
Automatic Property Checking of Robotic Applications

Alvaro Miyazawa1, Pedro Ribeiro1, Wei Li2, Ana Cavalcanti1 and Jon Timmis2

Abstract— Robot software controllers are often concurrent
and time critical, and requires modern engineering approaches
for validation and verification. With this motivation, we have
developed a tool and techniques for graphical modelling with
support for automatic generation of underlying mathematical
definitions for model checking. It is possible to check automat-
ically both general properties, like absence of deadlock, and
specific application properties. We cater both for timed and
untimed modelling and verification. Our approach has been
tried in examples used in a variety of robotic applications.

I. INTRODUCTION

Robotic software is typically very complex. Customised
architectural designs and development processes have been
proposed to master complexity [1], [2]. Associated with that,
domain-specific languages (DSL) have been presented for
modelling [3], [4] and simulation [5], which, along with
testing, is the favoured method of validation and verification.
Here, we focus on validation of low-level designs, as opposed
to decision-making or planning-level control, to complement
simulation efforts. While simulation can reveal properties
of specific scenarios, proof can establish such properties.
While simulation is appealing in design exploration, proof
can provide assurance that key properties are always valid.

Our approach to modelling controllers is based on a
profile (that is, restriction) of the very popular UML [6]
called RoboChart. At their core, RoboChart models are
defined by state machines, a notation widely accepted in the
embedded-software industry. In this approach, the behaviour
of a robot is characterised by a state, in which it may
execute a particular operation and react to events from its
environment. Reaction typically leads to a change of state.

RoboChart also includes elements to structure models
to foster reuse and modularity. These structuring facilities
embed the notions of robotic platforms and their controllers,
with synchronous or asynchronous communications. Dis-
tinctively, RoboChart also has constructs to specify time
properties: budgets and deadlines for operations and events.

The RoboChart notation is designed with two main
goals: (1) adopt the style of modelling used by the robotics
literature and (2) enable automatic generation of mathemat-
ical definitions for proof. Several DSL for robotics use state
machines [5], [4], [7], some supported by C code [8] to
define simulations. RoboChart targets graphical modelling,
rather than simulation or programming, and validation by
proof of (possibly timed) properties. On the other hand, it is
possible to generate simulations from RoboChart models [9].

*This work was supported the EPSRC.
1Department of Computer Science, University of York, UK
2Department of Electronic Engineering, University of York, UK

A tool, called RoboTool1, provides a graphical editor for
RoboChart models, and generates automatically mathemat-
ical definitions that capture their behaviour. RoboTool is
integrated with a model checker [10], a tool that uses the
mathematical definitions to prove general properties, like
freedom of deadlock, or specific properties, like impossibility
of ignoring a particular event in given circumstances, for
example. When testing a system or a model, via simulation,
for instance, we cannot cover all scenarios that can play out.
A model checker, on the other hand, explores exhaustively all
the states of the model to ensure that the property of interest
is satisfied. Any correct implementation of the model also
has that property. If, however, the property does not hold, a
model checker provides a counterexample.

RoboTool is provided as a set of Eclipse plugins im-
plemented using the Xtext2 and Sirius3 frameworks. Xtext
automatically generates plugins that implement a parser, and
provides mechanisms for the implementation of validators,
type checkers, and code generators. Sirius supports the defi-
nition of graphical representations, and produces a plugin for
construction and visualisation of models. The model checker
used by RoboTool is FDR4 [10].

In this paper, we present RoboTool, RoboChart, and their
use to validate models for several applications: chemical
detectors [11], and a transporter [12]. Fig. 1 shows the robot
from [11], used here as a running example: a tele-operated
chemical detector. It has a sensor at the front to identify
changes in the chemical composition of air over time. Upon
detection of a harmful gas, it indicates via a yellow light
the presence of an anomaly, or, depending on the nature and
concentration of the gas, via a red light, a siren, and a flag to
mark the location. The robot uses a main processor to detect
gas and accept commands from the operator to move, and a
micro-controller to manage the light, the siren, and the flag.

The rest of the paper is structured as follows. In the next
section, we discuss related work. RoboChart and RoboTool
are explained in Section III. Property checking is discussed
in Section IV. Our examples are the subject of Section V.
We conclude and propose future work in Section VI.

II. RELATED WORK

A recent survey on DSL for robotics is available [13];
it seems to indicate an increase in the interest and use of
DSL. In most works, the models enable code generation
for execution or simulation. Although this is possible for
RoboChart [9], our focus is generation of a mathematical

1Available at www.cs.york.ac.uk/circus/RoboCalc.
2https://eclipse.org/Xtext/
3www.eclipse.org/sirius

Fig. 1. Chemical detector from [11]. We discuss automatic proof of some
of its key properties in Section IV.

model for property checking. Closer to our work are the lan-
guages that address architectural design and programming,
dealing with concurrency and control of events, targetting
capability building. While there is a large number of such
proposals, there is a limited amount of results on mathemat-
ical verification. We present some below.

Verification by model checking is also considered for
GenoM [14]. Models are translated to a mathematical nota-
tion called Fiacre, which is close to the input language of the
Petri Net based model checker TINA. Verification focusses
on schedulability, while functional properties are not yet
pursued. Another approach uses an alternative mathematical
notation, called BIP, for deadlock checking and schedulabil-
ity analysis [15]. As opposed to RoboChart, GenoM is an
executable language; models, for example, include C code.

The language in [16] is used to model the adaptive
architecture of an exploration robot. Automatic generation of
mathematical definitions supports the use of model checking
and other proof techniques to identify optimal configurations.
Behavioural properties are not the focus.

In [17], a pioneering effort defines Orccad, for modelling,
simulation, and programming. Translation to two different
notations allows verification of timed behavioural properties.
Orccad models a system in terms of tasks defined by control
laws, combined by procedures defined by reactive programs.

In summary, most of the DSL for robotics in the literature
are not associated with a technique for proof of properties. As
far as we know, the works that present such a technique, do
not focus on behavioural properties. This is what we address.

There are, of course, many general-purpose languages for
which support for model checking is available, like C, for
example; it is also possible to apply model checking to
Simulink models. Early efforts on verification for robotics
apply existing mathematical techniques as they are [17].
What we present here is a customised approach for modelling
and property checking of robotic systems. Customisation
allows us to use a simple language akin to what is already
used by practitioners [5], [4], [7], [18], with friendly support
for graphical modelling, and optimisation in the checks.

III. ROBOCHART AND ROBOTOOL

To prove properties of a robotic system, we need an unam-
biguous description of its behaviour. We cannot rely on an

informal use of diagrams or natural language. Practitioners
often use state machines [19], [20], [21]. We adopt this ap-
proach via RoboChart, and with tool support, via RoboTool,
enforce precise use of notation with fixed meaning, and
scalability. A complete description of RoboChart is in [25].

In RoboTool, we can define packages, like in Java, but the
definitions in a package are graphical. The model of a robot
can be composed of several packages, one of which must
have the definition of a module, which models the robotic
system as a whole by identifying a platform and one or
more software controllers. The platform and the controllers
themselves may be defined in other packages. A controller
definition identifies the resources of a platform (variables,
event, and operations) that it requires, and so is an indepen-
dent component. A module connects controllers to a platform
that provides the resources they require.

A platform specifies the requirements on the hardware
via the definition of variables, events, and operations rep-
resenting in-built facilities it must provide. To satisfy these
requirements, it is often necessary to implement procedures
that use the sensors and actuators. For instance, using a
sensor that signals the presence of an obstacle, we can write
a procedure that detects a threshold-crossing to raise an event
for the state machine. Similarly, using actuators for wheels,
a wrapper operation can be written to provide functionality
to move the robot at a given speed. Although not required,
operations of the platform may be defined in RoboChart by
state machines that use events and variables of the platform.

Fig. 2 presents the module for our running example, the
chemical detector. The platform is called SensorVehicle.
It has no variables, but provides (P) the operations incr()
and decr() to increment and decrement the speed of the
vehicle. Since we do not further define these operations, we
do not require a variable to record speed. The operations are
grouped in an interface Speed provided (P) by the module,
and defined in the same package. Interfaces group variables
and operations either provided or required by a component.

SensorVehicle also provides events. The event gas corre-
sponds to the chemical sensor that detects gas. Its input indi-
cates that it gets information about the air composition. The
event command corresponds to an input from a joystick-like
interface to control the vehicle; its type Command indicates
that it carries values of that type. The events flag, siren, and
light correspond to actuators that control the mechanisms
to alert to a change in background levels of gases; finally,
turn corresponds to the communication to the hardware of
a real value defining a degree and associated movement of
the wheels to turn the vehicle by that degree.

A controller is specified by one or more parallel state
machines. A controller typically corresponds to a processing
unit in the architecture of the robot. Parallel state machines,
on the other hand, are used to structure specification of
functionality, and do not necessarily indicate parallelism in
the software. For instance, the chemical detector is controlled
by an on-board computer, so, we define two controllers
shown in Fig. 2. MainComputer is the on-board computer
processor concerned with gas detection and movement, and

Fig. 2. Package System.rct for the chemical detector, showing the module ChemicalDetector and the interface Speed.

Fig. 3. The controller MainComputer for the on-board computer of
the chemical detector. It is defined by two state machines, Detecting and
Moving, and requires the interface Speed and four events (see Fig. 2).

the Microcontroller handles the signalling of gas.
The definition of the MainComputer, shown in Fig. 3,

uses two state machines: Detecting and Moving. The first
is concerned with gas detection, and the second with moving
the robot. These are independent pieces of functionality.

A module also defines how communication flows between
the controllers and the platform. The communication be-
tween controllers is either synchronous (default) or asyn-
chronous. Asynchronous communication is indicated by the
keyword async and is often used to model the interaction
between distributed controllers. In our example, however,
communication between the controllers is synchronous.

The RoboChart state machines are deliberately kept sim-
ple. The class diagram in Fig. 5 defines their structure.
UML facilities like parallel states, inter-level transitions, and
history junctions, which prevent mathematical definitions
that support compositional and scalable automatic reasoning
are left out. An example state machine is presented in Fig. 4;
it defines the behaviour of the Microcontroller.

As shown in Fig. 5, a state machine, defined by the class
StateMachineBody has a context, defining the variables,
events, and operations it can use. A state machine can also
define clocks used to define time restrictions. Importantly, a
state machine is a NodeContainer: it contains nodes, that
is, States and Junctions, and the Transitions between them.
A Junction is like a State, but a Transition must be taken
immediately from a junction. The Initial state is a Junction.
A State can have Actions: entry, during, and exit actions,
executed when the machine enters, is at, or exits the State.

The language used to define actions is precisely defined

by a Statement. Besides standard facilities, like assignments
and triggering events, it includes also time primitives to
define budgets and deadlines. This is in line with the informal
practice adopted in the robotics literature [22], [23]. Opera-
tions are assumed to take no time unless a budget is specified.
Budgets can be precise, or define an interval of time. So, we
have no implicit time properties: the time that may be taken
by each operation is explicitly defined. On the other hand,
events can happen at any time unless a deadline is specified: a
maximum amount of time that can pass between the event
being offered and it being accepted by the environment.

For instance, when the state DangerousGas is en-
tered (see Fig. 4), the micro-controller raises an event light
for the platform to turn it red, another event siren to
sound the alarm, and then waits for a period defined by a
constant flagTime, before raising an event flag, which must
be accepted by the platform within a deadline defined by
a constant dF (<{dF}). The use of wait(flagTime) defines
a budget of flagTime time units for the actual operation of
dropping a flag. The deadline <{dF}, however, specifies that
the platform can only take up to another dF time units to
complete the operation. In summary, we use the event flag to
represent the completion of the actual drop of the flag by its
actuator: we record that this operation takes at least flagTime
units, but no more than flagTime+dF. An alternative model
could represent the interaction with the flag actuator as an op-
eration with a budget between flagTime and flagTime+dF
time units using wait([flagTime,flagTime+dF]). The fact
that we do not define a budget for the operations to set a
light colour or sound a siren indicates that they can take a
negligible amount of time. Without a deadline, however, we
impose no restrictions on how long it can be.

A Transition connects a source and a target State. It
can have a Trigger: an event that needs to occur to enable
the transition. It can also have two Expressions. One is a
boolean condition, called a guard: a transition can only be
taken when it is true. The other is a deadline on the Trigger
event, if it is present. The deadline establishes the maximum
amount of time that can pass before the Trigger can take
place, unless that machine takes a different Transition before
that. Finally, a Transition can have a ClockReset, which
allows conditions to refer to the most recent time a clock C
has been reset through the expression since(C). Examples
of the use of a clock are provided in Section V-C.

RoboTool implements the classes defined in Fig. 5 and

Fig. 4. Signalling state machine that defines the behaviour of Microcontroller in RoboTool. The panel on the left shows all packages of this example.
The central panel shows the diagrammatic version of the state machine in package Signal.rct. On the right panel we have the RoboTool palette of elements
that compose a RoboChart model. At the bottom panel, any problems with validation are listed.

Fig. 5. A class diagram of the RobChart state machines.

others to cater for modules and controllers. Most importantly,
as shown on the left panel in Fig. 4, in a directory src-gen,
it generates automatically mathematical definitions in .csp
files. We discuss these in the next section.

IV. PROPERTY CHECKING

Mathematical definitions for a RoboChart model describe
restrictions on the order and availability of the events and
operations of the platform. In effect, they characterise the
observable behaviour of the robot, which is captured by these
events and operations. For example, in the chemical detector
they constrain the order and availability of the flag drop and

of calls incr() to the speed increase operation (as well as of
the other events and calls to operations of SensorVehicle).

In these definitions we use what is called a process alge-
bra, particularly, CSP [24]. In this notation, the definitions
are a sequence of equations, each defining a process. A
CSP process characterises behaviour by defining order and
availability of events, therefore, we define both events and
operation calls of RoboChart as CSP events.

In RoboTool, the src-gen folder contains a subfolder defs
with automatically generated mathematical definitions for
each module, controller, state machine, and operation in a
separate .csp file. For each of these, we also have a file with
suffix assertions.csp, including checks of deadlock, live-
lock, nondeterminism, and timelock. A timelock arises when
a process refuses to let time pass, indicating some deadline
is infeasible. There are also assertions to find unreachable
states, which could stem, for example, from unsatisfiable
conditions on transitions. Finally, for each package, there
is a file with suffix defs.csp containing CSP definitions of
the types in the package. These files are used to construct
automatically the definitions of the packages.

For each package, src-gen includes a .csp file importing
the corresponding defs.csp file, and the files with the
definitions and checks of the modules, controllers, state
machines, and operations used in that package. Therefore,
we avoid circular imports and reimports, forbidden in CSP.

Proof of properties should use the .csp file for a package
in src-gen; by clicking on such a file, the CSP model checker
FDR4 is invoked by RoboTool. With one click in FDR,

Fig. 6. Checking the module ChemicalDetector. It is not deterministic, as shown by the counterexample.

we trigger the check of the core properties for the module,
controllers, and state machines.

Determinism is not essential: it is perfectly valid to define
nondeterministic models. A typical example is a model in
which more than one transition without a guard can be
enabled in a particular state, and either at least two of these
transitions are associated with the same event or one of
them has no event, and they lead to different states. Proof of
properties of such a model needs to consider all the possible
behaviours arising from nondeterminism.

We note that events between controllers are not visible
by a user. So, transitions associated with these events are
like transitions without events and may also lead to non-
determinism. This reflects a system view of the robot: its
visible behaviour is that of its platform, not the internal
communications of its software components. This means that
any property proved is respected by a correct implementation
that, for example, uses just one controller or a different set
of controllers. The RoboChart model specifies behaviour that
can be implemented using a different software architecture.

The chemical detector, for instance, is nondeterministic, as
indicated by FDR in Fig. 6. The assertion for determinism
fails and we get a counterexample. It shows that, Chem-
icalDetector, after the event light.green, which is part of
the entry action of the first state of Signalling (see Fig. 4)
and a gas reading, it is able to accept a command via cd,
or another gas reading, or set the light to green again.
ChemicalDetector is, however, also able to set the light
to amber. We have a nondeterminism in that the robot may
accept or refuse to set the light to green. It arises because
we do not fully specify the algorithm for gas detection, and
the communication between the controllers (see Fig. 2) is
not visible to the robot; it is just part of the protocol that
governs the internal interaction of the controllers.

The .csp files for the packages only have the imports;
the actual definitions are in the files in the defs directory.
The definition for a module’s behaviour is the conjunction of
definitions of the controllers. The platform does not exhibit
any prescribed behaviour: it only defines the observable
events and operations. If there is any communication between
the controllers, as is the case in the chemical detector, the
connected events between them, need to be identified.

For illustration, we sketch the definition of the Chemi-

calDetector module below.

ChemicalDetector =
(MainComputer[[...]]
[|{|Microcontroller_alarm|}|]
Microcontroller[[..]])

\ {|Microcontroller_alarm|}

It includes the processes that define the controllers
MainComputer and Microcontroller, and
establishes that they communicate via an event
Microcontroller alarm. We note that, as shown in
Fig. 2, in the module they are connected via an event detect
in the MainComputer and alarm in the Microcontroller.
Above, these events are identified by calling both of
them Microcontroller alarm. Moreover, because, as
already mentioned, communications between controllers are
not visible to the users of the robot, this event is hidden
using \ {|Microcontroller alarm|} in CSP.

Identification of events is achieved via renaming, indicated
by [[...]] above. These renamings establish the con-
nections in the module. For example, the omitted renaming
pair MainComputer turn <- turn identifies the turn
events of MainComputer and the platform. This is needed
because each controller, state machine, or operation, is an
independent component, with an independent definition. So
the events called turn in the platform and in MainComputer
are different and independent; connection is achieved in the
module. Like in the case of detect and alarm, even events
with different names, but of the same type, can be connected.

Time aspects of RoboChart models are defined using a
discrete-time version of CSP that marks passage of time
using the CSP event tock. For example, the budget ex-
pressed in RoboChart as wait(flagTime) ; flag is defined by
a sequence of as many tock events as specified by flagTime
followed by the CSP process defining the statement flag.
Deadlines are encoded by failing to offer tock after they
elapse. Time is uniform across CSP processes.

Before verifications are carried out, all constants, like flag-
Time need to be given a value. Types also need to be given
finite definitions. A file called instantiations.csp contains
default definitions for all of them as simple equalities (like
flagTime = 2 and nametype nat = {0..2}. They
can be changed, if needed, by editing this file.

Finally, RoboTool generates also optimised versions of
the processes. These optimised processes are the versions
used in the assertions: processes with suffix O. Using the
optimisation facilities of FDR, we can obtain CSP processes
with the same number of states of the RoboChart state
machines and are, therefore, confident in scalability.

Besides the core checks automatically generated, we can
check application-specific properties. For example, for the
chemical detector, we can show that commands result in an
event turn, or calls incr() or decr(). We can also prove that
every gas event must eventually be followed by a light event,
but up to two gas events may take place before a light
event must be raised. A file with suffix assertions.csp
is generated for each package, where the relevant checks
can be written and kept. Neither instantiations.csp nor the
assertions.csp files are regenerated, once they are updated,

to avoid losing any definitions and checks.
For efficiency, besides verifying a whole module, we

can verify the processes for individual controllers, state
machines, or operations. Our experience with the chemical
detector and other larger and realistic examples is presented
in the following section. A complete description of how all
the mathematical definitions are generated is in [25].

V. EXAMPLES

In the following sections, we discuss the results of the
analysis of various examples. For each of them, we have
identified requirements, expressed them in either RoboChart
itself or CSP, and carried out proof. Details are in [26] and
models in www.cs.york.ac.uk/circus/RoboCalc.

A. Tele-operated chemical detector

The original model was developed in-house, and checked
with the robot developers. Analysis of the original model
uncovered a few modelling mistakes and contributed to the
development of the corrected model discussed in Section III.

In our verification, with the core checks, we observed
that the state machine for Detecting the gas was deter-
ministic. Although the algorithm that detects the gas is
deterministic, because we do not specify it in RoboChart,
we must consider that it is possible for that algorithm to
generate any valid output. Therefore, Detecting cannot be
deterministic. Further review identified that the event detect
was erroneously used in the triggers of transitions out of
the state of Detecting in which the analysis is carried out.
This meant that a component interacting with Detecting
could choose the value communicated via detect. This is
undesirable, since detect is an output. Instead, we need to
have transitions without a trigger, but with an action that
defines the value communicated. In this way, the output
communicated via detect cannot be determined by another
component, but only after a transition is chosen. As explained
above, this choice is nondeterministically made by Detecting
because the transitions do not have a trigger nor a guard. This
is an easy modelling mistake to make, and affects the quality
of the model, but can be checked automatically.

More interestingly, we verified that the requirement “the
chemical detector shall always accept a gas read” was
not satisfied. The verification showed that there was a
deadlock after the trace [light.green, gas]; this suggested
investigating extensions of this trace and led to the dis-
covery that [light.green, gas.a, light.green], for any air
composition a, was not a valid trace. An evaluation of the
model based on this trace led to the observation that the
state Waiting of Signalling (see Fig. 4) did not accept the
event detect.innocuous. Similarly, there were also missing
transitions in the states AnomalousGas and Dangerous-
Gas. Simulations and programs based on the original model
would, therefore, have mistaken behaviour.

Verification of the above requirement uses the following
deadlock assertion in CSP.

assert ChemicalDetector_O
[|{|cd|}|]
STOP :[deadlock free]

The process analysed behaves like the optimised mod-
ule (Fig. 2) process ChemicalDetector O, but has all
interactions on cd blocked (by the CSP process STOP). So,
this requires that, even if the human operator gives no further
commands, the gas reads is still possible.

We also verified that the requirement “whenever the siren
is triggered, the flag should be dropped within t time units”
can be satisfied as long as flagTime + dF ≤ t, that is the
deadline flagTime + dF for dropping the flag is less than
t. Requiring that “whenever a dangerous gas is detected the
flag is dropped within a specified time” is not possible unless
deadlines on the events light and siren, which take place
before the flag event, are specified.

B. Autonomous chemical detector

In this section, we discuss the verification of an au-
tonomous version of the chemical detector example, which is
currently being prototyped. In its model, movement involves
a random walk to search for gas and autonomous obstacle
avoidance. A complete account is in [26].

For the analysis of gas, in this version, we use a function
analysis that takes the input from four gas sensors and
determines whether there is a gas of interest or not. In this
case, we declare the function analysis and its type, but do
not specify it further, since we do not plan to verify this
algorithm. We also use a function location, which defines
an angle for the robot to turn, based on the intensity of gas
indicated by each of the sensors. We define this function
precisely, but use conditions to define implicitly the value of
its output: the angle of the sensor giving the highest intensity.
For model checking, just like for simulation, in both cases,
we need CSP specifications of these functions.

Simple definitions, like analysis(gs) = noGas, are
automatically generated. Here, RoboTool chooses an element
of the return type, in this case noGas, and defines analysis
as the constant function whose value is that element for all
arguments. A more useful definition can be provided using
equations. For example, we use the following definition.

analysis(<>) = noGas
analysis(<g>ˆgs) =

if (GasSensor_c(g) == 0
and analysis(gs) == noGas)

then noGas else gasD

The input is an array of gas sensors. For the empty array
<>, the result is noGas. For an array whose first element
is the sensor g followed by the elements in the array gs,
if g gives a 0 reading (GasSensor c(g) == 0) and the
analysis of the other sensors gs indicates noGas, then
the result is noGas. Otherwise, the analysis indicates
that gas has been detected: gasD. This definition can be
added in instantiations.csp to replace the default definition.

In this example, the robot stops once it reaches the gas
source and drops the flag. A system that terminates is not
deadlock free, but we need to check that it deadlocks just
when it terminates. So, we check for deadlock freedom, not
of ChemicalDetector O, but its conjunction with a process
that, once the event flag happens, goes on forever without
deadlocking. The overall process no longer terminates, so if it
is not deadlock free, then the robot has a unwanted deadlock,
that is, a deadlock that arises not due to termination. We
indeed found such a deadlock in our model, which uncovered
missing transitions in a state machine.

Another application-specific requirement is that every
command to move the robot (resume, stop, or turn) leads
to a reaction by the robot, before another command is issued.
The verification of this property failed. The counterexample
showed that the problem is that, if the main computer does
not find gas, it keeps sending the command resume to the
micro-controller, so that it continues a random walk. It was,
therefore, possible that the micro-controller is continuously
interrupted by commands resume and not have the oppor-
tunity to actually carry out the random walk. This revealed
a hidden assumption of the modeller: the gas analysis is
much slower than the random walk operation, and so this
cannot happen. The model needed to be enriched with time
information to record this assumption.

The reason two resume events can happen in sequence is
because the operation randomWalk is called in the during
action, which means the potential reaction to resume can
immediately be interrupted by another resume event. This
violation is due to missing timing information regarding the
occurrences and processing of gas readings.

Because of the number of sensors, the number of states
in this example is significant. Although we could carry out
our verification, we were motivated to consider optimisations
of the RoboChart model. A common modelling pattern is
the use of a variable to record the result of a function call,
for example, in an entry action, and subsequent use of that
variable, instead of the function call, in further actions and
transitions from the same state. If that variable is global
in the RoboChart model, it becomes part of the state of
its CSP process and slows down the model checking. We
have changed our original model to remove these variables,
and proved that the two models are equivalent, using their

Fig. 7. Transport swarm state-machine.

definitions generated by RoboTool. The time taken to carry
out the proofs does not change much, but the time to compile
the CSP process for the optimised model is radically shorter.

C. Transporter

In this section, we summarize our analysis of individual
robots in an occlusion-based transport swarm used to push
tall objects towards a goal. The RoboChart model shown
in Fig. 7 is derived from the description in [12], and a
complete account of this case study can be found in [26].
This is a richer example where we make full use of the timed
primitives of RoboChart. For instance, in this example the
robot resumes Searching whenever timed thresholds related
to the last time an object was seen elapse. We model this by
resetting (#T) clock T whenever an objectSeen is triggered,
thus allowing transitions from states MovingToObject and
ClosingInOnObject to be constrained relative to #T using
an expression comparing since(T) and a constant TH Ta.

The main controller was found to be nondeterministic
due to cases where several transitions are enabled at the
same time, particularly some with no trigger but guarded
by timed conditions. For example, the transition from the
state MovingToObject to the state Searching, when enabled
competes with the self-transition in the sub-state Watch of
MovingToObject. To eliminate this nondeterminism, com-
peting transitions need to have a negated timed constraint,
so that whenever a transition with no trigger, but constrained
by time is enabled, no other transitions are enabled.

We also found that it was possible for a critical operation
scanAndAlign, called within a state Scanning, and used for
the robot to align itself alongside an object before pushing
it, to be interrupted immediately. This potentially erroneous

behaviour stems from an implicit assumption in [12] revealed
by our verification, where Scanning should not be exited
before some significant amount of time elapses.

VI. CONCLUSIONS

We have presented RoboTool and its notation, RoboChart.
They enable automatic generation of mathematical defini-
tions that support automatic proof of key properties of
robotic controllers. We have applied this technology to
several examples. Besides those discussed here, we have
models for the alpha algorithm, a humanoid, the relay chain
algorithm for AUV in [27], and other smaller examples.
Our work complements others in the literature. For example,
[28] presents a graphical notation to depict component-
based architectures of software product lines for robotics;
RoboChart could be employed to define the behaviour of the
components in these models. Another state-machine notation
for robotics is in [29]; many of its decisions on including or
excluding UML and statechart features are similar to those
in the design of RoboChart, and so our approach to proof
may be useful for those models.

When compared to other robotic notations, RoboChart is
distinctive in its treatment of time properties (budgets and
deadlines) and support for proof. The checks have been very
efficient. For the untimed analysis, the most expensive in
terms of time was the autonomous chemical detector. The
timed analysis takes longer because the extra tock events
leads to an explosion in the number of states of models of
the machines. This is because each extra time step becomes
a new state in the CSP model.

In continuing with our work, we will pursue extensions to
deal with probabilistic properties and physical models using
results on probabilistic UML [30] and PRISM for model
checking [31], as well as hybrid models, with continuous
variables, to model the platform and environment [32].

ACKNOWLEDGEMENT

We thank Abdulrazaq Abba, Augusto Sampaio, Jim Wood-
cock and anonymous referees for good suggestions. This
work is funded by the EPSRC (EP/M025756/1).

REFERENCES

[1] G. Brat, E. Denney, D. Giannakopoulou, J. Frank, and A. Jonsson,
“Verification of autonomous systems for space applications,” in IEEE
Aerospace Conference, 2006, pp. 1–11.

[2] N. Hochgeschwender et al, “A model-based approach to software
deployment in robotics,” in IROS, 2013, pp. 3907–3914.

[3] S. Alexandrova, Z. Tatlock, and M. Cakmak, “Roboflow: A flow-based
visual programming language for mobile manipulation tasks,” in ICRA,
2015, pp. 5537–5544.

[4] I. Pembeci, H. Nilsson, and G. Hager, “Functional reactive robotics:
An exercise in principled integration of domain-specific languages,” in
ACM SIGPLAN International Conference on Principles and Practice
of Declarative Programming. ACM, 2002, pp. 168–179.

[5] S. Dhoui et al, Simulation, Modeling, and Programming for Au-
tonomous Robots. Springer, 2012, ch. RobotML, a Domain-Specific
Language to Design, Simulate and Deploy Robotic Applications, pp.
149–160.

[6] O. M. Group, “OMG Unified Modeling Language (OMG UML),
Superstructure, Version 2.4.1,” August 2011. [Online].

[7] S. G. Brunner et al, “Rafcon: A graphical tool for engineering
complex, robotic tasks,” in IROS, 2016, pp. 3283–3290.

[8] A. Mallet et al, “Genom3: Building middleware-independent robotic
components,” in 2010 ICRA, 2010, pp. 4627–4632.

[9] W. Li, A. Miyazawa, P. Ribeiro, A. L. C. Cavalcanti, J. C. P.
Woodcock, and J. Timmis, From formalised state machines to im-
plementation of robotic controllers, ser. Springer Tracts in Advanced
Robotics. Springer, 2016.

[10] T. Gibson-Robinson, P. Armstrong, A. Boulgakov, and A. W. Roscoe,
“FDR3 A Modern Refinement Checker for CSP,” in TACAS, 2014,
pp. 187–201.

[11] J. A. Hilder et al, “Chemical detection using the receptor density
algorithm,” IEEE TSMC, vol. 42, no. 6, pp. 1730–1741, 2012.

[12] J. Chen, M. Gauci, and R. Gross, “A strategy for transporting tall
objects with a swarm of miniature mobile robots,” in ICRA, 2013, pp.
863–869.

[13] A. Nordmann et al, “A survey on domain-specific modeling and
languages in robotics,” JSER, vol. 7, no. 1, pp. 75–99, 2016.

[14] M. Foughali etal, “Model checking real-time properties on the func-
tional layer of autonomous robots,” in ICFEM, 2016.

[15] T. Abdellatif et al, “Rigorous design of robot software: A for-
mal component-based approach,” Robotics and Autonomous Systems,
vol. 60, no. 12, pp. 1563–1578, 2012.

[16] F. Fleurey and A. Solberg, “A domain specific modeling language
supporting specification, simulation and execution of dynamic adaptive
systems,” in MoDELS. Springer-Verlag, 2009, pp. 606–621.

[17] K. Kapellos, D. Simon, M. Jourdant, and B. Espiau, “Task level
specification and formal verification of robotics control systems: State
of the art and case study,” International Journal of Systems Science,
vol. 30, no. 11, pp. 1227–1245, 1999.

[18] M. Wachter et al, “The armarx statechart concept: Graphical program-
ing of robot behavior,” Frontiers in Robotics and AI, vol. 3, p. 33,
2016.

[19] H. W. Park, A. Ramezani, and J. W. Grizzle, “A finite-state machine for
accommodating unexpected large ground-height variations in bipedal
robot walking,” IEEE Transactions on Robotics, vol. 29, no. 2, pp.
331–345, 2013.

[20] C. A. Rabbath, “A finite-state machine for collaborative airlift with a
formation of unmanned air vehicles,” Journal of Intelligent & Robotic
Systems, vol. 70, no. 1, pp. 233–253, 2013.

[21] T. Tomic et al, “Toward a fully autonomous uav: Research platform
for indoor and outdoor urban search and rescue,” IEEE Robotics
Automation Magazine, vol. 19, no. 3, pp. 46–56, 2012.

[22] W. Liu and A. F. T. Winfield, “Modeling and optimization of adaptive
foraging in swarm robotic systems,” International Journal of Robotics
Research, vol. 29, no. 14, pp. 1743–1760, 2010.

[23] G. Pini et al, “Task partitioning in a robot swarm: Object retrieval
as a sequence of subtasks with direct object transfer,” Artificial Life,
vol. 20, no. 3, pp. 291–317, 2014.

[24] A. W. Roscoe, Understanding Concurrent Systems, ser. Texts in
Computer Science. Springer, 2011.

[25] A. Miyazawa et al, “RoboChart: a State-Machine Notation for Mod-
elling and Verification of Mobile and Autonomous Robots,” University
of York, Department of Computer Science, York, UK, Tech. Rep.,
2016.

[26] A. Miyazawa, A. Cavalcanti, P. Ribeiro, W. Li, and J. Timmis,
“RoboCalc Case Studies,” 2016. [Online]. Available: www.cs.york.
ac.uk/circus/RoboCalc/case-studies/

[27] B. Naylor et al, “The Relay Chain: A Scalable Dynamic Communi-
cation link between an Exploratory Underwater Shoal and a Surface
Vehicle,” 2014.

[28] D. Brugali and L. Gherardi, HyperFlex: A Model Driven Toolchain
forDesigning and Configuring Software Control Systems for Au-
tonomous Robots. Springer, 2016, pp. 509–534.

[29] M. Klotzbucher and H. Bruyninckx, “Coordinating Robotic Tasks and
Systems with rFSM Statecharts,” JSER, vol. 2, no. 13, pp. 28–56,
2012.

[30] D. N. Jansen, H. Hermanns, and J.-P. Katoen, “A Probabilistic
Extension of UML Statecharts,” in FTRTFT, ser. LNCS, vol. 2469.
Springer, 2002, pp. 355–374.

[31] M. Kwiatkowska, G. Norman, and D. Parker, “Probabilistic symbolic
model checking with PRISM: a hybrid approach,” STTT, vol. 6, no. 2,
pp. 128–142, 2004.

[32] S. Foster and J. C. P. Woodcock, “Towards Verification of Cyber-
Physical Systems with UTP and Isabelle/HOL,” in Concurrency,
Security, and Puzzles, ser. LNCS, vol. 10160. Springer, 2017, pp.
39–64.

