
A Tool Chain for the Automatic Generation of
Circus Specifications of Simulink Diagrams

Chris Marriott, Frank Zeyda, and Ana Cavalcanti

Department of Computer Science, University of York, UK
{chris.marriott,frank.zeyda,ana.cavalcanti}@cs.york.ac.uk

Abstract. Previous work described how to translate Simulink control
law diagrams into Circus specifications to facilitate verification by re-
finement. This is not a trivial task; several tools have been developed
to automate parts of the translation. This paper introduces a new tool
chain that extends and integrates existing technology to cover the entire
translation and cater for a larger set of diagrams. Our contributions in-
clude the integration of data types, generic definitions, and extension of
the technique to model action and enabled subsystems. The tool chain
has been validated using an industrial case study.

Key words: Z, CSP, ClawZ, control law diagrams, verification

1 Introduction

Control systems are commonly modelled using control law diagrams: a graphical
notation with blocks and connecting wires. Each block represents a calculation
or function, and can have state; wires connect inputs and outputs of blocks.
Systems may be so complex that functionality is often defined in a number of
separate diagrams, known as subsystems; these introduce a hierarchy.

As regulations for certification of safety-critical systems are being tightened,
the use of formal methods is becoming increasingly encouraged. Various attempts
have been made to express control law diagrams in formal languages [3,6]. Par-
ticular attention has been given to diagrams in MATLABs Simulink [9], a de
facto standard, especially in the automotive and avionics industries.

Circus [11] is a formal language capable of expressing state-rich concurrent
systems based on Z [12], CSP [10], and a refinement calculus [5]. In [4], Cavalcanti
et al. describe a formalised translation from Simulink diagrams to Circus models;
it takes into account parallelism and independent flows of execution.

The main benefit of using Circus to encode Simulink diagrams is the ability
to prove correctness of implementations through refinement. The work presented
here extends the set of translatable diagrams, automates further the model gen-
eration technique of [4], and expands the set of programs we can prove correct.
Code generation and diagram validation techniques that extend the static anal-
ysis in Simulink exist to satisfy different objectives from those we address here.

Our work extends and integrates a number of tools and associated tech-
niques to support a single-click translation, and handle a larger set of diagrams.



As a result, users can produce Circus specifications without the need for indepth
knowledge of multiple tools. We describe here the enhancements to existing tools
and new methods that make this possible. In particular, we address the integra-
tion of data types and type-sensitive translation, the use of generic definitions,
the use of a complex tool chain in the context of safety-critical systems, and
techniques to model enabled and action subsystems.

Previously, there were two tools that supported the conversion of Simulink
diagrams to Circus (namely ClawZ [2] and ClawCircus [13]). Each is driven in-
dividually with a significant amount of manual input. Expertise is required in
Simulink, Z, Circus, and methods to bring these components together. With our
tool chain, the amount of expert knowledge and manual input is reduced.

Additionally, the current technique does not cater for enabled and action
subsystems. These are just like other subsystems in Simulink, which are defined
by a sub-diagram, except they have enabling conditions that determine whether
they are executed or not. They are used to control the flow of execution in a
diagram and are commonly used in industrial applications. Here, we present a
technique to model enabled and action subsystems in Circus.

The remainder of this paper is structured as follows. Section 2 presents pre-
liminary material related to our work. Section 3 describes the translation from
Simulink to Circus. Section 4 introduces enabled and action subsystems and de-
scribes how they can be expressed in Circus. Finally, Section 5 explains how the
chain has been applied to a large industrial example not previously translatable,
along with our conclusions and possible further work.

2 Background

This section describes Simulink diagrams, Circus, and existing tools.

Control law diagrams An example control law diagram written in Simulink no-
tation can be seen in Figure 1. It specifies a missile guidance subsystem used
in the aerospace industry [9]. Individual blocks are boxes on the diagram, and
perform their own unique function; arrows between blocks represent the commu-
nication of values. The small ovals are the inputs and outputs to the subsystem
(Rm,Vc,AZ d , ...). This example also contains an enabled subsystem (Fuze).

The example is used to locate an initial target position and then monitor
the flight of the missile using closed-loop tracking to ensure it is reached; these
calculations are performed within the custom Guidance Processor subsystem.
The Fuze subsystem is used to control the detonation of the missile; it monitors
the distance to the target and feeds back into another tracking subsystem.

Circus language Systems are specified through processes in Circus. Features from
Z and CSP are available, including schemas, communication, parallelism and
choice. Programming operators come from Morgan’s refinement calculus.

The main constructs are channels, processes and actions. Channels are used
to define communication events between processes. Processes contain state infor-
mation and have a behaviour defined by actions. State is local, so that interaction



Fig. 1. Guidance Subsystem in Simulink [9]

can only occur through channels. A process can be defined explicitly, or by using
operators of CSP for composition of other processes, such as parallelism.

An action can be defined as either a schema, which performs operations on
the process state, a command in Dijkstra’s guarded command language, or a
CSP expression. Local actions are referenced by the main action, which specifies
the behaviour of the process. More details about Circus can be found in [11].

ClawZ is a tool suite for verification of implementations of Simulink diagrams [2].
It translates diagrams into Z encoded for ProofPower-Z [7], a mechanical theorem
prover. ClawZ has been used in industry and has reduced costs of verification [1].

In ClawZ models, schemas are used to define inputs, outputs, and state ele-
ments of blocks and subsystems. Only discrete-time blocks are translated because
software is discrete. Schemas produced by ClawZ are defined in a library; at-
tributes in diagrams are used to match blocks to corresponding library schemas.

Circus specifications use schemas defined by ClawZ to describe functionality;
CSP describes the communication and behavioural aspects of the control law.

3 Translating Simulink diagrams into Circus specifications

This section describes our tool chain to translate Simulink diagrams into Cir-
cus specifications automatically. We describe all tools required and explain how



each was tailored or developed to achieve the integration in Figure 2; ovals rep-
resent files and libraries, and squares represent processes and tools. The dotted-
borders indicate processes or tools adapted or developed to create the chain; the
two shaded ovals are the Simulink input and Circus output files.

Fig. 2. Simulink to Circus Translation Process

3.1 Z Producer, Generics Converter, and PP2CZT

The three processes in the top path in Figure 2 are used to produce and modify
the necessary Z definitions for use in the Circus model. The Z Producer (part of
ClawZ), is used to specify schemas for blocks automatically.

The ClawZ output is encoded for ProofPower-Z and can be used for ver-
ification once parsed. A problem arises, however, because the use of generics
in ProofPower is different from that in standard Z (and Circus). ProofPower-Z
allows partial instantiation of a generic definition: it is possible to use generic
definitions in ProofPower-Z without instantiating all formal generic parameters.

The ProofPower-Z notation includes the universal type U, which is the carrier
set of a generic type (U[X ] =̂ X ). The Z definitions produced by ClawZ use the
universal type because of the lack of type information in the Simulink file. Data
types are inferred automatically within ProofPower-Z and this remains true for
the majority of definitions when treated as part of a standard Z specification. In
some cases, however, inference of actual generic parameters is not possible; as
an example, we consider the definition below of a Selector block.



Selector
In1? : U
Out1! : U

Out1! = In1? (1)

The Selector block takes a sequence of values (In1?) and selects a particular
element (Out1!); in this example it is the first element. In ProofPower-Z, this
schema is valid: it has an implicit formal generic parameter as there is not enough
information to fully instantiate the type of U. This parameter is not declared
explicitly and the schema is not well typed according to the rules of standard Z.

To overcome this, we rewrite the definitions from ClawZ in standard Z using
the new Generics Converter tool. The schema below has the same semantics as
the previous example; it is a standard Z definition that introduces the type X as
a formal generic parameter rather than using the universal type of ProofPower-
Z. The conversion automatically infers, from the schema in the ClawZ output,
that the type of the input (In1?) is a sequence of values. This is represented as
a relation from an integer to a value of the generic type parameter.

Selector [X ]
In1? : Z ↔ X
Out1! : X

Out1! = In1? (1)

The Generic Converter traverses all definitions stored in a ProofPower-Z file
and analyses their components to establish the type of definition and whether
any implicit generic parameters exist. If none are found, the definition remains
unchanged; however, upon finding generic parameters, the definition is re-const-
ructed. The new definition contains the formal generic parameters explicitly.

The modified ClawZ output in standard Z is converted into CZT markup
(used by the Circus parser) using the new PP2CZT tool within ProofPower-Z. It
performs a syntactic translation of all definitions and schemas in the ClawZ out-
put and automatically produces the CZT encoding. The translation relies on a set
of mappings from the internal representation in ProofPower-Z to the text-based
markup in CZT. All definitions in a ProofPower-Z document are considered in-
dividually; every component in the definition is then analysed, translated, and
re-assembled in a new file to form the corresponding CZT definition.

3.2 Type Extractor and Merge

Blocks in Simulink have a set of input and output ports, each with a specific
data type and dimension. Previously, the translation assumed that all compo-
nents were one-dimensional, and used the ProofPower-Z R data type to define
their types. This, however, is not a realistic assumption, and since data types in
Simulink are different to those of Circus, a mapping between data types is neces-
sary. Simulink uses data types such as double, int8 and uint8; we represent these



in Circus as R, Z, and N. Simulink uses multi-dimensional data such as vectors
and matrices, these are represented as sequences: seq X for vectors and seq seq X
for matrices. Our extension also translates boolean and complex values, and is
easily extended to include custom data types.

A challenge in achieving this translation was the fact that data types and
dimensions are not recorded in the Simulink (mdl) file. We extract them using
the new Type Extractor tool. This takes the mdl file and produces a types file
containing data types and dimensions for all block inputs and outputs.

This is achieved by running a custom function within MATLAB; by executing
inside the MATLAB environment, we can extract attributes of diagrams not
stored in the mdl file. This tool iterates through all blocks in the diagram and
produces a new file with the same structure as the original mdl file.

The extracted type information is combined with the original file by our new
Merge tool. The purpose of Merge is to combine two mdl files into one mdlx file.
A new file is created to maintain traceability and ensure the original diagram
can still be used in Simulink. The Merge tool scans both input files for matching
elements in the tree structure of systems, blocks, and subsystems. Attributes
from matching pairs in both mdl and types files are merged in the new mdlx file.

3.3 ClawCircus

The majority of the translation is achieved using the ClawCircus tool, which
takes the extended Simulink file and ClawZ output and produces a Circus spec-
ification. A description of the tool and its implementation can be found in [13].

What we needed to do to incorporate ClawCircus in the tool chain (apart
from fixing a few bugs) was to provide a way of driving it without a graphical
interface. Our new ClawCircus uses a configuration file to determine its input
diagram and the required translation. This is useful in the safety-critical industry
to ensure traceability; all graphical interfaces are removed in our chain.

The configuration file describes which part of a Simulink diagram to translate;
the requested output could be a single block, a subsystem, or the entire system.
It also defines whether a subsystem is expanded or collapsed. When expanded,
the translation models all internal blocks as individual processes and combines
them in parallel. When collapsed, the translation does not combine the blocks
in parallel, but produces a centralised single process. It also defines whether
the model is simplified or not. Simplified specifications do not contain vacuous
definitions to ease readability, like empty schemas or actions without behaviour.
Unsimplified versions have a more uniform structure; this is useful for automation
of refinement where the shape of models is important.

Configuration files are simple and do not require additional expertise to pro-
duce. A parser to interpret the configuration file is now part of ClawCircus.

3.4 LATEX, and the Circus parser and type checker

The Circus file produced is encoded in the Circus LATEX markup and can be
transformed into a viewable document; the type-set output makes it easier to



read. The tool chain produces two outputs: one in Circus LATEX markup for the
parser and type checker (Complete Circus Model), and a dvi file with the correct
graphical notation for the specification (Circus Document).

The Circus Parser and Type Checker is invoked automatically to check the
validity of the Circus specification generated. This does not validate the dia-
gram per se, but provides some empirical evidence for the validity of the models
produced by the translation. Additional tool support to analyse and refine Cir-
cus specifications is under development; ease of model generation crucially paves
the way for those techniques to be applied effectively. Further validation of the
models themselves comes from the fact that they have been used as a basis for
a refinement technique formalise in [4] to verify control systems.

In summary, the tool chain eliminates the need for vast amounts of manual
input and specialised knowledge. By combining a Simulink file with the cor-
responding configuration file, all output files are produced automatically. The
specification is automatically passed through the parser and type checker with
a detailed account of the entire process stored in a log file. The tool chain is
automated using a script to invoke tools and manipulate files.

4 Enabled and action subsystems

This section describes translation enhancements to model enabled and action
subsystems. Outputs from these subsystems depend on an enabling condition,
which is determined by the value received on an enabling or action port. Enabled
subsystems check if a value is greater than zero before being enabled, whilst
action subsystems use a signal from a separate if-then-else or switch statement.

We consider, for example, the very simple diagram in Figure 3; it demon-
strates the use of action subsystems, but is not the limit of our approach. In
the example, an If Else block is used to control two action subsystems, which
each have their own output. The If Else block takes an input (In1) and compares
the value against some condition; in this example, the value must be greater
than 4. If true, the If Else block outputs a boolean true to the first subsystem,
and false to the other. If false, the boolean outputs to the subsystems are false
and true respectively. The values from both subsystems depend on the enabling
conditions; these are determined by the boolean value from the If Else block.

Both action subsystems output a constant value with a delay of one time
unit. They also contain a block labelled Action Port, which is the boolean input
signal from the If Else block and determines whether the subsystem is enabled.

Output blocks in enabled and action subsystems output a value, whether
the subsystem is enabled or disabled; this value depends on the behaviour of
the internal blocks. Typically, outputs from several subsystems are combined
using a Merge block to ensure that only the value from the currently enabled
subsystem is used. Subsystem outputs, however, may also be used individually,
in which case, the output when enabled and disabled needs to be considered.



Fig. 3. Example If-Then-Else System

Additionally, by considering subsystems separately, rather than their combined
use with other blocks, we obtain a compositional translation strategy.

All blocks inside these subsystems are essentially paused when disabled. Cur-
rent values must be recorded along with the enabling condition for all blocks with
state inside the subsystem. It is not sufficient to use the existing behavioural def-
initions from ClawZ for blocks with state, as they do not include the additional
components required to capture the enabling/disabling behaviour. Also, output
blocks require an additional field to represent their initial value when inside an
enabled or action subsystem; this is the initial output value of the subsystem.

When subsystems are enabled, blocks behave as they would normally. When
disabled, blocks with state and output blocks have additional properties that
describe what to do with the output value: whether to hold the last value stored,
or reset the output to the initial value. Additionally, when the subsystem is re-
enabled, having been in a disabled state, both enabled and action subsystems
can be configured to preserve the states of all internal blocks, or reset them to
their initial state. This affects blocks that define an output sequence for example,
which can either pause at the last value, or reset to the first value in the sequence.
The configuration is static as the held and reset properties are defined within
the Simulink diagram. In summary, we have four configurations of subsystems
and their blocks that give rise to different behaviours as shown in Table 1.

The remainder of this section describes how we represent the subsystems and
their internal blocks in Circus, with the necessary Z definitions.



Subsystem Block Block output Subsystem state
config. config. when disabled when re-enabled

Held Held Retains previous value Retains previous state

Held Reset Set to initial value Retains previous state

Reset Held Retains previous value Internal block states are reset

Reset Reset Set to initial value Internal block states are reset

Table 1. Enabled/action subsystem state and output combinations

4.1 Z definitions

The Z definitions used in the Circus model of a diagram have to be augmented
to support enabled and action subsystems. This applies to blocks with state,
as it is the state that is updated in different ways; to capture this we include
three schemas for each block with state. These schemas describe the standard
behaviour of the block, the behaviour when held, and the behaviour when reset.

As an example, we consider the Unit Delay block (as seen in Figure 1), which
takes an input value, stores it in the current state, and outputs the value from
the previous state; it is a single one place buffer. ClawZ uses a generic definition
as it is applicable to many data types; the standard behaviour is as follows.

UnitDelay [X ]
In1? : X ; Out1! : X
initial state, state, state ′ : X

Out1! = state ∧ state ′ = In1?

Consider now the situation where the Unit Delay block is inside an action or
enabled subsystem and is disabled; the output is either held or reset. The ClawZ
schema to describe the behaviour when held is below. The difference between
this and the standard schema is in the value stored in the state ′ component.

UnitDelay h[X ]
In1? : X ; Out1! : X
initial state, state, state ′ : X

Out1! = state ∧ state ′ = state

The schema for the behaviour when reset, shown below, is different to the stan-
dard one as the components state ′ and initial state are defined to be the same.

UnitDelay r [X ]
In1? : X ; Out1! : X
initial state, state, state ′ : X

Out1! = state ∧ state ′ = initial value



These three schemas define the behaviours of the block when inside an enabled
or action subsystem, however, they are not sufficient for the Circus model. We
require additional schemas that capture the value of the current and previous
enabling condition. These additional components are crucial in order to define
the four scenarios in Table 1. Firstly, we define a state schema which contains a
single boolean value to record the enabling condition of the block.

Enabled State
enabled : B

This state component must be updated in accordance with the current enabling
condition of the subsystem. Firstly we define a frame schema for the update op-
eration that takes a boolean input and assigns it to the enabled state component.

Enabled Frame
∆Enabled State;
Enabled? : B

enabled ′ = Enabled?

We define three further schemas to capture the scenarios where the subsystem
becomes enabled, remains enabled, and is disabled.

Enabling == [Enabled Frame | enabled = False ∧ enabled ′ = True]

RemainEnabled == [Enabled Frame | enabled = enabled ′ = True]

Disabled == [Enabled Frame | enabled ′ = False]

Using these three schemas to capture the enabling condition of a block in con-
junction with the existing ClawZ block library definitions, it is possible to define
block schemas for each of the four kinds of subsystem configuration in Table 1.
Firstly, in the scenario where both the block and subsystem are set to hold their
values when disabled and on re-enabling, we use a definition like that shown
below for our example Unit Delay block. Both the Enabling and RemainEnabled
schemas are combined with the UnitDelay schema that defines the normal be-
haviour. This is because when both enabled and upon re-enabling, the block
values remain the same and normal behaviour continues. When the block is
disabled, the UnitDelay h schema is used as this specifies the held behaviour.

UnitDelay Augmented == (Enabling ∧ UnitDelay) ∨
(RemainEnabled ∧ UnitDelay) ∨ (Disabled ∧ UnitDelay h)

The second scenario is when the subsystem is set to hold the internal states upon
re-enabling, and the block is set to reset to its initial value when disabled. The
difference here is the Disabled schema is combined with the reset schema.

UnitDelay Augmented == (Enabling ∧ UnitDelay) ∨
(RemainEnabled ∧ UnitDelay) ∨ (Disabled ∧ UnitDelay r)



Fig. 4. Circus model for example action subsystem

The third behaviour is found when the subsystem resets the internal states upon
re-enabling and the block holds its value when disabled. The Enabling schema
is combined with the reset schema for the Unit Delay whilst the Disabled schema
is associated with the held schema. Finally, the scenario where the block and
subsystem reset their values. The UnitDelay r schema is combined with both
the Enabling and Disabled schemas.

The translation produces one of the four definitions above for each of the blocks
with state inside an enabled or action subsystem, based on the properties of the
subsystem and block.

4.2 Circus model

This section describes Circus processes that model enabled and action subsystems
using the Z definitions presented above. As described previously, the translation
of subsystems can be done in two ways. Firstly, all blocks can be translated indi-
vidually and combined using parallel composition. Alternatively, the subsystem
can be defined in one centralised process. (Semantically the models are the same,
however, parallelism facilitates refinement to concurrent implementations).

With a centralised process, the Z definition from ClawZ that represents the
overall subsystem is lifted into a Circus process. This definition includes instances
of the schemas for each block in the subsystem and connects the inputs and
outputs together just like in the original approach. The Action? input to the
subsystem is connected to all of the Enabled? inputs of the blocks. The state and
enabled conditions for all blocks in the subsystem are defined as state components
in the Circus process to ensure information is not lost between invocations.



Translations that use parallel composition of Circus processes for blocks in the
subsystem are slightly different. To represent the Action? input to the subsystem,
an additional Circus process is defined to pass on the enabling condition to the
other blocks in the subsystem via a broadcast channel.

As a simple example, Figure 4 depicts the structure of the corresponding Cir-
cus model for the first subsystem in Figure 3. There, arrows represent synchroni-
sation channels corresponding to wires in a diagram, whilst the two vertical bars
inbetween processes indicate parallel composition. If Action Subsystem 1 and If
Else are separate processes (which are composed in parallel to define the model
of the complete diagram). The process If Action Subsystem 1 is itself defined
by a parallel composition of four processes: Constant, Unit Delay, and Output
correspond to the blocks in the diagram, and Action Port is the extra process
defined below. The channels Constant out and UnitDelay out correspond to the
wires. The IfAction1 enabled channel broadcasts the enabling condition received
on IfAction1 action from the If Else block; all internal blocks in the subsystem
synchronise on this enabling signal.

The Circus process ActionPort is below; it operates in parallel with the other
processes. The end cycle channel is used as a synchronisation point for all paral-
lel processes; only once all processes have synchronised on the end cycle channel
can each individual process recurse or terminate accordingly.

processActionPort =̂ µX •
IfAction1 action?x −→ IfAction1 enabled !x −→ Skip ; end cycle −→X

Processes that represent blocks inside enabled and action subsystems cannot
use the standard translation with our additional state components. Most signif-
icantly, processes have to synchronise on the channel that passes the enabling
condition of the enabled or action subsystem to the blocks. We extend the state
of blocks with the Enabled flag and relate this to the underlying ClawZ schema.
In our example, the Enabled? value is taken from the IfAction1 enabled channel.

The Circus model for enabled subsystems differs slightly to the action sub-
system example as the enabling input is not a boolean value, but either a scalar
or vector value. The EnablingPort process pushes the boolean value true onto
the enabled channel if any input value is greater than zero, and false otherwise.

Our approach extends the existing ClawZ and Circus model in a uniform and
structured way, and lends itself to automation. A text-based algorithm is shown
in Figure 5 to demonstrate the steps required to implement the translation.

5 Conclusions and further work

In this paper, we address several problems in translating Simulink diagrams to
Circus and discuss modifications and extensions to existing tools to provide an
automated solution via a tool chain. A more comprehensive description of all
the details discussed in Sections 2 and 3 can be found in [8].

The individual stages of the translation shown in Figure 2 have been adapted
and combined to automate the process. The only part of the translation not



1. For all blocks inside an action or enabled subsystem (apart from output blocks),
check to see if the original ClawZ definition includes a state component. If no
state exists, complete the block translation as in the previous technique.

2. For output blocks, and blocks with state, the additional frame schema described
here must be combined with the original ClawZ schema according to the held
and reset values of both the subsystem and the individual block.

3. Once all internal blocks are translated, the subsystem process is created:
(a) If a centralised translation is required, instances of all internal blocks are

included in the subsystem definition and are connected as per the wires
in the diagram; the enabling condition is simply a component of the sub-
system and accessed directly by the block schemas - there is no channel
synchronisation. The state components of internal blocks are lifted to the
state of the subsystem. The main action of the subsystem is a parallel com-
position defining the functional behaviour and the state update procedure.

(b) A parallel translation creates individual processes for all blocks in the sub-
system including the enabling/action port; the communication between
processes is through channels as per the wires in the diagram. The overall
subsystem process is constructed as the parallel execution of all processes
that synchronise on the enabling condition and the end cycle channel. The
final step is to hide the internal workings of the subsystem process from the
rest of the system; this is achieved by hiding all of the internal channels,
leaving only the inputs and outputs of the subsystem visible.

Fig. 5. Algorithm to translate enabled and action subsystems

successfully integrated in the process is ClawZ; this is due to the high level of
customisation required from the user to successfully produce a ClawZ output.

The tool chain has been applied to large industrial examples, in particular,
a previously non-translatable Non-linear Dynamic Inversion controller provided
by QinetiQ. This non-trivial example includes nested subsystems, generic def-
initions, and a range of data types. The translation equates to 38,000 lines of
Circus and completes automatically with no errors. The example presented minor
bugs in tools that had not been tested with such large examples previously.

Several other examples have been used throughout the development and test-
ing phase to ensure specific modifications and extensions are correct. These tests
are small in comparison to the larger example above, however, each is challenging
in its own right to test a particular part of the translation. The tool is available,
with an example, from https://svn.cs.york.ac.uk/anonsvn/clawcircus.

As an alternative to our approach, Caspi et al. use the formal language Lus-
tre to represent Simulink diagrams [3]. A tool automates their translation from
Simulink to Lustre, and from Lustre to source code using the Lustre C code
generator. This technique is focused on the generation of implementations with
a certified code generator and has proven popular in industry. Consider, how-
ever, the situation in which the code generation technique changes; the revised
generator must be re-certified. This is an expensive and time consuming process;



should our technique to generate implementations change, the effort required to
prove a modified refinement law is significantly less.

Chen et al. present a formal semantics and tool support to reason about
functional and timing aspects of Simulink diagrams [6]. Their work presents a
comprehensive library of translatable blocks for both discrete and continuous
time. The work is focused on the validation of diagrams with the use of the PVS
theorem prover; it does not address our larger interest in program verification.

Our translation function, previously defined in [4], is specified in a compo-
sitional manner and allows us to produce an individual Circus process for each
block or subsystem in a Simulink diagram. As Circus has a semantics that sup-
ports compositional refinement, piecewise development is well supported.

Future work will mechanise the translation of enabled and action subsystems
based on the algorithm described. Automation of refinement techniques will
allow automatic generation of models of Ada programs for verification of imple-
mentations. Work is also ongoing to integrate time-specific Simulink diagrams
in Circus using Circus Time; this work will further increase the set of translatable
Simulink diagrams and make the tool chain applicable to more applications.

References

1. M.M. Adams and P.B. Clayton. ClawZ: Cost-effective formal verification for control
systems. Formal Methods and Software Engineering, pages 465–479, 2005.

2. R. Arthan, P. Caseley, C. O’Halloran, and A. Smith. ClawZ: Control laws in Z. In
ICFEM, page 169. Published by the IEEE Computer Society, 2000.

3. P. Caspi, A. Curic, A. Maignan, C. Sofronis, and S. Tripakis. Translating discrete-
time Simulink to Lustre. In Embedded Software, pages 84–99. Springer, 2003.

4. A. Cavalcanti, P. Clayton, and C. O’Halloran. From Control Law Diagrams to
Ada via Circus. Formal Aspects of Computing, 2010. accepted for publication.

5. A. Cavalcanti, A. Sampaio, and J. Woodcock. A refinement strategy for Circus.
Formal Aspects of Computing, 15(2):146–181, 2003.

6. C. Chen, J.S. Dong, and J. Sun. A formal framework for modelling and validating
Simulink diagrams. Formal Aspects of Computing, 21(5):451–483, 2009.

7. D.J. King, R.D. Arthan, and I.C.L. Winnersh. Development of practical verification
tools. ICL Systems Journal, 11:106–122, 1996.

8. C. Marriott. A Tool Chain for the Automatic Generation of Circus Specifications
from Control Law Diagrams. Masters project thesis, Department of Computer
Science, The University of York, 2010.

9. The MathWorks,Inc. Simulink. http://www.mathworks.com/products/simulink.
10. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall Series in

Computer Science. Prentice-Hall, 1998.
11. J. Woodcock and A. Cavalcanti. The Semantics of Circus. In ZB 2002:Formal Spec-

ification and Development in Z and B, volume 2272 of Lecture Notes in Computer
Science, pages 184–203. Springer Berlin / Heidelberg, 2002.

12. J. C. P. Woodcock and J. Davies. Using Z—Specification, Refinement, and Proof.
Prentice-Hall, 1996.

13. F. Zeyda and A. Cavalcanti. Mechanised Translation of Control Law Diagrams into
Circus. In Integrated Formal Methods, volume 5423 of Lecture Notes in Computer
Science, pages 151–166. Springer Berlin / Heidelberg, 2009.


