that
model processes. They contain Z schemas that describe the internal state and
its initialisation, and CSP processes that model the behaviour of the class. For
each channel, an enable schema specifies when communication is possible, and
an effect schema specifies the state changes caused by the communication.

In the translation, enable and effect schemas become pre and postconditions;
the CSP part becomes trace assertions, which specify the allowed sequences of
method calls; finally, state invariants become class invariants. The result is not an
implementation of a CSP-OZ class, but annotations that support the verification

of a given implementation. The treatment of class composition is left as future
work. Differently, our work supports the translation from Circus specifications,
possibly describing the interaction between many processes, to correct Java code.

The translation from a subset of CSP-OZ to Java is also considered in [1],
where a language called COZJava, which includes CSP-OZ and Java, is used.
A CSP-OZ specification is first translated to a description of the structure of
the final Java program, which still contains the original CSP processes and Z
schemas; these are translated afterwards. The library that they use to imple-
ment processes is called CTJ [5], which is in many ways similar to JCSP. The
architecture of the resulting Java program is determined by the architecture of
CSP-OZ specifications, which keep communications and state update separate.
As a consequence, the code is usually inefficient and complicated. It was this
difficulty that motivated the design of Circus.

In Circus, communications are not attached to state changes, but are freely
mixed as exemplified by the action RegCycle of process Register . As a conse-
quence, the reuse of Z and CSP tools is not straightforward. On the other hand,
Circus specifications can be refined to code that follow the usual style of pro-
gramming in languages like occam, or JCSP, and are more efficient.

Due to JCSP limitations, we consider a restrict set of communications: non-
typed inputs, outputs, and synchronisations. In [10], we treat generic channels
and synchronisations c.e over a channel c with expression e. Strategies to refine
out the remaining forms of communication, multi-synchronisation, and guarded
outputs are left as future work. A strategy to remove a special case of multi-
synchronisation, in which it is not part of an external choice, is presented in [18].

JCSP itself restricts our strategy in the translation of parallelism. It does not
support the definition of a synchronisation channel set: the intersection of the
alphabets determines the synchronisation channels set.

We have considered the type of indexing variables of iterated operators to be
finite. Furthermore, not all iterated operators are treated directly. The transla-
tion of iterated parallelism and interleaving of actions requires their expansion.
For external choice, expansion is required for both the action and the process
operator, due to the need to determine their initials. For conciseness, we omitted
the Circus indexing operator, which expands the types of values communicated
through the channels used in an action (or process) to include an index. Its
simple translation involves arrays of channels; the rules can be found in [10].

The most important piece of future work is the implementation of a tool
to support the translation strategy. In order to prove the soundness of such a
tool, the proof of the translation rules presented here would be necessary. This,
however, is a very complex task, as it involves the semantics of Java and Circus.
We currently rely on the validation of the implementation of our industrial-scale
case study [12] and on the fairly direct correspondence of JCSP and Circus.

Acknowledgements

We are grateful for the financial support of QinetiQ and the Royal Society. Jim
Woodcock, Alistair McEwan, and Peter Welch provided valuable advice for our
work.

References

1. A. L. C. Cavalcanti and A. C. A. Sampaio. From csp-oz to java with processes (ex-
tended version). Technical report, Centro de Informática/UFPE, 2000. Available
at http://www.cin.ufpe.br/~lmf.

2. C. Fischer. Csp-oz: a combination of object-z and csp. In H. Bowmann and
J. Derrick, editors, Formal Methods for Open Object-Based Distributed Systems
(FMOODS’97), volume 2, pages 423 – 438. Chapman & Hall, 1997.

3. C. Fischer. Combination and Implementation of Processes and Data: from CSP-OZ
to Java. PhD thesis, Fachbereich Informatik, Universität Oldenburg, Oldenburg -
Germany, 2000.

4. A. J. Galloway. Integrated Formal Methods with Richer Methodological Profiles for
the Development of Multi-perspective Systems. PhD thesis, University of Teeside,
School of Computing and Mathematics, 1996.

5. G. Hilderink, J. Broenink, W. Vervoort, and A. Bakkers. Communicating java
threads. In Parallel Programming and Java Conference, 1997.

6. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
7. C. A. R. Hoare and J. He. Unifying Theories of Programming. Prentice-Hall, 1998.
8. A. A. McEwan. Concurrent Program Development. PhD thesis, Oxford University

Computing Laboratory, Oxford - UK, 2000. To appear.
9. Carroll Morgan. Programming from Specifications. Prentice-Hall, 1994.

10. M. V. M. Oliveira. A refinement calculus for circus - mini-thesis. Technical report.
11. M. V. M. Oliveira. From circus to jcsp - summation example source code, 2004.

At http://www.cs.york.ac.uk/˜marcel/circus/summation.pdf.
12. M. V. M. Oliveira, A. L. C. Cavalcanti, and J. C. P. Woodcock. Refining in-

dustrial scale systems in circus. In Ian East, Jeremy Martin, Peter Welch, David
Duce, and Mark Green, editors, Communicating Process Architectures, volume 62
of Concurrent Systems Engineering Series, pages 281 – 309. IOS Press, 2004.

13. P.H.Welch, G.S.Stiles, G.H.Hilderink, and A.P.Bakkers. Csp for-
java:multithreading for a ll.

14. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall Series in
Computer Science. Prentice-Hall, 1998.

15. A. W. Roscoe, J. C. P. Woodcock, and L. Wulf. Non-interference through deter-
minism. In D. Gollmann, editor, ESORICS 94, volume 1214 of LNCS, pages 33 –
54. Springer-Verlag, 1994.

16. J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, 2nd edition,
1992.

17. K. Taguchi and K. Araki. The state-based ccs semantics for concurrent z spec-
ification. In M. Hinchey and Shaoying Liu, editors, International Conference on
Formal Engineering Methods, pages 283 – 292. IEEE, 1997.

18. J. C. P. Woodcock. Using circus for safety-critical applications. In VI Brazilian
Workshop on Formal Methods, pages 1–15, Campina Grande, Brazil, 12th–14st
October 2003.

19. J. C. P. Woodcock and A. L. C. Cavancanti. Circus: a concurrent refinement
language. Technical report, Oxford University Computing Laboratory, Wolfson
Building, Parks Road, Oxford OX1 3QD UK, July 2001.

20. J. C. P. Woodcock and J. Davies. Using Z – Specification, Refinement, and Proof.
Prentice-Hall, 1996.

