
SCJ-Circus: specification and refinement of Safety-Critical Java programs

Alvaro Miyazawaa,∗, Ana Cavalcantib, Andy Wellingsc

Department of Computer Science, University of York, UK

aAlvaro.Miyazawa@york.ac.uk
bAna.Cavalcanti@york.ac.uk
cAndy.Wellings@york.ac.uk

Abstract

Safety-Critical Java (SCJ) is a version of Java for real-time, embedded, safety-critical applications. It supports cer-
tification via abstractions that enforce a particular program architecture, with controlled concurrency and memory
models. SCJ is an Open Group standard, with a reference implementation, but little support for reasoning. Here, we
present SCJ-Circus, a refinement notation for specification and verification of low-level models of SCJ programs.
SCJ-Circus is part of the Circus family of state-rich process algebras: it includes the Circus constructs for modelling
of sequential and concurrent behaviour based on Z and CSP, and the real-time and object-oriented extensions of Cir-
cus, in addition to the SCJ abstractions. We present the syntax of SCJ-Circus and its semantics, defined by mapping
SCJ-Circus constructs to those of Circus. We also detail a refinement strategy that takes a Circus design that adheres
to a multiprocessor cyclic executive pattern and produces an SCJ program design, described in SCJ-Circus. Finally,
we show how this refinement strategy can be extended for more complex program architectures.

Keywords: SCJ, missions, event handlers, process algebra, semantics, refinement

1. Introduction

Java is a very popular language, but is not suitable for programming real-time safety-critical applications [1]. Re-
cently, however, the Open Group has defined Safety-Critical Java (SCJ) [2], a version of Java suitable for implement-
ing verifiable real-time software. It incorporates part of the Real-Time Specification for Java (RTSJ) [1], introduces
new abstractions (such as, safelets and missions), and removes garbage collection in favour of region-based memory
management [3]. All this supports predictable timing behaviours and constrained program architectures that facilitate
static verification.

SCJ programs can adopt one of three profiles, called levels, which include an increasing number of abstractions.
We focus on the intermediate Level 1, which is comparable in complexity to the Ravenscar [4] profile for Ada. While
adequate for a wide range of applications, Level 1 programs are amenable to automated formal reasoning. It enforces
the programming model of SCJ, with a simplified concurrency model.

An SCJ Level 1 application is formed by a safelet, a mission sequencer, a number of missions, and periodic and
aperiodic event handlers. A safelet instantiates a mission sequencer. Missions are iteratively obtained by the mission
sequencer, as each of them executes and terminates. Each mission is formed by a collection of periodic and aperiodic
event handlers that run concurrently. A mission terminates when one of its handlers requests termination, the mission
sequencer and safelet terminate when all missions have been completed.

The SCJ memory model is based on scoped memory areas. All object allocation occurs within an area and any
created objects are collected at well-defined points in the programs execution. For example, each mission has a scoped
memory area (called mission memory) shared with its associated handlers, which is collected at the end of the mission;
each handler also has it own private scoped memory area that is collected at the end of each of its releases.

∗Corresponding author.

1

Circus

Circus Time OhCircus

SCJ-Circus

time constructs OO constructs

SCJ constructs

SCJ program

Java syntax

executable subset

JSR

SCJVM

Reference
Implementation

Figure 1: Languages and artefacts of SCJ-Circus.

The standardisation effort is being developed under the Java Community Process (JCP), and includes a Java
Specification Request (JSR) for SCJ (JSR 302), a reference implementation (RI), and a Technology Compatibility
Kit (TCK). The goal of the RI is to demonstrate the feasibility of implementing the proposed JSR. The TCK is a suite
of test programs that check that an implementation conforms to the JSR. There is, however, no support available for
design and static verification of SCJ programs included in the standard itself.

Cavalcanti et al. [5] proposes a formal design technique for SCJ based on the Circus family of languages: state-
rich process algebras for refinement that combine Z [6] and CSP [7]. Circus has been used to verify models written in
a number of different notations, such as, Simulink and Stateflow diagrams [8, 9, 10], and SysML [11, 12]. The seman-
tics of Circus is based on Hoare and He’s Unifying Theories of Programming [13], which is a semantic framework
that supports the formalisation of a variety of paradigms in an independent fashion, and their subsequent combina-
tion through specialised techniques. Refinement is an important aspect of Circus as evidenced by its rich refinement
calculus [14], and it is directly supported by the UTP. Circus has been extended to support a number of different
programming paradigms. For example, OhCircus [15] supports the specification of object-oriented designs and pro-
grams, and Circus Time [16] supports modelling real-time programs; they are both useful in our work.

Our goal is to verify low-level models of SCJ programs by refining abstract Circus specifications. We build on the
technique in [5] by refining the verified Circus architectural designs that it produces. For that, we introduce here a new
member of the set of Circus languages: SCJ-Circus. Figure 1 illustrates how the different languages and artefacts
used in this work relate to each other. SCJ-Circus combines OhCircus and Circus Time, and extends them with
the SCJ constructs informed by the JSR. It supports either verification or full development of SCJ programs from an
abstract timed-model to an object-oriented timed model that explicitly uses the SCJ constructs. SCJ-Circus models
define a safelet, a mission sequencer, missions and handlers. Additionally, SCJ-Circus introduces object-creation
statements (new in OhCircus) tailored to the memory model adopted in Safety-Critical Java.

Abstraction can be achieved in SCJ-Circus models using the constructs of Circus for data and behavioural mod-
elling. On the other hand, the models are in direct correspondence with SCJ programs, although platform-specific
aspects of an application, such as memory and thread availability, are not covered. SCJ-Circus models restricted to
the executable subset can be directly translated into SCJ programs and executed on an SCJ Virtual Machine such as
the reference implementation that is part of the Java Community Process.

Cavalcanti et al. [5] propose a refinement strategy for the verification of SCJ programs, but it stops short of
reaching a model concrete enough to support automatic code generation. Here, we extend [5] first by exploring the
use of SCJ-Circus to define a concrete target model for the refinement that is very close to an SCJ program; we specify
the syntax and semantics of SCJ-Circus. Next, we identify patterns of Circus models obtained through the strategy
in [5], and use them as a basis for the development by refinement of SCJ-Circus models. The patterns define designs
with specific interaction and timing properties, namely, time-triggered missions with precedence constraints. We

2

present a core refinement strategy for such designs where we have terminating systems without optional components.
We then show how that strategy can be extended and composed to support refinement of a wider variety of patterns,
in particular, non-terminating and multi-mission designs with optional components. The refinement strategies derive
SCJ-Circus models that can be automatically translated into SCJ.

To define the semantics of SCJ-Circus, we build on a Circus semantics of SCJ programs defined in [17]. We
update that semantics to reflect fundamental changes to the mode of interaction between handlers and the mission-
termination protocol recently accepted by the SCJ standardisation group. We also propose a different structure for the
Circus models to enable compositional refinement with respect to the SCJ-Circus constructs.

In summary, we make the following contributions in this paper: (1) an extensible and fully detailed collection of
basic refinement procedures applicable to Circus designs that follow the SCJ paradigm; (2) a fully specified refinement
strategy for the simple application pattern (single-mission and terminating); and (3) detailed extensions of that base
strategy to support verification of non-terminating and multi-mission applications. With these results, we close the
gap between an abstract Circus model and an SCJ program via a refinement-based verification.

An initial version of the strategy, which does not consider particular patterns to enable the definition of a detailed
tactic as we do here, is presented in [18]. In [19], we identify the patterns that we explore here, and sketch, but not
detail, the refinement strategy that supports the core pattern. Here, we not only fully specify the refinement strategy, its
procedures and laws, but also present it in a way that facilitates extension to deal with other patterns. The formalisation
of SCJ is first presented in [17], and is the basis for our semantics of SCJ-Circus.

In Section 2, we introduce Safety-Critical Java and the Circus family of languages. In Section 3, we present
SCJ-Circus, its syntax and semantics. Section 4 presents our first two patterns, and Section 5 details the core refine-
ment strategy for the first pattern. Sections 6 and 7 extend that strategy to cover our other patterns. Finally, Section 8
concludes, relating our work to those available in the literature, and discussing future work.

2. Preliminaries

In this section, we briefly describe the base notations relevant to our work. Section 2.1 describes SCJ and a running
example, and Section 2.2 introduces the Circus family of languages.

2.1. Safety-Critical Java

SCJ aims to support the use of Java in the development of applications that require predictable performance and
behaviour as well as high reliability. Validation and certification requirements demand virtual machines and libraries
that are both small and highly predictable. The structure of SCJ has been designed to address issues such as memory
management and concurrency, which directly impact performance, behaviour and reliability. An SCJ application is
encapsulated by a safelet, responsible for interacting with the SCJ runtime environment and controlling the execution
of the program. An application consists of a mission sequencer, whose goal is to coordinate the execution of the
missions. For example, an application that has multiple modes of operation may represent each mode as a mission,
and the sequencer is responsible for switching between missions when requested by the currently executing mission.

While a Level 0 application follows a simple cyclic executive model, in which computations are carried out period-
ically in a precise time line, Level 1 applications can take advantage of a multitasking programming model. A Level 1
mission may consist of multiple threads of execution, each of which is encapsulated in an SCJ asynchronous event han-
dler. These handlers provide the main functionality of the mission, and can be invoked periodically (time-triggered) or
aperiodically (event triggered). They may be mapped to individual processors in the execution environment. Hence,
SCJ at Level 1 supports the execution of fully-partitioned multiprocessor applications.

Memory is carefully managed to ensure that fragmentation cannot occur and that all object allocation and deallo-
cation is predictable in both space and execution time. A shared memory area called immortal memory contains the
objects global to the application and, once created, they exist for the lifetime of the application. Objects associated
with each mission are contained within a mission memory area. This area is shared between all event handlers active
within that mission. Mission-allocated objects are the main mechanism that facilitates communication between the
event handlers. Objects that are private to each invocation (release) of an event handler are stored in a per-release
memory area. They are automatically collected at the end of each release. Finer-grain control of memory allocation
and reclamation is possible by nested private memory areas. A set of object assignment rules ensure memory safety

3

Figure 2: Our running example: communication medium

Start HaltMission
Cleanup

Mission
Execution

Select
Mission Initialization

Mission

MissionSequencer

Figure 3: SCJ programming model

and that dangling references cannot result due to references between objects that have different lifetimes. For example,
an object in mission memory cannot hold a reference to an object in an event handler’s per-release memory area.

These main programming abstractions (safelet, mission sequencer, mission, periodic event handler, aperiodic event
handler, mission memory, per-release, and private memory) are characterised by an interface or abstract class of an
API that supports the development of SCJ programs via implementation and extension of these components.

Our running example is a simple application: a communication medium that flags when there is a change in the
value communicated. It has a single mission containing two handlers: one periodic event handler and one aperiodic
event handler. The periodic event handler reads a message at every cycle, stores it in a buffer, and releases the
aperiodic event handler. Upon release, the aperiodic event handler examines the last two elements of the buffer and
outputs “true” or “false”, depending on whether they are the same or not.

Figure 2 shows a class diagram for our example. The interface Safelet and abstract classes MissionSequencer,
Mission, AperiodicEventHandler and PeriodicEventHandler enclosed in rounded boxes are part of the SCJ
API. The application classes extend or implement them. The safelet class implements a method getSequencer that
returns the mission sequencer to be used in the application. In our example, the safelet is an instance of ChkSafelet
and its getSequencer method returns an instance of ChkMissionSequencer. A sequencer implements a method
getNextMission used iteratively by the SCJ infrastructure to obtain a mission. In our example, it returns an instance
of ChkMission the first time it is called, and null the second time, when the program terminates. In fact, in our
example, since the mission implemented by ChkMission does not terminate, getNextMission is called just once,
but the possibility of a second call returning null is still available.

The execution of a mission consists of the parallel execution of all its handlers. Most of the actual behaviour of
the application is concentrated in the handlers. Implementations of the abstract classes AperiodicEventHandler or
PeriodicEventHandlermust supply a method handleAsyncEvent, which determines the behaviour to be executed
on every release of the handler. For example, in the case of a PeriodicEventHandler with period 2 seconds, the

4

p u b l i c c l a s s Checker e x t e n d s A p e r i o d i c E v e n t H a n d l e r {
B u f f e r b u f f e r ;
p u b l i c Checker (B u f f e r b) {

s u p e r (new P r i o r i t y P a r a m e t e r s (P r i o r i t i e s . PR98) ,
new A p e r i o d i c P a r a m e t e r s () ,
s t o r a g e P a r a m e t e r s _ H a n d l e r s) ;
b u f f e r = b ;

}
p u b l i c vo id hand leAsyncEven t () {

i f (b u f f e r . theSame ()) d e v i c e s . Conso le . p r i n t l n (" t r u e ") ;
e l s e d e v i c e s . Conso le . p r i n t l n (" f a l s e ") ;

}
}

Figure 4: SCJ Level 1 example: Aperiodic Event Handler

method handleAsyncEvent is executed every 2 seconds. In our example, the handlers are instances of Reader and
Checker. Figure 4 shows the code for Checker, the aperiodic handler. It extends the AperidicEventHandler class
of the SCJ API, and declares a local variable buffer, a constructor that receives an instance of a class Buffer (not
shown in Figure 2) and assigns it to buffer, and a handleAsyncEvent method.

The constructor of Checker calls the constructor of the superclass with priority 98, a new instance of an object that
defines aperiodic parameters (deadline and deadline-miss handler), and storage parameters that specify the amount of
memory used by the handler. The method handleAsyncEvent checks whether the last two elements of buffer are
the same using the method theSame; if they are, it prints “true”, otherwise it prints “false”. For simplicity, we print
the output of the checker; in practice, it is usually sent to another component of the system. The complete program
can be found in https://www.cs.york.ac.uk/circus/hijac/code/checker.zip.

Here, we focus on SCJ Level 1, which is comparable to Ravenscar Ada [4], due to the level of complexity of
both the programs and the execution model. Luckcuck et al. [20] have formalised the semantics of SCJ Level 2 in
Circus. That formalisation can serve as the basis for an extension of our refinement strategy and that of Cavalcanti et
al. [5] to support verification of SCJ Level 2 programs. However, the increase in complexity would likely reflect in
the complexity of the strategy as well as in the level of automation achievable.

2.2. Circus
In this section, to describe Circus and its timed variant, we use as a running example the Circus Time process

PEHFW in Figure 5. It models the general behaviour of a periodic event handler.
The main modelling elements of a Circus specification are processes (indicated using the keyword process). In

general, a Circus (Circus Time or OhCircus) specification consists of a sequence of paragraphs that define pro-
cesses (as well as channels, constants, and other constructs that support the definition of processes). Processes are
used to define the system and its components: they have a state that is encapsulated and interact via channels.

A process definition declares state components (indicated by the keyword state), auxiliary actions, and a main
action (at the end, prefixed by •) that describes the behaviour of the process. In Figure 5, the process PEHFW is
parametrised by an identifier id of a given type IDENTIFIER for a periodic handler, and declares two state components,
start and period, both of type N, defining the start time and period of the handler. PEHFW declares only one auxiliary
action, namely, Execute. Actions are specified using a combination of Z [6] and guarded commands [21] for data
modelling, CSP [7] for behavioural descriptions, and time constructs. Table 2.2 summarises the Circus operators used
in this paper. For each operator, its symbol, name, and an informal description are provided.

The main action of PEHFW is a recursion (µX • . . .) whose iterations start an instance of the handler via a
communication through the channel start peh. In this communication, the handler identifier id is output (!), and its
start time s and period p are input (?). The values of s and p are then assigned to the state components start and period.

The execution of a newly created handler is defined by the auxiliary action Execute. It first waits for start time
units (wait start), and then starts two recursive actions in parallel (A1 J ns1 | cs | ns2 K A2) synchronising on the
channels handleAsyncEventCall and done handler. The first parallel action specifies that at each step of the recursion
there is an external choice (@) for communication on the channels handleAsyncEventCall or done handler. In this

5

https://www.cs.york.ac.uk/circus/hijac/code/checker.zip

Symbol Name Description
wait e wait Waits for a exactly e time units before terminating.
wait e1 . . e2 wait Waits for any time between e1 and e2 time units before terminating.
PI e deadline Requires that a process P terminate within e time units.
PJ e start-by Requires that a process P start within e time units.
Skip skip Terminates immediately without any side effects.
Stop deadlock Refuses all interactions, but does not change the state.
P J n1 | cs | n2 K Q parallel composition Run P and Q in parallel synchronising on events in cs. State

changes made by P only affect state components in ns1, and
changes made by Q only affect ns2.

P 9 Q parallel composition Run P and Q in parallel without synchronisation.
{| e |} channel set Set of all possible events associated with channel e.
µX • P(X) recursion Behave like P with occurrences of X replaced by P itself.
c −→ P prefix Synchronise on channel c and then behave like P.
c?x −→ P input Synchronise on channel c with any possible value, store the chosen

value in x, and behave like P.
c?x : b(x) −→ P restricted input Synchronise on channel c with any value such that b(x) is true, store

the chosen value in x, and behave like P.
c!e −→ P output Synchronise on channel c with value e and behave like P.
v := e assignment Assign value e to variable v.
P; Q sequential composition Behave like P, and once P terminates, behave like Q.
P @ Q external choice Allow the environment to choose between behaving like P or Q.
P u Q internal choice Non-deterministically choose between behaving like P or Q.
P 4 c −→ Q interrupt Behave like P, until synchronisation on c becomes possible, at

which point, behave like Q.
var v : T • P local variable Declare a local variable v of type T and behave like P within the

context of the variable.
P \ cs hiding Run P with events in cs hidden.
(e) N P guard If e is true, behave like P, otherwise deadlock.
c@t −→ P timed prefix Record in c the amount of time elapsed between the initial offer of

c and its actual occurrence.
Jcs K i : I • P(i) iterated parallelism Run P(i) in parallel for all i in I synchronising in cs.
g

i : I • P(i) iterated interleave Run P(i) in parallel for all i in I without synchronisation.

; i : I • P(i) iterated sequential
composition

Run P(i) in sequence for all i in I.

Table 1: Summary of Circus operators

way, the method handleAsyncEvent can be called through the channel handleAsyncEventCall or the handler can be
terminated with a choice of done handler. If handleAsyncEvent is called, then it must return, as indicated with a
communication via handleAsyncEventRet, within period time units. This is specified using a Circus Time deadline
construct AI e that defines that the action A must terminate within e time units.

The second parallel action in Execute adds a requirement that a call to handleAsyncEvent must be started as
soon as it is available, and should be made available again only after period time units. This is achieved first by
imposing a restriction on the communication handleAsyncEventCall using the start-by operator (AJ e) that specifies
that an action A must start within a certain number of time units. In the example, it must start immediately, af-

6

process PEHFW =̂ id : IDENTIFIER • begin
state PEHFWState == [start, period : N]
Execute =̂ wait start;

 µX •

 (handleAsyncEventCall!id −→ handleAsyncEventRet!id −→ Skip)I period; X
@
done handler!id −→ Skip

J{} | {| handleAsyncEventCall.id, done handler.id |} | {}K
(µY • ((handleAsyncEventCall!id −→ wait period)J 0); Y) 4 done handler!id −→ Skip

• µX •

start peh!id?s?p −→ activate handlers −→ start := s; period := p; Execute; X
@
activate handlers −→ X
@
terminate −→ Skip

end

Figure 5: Framework process of the periodic event handler.

ter 0 time units. Additionally, the action wait period after the communication on handleAsyncEventCall ensures that
handleAsyncEventCall is only offered after period time units. If the first recursion is terminated by a synchronisation
on the channel done handler, the second recursion must also be terminated. This is achieved by the interruption of
the recursion by a synchronisation on done handler using the interrupt operator (4).

Processes can be composed, via CSP operators, to define other processes. In Circus Time, wait and deadline
operators can define time restrictions. In OhCircus models, we can in addition define paragraphs that declare classes
used to define types. More information about these languages can be found in [14, 16, 15].

In our previous work [5], a refinement strategy is presented that supports the verification of SCJ program designs.
This strategy is structured in three main phases, with the intermediate processes characterised in terms of anchors,
which are special patterns of Circus processes that use specific combinations of notations. The strategy applies to an
abstract Circus Time model called an A-anchor, which is first refined into an O-anchor: an object-oriented model
written in OhCircus. The O-anchor is further refined into an E-anchor, which introduces the architectural design
induced by the SCJ execution model. Finally, in the third phase, the E-anchor is refined into an S-anchor that uses
SCJ-Circus. While the first two phases are fully explored in previous works [5], it is only briefly indicated how to
proceed from the E-anchor to the S-anchor. This last phase is the focus of this paper. In particular, the patterns we
identify here are special forms of E-anchors produced by the refinement strategy in [5].

CSP and Circus adopt a notion of correctness based on refinement, while other process calculi are often based
on strong and weak bisimulation. While strong bisimulation is too strong for CSP and Circus, as it distinguishes
processes based on internal behaviour, weak bisimulation does not distinguish between deadlock and divergence [7].

In the sequel, we further explain the notation as needed, and next describe our new Circus variant.

3. SCJ-Circus

As said before, SCJ-Circus extends OhCircus and Circus Time with abstractions specific to SCJ. In what follows,
Section 3.1 discusses the syntax of SCJ-Circus, Section 3.2 presents the Circus model of the SCJ framework (its API
and programming model), and Section 3.3 describes the semantics of SCJ-Circus based on the model of Section 3.2.

3.1. Syntax

Here we provide an overview of the syntax of SCJ-Circus and illustrate it using our running example in Figure 12.
The complete specification of the syntax is in [22]; an excerpt is provided in Appendix C.

SCJ-Circus extends the syntax of OhCircus and Circus Time with paragraphs that allow the specification of
safelets, mission sequencers, missions, and handlers. An SCJ-Circus program is a sequence of SCJCParagraphs,
which can be a Circus paragraph (in the syntactic class CircusParagraph), or the declaration of a safelet, mission

7

sequencer, mission or handler. CircusParagraph includes OhCircus paragraphs, and, therefore, includes the definition
of classes. While object-orientation is central to SCJ, our refinement strategy does not need to concern itself with this
aspect because the E-anchor, which is the focus of our work, is already object-oriented. The structure of each of the
SCJ-specific abstractions is determined by the fields and methods that must be specified for an application.

The root element of an SCJ program is a safelet, whose syntax in SCJ-Circus is specified as an SCJCSafelet,
which introduces a name taken from the set of valid Circus names N, and allows the specification of state compo-
nents (state), an initialisation method (initial), auxiliary actions (SCJCSafeletProcessParagraph) and the getSe-
quencer method. While the order of the paragraphs in SCJCSafelet (or any of the other SCJCParagraph elements)
is not important, we fix a particular order as specified in Appendix C to simplify the presentation.

The state components model the fields of the safelet class, and the initial method, its constructor. While the
specification of state components and initialisation method are optional, the getSequencer method is mandatory.
The auxiliary actions define any extra methods implemented in a safelet class. An SCJCSafeletProcessParagraph
allows the specification of an action whose body is an SCJCSafeletAction. This restricts the constructs that can be
used in the definition of an action of a safelet, in particular, the type of allocation constructs as discussed later.

The SCJ-Circus paragraphs for the mission sequencer, missions and handlers are similar, providing means for
the specification of state components (state), constructors (initial), and the methods of the corresponding element
that must be provided by the developer. For example, SCJCPeriodicHandler is defined similarly to SCJCSafelet.
In this case, the start and period fields, and the handleAsyncEvent action are mandatory. The specification of state
components and initialisation method is optional, and the order of the components is fixed just for simplicity.

SCJ enforces an allocation discipline in the use of its memory model in which different components (safelets,
missions, and so on) may instantiate new objects only in their memory areas or in areas that outlive their execution. We
reflect this discipline in SCJ-Circus by restricting syntactically which paragraphs may include allocations, through
different new keywords, in particular areas. A safelet may instantiate objects only in the immortal memory, and
therefore may use only the keyword newI for instantiation of objects. A handler, on the other hand, may allocate
objects in the immortal, mission (newM), per-release (newPR) or private areas (newPM).

In order to illustrate the syntax of SCJ-Circus, Figure 6 shows the SCJ-Circus specification of our example. It
matches the structure of the code, but also specifies timing requirements. Reader reads an input every P time units,
with an input deadline of ID time units. Each cycle of Reader takes between 0 and PTB time units, and must terminate
within PD time units. Checker outputs values within OD time units, and each release takes at most ATB time units,
and must terminate within AD time units.

The constants PTB, ATB, ID, OD, PD, AD and P need to satisfy a number of conditions to ensure that periods and
deadlines can be respected. These conditions require that the sum of the periodic time budget (PTB) and the input
deadline (ID) does not exceed the periodic deadline (PD). Additionally the sum of the periodic deadline (PD) and the
aperiodic deadline AD must not exceed the period P of the periodic event handler. These constraints are specified in
the SCJ-Circus model as part of the declaration of these constants.

3.2. Semantic model
In [17], an approach to modelling SCJ programs has been proposed; it is a translation strategy defined as a

semantic function that maps SCJ programs to Circus specifications. We adopt a similar approach to give semantics
to SCJ-Circus. Our Circus specifications, however, are updated to consider recent significant changes to SCJ and to
cater for compositional reasoning about SCJ constructs described in SCJ-Circus. Figure 7 depicts the structure of our
semantic models. Its complete Circus Time definition can be found in [22].

For a given program, each component of the SCJ paradigm (safelet, sequencer, and so on) is modelled by a Circus
Time process. Such a process is defined as the parallel composition of two processes: a general framework process
that captures the behaviour of the SCJ component as an element of the SCJ programming model, and a process that
captures the behaviour of the component defined in the particular application. For example, the process PEHFW in
Figure 5 is the framework process for a periodic handler. It defines the general flow of execution of such a handler
without giving the details of a particular handler implementation.

The framework and application processes of each SCJ element interact through events that represent method
calls. For example, the channels safeletInitializeCall, safeletInitializeRet, getSequencerCall and getSequencerRet in
Figure 7 are used by the safelet framework process SafeletFW to communicate with the application-specific process
S App. They are used to model calls to the methods initialize and getSequencer of the application.

8

PTB,ATB, ID,OD,PD,AD,P : Z

PTB + ID ≤ PD ∧ PD + AD ≤ P

safelet ChkSafelet =̂ begin
getSequencer =̂ res return • return := new ChkMissionSequencer()

end

sequencer ChkMissionSequencer =̂ begin
state [done : B]
initial =̂ done := false

getNextMission =̂ res return : IDENTIFIER •

 if ¬ done −→ done := true; return := new ChkMission()
8 done −→ return := null
fi

end

mission ChkMission =̂ begin
state [buffer : seqN]
initial =̂ buffer := 〈0, 0〉
initialize =̂ var ah, ph : IDENTIFIER • ah := newHandler Checker; ph := newHandler Reader(ah)
cleanup =̂ res return : B • return := true

end

periodic handler Reader =̂ begin
start 0 period PD
state [ah : IDENTIFIER]
initial =̂ ah : IDENTIFIER • this.ah := ah
handleAsyncEvent =̂

((input?x −→ Skip)J ID; getBuffer?buffer −→ setBuffer!(tail buffer a 〈x〉) −→ release(ah);
(wait 0 . . PTB))I PD

end

aperiodic handler Checker =̂ begin

checker : seqN 7→ B

∀ b : seqN | # b = 2 • (if b 1 = b 2 then checker(b) = true else checker(b) = false)

handleAsyncEvent =̂
getBuffer?buffer−→ if check(buffer) = true −→ (output!true −→ Skip)J OD

8check(buffer) = false −→ (output!false −→ Skip)J OD
fi

 ; wait 0..ATB

I AD

end
Figure 6: S-anchor for our running example.

9

Figure 7: Structure of semantic models

process SafeletFW =̂ id : IDENTIFIER • begin
Execute =̂ getSequencerCall!id!id −→ getSequencerRet!id!id?s−→ if s , null −→ start sequencer −→ done sequencer −→ Skip

8s = null −→ Skip
fi

• safeletInitializeCall!id!id −→ safeletInitializeRet!id!id −→ Execute; end safelet app −→ terminate −→ Skip

end
Figure 8: Framework process for Safelet.

In the models of SCJ programs presented in [17], the application processes are combined together using interleav-
ing, framework processes are grouped together in parallel, and both groups are then combined in parallel to yield the
semantic model of the whole application. This structure proved not ideal for the compositional analysis of SCJ-Circus
programs, because the aspects relevant to a specific SCJ-Circus construct, such as a handler, are spread through the
model. A model that adopts the structure described in this paper, where application and framework processes are
composed on a per-element basis, is equivalent to the model structured as in [17].

The framework process SafeletFW that specifies the generic behaviour of a safelet is shown in Figure 8; it is
parametrised by the identifier of the safelet. This process, first of all, requests to the application process the initial-
isation of the safelet using the channels safeletInitializeCall and safeletInitializeRet. In each communication corre-
sponding to a method call or return, the identifier of the caller and callee are included, along with the arguments, if
any, in the call, and with the return value, if any, in the return communication. Here, both the caller and the callee
have the same identifier id used for both the framework and application processes of the safelet.

After the call to initialize, SafeletFW obtains a mission sequencer via the channels getSequencerCall and
getSequencerRet. If the sequencer is different from null, SafeletFW starts it (using the channel start sequencer);
otherwise, it terminates. If the sequencer process is started, SafeletFW waits for the completion of its execution,

10

signalled via the channel done sequencer. At that point, SafeletFW indicates to the application process that it is
terminating through the channel end safelet app, waits for all other components of the application to terminate using
the channel terminate, and finally terminates (Skip).

3.3. Semantics

The semantics of SCJ-Circus is formalised as a function from well formed models, written in accordance with the
abstract syntax of SCJ-Circus, to Circus models, that is, elements of the category CircusProgram, as defined in [14].
In order to improve readability, the semantics is presented in terms of translation rules that describe Circus concrete
syntax. In essence, the semantic function composes the behaviours specified in SCJ-Circus with the model of the
SCJ framework discussed in Section 3.2 as indicated in Figure 7.

Formally, the semantics of an SCJ-Circus program p is given by the Circus program formed by the Circus
paragraphs that are obtained by applying specific semantic functions to the paragraphs of p. This is specified by the
function J KSCJProgram. It takes a well formed SCJ-Circus program p and outputs a Circus program composed of
the sequence of paragraphs produced by the semantic functions J KSCJParagraphs and J KApplication. The first takes the
sequence of SCJ-Circus paragraphs of p (that is, p.paragraphs) and outputs a sequence of Circus paragraphs. The
second takes p and outputs a single paragraph that defines a parallel process that composes the processes defined by
Jp.paragraphsKSCJParagraphs to specify the overall meaning of the SCJ-Circus program p. These paragraphs use the
definitions of the processes that model the SCJ framework, like PEHFW and SafeletFW.

J KSCJCProgram : SCJCProgram 7→ CircusProgram

∀ p : WF SCJCProgram • JpKSCJCProgram = Jp.paragraphsKSCJCParagraphs
a JpKApplication

We use the mathematical notation of Z [6] to specify our semantic functions, and explain any non-standard use of
notation in Z as needed. In what follows, we focus on the semantic function J KSCJCSafelet for the safelet, which is used
by J KSCJCParagraphs to give semantics to an SCJ-Circus safelet paragraph. The complete semantics is defined in [22].

As already said, the semantics of a safelet is given by the parallel composition of a Circus process that characterises
the application-specific behaviours and a Circus process that models the generic behaviour of the SCJ framework. It
is formalised by the function J KSCJCSafelet in Figure 9. It takes an SCJ-Circus safelet paragraph s and outputs a
sequence of two Circus processes: the application process and the process that models the complete behaviour of s as
the parallel composition of the framework process SafeletFW, instantiated with the identifier of s, and the application
process. The channels on which these processes communicate are internal to the safelet and, therefore, hidden (\).
Figure 10 shows, as an example, the processes that define semantics of the ChkSafelet paragraph of the SCJ-Circus
model in Figure 6 as specified by the application of J KSCJCSafelet to that paragraph.

In the definition of a semantic function, guillemets (« ») are used to distinguish the Circus syntax from the meta-
language used to specify the rules. For instance, «safelet app(s)», indicates that the function safelet app must be
evaluated on the parameter s and the resulting syntax tree must be substituted in place of «safelet app(s)».

The application process for a safelet paragraph s is named after s with the extra suffix App; in our example, we
have ChkSafelet App. The function name gives the name of a safelet. The safelet process is named just after s itself.
The definition of J KSCJCSafelet relies on the function safelet app that produces the application-specific process, and
the function SafeletCS that calculates the set of internal channels.

The safelet app function is also shown in Figure 9. It takes an SCJ-Circus safelet paragraph s and constructs the
definition of a process with the same state (s.state) as s. Each action N =̂ A of s is translated into a Circus action
using a pair of channels to model the call and return of the method represented by the action. Similarly, the actions
getSequencer and initialize are translated into the actions getSequencerMeth and initializeApplicationMeth.

For our example, the safelet paragraph does not have a state, and so, neither does its safelet process. In addi-
tion, this paragraph has no extra actions: just getSequencer and, implicitly, initialize, which is omitted because its
behaviour is just Skip. The matching actions in Figure 10 are getSequencerMeth and initializeApplicationMeth.

The translation of actions is defined by the function translate method, which takes as arguments the identifier of
the safelet paragraph (which is used to define the identifiers in the communications that represent the method calls
and returns), the name of the action, and its body. It defines an action for the Circus process where inputs are taken
via a Call channel, the body is executed, and then outputs are returned via a matching Ret channel.

11

J KSCJCSafelet : SCJCSafelet 7→ seq CircusParagraph

∀ s : WF SCJCSafelet •

JsKSCJCSafelet =

 process «name(s)» App =̂ «safelet app(s)»
process «name(s)» =̂

(SafeletFW(«name(s)»ID) J «SafeletCS(s)» K «name(s)» App) \ «SafeletCS(s)»

safelet app : SCJCSafelet 7→ BasicProcess

∀ s : WF SCJCSafelet •
safelet app(s) =

begin
state «s.state»
«for each p : s.paragraphs of (N =̂ A) do»

«N»Meth =̂ «translate method(name(s)ID,N,A)»
«end»
getSequencerMeth =̂ «translate method(name(s)ID, getSequencer, s.getSequencer)»
initializeApplicationMeth =̂ «translate method(name(s)ID, initializeApplication, s.initialize)»

Methods =̂ µX •

getSequencerMeth; X
@
initializeApplicationMeth; X
@
«for each p : s.paragraphs of (N =̂ A) do» @ «N»Meth; X«end»
@
end safelet app −→ Skip

• Methods

end

Figure 9: Semantic functions for safelets.

For instance, getSequencerMeth is started with a communication getSequencerCall?x!ChkSafeletID. We recall
that the Call and Ret channels always take as parameters the identifiers of the caller, x in this example, and of the callee,
ChkSafeletID here. This ensures that results are returned to the caller via the Ret channel, and correct synchronisation
with the framework process for the component: SafeletFW(ChkSafeletID), in this case.

The body of the method is almost unchanged, except for two points. First, results are returned via the Ret channel.
Second, creation of objects representing components of the SCJ paradigm (sequencer, mission, and so on) is translated
to a communication. In our example, the instantiation of the mission sequencer, new ChkMissionSequencer(), is
modelled as a communication via the channel startMissionSequencer, which passes the identifier of the safelet to
the sequencer application process. In general, any parameters required by the constructor are also passed. This
communication is with the application process, because the constructor might have non-standard parameters.

All the actions of the safelet paragraph (getSequencerMeth and initializeApplicationMeth) in Figure 10 are com-
bined in the action Methods that recursively (µX • F(X)) offers them in external choice (@) as well as the possibility
to terminate the recursion via a synchronisation on the channel end safelet app. The overall behaviour of the process
defined by its main action (marked by the symbol • at the end of the process definition) is the action Methods.

The parallel composition of the process obtained from s as defined by safelet app(s) and an instance of the
framework process SafeletFW defines the semantics of the safelet s. In our example, the parallel composition with
ChkSafelet App defines ChkSafelet. The parallelism requires synchronisation on the call and return channels, as well
as on end safelet app. These channels are identified by SafeletCS(s) and made internal using the hiding operator (\).

The functions sequencer app, mission app, PEH app and AEH app that define the application processes for
sequencers, missions, periodic and aperiodic event handlers are defined similarly [22]. Of note, in the case of the

12

process ChkSafelet App =̂ begin
getSequencerMeth =̂ getSequencerCall?x!ChkSafeletID−→

var return : IDENTIFIER •
startMissionSequencer!ChkSafeletID!ChkMissionSequencerID−→
return := ChkMissionSequencerID;

getSequencerRet!x!ChkSafeletID!return −→ Skip

initializeApplicationMeth =̂ safeletInitializeCall?x!ChkSafeletID −→ Skip;

safeletInitializeRet!x!ChkSafeletID −→ Skip

Methods =̂ µX • getSequencerMeth; X @ initializeApplicationMeth; X @ end safelet app −→ Skip

• Methods
end

process ChkSafelet =̂

(SafeletFW(ChkSafeletID)
J{| getSequencerCall, getSequencerRet, safeletInitializeCall, safeletInitializeRet, end safelet app |}K

ChkSafelet App)
\{| getSequencerCall, getSequencerRet, safeletInitializeCall, safeletInitializeRet, end safelet app |}

Figure 10: Semantics of the Safelet in our running example.

application process for a mission, is the fact that it includes a component MArea that models the mission memory.
Allocation of objects in the immortal memory by missions and handlers, and in the mission memory by handlers,

has the potential to create a problem with resources. Namely, long-running programs may exhaust the space in
these areas, if the allocation is not bounded. Typically, therefore, in an SCJ program, memory is allocated in the
immortal area just by the safelet and the sequencer, and in the mission area just by the mission itself. Obviously, other
components may read and update existing objects allocated in these areas, but allocation of new space is restricted.

For the sake of simplicity, therefore, we take a view that the mission paragraph of an SCJ-Circus program defines
via its state the contents of the memory area for that mission. Accordingly, each mission application process has an
action MArea with local variables corresponding to those that the associated mission allocates in the mission area.
This action manages these variables using set and get channels, and can be terminated using end mission app. For
our example, its definition (inside a process ChkMission App) is as follows.

MArea =̂ var buffer : seqN •

 µX •

setBuffer?o!ChkMissionID?x −→ buffer := x; X
@
getBuffer?o!ChkMissionID!buffer −→ X
@
end mission app −→ Skip

The set and get channels have as additional parameters the identifiers of the caller and callee of these operations. In
this way, these channels can be used for point-to-point communication between each handler and the mission area.
Access to the shared variables in the MArea actions is via these set and get channels. This is handled by a variant of
the translate method function that takes a set with the names of the shared variables as input.

Regarding the immortal memory, we can take a similar view, and include an action IArea, similar to MArea, in the
safelet application process. For simplicity, however, we do not include such actions. Typically, the immortal memory
is used for static variables, and allocations of objects representing the safelet and the sequencer. We do not consider
such objects in our model, but an extension to include them is not difficult because our semantics includes a function
to define a memory action, which can be used to define an immortal-memory action as well. It is worth emphasising,
however, that such a program cannot have its resource allocation analysed statically.

Next, we define patterns of Circus specifications that we consider for refinement to SCJ-Circus programs.

13

process P =̂ begin
PHandleri =̂ µX • (Fi I PERIODICDEADLINE 9 wait PERIOD); X @ t −→ Skip
AHandlerj =̂ µX • ((cj −→ Gj)I APERIODICDEADLINE 9 wait PERIOD); X @ t −→ Skip
MArea =̂ var x : T • µY • setx?nx −→ x := nx; Y @ getx!x −→ Y @ t −→ Skip
Termination =̂ rt −→ µX • rt −→ X @ t −→ Skip
Mission =̂ ((MArea ‖ (‖ i : I • PHandleri) ‖ (‖ j : J • AHandlerj)) J αS | {| t, rt |} | {} K Termination) \ {| . . . |}
MissionSequencer =̂ Mission
Safelet =̂ MissionSequencer
• Safelet

end
where PERIODICDEADLINE ≤ PERIOD ∧ APERIODICDEADLINE ≤ PERIOD

Figure 11: E-anchor pattern: single time-triggered mission with precedence constraints without optional components.

4. Patterns

In this section, we consider two main patterns of E-anchor. These patterns specify timing and interaction designs
that are the basis for our refinement strategy. In Sections 6 and 7, the strategy is extended to cover new patterns.

Cyclic in lock step. The core pattern we consider characterises single mission applications, in which all periodic and
aperiodic handlers are executed at every time step. This pattern in shown in Figure 11; it is for E-anchors produced
by the strategy in [5], and the object of our simplest refinement strategy, which transforms the synchronous releases
of aperiodic event handlers in the Circus models into asynchronous releases that occur in SCJ-Circus.

In the pattern in Figure 11, the application is defined by a process P. It has no state (since we are not treating the
immortal memory in SCJ-Circus). The behaviour of P is defined by an action Safelet. This action is simply defined
by another action MissionSequencer, which in turn is defined by an action Mission modelling the single mission of
the application. The indirection introduced by defining Safelet and MissionSequencer provides a hook to generalise
this pattern and its associated refinement strategy as discussed later on.

Parallelism occurs in the definition of Mission between the actions PHandleri and AHandlerj that model the
periodic and aperiodic handlers, the action MArea that models the mission memory, and the termination management
action Termination. Like in the semantics of SCJ-Circus, the mission-memory action MArea declares the variables
shared by the handlers and offers communications over get and set channels that support reading and writing to
the shared variables. Here, however, we do not parametrise the communications on the get and set channels with
identifiers (for the caller and callee) and use an application-defined channel to accept a request to terminate.

Termination accepts a synchronisation on a channel rt; this corresponds to a request from a handler to termi-
nate (carried out in SCJ using the method requestTermination). Afterwards, Termination starts a recursion that
at each iteration either accepts another communication on rt (that is, a further request to terminate) and recurses, or
synchronises on t and terminates. The synchronisation on t terminates the handlers. This captures the SCJ termination
protocol, which caters for the possibility that several handlers request termination, until termination actually occurs.

A parallelism of actions in Circus needs to identify the partition of variables that each parallel action can modify
to avoid race conditions. (So far, these sets of variables have been empty.) In the case of the Mission action, however,
in Figure 11, all variables in scope, denoted by αS can be modified by the parallelism of the handlers with the memory
area, (action MArea ‖ (‖ i : I • PHandleri) ‖ (‖ j : J • AHandlerj)), while Termination modifies no variables, and so
is associated with the empty set {} of variables in the use of the parallel operator . . . J αS | {| t, rt |} | {} K

Periodic event handlers PHandleri are defined by recursive actions whose iterations take some fixed amount of
time (wait PERIOD) whilst executing (in interleaving) an action Fi that models the behaviour of the handler release
and takes at most PERIODICDEADLINE time units; the recursion runs until it is terminated via a synchronisation on
t. Since PERIOD, PERIODICDEADLINE and APERIODICDEADLINE are constants used explicitly in the pattern,
the constraint specified in the where clause of Figure 11 can be established automatically.

We illustrate the pattern in Figure 11 with the E-anchor in Figure 12 for our running example. The safelet,
sequencer, and mission are defined by the actions ChkSafelet, ChkMissionSequencer, and ChkMission. The main
behaviours are specified in the handlers defined by Reader and Checker. Such an E-anchor can be obtained using
the refinement strategy described in [5] from a much more abstract Circus model. The action Reader for the periodic

14

process Chk =̂ begin

Reader =̂ µX •

(

(input?x −→ Skip)J ID; getBuffer?buffer−→
setBuffer!((tail buffer)a 〈x〉) −→ rcheck −→ (wait 0 . . PTB)

)
I PD

9 wait PER

 ; X

@
end −→ Skip

Checker =̂ µX •

rcheck −→

getBuffer?buffer −→ var b : B •
b := check(buffer);
if b −→ (output!true −→ Skip)J OD
8¬ b −→ (output!false −→ Skip)J OD
fi;
wait 0..ATB

I AD

9
wait PER

; X

@
end −→ Skip

MArea =̂ var buffer : seqN • µX • setBuffer?x −→ buffer := x; X @ getBuffer!buffer −→ X @ end −→ Skip

Termination =̂ requestTermination −→ µX • requestTermination −→ X @ end −→ Skip

ChkMission =̂ ((MArea ‖ Reader ‖ Checker) J {buffer} | {| end, requestTermination |} | {} K Termination) \ {| . . . |}

ChkMissionSequencer =̂ ChkMission

ChkSafelet =̂ ChkMissionSequencer

• ChkSafelet
end

where PD ≤ PER ∧ AD ≤ PER
Figure 12: E anchor for the communication medium example.

AHandlerj =̂

µX • ((((cj −→ Gj)I APERIODICDEADLINE @ wait PERIOD) 9 wait PERIOD); X) @ t −→ Skip

where APERIODICDDEADLINE ≤ PERIOD
Figure 13: Pattern: cyclic not in lock-step.

handler performs a communication via a channel input, with a deadline ID, followed by an update of buffer, and a
trigger of the aperiodic handler Checker via a release signal rcheck, all with a budget of PTB time units.

The execution of an aperiodic event handler AHandlerj is triggered by a synchronous event cj; in our example, it
is rcheck. This may occur at any time during the cycle, but the synchronisation on cj and the following action Gi that
models the behaviour of the handler release must terminate within APERIODICDEADLINE time units. In Checker,
the action recovers the buffer, checks its contents as defined by a function check whose definition we omit, and reports
via a channel output whether it is consistent or not (true or false), all with a time budget of ATB time units.

We require PERIODICDDEADLINE ≤ PERIOD ∧ APERIODICDEADLINE ≤ PERIOD, so that both the peri-
odic and the aperiodic handlers releases can terminate within the cycle of the mission. For our example, these time
expressions are defined by constants PD, PER, and AD. We have PD ≤ PER ∧ AD ≤ PER as required, and also need
further restrictions involving ID, PTB, and ATB to ensure feasibility of the deadlines. These restrictions, which are
omitted in Figure 12, are enforced by a global constraint on these constants.

Cyclic not in lock step. Our second pattern, in Figure 13, allows for an aperiodic handler not to be called in a cycle.
It differs from that in Figure 11 just in the models of the aperiodic handlers, described in Figure 13.

15

An AHandlerj action in this pattern is recursive like in the previous pattern. The iterations of the recursion
again cater for a release via a channel cj associated with a handling action Gj, which needs to terminate within
APERIODICDEADLINE time units, and cater for termination through the channel t. In addition, however, if a release
or termination does not take place within PERIOD time units, the choice offered in the iteration terminates and a
new iteration is started. This is what caters for the possibility that a release does not take place in a given cycle; the
deadline APERIODICDEADLINE is then considered from the start of the next cycle.

The purpose of the refinement strategy that we detail in the next few sections is threefold. First, it guarantees that
the design embedded by the patterns can indeed be realised in SCJ. Not every model that conforms to our patterns
can be correctly implemented in SCJ with the suggested structure of missions and actions. For example, in the design
model, there may be a possibility that an aperiodic handler is not released in a particular cycle (and should have been
refined to an E-anchor that follows our second pattern, and not the first). Its rendering in SCJ may lead to visible inputs
and outputs not allowed in the model. Second, by deriving via refinement an SCJ-Circus model, we enable automatic
translation (from an SCJ-Circus model) to SCJ code via trivial transformations whose soundness is easier to establish.
Finally, we obtain a model whose abstractions are in direct correspondence with those of the SCJ paradigm. In this
model, reasoning about use of the memory model, for example, is much simpler than what is required to deal with
arbitrary Circus models. For example, the technique in [23] is applicable.

After presenting our refinement strategy in the next section, we consider in Sections 6 and 7 variations of the these
patterns for applications that do not terminate or have multiple missions.

5. Refinement Strategy

In this section, we present the refinement strategy for the pattern in Figure 11, and then explain how it can be
adapted for that in Figure 13. Our refinement strategy is based on four phases that step-by-step introduce the complete
structure of an SCJ-Circus program. The phases of the strategy and its target are shown in Figure 14. Each phase
introduces a particular aspect of the final SCJ-Circus program as described below.

CF introduces the control flow of the program accounting for aspects such as requests to start a mission or a se-
quencer;

AP takes advantage of the control flow introduced in the previous phase to clearly isolate the application specific
behaviours from the behaviour of the framework;

FW acts upon the framework behaviours isolated by the previous phase and completes them to match the full seman-
tics of SCJ-Circus ; and

Conv uses the semantics of SCJ-Circus to convert the Circus program obtained in the previous phase into an
SCJ-Circus program that can then be automatically translated into SCJ.

The target SCJ-Circus program has the form shown in Figure 14. For example, each action PHandleri in the starting
model is defined in a corresponding SCJ-Circus periodic handler paragraph, whose handleAsyncEvent paragraph
is determined by the body of PHandleri. Similarly, each aperiodic, mission, mission sequencer and safelet action is
defined in a corresponding SCJ-Circus paragraph. The first three phases (CF, AP and FW) act only on constructs of
the time and object-oriented languages, Circus Time and OhCircus, whilst the last phase (Conv) produces SCJ-Circus
specifications.

Our refinement strategy is based on a collection of specialised laws and associated refinement procedures that can
be applied with a very high level of automation. While it is possible to identify a smaller set of more general laws, the
proof obligations generated are likely complex and difficult to discharge automatically.

An important aspects of our refinement strategy is that most of the refinement steps introduce internal communi-
cation that correspond to elements of the structure of an SCJ program. While these communication are required to
support the structure of the SCJ architecture, they are unnecessary from the point of view of program functionality, and
this is what our refinement strategy ensures. Next, we detail each of the phases by defining procedures for application
of refinement laws that can be used to transform the models as required.

16

Phases

Target

safelet Safelet =̂ begin . . . end
sequencer Sequencer =̂ begin . . . end
mission Mission =̂ begin . . . end
periodic handler PHandleri =̂ begin . . . handleAsyncEvent =̂ Fi I PERIODICDEADLINE end
aperiodic handler AHandlerj =̂ begin . . . handleAsyncEvent =̂ Gj I APERIODICDEADLINE end

Figure 14: Overview of the refinement strategy

5.1. CF: Introducing the SCJ control flow
Overview. The goal of this phase is to transform the design model (Figure 11) to make the control flow of the SCJ
paradigm explicit. In the patterns, this control flow is modelled implicitly via sequential and parallel compositions; af-
ter the application of this phase of our strategy, it is captured by channel synchronisations. For example, we introduce,
a channel activate handlers that models the synchronised start of the handlers in parallel.

This phase isolates each of the SCJ abstractions in the starting design model into parallel actions. It derives, from
a design like that in Figure 11, a process structured as the target process shown in Figure 15. Its main action Safelet is
now the parallel composition of actions corresponding to specific SCJ abstractions: handlers, missions, and sequencer.
The order of execution imposed by the original specification is maintained through the use of communication channels
such as start mission and start sequencer, which are hidden in the main action. For simplicity, in some cases we use
just ‖ to indicate a parallelism, and omit channel and name sets, if they are not relevant for the discussion.

The steps in Figure 15 define transformations that lead to the target process. They apply novel specialised laws
to parallelise the safelet, sequencer and mission actions, replace synchronous communications between handlers with
asynchronous communications, and separate the handlers from the mission action. In addition, parallel actions that
specify the framework behaviour associated with mission execution are merged and sequentialised. Below, we detail
the steps; we recall that all laws are in Appendix A. Here, we reproduce just a few new laws for illustration.

Step 1. In the first step of this phase, the Law call-intro is used to separate the safelet and mission sequencer into
a parallel composition. This law applies to an action of the form F(A), where we use F(A) to refer to any action F
that has as a component the action A. The law splits F(A) into the parallel composition of two actions, one of which,
executes A. To retain the control flow of F(A), internal channels cs and ce are used to synchronise the parallel actions.
In F(A), the action A is replaced with synchronisations with the parallel action using these internal channels.

Law [call-intro]

F(A) v (F(cs −→ ce −→ Skip) J wrtV(A) | {| cs, ce |} | wrtV(A) K cs −→ A; ce −→ Skip) \ {| cs, ce |}

provided

• {| cs, ce |} ∩ usedC(F) = ∅
• wrtV(A) ∩ usedV(F(Skip)) = ∅ and wrtV(F(Skip) ∩ usedV(A) = ∅

Law call-intro is proved by induction over the structure of the action F using distribution and step laws such as those
found in [14]. The provisos guarantee that the internal channels are fresh and that the state is appropriately partitioned

17

Steps

1. Apply Law call-intro to the action Safelet with channels cs and ce replaced by start sequencer and
done sequencer;

2. Apply procedure mission-sequencer-CF to the action MissionSequencer.

Target

process CF P =̂ begin
PHandleri =̂ µX • (Fi I PD 9 wait PERIOD); X @ t −→ Skip
AHandlerj =̂ µX • ((cj −→ Gj)I AD 9 wait PERIOD); X @ t −→ Skip
MArea =̂ . . .
Termination =̂ rt −→ µX • (rt −→ X @ t −→ Skip)
CF Mission =̂ start mission−→

MArea ‖ Termination ‖ ‖ i : I • SHi −→ register.i −→ start peh.i −→ activate handlers −→ done handler.i −→ Skip
‖

‖ j : J • SHj −→ register.j −→ start aeh.j −→ activate handlers −→ done handler.j −→ Skip

 ;

done mission −→ Skip
Safelet =̂

‖ i : I • SHi −→ start peh.i −→ activate handlers −→ PHandleri; done handler.i −→ Skip
‖

‖ j : J • SHj −→ start aeh.j −→ activate handlers−→
(AHandlerj J {. . .} | {| cji |} | {} K Bufferj) \ {| cji |}; done handler.j −→ Skip

‖ CF Mission
‖ start sequencer −→ start mission −→ done mission −→ done sequencer −→ Skip
‖ start sequencer −→ done sequencer −→ Skip

• Safelet \ {| start sequencer, done sequencer, . . . |}

end

Figure 15: Refinement strategy – CF: Introducing the SCJ control flow

to avoid racing conditions in the parallelism. We use usedC(A) to refer to the set of channels used in an action A, and
usedV(A) and wrtV(A) to refer to the variables used and modified by A.

After the application of this law, the Safelet action ChkSafelet, of our example, is as follows.

ChkSafelet =̂
start sequencer −→ done sequencer −→ Skip

J{} | {| start sequencer, done sequencer |} | {. . .}K

start sequencer−→ ChkMissionSequencer;

done sequencer −→ Skip

\{| start sequencer, done sequencer |}

The boxed elements are introduced by the application of Law call-intro. Instead of calling ChkMissionSequencer
directly, we have a call via communications on the channels start sequencer and done sequencer, in parallel with an
action that responds to start sequencer by calling ChkMissionSequencer.

Step 2. The second step effects a similar change in the definition of ChkMissionSequencer. It applies a procedure
called mission-sequencer-CF, which traverses the structure of the sequencer action and extracts its missions (to be
executed in sequence) to form an action that composes in parallel the isolated mission sequencer and all its missions.
This procedure is presented in Figure 16 and described below.

18

Procedure mission-sequencer-CF. The definition of mission-sequencer-CF covers only the case where there is a
single mission, which is itself the definition of the sequencer (like in our example). In this case, the mission sequencer
action consists of a single call to a mission action as shown in Figure 11. This is identified by the condition A = Mi,
indicating that the parameter A of the procedure is a call to an action Mi.

The alternative case, where the sequencer action is not a single call to a mission action, is not treated by our
refinement strategy as indicated in Step 2. For more elaborate sequencers, we need to extend Step 2 of this procedure.
Essentially, we need only to effect a distributed application of the base case (Step 1) through the structure of the
mission-sequencer action. For example, if we have a sequential composition of mission actions, the isolated mission-
sequencer action obtained in this step has a sequential composition of calls via channels to the parallel mission actions.
This is considered in Section 7, where we extend mission-sequencer-CF to cover multi-mission applications.

Step 1(a). This step essentially separates the call to ChkMission from its execution using parallelism and communi-
cation. For our simple case, after this step, we obtain the following definition for the sequencer, where the change
effected by the refinement step is emphasised with a box.

ChkMissionSequencer =̂
start mission.MID −→ done mission.MID −→ Skip

J{} | {| start mission.MID, done mission.MID |} | {. . .}K

start mission.MID−→ ChkMission;

done mission.MID −→ Skip

\{| start mission.MID, done mission.MID |}

Steps 1(b) and 1(c). The procedure mission-sequencer-CF, however, goes further. Steps 1(b) and 1(c) restructure
or, more precisely, enrich the mission action to include the control of the mission execution via start mission and
done mission. For ChkMission in the example for Step 1(a), the result is as follows.

ChkMissionSequencer =̂
start mission.MID −→ done mission.MID −→ Skip

J{} | {| start mission.MID, done mission.MID |} | {. . .}K
ChkMission

 \ {| start mission.MID, done mission.MID |}

ChkMission =̂

(
(start mission.MID −→ (MArea ‖ Reader ‖ Checker) J ... K Termination) \ {| . . . |};
done mission.MID −→ Skip

)
Step 1(d). Finally, we apply a separate procedure mission-CF, which is shown in Figure 18 and explained next. This
procedure has the same purpose as mission-sequencer-CF, but applies to missions.

Procedure mission-sequencer-CF. In our example, after the application of this procedure, we obtain the definition
for ChkMission in Figure 17. The original actions MArea and Termination as well as the handler actions Reader and
Checker are all in parallel now, controlled by the start mission and done mission signals. The extra parallel action
in ChkMission (identified in the ChkMission by a box with superscript EP) defines the creation, via StartReader.RID
and StartChecker.CID in the example, of the handlers, their registration, via a channel register, their activation, via
start peh or start aeh, and their deactivation, via done handler. The new definitions for Reader and Checker include
the control channels and termination via done handler. Reader is now as follows.

Reader =̂ StartReader.RID −→ start peh.RID −→ activate handlers−→

µX •

(

(input?x −→ Skip)J ID; getBuffer?buffer−→
setBuffer!((tail buffer)a 〈x〉) −→ check −→ (wait 0 . . PTB)

)
I PD

9 wait PERIOD

 ; X

@
done handler.RID −→ Skip

19

This procedure takes a Circus action A as its parameter.

1. If A = Mi then
(a) Apply Law call-intro to the action A with channels cs and ce replaced by start mission.i and

done mission.i;
(b) Apply Law copy-rule to the call action M in A;
(c) Apply Law copy-rule from right to left to the action start mission −→ . . . ; done mission −→ Skip with

name M;
(d) Apply procedure mission-CF to M.

2. Else “The strategy does not cover this case.”

Figure 16: Refinement strategy: procedure mission-sequencer-CF

ChkMission =̂

start mission.MID −→MArea; done mission.MID −→ Skip
‖

start mission.MID−→

(
StartReader.RID −→ register.RID−→
start peh.RID −→ done handler.RID −→ Skip

)
9(

StartChecker.CID −→ register.CID−→
start aeh.CID −→ done handler.CID −→ Skip

)

EP

;

done mission.MID −→ Skip

\ {| register |}

‖ (Reader ‖ Checker)

\ {| . . . |}

‖ start mission.MID −→ Termination; done mission.MID −→ Skip

\ {| . . . |}

Figure 17: ChkMission after Step 1(d) of mission-sequencer-CF

Comparing this to the original definition of Reader shown in Figure 12, we observe that we have simply added control
communications and replaced t with done handler.RID. The changes to Checker resulting from mission-CF are
similar. In summary, the procedure mission-CF takes a Circus action that models a mission, and refines it into a
parallelism of actions modelling the mission and its handlers.

Step 1. The first step of mission-CF (see Figure 18) transforms the synchronous communications among event han-
dlers to asynchronous communications to match the semantics of handlers in SCJ-Circus. The refinement guarantees
that the asynchrony does not have any visible effect on the overall behaviour of the mission. This step considers each
aperiodic handler AHandlerj; for each of them, the parallelism of handlers is reorganised (via simple associativity and
commutativity laws), so that one of the parallel actions is AHandlerj and the other is a component combining the rest
of the handlers, including those that trigger AHandlerj. At this point the Law sync-async-conv is used to introduce
the asynchronous communication between AHandlerj and all other handlers that may release it. In what follows, we
describe the details of Law sync-async-conv, which is shown in Figure 19.

In Law sync-async-conv, µX • ((c −→ G) I D1 9 wait P); X @ end −→ Skip matches the specification of an
aperiodic handler and OHandlers =̂ F(µX • (B(c −→ Skip)1 ID2 9 wait P); X @ end −→ Skip), the specification of
the other handlers. We use F(A)1 to specify that there is exactly one occurrence of the action A as a component of the
action F. So, the other handlers are specified by an action F that includes a recursion, whose non-recursive body B
has a single release of the aperiodic handler via a channel c. This recursion specifies a handler itself.

The Law sync-async-conv makes the synchronous communication on c asynchronous using a buffer of one po-
sition. The buffer is represented by a variable block that declares a boolean variable pending initially set to false.
This action accepts a communication on c and, in doing so, records on pending that the action G whose execution is

20

This procedure takes a Circus action Mi that models as mission as its parameter.

1. For each aperiodic action AHandlerj in the parallelism of handler actions use associativity and commutativity
laws to obtain a parallelism between AHandlerj and another parallelism with all other handlers, and apply Law
sync-async-conv;

2. Apply Law prefix-introduction [14] to the action Mi to introduce channel activate handlers after start mission.
Afterwards, apply prefix-par-dist [14] and par-prefix-dist exhaustively to distribute the communications on
start mission.i, activate handlers and done mission.i over all parallel actions;

3. For each parallel action start mission.MID −→ H; done mission.MID −→ Skip (except where H is MArea
or Termination), apply Law copy-rule [14] to H and Law handler-extract to the whole action instantiated as
follows:

• If H is a periodic event handler with id HID, period P and start time S, instantiate SH to startH.HID with
any parameters specific to the handler, sh to start peh.HID.S.P and r to register.HID;

• If H is an aperiodic event handler with id HID, instantiate SH to startH.HID with any parameters specific
to the handler, sh to start aeh.HID and r to register.HID.

4. Apply step laws [14] exhaustively to merge the start mission and done mission communications in the left-
hand side actions of the parallelisms introduced in the previous step;

5. For each action SH.HID−→ sh.HID−→ah−→µX • F(X, dh.HID−→Skip) associated with a handler H, apply
Law copy-rule from right to left to introduce an action with name H.

Figure 18: Refinement strategy: procedure mission-CF

triggered by c can then take place. The actual triggering of G is now carried out via a fresh channel ci. We use LHS
to refer to the action on the left-hand side of the law, and require that ci is not used in that action. The buffer can
be terminated via the same channel end used to terminate the handlers, and makes no changes to global variables as
indicated by its associated nameset { } in the parallelism in the right-hand side.

Because the communication on ci is hidden, it is urgent when it becomes available. Also, the aperiodic handler
is always immediately available to communicate on ci because (a) it is available at the beginning; (b) once there is a
synchronisation on ci, it finishes and recurses before the end of the period (D1 − T < P); and (c) there is no further
request to communicate on ci until the next period due to the proviso OHandlers J {| c |} K TimeReq = OHandlers.

The value T is a deadline that is available to the other handlers to call the aperiodic handler. This deadline needs
to be given as input in the application of this law. After the refinement, the deadline on the release G of the aperiodic
handler is adjusted to D1 − T , where D1 is its overall deadline as originally specified.

TimeReq specifies time requirements: (a) c must take place before T time units ((c@t : (t < T)), and after that, it
cannot happen until the next period (wait (P− t)); or (b) c does not happen within the period (wait P). With the proviso
OHandlers J {| c |} K TimeReq = OHandlers, we require that OHandlers satisfies the property defined by TimeReq. This
property also ensures that OHandlers cannot communicate on c infinitely often and starve the buffer.

The Law sync-async-conv also requires that the original action LHS is deadlock-free and feasible because be-
haviours that can lead to a deadlock, and, therefore, infeasibility of deadlines, under synchronous communication,
such as accumulation of calls to a handler, are not blocked when we use asynchronous communication and, therefore,
can potentially introduce new behaviours. Essentially, the last proviso of this law guarantees that the original actions
can never perform calls that, were it not for the introduction of asynchronous communication, would deadlock the
process or violate its timing restrictions. Proof of this law is by induction of the structure of F and B.

For our example, at the end of the Step 1, the definition of ChkMission has the structure already shown in Figure 17,
but with the buffer included in the parallelism between Reader and Checker.

Step 2. The second step of mission-CF (Figure 18) inserts a new event activate handlers corresponding to the oper-
ation of the SCJ framework that coordinates the start of the handlers. This event is introduced after start mission.i.
(Law prefix-introduction introduces a hidden event.) Afterwards, we distribute the communications that record the
beginning and end of the mission (that is, start mission.i and done mission.i, where i is the mission identifier) through
the parallelism of handlers. This uses a standard step law of parallelism [14] and par-prefix-dist.

21

Law [sync-async-conv]

µX • ((c −→ G)I D1 9 wait P); X @ end −→ Skip J ns1 | cs | ns2 K OHandlers
v

((µX • (ci −→ (GI (D1 − T))); X @ end −→ Skip) J ns1 | {| ci, end |} | {} K Buffer) \ {| ci |}

Jns1 | cs | ns2K
OHandlers

where

Buffer =̂ var pending : B • pending := false; µX •
c −→ pending := true; X @ (pending) N ci −→ pending := false; X @ end −→ Skip

OHandlers = F(µX • (B(c −→ Skip)1 I D2 9 wait P); X @ end −→ Skip)
TimeReq = µX • (c@t : (t < T) −→ wait (P − t) @ wait P); X @ end −→ Skip

provided

• ci < usedC(LHS) ∧ T < D1 < P ∧ D2 < P

• OHandlers J {| c, end |} K TimeReq = OHandlers

• B is not recursive and LHS is deadlock-free and feasible.

Figure 19: Law sync-async-conv

22

Law par-prefix-dist is similar to the standard step law, Law prefix-par-dist in Appendix A, which extracts syn-
chronisations from inside parallel actions. Law par-prefix-dist, however, distributes a synchronisation back into the
parallel actions. Essentially, Step 2 expands the parallelism between handlers, which is internal to the action Mission
as shown in Figure 17 by a box with superscript EP, to a top level parallelism as shown in the action CF Mission of
the target process in Figure 15. This allows the extraction of the handler actions in the next step.

Step 3. The third step applies the Law handler-extract to each of the parallel actions modelling event handlers. It
wraps the handler actions with synchronisations on new internal channels, denoted by SH, r, and sh in the law. These
new interactions correspond to the initialisation of a mission, including creation (SH), registration (r), and starting
(sh) of handlers. The channels sm, ah, dh, and dm match the communications start mission, activate handlers,
done handler, and done mission already in the mission action. All these synchronisations are orchestrated by a new
parallel action that models the mission-execution cycle as a sequence of communications.

Law [handler-extract]

sm −→ (µX • F; X); dm −→ Skip
v (sm −→ SH.n −→ r.n −→ sh.n −→ ah −→ dh.n −→ dm −→ Skip) \ {| r |}

J{} | {| sh, ah, dh, SH |} | usedV(F)K
SH.n −→ sh.n −→ ah −→ µX • (F; X); dh.n −→ Skip

\{| sh, SH, dh |}

provided {| sh, SH, dh |} ∩ usedC(F) = ∅.

All the new events are hidden either locally (r) or in the parallelism (sh and SH). The variables modified by the
handler release, specified by F, remain under the control of that action. The new parallel action used for orchestration
modifies no variables.This law can be proved by applying the parallelism step laws in [14]. The repeated application
of Law handler-extract introduces multiple parallel actions that orchestrate the synchronisations of the handlers.

Steps 4 and 5. Step 4 applies step laws as much of possible to join the communications on start mission and
done mission in the orchestrating actions introduced in the previous step. As a result, this step also groups these
repeated actions in a single parallel action named CF Mission as shown in the target process in Figure 15. Step 5
simply gives names to the handler actions. The result is the process shown in Figure 15.

5.2. AP: Introducing the application processes

Overview. This phase separates specifications of application-specific behaviours (such as, specification of the func-
tionality of a handler release) from those of behaviours imposed by the SCJ paradigm (such as, starting a mission)
that are implemented by the SCJ runtime environment (framework).

This is achieved by transforming the target of the CF phase (Figure 15) into the form shown in Figure 20. It
defines a number of application actions, Handleri app, Mission app, and so on. The original process CF P is refined
to AP P, whose main action is the parallel composition of actions that model SCJ components. Each such action
is itself a parallel composition of an application action and a new action that captures the SCJ framework behaviour
relevant for the application. These do not define the complete behaviour of the framework processes from Section 3.2,
but their application-specific behaviours are modelled by calls to application actions via Call and Ret channels.

The target in Figure 20 shows the structure of the mission actions. In the AP framework action AP Mission,
after the start of the mission (start mission.MID), the initialize method is called (missionInitializeCall?x!MID).
This triggers, in the application action Mission app, the creation (startH.i) and registration (register.i) of each of the
handlers i. AP Mission itself enters a loop where the registration of handlers is accepted and recorded in a local
variable handlers, until the call to initialize returns (missionInitializeRet!x!MID).

The steps of the AP phase are shown in Figure 20. Overall, we take the process obtained in phase CF and identify
the application-specific behaviours and the behaviours expected of the framework, which are isolated and composed
in parallel. Each action modelling an SCJ abstraction is split into two parallel actions: one containing application-
specific behaviours, and the other containing the interactions introduced during the CF phase to model the SCJ control

23

Steps

1. Apply Law p-handler-split to each periodic handler action and Law a-handler-split to each aperiodic handler
action, with channels haeC and haeR replaced with handleAsyncEventCall and handleAsyncEventRet;

2. Apply procedure mission-AP to the safelet action;
3. Apply procedure sequencer-AP to the action that models the sequencer;
4. Apply Law safelet-split to the action that models the safelet.

Target

process AP P =̂ begin
Handleri app =̂ . . .
AP Handleri =̂ . . .
Mission app =̂

start mission.MID −→ missionInitializeCall?x!MID−→
((; i : I ∪ J • startH.i −→ Skip); (; i : I ∪ J • register.i −→ Skip);

missionInitializeRet!x!MID −→ Skip);
done mission.MID −→ Skip

AP Mission =̂

start mission.MID −→ missionInitializeCall?x!MID−→

var handlers : P ID •
µX •

 register?x −→ handlers := handlers ∪ {x}; X
@
missionInitializeRet!x!MID −→ Skip

 ;

(9i : handlers • (start aeh!i −→ Skip @ start peh!i?s?p −→ Skip);
activate handlers −→ (9i : handlers • done handler.i −→ Skip))

MissionSequencer app =̂ . . .
AP MissionSequencer =̂ . . .
Safelet app =̂ . . .
AP Safelet =̂ . . .

•

(Safelet app ‖ AP Safelet) \ {| . . . |}
‖

(MissionSequencer app ‖ AP MissionSequencer) \ {| . . . |}
‖

(Mission app ‖ AP Mission) \ {| . . . |}
‖

(‖ i : I ∪ J • (Handleri app ‖ AP Handleri) \ {| . . . |})

\ {| . . . |}

end

Figure 20: Refinement strategy – AP: Introducing the application processes

24

flow. To replace, in the control action, the application-specific behaviours with calls via appropriate channels, we use
specialised Laws p-handler-split, a-handler-split, mission-split, sequencer-split and safelet-split.

Step 1. The first step of this phase applies the Laws p-handler-split and a-handler-split to each handler, depending
on whether it is a periodic or an aperiodic handler, to separate the application-specific and the generic framework be-
haviours. These behaviours are composed in parallel using handleAsyncEventCall and handleAsyncEventRet channels
to model a call to the handleAsyncEvent method.

Law p-handler-split applies to an action SH −→ sh.id.s.p −→wait s; µX • ((AID 9 wait p); X @ dh −→ Skip)
modelling a periodic handler. In our example, the handlers start immediately after the start of the mission, so the
wait action wait s expected after the start of the mission is just wait 0 and is omitted. With an application of the
Law p-handler-split, the behaviour AID of the handler release is wrapped with new internal events haeC and haeR.
The timing restrictions are moved to the framework action, with the exception only of the deadline D for termination
of A. Moreover, since the proviso ensures that this deadline is less than or equal than the period p of the handler, then
we can via refinement introduce in the framework action a (spurious) requirement for termination before the end of
the period. This law is proved by the application of parallelism step laws.

Law [p-handler-split]

SH −→ sh.id.s.p −→ ah −→ wait s; µX • ((AI D 9 wait p); X @ dh −→ Skip)
v

SH −→ sh.id.s.p −→ µX • ((haeC −→ AI D; haeR −→ X) @ dh −→ Skip)
JwrtV(A) | {| sh, dh, haeC, haeR |} | {}K

sh.id?start?period −→ ah −→ wait start; µX •

(

(haeC −→ haeR −→ Skip)J 0I period
9 wait period

)
; X

@ dh −→ Skip

\{| haeC, haeR |}

provided {| sh, dh, haeC, haeR |} ∩ usedC(A) = ∅ ∧ D ≤ p.

The Law a-handler-split is similar to p-handler-split. The model of an aperiodic handler, however, does not have a
leading wait statement, because aperiodic handlers do not have an offset for starting. Accordingly, also the channel
sh used to start a handler is not used to communicate a start time and a period.

Steps 2 and 3. These steps apply specialised procedures mission-AP and sequencer-AP defined later to transform
the mission and sequencer actions. These procedures have an effect on these actions similar to that of the Laws p-
handler-split and a-handler-split on the handler actions. The procedures are slightly more complex, however, in that
they must restructure actions and consider the syntactic structure of the actions to apply specific laws.

Steps 4. The final step applies the Law safelet-split to the safelet action to separate the behaviours that obtain
the identifier of the sequencer and initialise the safelet. These are triggered by synchronisations on the channels
getSequencerCall, getSequencerRet, safeletInitializeCall and safeletInitializeRet.

At the end of the AP phase, the actions for the application processes are completed, but the actions AP (see
Figure 20) do not quite specify the SCJ runtime environment. These actions are the focus of the next phase, but before
describing it, we detail the procedures mission-AP and sequencer-AP used in this phase.

Procedure mission-AP. This is shown in Figure 21; it consists of three steps, for each action Mi modelling a mission.

Step 1. The first step applies a Law mission-split to the safelet action. This law considers a component of the safelet
action that models a mission. In this step, we take that component to be Mi.

We need a version of Law mission-split for the number of handlers used in Mi; in Figure 22, we show a version
for two handlers. In the strategy, id1 and id2 match the handlers identifiers. Moreover, as perhaps expected, we match
sm with start mission.id, where id is the mission identifier, SH1 and SH2 with the handler constructor channels, r with

25

For each action Mi that models a mission:

1. Apply to the safelet action, a version of Law mission-split, singling out the component Mi as required. The
version needed is that for the number of handlers in Mi. The new channels miC and miR must be instantiated as
missionInitializeCall and missionInitializeRet.

2. Apply exhaustively to the safelet distributivity laws for hiding [14] to distribute the hiding of handler constructor
channels inwards towards the result of the previous step;

3. Apply Law seq-interleave to the action hiding the SHi channels;
4. Apply Law rec-interleave to the action hiding the missionInitializeCall, missionInitializeRet, and register chan-

nels.

Figure 21: Refinement strategy: procedure mission-AP

Law [mission-split]

F

 sm −→

 SH1 −→ r.id1 −→ sh.id1 −→ ah −→ dh.id1 −→ Skip
J{| ah |}K

SH2 −→ r.id2 −→ sh.id2 −→ ah −→ dh.id2 −→ Skip

 \ {| r |}; dm −→ Skip

 \ {| SH1, SH2 |}

v

F

sm −→ miC −→

 SH1 −→ r.id1 −→ Skip
9
SH2 −→ r.id2 −→ Skip

 ; miR −→ dm −→ Skip

J{} | {| sm, r, dm,miC,miR |} | {}K

sm −→ miC −→

 r.id1 −→ Skip
9
r.id2 −→ Skip

 ; miR −→ Skip; sh.id1 −→ ah −→ dh.id1 −→ Skip
J{| ah |}K
sh.id2 −→ ah −→ dh.id2 −→ Skip

 ; dm −→ Skip

\ {|miC,miR, r |}

\ {| SH1, SH2 |}

provided {|miC,miR |} ∩ usedC(LHS) = ∅

Figure 22: Law mission-split

register, sh with start aeh or start peh, depending on whether we have an aperiodic or a periodic handler, ah with
activate handlers, dh with done handler, and dm with done mission.

In all cases, the Law mission-split refines the mission action into a parallelism of two actions, one dealing
with application-specific behaviours, such as handler instantiation (using channels SHi), and the other dealing with
framework-specific behaviours, such as handler activation and deactivation (using channels sh and dh). The parallel
handler actions synchronise just in ah, so their behaviour on the other events is interleaved. In the refined action,
the interleaving is made explicit. A new synchronisation point is enforced, via the new channel miR, right after the r
events, but the context F ensures that the events up until then (SH1, SH2, r.id1, and r.id2) are hidden.

Like the laws for splitting handlers, Law mission-split is proved by the application of existing step laws [14].

Step 2. In the second step, the hiding of the channels corresponding to handler constructors is localised (using stan-
dard distributivity laws) around the parallelism introduced in the previous step and the handler actions. This allows
the next steps to focus on a particular (parallel) component of the safelet action (see Figure 15).

Step 3. The Law seq-interleave, applied in the third step, serialises the interleaving of handler instantiations and
registrations in the application action. This is possible because, although we fix an order for the instantiations and
registrations, these events are hidden, and the framework and handler actions allow any order to be chosen. In those

26

Law [rec-interleave]

sm −→ miC −→ SH1 −→ SH2 −→ r.id1 −→ r.id2 −→ miR −→ dm −→ Skip
J{} | {| sm, r, dm,miC,miR |} | {}K

sm −→ miC −→

 r.id1 −→ Skip
9
r.id2 −→ Skip

 ; miR −→ Skip; sh.id1 −→ ah −→ dh.id1 −→ Skip
J{| ah |}K

sh.id2 −→ ah −→ dh.id2 −→ Skip

 ; dm −→ Skip

\ {|miC,miR, r |}

v

sm −→ miC −→ SH1 −→ SH2 −→ r.id1 −→ r.id2 −→ miR −→ dm −→ Skip
J{} | {| sm, r, dm,miC,miR |} | {}K

var handlers : P ID • handlers := {};

sm −→ miC −→ µX •

 r?h −→ handlers := handlers ∪ {h}; X
@
miR −→ Skip

 ;

(J{| ah |} K h : handlers • sh.h −→ ah −→ dh.h −→ Skip); dm −→ Skip

\ {|miC,miR, r |}

provided handlers is fresh.

Figure 23: Law rec-interleave

actions, which synchronise on instantiation and registration events, they occur in interleaving, avoiding deadlocks due
to the specific choice made in the refinement. It is because we need to identify this flexible context that Law seq-
interleave becomes rather specific, although it is simple: proof relies on step laws.

Step 4. In the final step, the Law rec-interleave, shown in Figure 23 transforms the parallelisms in the framework
action into a recursion and an iterated parallelism. The objective is to make the framework action (named FA in
Law seq-interleave) generic, in the sense that it can deal with any number of handlers. The first interleaving (of
registrations) is transformed into a recursion: a loop that accepts the registration of any number of handlers and
records their identifier in a fresh local variable handlers.

The second parallelism of actions (which orchestrate the handlers instantiation, activation, and termination) is
transformed into an iterated parallelism. Iteration is over handler identifiers h from the set handlers. Just like in the
original action, it defines a parallelism of actions that orchestrate a given handler.

The context of the framework action, defined by the application and handler actions, ensure that the extra generality
of the new framework action is not exploited. For example, although the new framework action allows the registration
of any number of handlers, the context in which it occurs ensures that exactly two handlers are registered.

Again, it is because we need to identify this constrained context that the Law rec-interleave becomes rather long.
Its proof relies on unfolding the recursion the required number of times, and instantiation of the iterated parallel.

Procedure sequencer-AP. It splits the action that models the sequencer into framework and application-specific
actions composed in parallel. This procedure defines a conditional strategy that identifies the structure of the sequencer
and applies the appropriate steps, or fails the application of the strategy. This procedure is structured in this way in
order to support further extension as described in Section 7.

In this section, we cover only the simple case where the mission sequencer executes a single mission and termi-
nates (if and when the mission terminates). In this case, shown in Figure 24, the procedure applies the Law sequencer-
split-single to the sequencer action. This law refines the sequencer action into an application-specific action accepting
synchronisations on the channel getNextMissionCall and getNextMissionRet, and a framework action that uses these
channels to iteratively obtain the next mission and execute it.

27

This procedure takes a sequencer action S as its parameter. It considers its component A that defines its behaviour
after and before start sequencer and done sequencer.

1. If A = start mission.i −→ done mission.i −→ Skip then
(a) Apply Law sequencer-split-single to the action A.

2. Else “The strategy does not cover this case.”

Figure 24: Refinement strategy: procedure sequencer-AP

Steps

1. Apply Lemma safelet-fw-cl to the parallel action that models the safelet in AP P;
2. Apply procedure sequencer-fw-cl to the parallel action that models the mission sequencer in AP P;
3. Apply Lemma mission-fw-cl to the parallel action that models a mission in AP P;
4. Apply Lemma periodic-handler-fw-cl to each parallel action that models a periodic handler in AP P;
5. Apply Lemma aperiodic-handler-fw-cl to each parallel action that models a aperiodic handler in AP P;

Target

process FW P =̂ begin . . .

•

(Safelet app ‖ SafeletFW) \ {| . . . |}
‖

(MissionSequencer app ‖ MissionSequencerFW) \ {| . . . |}
‖

(Mission app ‖ MissionFW) \ {| . . . |}
‖

(‖ i : I • (Handleri app ‖ APEHFW) \ {| . . . |})
‖

(‖ j : J • (Handlerj app ‖ PEHFW) \ {| . . . |})

\ {| . . . |}

end

Figure 25: Refinement strategy – FW: Introduction of framework processes

5.3. FW: Introduction of framework processes

Overview. This phase takes the potentially incomplete model of the framework identified in AP, representing the slice
of the SCJ framework actually used by the application, and replaces it with the full-fledged framework model.

This phase applies to the parallel composition of pairs of application and framework actions that describe each of
the components of the SCJ design. For example, the safelet component, at the start of this phase, is described by the
parallelism Safelet app ‖ AP Safelet in the target in Figure 20, and is transformed in this phase.

These parallel actions are close to those in the processes that give semantics to an SCJ-Circus program, but
still lack features of the framework that are not used in the original E-Anchor. For example, the safelet action in our
pattern (action ChkSafelet in our example in Figure 12) does not perform any initialisation. For this reason, the method
safeletInitialize provided by the SCJ-Circus safelet paragraph and included in the framework process SafeletFW (see
Figure 8) is not included in the safelet framework action at the start of this phase.

It is this phase’s goal to introduce all such missing actions so that we can match the resulting actions to those
of the application and framework processes defined in the semantics of an SCJ-Circus program. This is possible
because the missing actions model methods that are not used in the original specification, and their introduction leads
to method calls that terminate immediately: for instance, a call to safeletInitialize whose body is just Skip.

The target process resulting from the application of this phase is shown in Figure 25. Its main action is the parallel
composition of pairs of application and framework actions, where the application actions are those introduced in the
AP phase, enriched to call the extra framework methods, and the framework actions that model the SCJ API.

The steps of this phase are shown in Figure 25. The main results used are lemmas specialised to the cyclic in

28

This procedure takes as its parameter a Circus process P of the form AP P FW.

1. If the action Sequencer of P has a single occurrence of the action mission start.i −→ mission done.i −→ Skip,
apply law mission-fw-cl-single.

2. Else “The strategy does not cover this case.”

Figure 26: Refinement strategy: procedure sequencer-fw-cl

lockstep pattern. The framework actions (for example, AP Safelet in the target in Figure 20) obtained in the AP phase
are the same for all applications that follow our pattern, since this pattern restricts the flow of execution of missions
and handlers and most of the framework-specific behaviours are introduced in the CP and AP phases. For this reason,
very specialised results, like Lemma safelet-fw-cl, can be used to introduce the full-blown framework actions relying
solely on syntactic conditions over the application actions.

The specialised lemmas are already described in terms of the channels actually used in the framework semantics,
and for this reason only we do not call them laws. Obviously, the use of a more general result is possible, but we
keep the specific lemmas for clarity. (This also has a potential impact on the efficiency of the implementation of the
strategy using a theorem prover.) All the lemmas are in Appendix A.

Lemma safelet-fw-cl applies to the safelet component. The application action, at this stage, is very simple. It
accepts a call to getSequencer (via getSequencerCall), which returns (getSequencerRet) an identifier sid. The
proviso requires sid not to be null. The framework action calls getSequencer, starts the sequencer (start sequencer),
and ends the application (end safelet app) action when the sequencer terminates (done sequencer).

With the use of Lemma safelet-fw-cl, we can justify the refinement of the application action to become much more
elaborate. It is transformed to accept a call to getSequencer or safeletInitialize, or a signal to terminate via
end safelet app. In addition, when getSequencer is called, the new application action uses a variable block that
introduces a new local variable return to record the sequencer identifier sid. This matches the meaning of an SCJ
method that returns a value. When safeletInitialize is called, the new application action does nothing.

The new framework action calls safeletInitialize, and then enforces the original sequence of events: just
getSequencer is called, and then a termination takes place. A new conditional in the framework action checks the
value of the sequencer identifier s returned by the application. Because this is sid, which is guaranteed by the proviso
not to be null, we can be sure that the sequencer is started like in the original action.

Standard step, variable block, and conditional laws can be used to prove Lemma safelet-fw-cl.
Steps 1,3,4 and 5 of the FW phase apply framework-completion lemmas like that safelet-fw-cl; all lemmas are

in Appendix A. Step 2 is similar, but relies on the procedure sequencer-fw-cl in Figure 26 that identifies the pattern
of the sequencer framework action, and applies the appropriate laws and lemma. In the case of a cyclic in lockstep
single-mission application, only one case is necessary. It identifies that the sequencer action only activates a single
mission and applies a Lemma (mission-fw-cl-single) similar to the others to complete the sequencer framework action.

This is the only phase that needs to be adapted to deal with our second pattern in Figure 13. It requires a special
form of the Lemma aperiodic-handler-fw-cl that considers the possibility of the handler not being executed in a cycle.

5.4. Conv: Converting to SCJ-Circus

Overview. This phase takes the final step into obtaining an SCJ-Circus program by refining the specification into a
sequence of SCJ-Circus paragraphs based on the Circus semantics of SCJ-Circus. With that purpose, it introduces
new process paragraphs that isolate pairs of application and framework processes corresponding to the constructs of
SCJ. Afterwards, the semantics of SCJ-Circus is used to convert the newly introduced processes into the correspond-
ing SCJ-Circus paragraphs. In our example, processes SafeletFW and ChkSafelet App are paired and extracted to a
process ChkSafelet, which is converted into a paragraph labelled safelet.

The target of this phase is the target of the strategy: a specification formed by SCJ-Circus paragraphs as shown
in Figure 14. For our example, the resulting SCJ-Circus specification is shown in Figure 6. Each action that models
an SCJ abstraction in the original design is modelled by an SCJ-Circus paragraph. These paragraphs overtly specify
only the application-specific behaviours, leaving the framework aspects implicit.

29

Steps

1. Apply the definition of parallel processes [14] from right to left exhaustively to replace the basic process
FW P, whose main action is parallel, with a parallelism of application processes and framework processes.

2. For each newly introduced component process, apply the definition of the appropriate SCJ abstraction from
right to left.

Target

handler S Handleri =̂ . . .
mission S Mission =̂ . . .
sequencer S MissionSequencer =̂ . . .
safelet S Safelet =̂ . . .

Figure 27: Refinement strategy – Conv: Converting to SCJ-Circus

Starting pattern

Mission =̂ (MArea ‖ (‖ i : I • PHandleri) ‖ (‖ j : Jn • AHandlerj)

Modified steps

CF Step-0 Add a new first step to phase CF that applies the law termination-intro.

Figure 28: Refinement strategy: Non-terminating pattern.

The steps for this phase are shown in Figure 27. The first step uses each pair of application and framework process
to define a new process using the reverse of the copy-rule, and the second step uses the semantics of SCJ-Circus to
transform these newly defined processes into SCJ-Circus paragraphs.

6. Non-terminating pattern

In the strategy in the previous section, handlers in the original specification may require termination. In Step 2
of the AP phase, the termination treatment in the mission, originally in an action named Termination in our pattern,
is integrated into the mission framework action. In Step 3 of the FW phase, the Lemma mission-fw-cl renames the
channel used in the original specification to requestTerminationCall.

In this section, we adapt our strategy to consider applications that do not terminate. The starting pattern in Fig-
ure 28 shows the Mission action of the non-terminating cyclic in lockstep pattern. The main difference from that in
Figure 11 is the missing Termination action. The overall target is still that described in Figure 14.

The refinement strategy described in Section 5 cannot be applied to models that follow the starting pattern in
Figure 28 because it expects the Mission action to have an extra parallelism with the Termination action. More
specifically, Lemma mission-fw-cl, used in Step 3 of FW does not apply. Instead of modifying this mission-specific
result to introduce the mechanism of termination, we propose to extend the refinement strategy in Section 5 slightly.

CF Step-0. We introduce Termination as a first step of the CF phase using the Law termination-intro. In this way,
any other extensions to the strategy can take advantage of the general pattern with termination.

30

Starting pattern

MissionSequencer =̂ M1; M2; . . . ; Mn

Modified steps

CF-Step 2 Use the recursive procedure mission-sequencer-CF shown in Figure 30 instead;

AP-Step 3 Use the procedure sequencer-AP described in Figure 31 instead;

FW-Step 2 Use the procedure sequencer-fw-cl shown in Figure 32 instead.

Figure 29: Refinement strategy: multi-mission pattern

Law [termination-intro]

µX • F; X
v

(µX • F; X @ t −→ Skip J {|wrtV(F) | {| rt, t |} | {} K rt −→ µX • rt −→ X @ t −→ Skip) \ {| rt, t |}

provided {| t, rt |} ∩ usedC(F) = ∅.

This law takes a Circus action A of the form µX • F; X and two channels t and rt, and refines A into a parallelism
between µX • F; X @ t −→ Skip, and an action that waits for a termination request on a channel rt and then behaves
as a recursive action that either accepts an event on the channel rt and recurses, or accepts an event on the channel t
and terminates. The parallelism synchronises on both t and rt, which are made internal via the hiding operator. This
law relies on the fact that A does not terminate, and does not use rt or t.

The extra parallel action introduced by this law is Termination. The refinement is valid because F does not use rt,
and so Termination waits forever for a synchronisation of this channel, and never actually terminates the mission.

It may seem inefficient to complicate the model, but we note that the refinement steps of the whole refinement
strategy have a high degree of automation with most provisos to the refinement laws being of a syntactic nature. More-
over, the phase FW is already about completing the framework model to reflect the SCJ paradigm. The termination
protocol is part of the framework model already.

7. Multi-mission pattern

For an application with multiple missions in sequence, the pattern only differs in the specification of the action
MissionSequencer, which is defined as the sequential composition of a number of missions M1; M2; . . . ; Mn (see
starting pattern in Figure 29). In this case, we need to modify the existing refinement strategy at very specific points
to cater for a sequence of missions. We describe the changes next; they are summarised in Figure 29.

CF-Step 2. The procedure used in Step 2 of CF needs to be replaced with a recursive procedure that takes a sequence
of missions Mi; Mrest, applies the original steps of mission-sequencer-CF to the first mission Mi, and recursively
applies itself to the remaining missions in Mrest. This extended procedure is shown in Figure 30. Its Step 1 is the
same as in the original procedure (Figure 16); Step 2 is replaced with a step that pattern matches against sequential
composition identifying the first component as Mi and recursively applies the procedure to the sequence of missions;
and Step 3 is used to catch cases not covered by the strategy. Further extensions need to elaborate on Step 3, like we
do here in regards to the original procedure.

31

This procedure takes a Circus action A as its parameter.

1. If A = Mi then
(a) Apply Law call-intro to the action A with channels cs and ce replaced by start mission.i and

done mission.i;
(b) Apply Law copy-rule to the call action M in A;
(c) Apply Law copy-rule from right to left to the action start mission −→ . . . ; done mission −→ Skip with

name M;
(d) Apply procedure mission-CF to M.

2. If A = Mi; B then
(a) apply mission-sequencer-CF to Mi and to B separately;
(b) apply hiding and parallelism distribution laws of [14] to obtain a parallel action.

3. Else “The strategy does not cover this case.”

Figure 30: Refinement strategy: procedure mission-sequencer-CF

The result of the recursive applications (Step 2(2)) to a two-mission application is as follows.

MissionSequencer1 =̂ start mission.M1 −→ done mission.M1 −→ Skip
J{} | {| start mission.M1, done mission.M1 | {. . .}K

Mission1

 \ {| start mission.M1, done mission.M1 |}; start mission.M2 −→ done mission.M2 −→ Skip
J{} | {| start mission.M2, done mission.M2 |} | {. . .}K

Mission2

 \ {| start mission.M2, done mission.M2 |}

Like in the core strategy, each mission is replaced by a parallel action that calls a specific mission using start mission
and done mission, with the parallel actions composed in sequence. Step 2(b) uses distribution laws of parallelism and
hiding to merge the hidings and to transform the sequence into a single parallel action, where the mission activations
are in sequence, but the mission actions are in interleaving as shown in the action MissionSequencer2.

MissionSequencer2 =̂
start mission.M1 −→ done mission.M1 −→ start mission.M2 −→ done mission.M2 −→ Skip
J{} | {| start mission.M1, done mission.M1, start mission.M2, done mission.M2 |} | {. . .}K

Mission1 9 Mission2

\{| start mission.M1, done mission.M1, start mission.M2, done mission.M2 |}

This is possible because the channels start mission.Mi and done mission.Mi are only used by the action Missioni.

AP-Step 3. The third step of the AP phase needs a slightly different definition for the procedure sequencer-AP,
using a law that introduces a pattern for the action of the getNextMission method tailored for multiple missions
in sequence. The new procedure sequencer-AP is shown in Figure 31. It has an extra step (Step 2) that applies
a new specialised law sequencer-split-mult-seq, which splits a sequence of communications on start mission and
done mission into a parallel action communicating over channels getNextMissionCall and getNextMissionRet to ob-

32

This procedure takes a sequencer action S as its parameter. It considers its component A that defines its behaviour
after and before start sequencer and done sequencer.

1. If A = start mission.i −→ done mission.i −→ Skip then
(a) Apply Law sequencer-split-single to the action A.

2. If A = (; i : I • start mission.i −→ done mission.i −→ Skip)
(a) Apply Law sequencer-split-mult-seq to the action A.

3. Else “The strategy does not cover this case.”

Figure 31: Refinement strategy: procedure sequencer-AP

tain the identifiers of the missions being executed. The resulting action for our example is as follows.

. . . start mission.M1 −→ done mission.M1 −→ start mission.M1 −→ done mission.M1 −→ . . .
v

. . .

getNextMissionCall!id!id −→ getNextMissionRet!id!id!M1 −→ start mission.M1 −→ done mission.M1−→

getNextMissionCall!id!id −→ getNextMissionRet!id!id!M2 −→ start mission.M2 −→ done mission.M2−→

getNextMissionCall!id!id −→ getNextMissionRet!id!id!null −→ end sequencer app −→ . . .

J{} | {| getNextMissionCall, getNextMissionRet, end sequencer app, . . . |} | {}K

getNextMissionCall?x!id −→ getNextMissionRet!x!id!M1−→

getNextMissionCall?x!id −→ getNextMissionRet!x!id!M2−→

getNextMissionCall?x!id −→ getNextMissionRet!x!id!null−→
end sequencer app −→ . . .

\{| getNextMissionCall, getNextMissionRet, end sequencer app |}

FW-Step 2. Finally, in the second step of the FW phase, the procedure sequencer-fw-cl is extended as shown in
Figure 32 to use the Law mission-fw-cl-mult-seq to deal with sequences of missions. Like Law mission-fw-cl-single,
this new law transforms the pair of application and framework actions that model the mission sequencer to make them
match the semantics of SCJ-Circus for a sequencer. Its effect on the action produced in step AP-Step 3 is as follows.

µX • getNextMissionCall!id!id −→ getNextMissionRet!id!id?m−→ if m = null −→ end sequencer app −→ Skip
8m , null −→ start mission.m −→ done mission.m −→ X
fi

J{} | {| getNextMissionCall, getNextMissionRet |} | {}K
var i : Z • i := 0; µX •

getNextMissionCall?x!id −→

if i = 0 −→ getNextMissionRet!x!id!M1 −→ i := i + 1
8i = 1 −→ getNextMissionRet!x!id!M2 −→ i := i + 1
8i > 1 −→ getNextMissionRet!x!id!null −→ Skip
fi

 ; X

@
end sequencer app −→ Skip

\{| getNextMissionCall, getNextMissionRet, end sequencer app |}

Of note is the effect of Law mission-fw-cl-mult-seq on the result of the procedure sequencer-AP. In this case, both
parallel actions are transformed into recursions, with the framework action (on the left) using the mission identifier
null to terminate the recursion, and the application action (on the right) using a counter to decide the next mission to
be returned. This pattern for the application action is commonly used and can be modified to suit particular designs.

33

This procedure takes as its parameter a Circus process P of the form AP P FW.

1. If the action Sequencer of P has a single occurrence of the action mission start.i−→mission done.i−→ Skip,
apply law mission-fw-cl-single.

2. If the action Sequencer of P contains an action of the form ; i : I • mission start.i−→mission done.i−→Skip,
apply law mission-fw-cl-mult-seq.

3. Else “The strategy does not cover this case.”

Figure 32: Refinement strategy: procedure sequencer-fw-cl

8. Conclusions

In this paper, we have extended previous work [17, 5] on the semantics of SCJ and on a refinement strategy for
SCJ programs. We propose a variant of Circus suitable for modelling using SCJ abstractions, update existing models
of SCJ designs to reflect changes to the SCJ specification and support compositional verification, and formalise the
semantics of SCJ-Circus in terms of these updated models. We also detail a refinement strategy for SCJ programs.
We describe each step necessary, and present the new specialised laws required.

Significant differences between our model of SCJ and that in [17] include: (1) the shift from the use of events to
trigger the execution of aperiodic event handlers in a previous version of the SCJ specification, to the direct use of
the asynchronous method release of an aperiodic event handler, and (2) modelling of handlers using two framework
processes PEHFW (for a periodic event handler) and APEHFW (for an aperiodic event handler) so that the distinction
between periodic and aperiodic handlers are made at the framework, instead of the application level.

Our strategy differs from that in [5], which takes an abstract model and refines it to a concrete program model: the
E-anchor, which uses patterns based on SCJ, but not its API. Our strategy refines this SCJ-based model to a program
that makes full use of the SCJ library to implement control aspects specific to SCJ. In this sense, our refinement
strategy is similar to compilation, but the target SCJ-Circus programs include library calls not present in the starting
model. Moreover, the strategy requires input, namely, deadlines for releases of aperiodic handlers to specialise the
time design further. Finally, application of the strategy generates proof obligations and requires theorem proving.

Despite that, since the Circus models used as a starting point for our strategy already embed an SCJ design, the
level of automation achievable in applying the strategy is much higher than in [5]. The only law whose provisos are
not syntactic is Law sync-async-conv. Its proof obligation involves the verification of deadlock-freedom, feasibility,
and equality (refinement in both directions). In some cases, it is possible to verify deadlock-freedom and refinement
using model-checkers such as FDR [24], but large or infinite state-spaces are usually not tractable. In such cases, it
may also be possible to apply compositional techniques [25]. In the case of infinite state-spaces, theorem proving is
likely to be necessary. Verification of feasibility involves establishing the absence of miracles in the semantics of the
process given in the UTP [26]. Whilst this can be achieved through theorem proving, automated techniques based on
the syntax of processes, rather than on their semantic models, are yet to be developed.

The SCJ standard specifies the new constructs, the API, and the SCJ VM, but says nothing about verification and
design of programs. Our effort complements those in [27, 28, 29, 23]. Kalibera et al. [27] apply model checking
and exhaustive testing to perform scheduling and race-condition analysis in SCJ programs. Haddad et al. [29] extend
the Java Modeling Language [30] with timing properties to support worst-case execution analysis of SCJ programs,
whilst Tang et al. [28] use annotations to analyse programs for memory safety and compliance to SCJ levels. Marriott
et al. [23] perform automatic verification of memory-safety without requiring the user to annotate the program.

The pattern on which we focus here is fairly common in safety-critical systems. For instance, the refinement
strategy for control-law diagrams proposed in [8] targets Ada implementations that follow a similar pattern, and it
may be possible to adapt both refinement strategies to support the verification of SCJ implementations of control law
diagrams. In addition, the extensions to the refinement strategy for the core pattern that we have presented illustrate
how we can tackle more elaborate patterns by reusing our results. Our core pattern and strategy focus on a single
mission, and form a strong basis to consider various forms of multi-mission (multi-mode) applications.

The semantics of SCJ-Circus is closely related to the semantics of SCJ and has been extensively validated by
review by an SCJ standardisation expert, by use in proving laws [31] and in case studies [32, 33]. In order to validate
our approach further, the refinement strategy needs to be implemented in a tool that provides a high level of automation

34

to allow the verification of larger case studies. Tool support for our approach is currently under development and is
based on a formalisation [34] of Unifying Theories of Programming (UTP) [13] and Circus in the theorem prover
Isabelle [35]. As future work, we plan to complete the implementation of our strategies, and apply them to more
examples, including SCJ benchmarks [36]. A more recent result [20] on the semantics of SCJ Level 2 also paves the
way to generalise SCJ-Circus and our strategy to cater for such programs.

Acknowledgements. This work is funded by the EPSRC grant EP/H017461/1. No new primary data was created
during this study.

[1] A. Wellings, Concurrent and Real-Time Programming in Java, John Wiley & Sons, 2004.
[2] D. Locke, B. S. Andersen, M. F. B. Brosgol, T. Henties, J. J. Hunt, J. O. Nielsen, K. Nielsen, M. Schoeberl, J. Vitek, A. Wellings, Safety-

Critical Java Technology Specification, Tech. Rep. JSR-302, The Open Group, https://jcp.org/aboutJava/communityprocess/edr/
jsr302/index2.html (2013).

[3] M. Tofte, J.-P. Talpin, Region-Based Memory Management, Information and Computation 132 (2) (1997) 109 – 176. doi:10.1006/inco.
1996.2613.

[4] A. Burns, The Ravenscar Profile, Ada Letters XIX (1999) 49–52.
[5] A. L. C. Cavalcanti, F. Zeyda, A. Wellings, J. C. P. Woodcock, K. Wei, Safety-critical Java programs from Circus models, Real-Time Systems

49 (5) (2013) 614–667. doi:10.1007/s11241-013-9182-4.
[6] J. C. P. Woodcock, J. Davies, Using Z—Specification, Refinement, and Proof, Prentice-Hall, 1996.
[7] A. W. Roscoe, Understanding Concurrent Systems, Texts in Computer Science, Springer, 2011.
[8] A. L. C. Cavalcanti, P. Clayton, C. O’Halloran, From Control Law Diagrams to Ada via Circus, Formal Aspects of Computing 23 (4) (2011)

465–512. doi:10.1007/s00165-010-0170-3.
[9] A. Miyazawa, A. L. C. Cavalcanti, Refinement-oriented models of Stateflow charts, Science of Computer Programming 77 (10-11) (2012)

1151–1177. doi:10.1016/j.scico.2011.07.007.
[10] A. Miyazawa, A. L. C. Cavalcanti, Refinement-based verification of implementations of Stateflow charts, Formal Aspects of Computing

26 (2) (2013) 367–405. doi:10.1007/s00165-013-0291-6.
[11] A. Miyazawa, L. Lima, A. L. C. Cavalcanti, Formal models of SysML blocks, in: L. Groves, J. Sun (Eds.), Formal Methods and Software

Engineering, Vol. 8144 of LNCS, Springer, 2013, pp. 249–264. doi:10.1007/978-3-642-41202-8_17.
[12] A. Miyazawa, A. Cavalcanti, Formal refinement in SysML, in: E. Albert, E. Sekerinski (Eds.), IFM, Vol. 8739 of LNCS, Springer, 2014, pp.

155–170. doi:10.1007/978-3-319-10181-1_10.
[13] C. A. R. Hoare, J. He, Unifying Theories of Programming, Prentice-Hall, 1998.
[14] M. V. M. Oliveira, Formal Derivation of State-Rich Reactive Programs Using Circus, Ph.D. thesis, University of York (2006).
[15] A. L. C. . Cavalcanti, A. Sampaio, J. C. P. Woodcock, Unifying Classes and Processes, Software & Systems Modeling 4 (3) (2005) 277–296.

doi:10.1007/s10270-005-0085-2.
[16] K. Wei, J. Woodcock, A. Cavalcanti, Circus Time with Reactive Designs, in: B. Wolff, M.-C. Gaudel, A. Feliachi (Eds.), Unifying Theories

of Programming: 4th International Symposium, UTP 2012, Paris, France, August 27-28, 2012, Revised Selected Papers, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2013, pp. 68–87. doi:10.1007/978-3-642-35705-3_3.

[17] F. Zeyda, L. Lalkhumsanga, A. Cavalcanti, A. Wellings, Circus Models for Safety-Critical Java Programs, The Computer Journal 57 (7)
(2014) 1046–1091. doi:10.1093/comjnl/bxt060.

[18] A. Miyazawa, A. L. C. Cavalcanti, SCJ-Circus: a refinement-oriented formal notation for Safety-Critical Java, in: Proceedings 17th Interna-
tional Workshop on Refinement, Refine@FM 2015, Oslo, Norway, 22nd June 2015., 2015, pp. 71–86. doi:10.4204/EPTCS.209.6.

[19] A. Miyazawa, A. Cavalcanti, Refinement Strategies for Safety-Critical Java, in: M. Cornélio, B. Roscoe (Eds.), Formal Methods: Foundations
and Applications, Springer International Publishing, Cham, 2016, pp. 93–109.

[20] M. Luckcuck, A. L. C. Cavalcanti, A. Wellings, A Formal Model of the Safety-Critical Java Level 2 Paradigm, in: E. Ábrahám, M. Huisman
(Eds.), Integrated Formal Methods, LNCS, Springer, 2016, pp. 226–241. doi:10.1007/978-3-319-33693-0_15.

[21] E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, 1976.
[22] A. Miyazawa, A. L. C. Cavalcanti, A. Wellings, SCJ-Circus: Report on specification and refinement of Safety-Critical Java programs,

https://www.cs.york.ac.uk/circus/hijac/files/scp-refinement-report.pdf (2016).
[23] C. Marriott, A. L. C. Cavalcanti, SCJ: Memory-Safety Checking without Annotations, in: C. Jones, P. Pihlajasaari, J. Sun (Eds.), FM 2014:

Formal Methods: 19th International Symposium, Singapore, May 12-16, 2014. Proceedings, Springer International Publishing, Cham, 2014,
pp. 465–480. doi:10.1007/978-3-319-06410-9_32.

[24] T. Gibson-Robinson, P. Armstrong, A. Boulgakov, A. Roscoe, FDR3 — A Modern Refinement Checker for CSP, in: E. Abraham, K. Havelund
(Eds.), Tools and Algorithms for the Construction and Analysis of Systems, Vol. 8413 of LNCS, 2014, pp. 187–201.

[25] P. Antonino, A. Sampaio, J. C. P. Woodcock, A Refinement Based Strategy for Local Deadlock Analysis of Networks of CSP Processes, in:
C. Jones, P. Pihlajasaari, J. Sun (Eds.), FM 2014: Formal Methods: 19th International Symposium, Singapore, May 12-16, 2014. Proceedings,
Springer International Publishing, Cham, 2014, pp. 62–77. doi:10.1007/978-3-319-06410-9_5.

[26] J. C. P. Woodcock, The Miracle of Reactive Programming, in: Unifying Theories of Programming, LNCS, Springer, 2009, pp. 202–217.
[27] T. Kalibera, P. Parizek, M. Malohlava, M. Schoeberl, Exhaustive Testing of Safety Critical Java, in: Proceedings of the 8th International

Workshop on Java Technologies for Real-Time and Embedded Systems, ACM, 2010, pp. 164–174. doi:10.1145/1850771.1850794.
[28] D. Tang, A. Plsek, J. Vitek, Static Checking of Safety Critical Java Annotations, in: Proceedings of the 8th International Workshop on Java

Technologies for Real-Time and Embedded Systems, ACM, 2010, pp. 148–154. doi:10.1145/1850771.1850792.
[29] G. Haddad, F. Hussain, G. T. Leavens, The Design of SafeJML, a Specification Language for SCJ with Support for WCET Specification,

in: Proceedings of the 8th International Workshop on Java Technologies for Real-Time and Embedded Systems, ACM, 2010, pp. 155–163.
doi:10.1145/1850771.1850793.

35

https://jcp.org/aboutJava/communityprocess/edr/jsr302/index2.html
https://jcp.org/aboutJava/communityprocess/edr/jsr302/index2.html
http://dx.doi.org/10.1006/inco.1996.2613
http://dx.doi.org/10.1006/inco.1996.2613
http://dx.doi.org/10.1007/s11241-013-9182-4
http://dx.doi.org/10.1007/s00165-010-0170-3
http://dx.doi.org/10.1016/j.scico.2011.07.007
http://dx.doi.org/10.1007/s00165-013-0291-6
http://dx.doi.org/10.1007/978-3-642-41202-8_17
http://dx.doi.org/10.1007/978-3-319-10181-1_10
http://dx.doi.org/10.1007/s10270-005-0085-2
http://dx.doi.org/10.1007/978-3-642-35705-3_3
http://dx.doi.org/10.1093/comjnl/bxt060
http://dx.doi.org/10.4204/EPTCS.209.6
http://dx.doi.org/10.1007/978-3-319-33693-0_15
https://www.cs.york.ac.uk/circus/hijac/files/scp-refinement-report.pdf
http://dx.doi.org/10.1007/978-3-319-06410-9_32
http://dx.doi.org/10.1007/978-3-319-06410-9_5
http://dx.doi.org/10.1145/1850771.1850794
http://dx.doi.org/10.1145/1850771.1850792
http://dx.doi.org/10.1145/1850771.1850793

[30] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T. Leavens, K. R. M. Leino, E. Poll, An Overview of JML Tools and Applications,
International Journal on Software Tools for Technology Transfer 7 (3) (2005) 212–232. doi:10.1007/s10009-004-0167-4.

[31] F. Zeyda, A. L. C. Cavalcanti, Laws of mission-based programming, Formal Aspects of Computing (2015) 1–50doi:10.1007/
s00165-014-0317-8.

[32] A. Wellings, M. Luckcuck, A. L. C. Cavalcanti, Safety-critical java level 2: motivations, example applications and issues, in: The 11th
International Workshop on Java Technologies for Real-time and Embedded Systems, ACM, 2013, pp. 48–57.

[33] N. K. Singh, A. J. Wellings, A. L. C. Cavalcanti, The cardiac pacemaker case study and its implementation in safety-critical Java and
Ravenscar Ada, in: 10th International Workshop on Java Technologies for Real-time and Embedded Systems, ACM, 2012, pp. 62–71.

[34] S. Foster, F. Zeyda, J. Woodcock, Isabelle/UTP: A Mechanised Theory Engineering Framework, in: D. Naumann (Ed.), Unifying Theories
of Programming, Springer International Publishing, Cham, 2015, pp. 21–41.

[35] T. Nipkow, M. Wenzel, L. C. Paulson, Isabelle/HOL: A Proof Assistant for Higher-order Logic, Springer-Verlag, Berlin, Heidelberg, 2002.
[36] F. Zeyda, A. L. C. Cavalcanti, A. Wellings, J. C. P. Woodcock, K. Wei, Refinement of the Parallel CDx, Tech. rep., University of York, Depart-

ment of Computer Science, York, YO10 5GH, UK, http://www.cs.york.ac.uk/circus/publications/techreports/reports/
cdx_report.pdf (July 2012).

Appendix A. Refinement laws

Law [a-handler-split*]

SH −→ sh −→ ah −→ µX • (c −→ (AI D); X @ dh −→ Skip)
v SH −→ sh −→ µX • ((haeC −→ (AI D); haeR −→ X) @ dh −→ Skip)

JwrtV(A) | {| sh, dh, haeC, haeR |} | {}K
sh −→ ah −→ µX • (c −→ haeC −→ haeR −→ X @ dh −→ Skip)

 \ {| haeC, haeR |}

provided {| sh, dh, haeC, haeR |} ∩ usedC(A) = ∅

Lemma [aperiodic-handler-fw-cl*]

SH −→ start aeh?x!id −→ µX •
(

handleAsyncEventCall?x!id −→ (AI D; handleAsyncEventRet!x!id −→ X)
@done handler.id −→ Skip

)
JwrtV(A) | {| start aeh, done handler, handleAsyncEventCall, handleAsyncEventRet |} | {}K
start aeh?x.id −→ activate handlers −→ wait start; µX •

(
(c −→ handleAsyncEventCall?x!id −→ handleAsyncEventRet!x!id −→ Skip); X
@done handler.id −→ Skip

)
J{}{| c |} | {} K Buffer

 \ {| c |}
v

SH −→ start aeh?x!id −→ µX •
(

handleAsyncEventCall?x!id −→ (AI D; handleAsyncEventRet!x!id −→ X)
@done handler.id −→ Skip

)
JwrtV(A) | {| start aeh, done handler, handleAsyncEventCall, handleAsyncEventRet |} | {}K
var currentRelease : B; newRelease : B • start aeh!id −→ activate handlers−→
µX •

 (currentRelease = false) N (releaseCall?o!id −→ (currentRelease := true; releaseRet!o!id −→ Skip)); X
@(currentRelease = true) N (releaseCall?o!id −→ (newRelease := true; releaseRet!o!id −→ Skip)); X
@(currentRelease = true) N (hasRelease −→ currentRelease := newRelease); X @ done hander!id −→ Skip

JcurrentRelease, newRelease | {| hasRelease, done handler |} | {}K
µX • hasRelease −→ handleAsyncEventCall!id!id −→ handleAsyncEventRet!id!id −→ X @ done handler!id −→ Skip

\{| hasRelease |}

where

Buffer =̂ var pending : B • pending := false; µX •(
releaseCall?o!id −→ pending := true; releaseRet!o!id −→ X
@(pending) N c −→ pending := false; X @ done handler.id −→ Skip

)

36

http://dx.doi.org/10.1007/s10009-004-0167-4
http://dx.doi.org/10.1007/s00165-014-0317-8
http://dx.doi.org/10.1007/s00165-014-0317-8
http://www.cs.york.ac.uk/circus/publications/techreports/reports/cdx_report.pdf
http://www.cs.york.ac.uk/circus/publications/techreports/reports/cdx_report.pdf

Law [call-intro*]

F(A) v (F(cs −→ ce −→ Skip) J wrtV(A) | {| cs, ce |} | wrtV(A) K cs −→ A; ce −→ Skip) \ {| cs, ce |}

provided

• {| cs, ce |} ∩ usedC(F) = ∅
• wrtV(A) ∩ usedV(F(Skip)) = ∅
• wrtV(F(Skip) ∩ usedV(A) = ∅

Law [handler-extract*]

sm −→ ah −→ (µX • A; X @ dh −→ Skip); dm −→ Skip
v (sm −→ SH −→ r −→ sh −→ ah −→ dh −→ dm −→ Skip) \ {| r |}

J{} | {| sh, ah, dh, SH |} | usedV(A)K
SH −→ sh −→ ah −→ µX • (A; X @ dh −→ Skip)

 \ {| sh, SH |}

provided {| sh, SH, dh, ah |} ∩ usedC(A) = ∅.

37

Lemma [mission-fw-cl*]

start mission!id?s −→ missionInitializeCall?x!id −→ SH1 −→ SH2 −→ register.id1 −→ register.id2−→

missionInitializeRet!x!id −→ done mission.id −→ Skip
J{} | {| start mission, register, done mission,missionInitializeCall,missionInitializeRet |} | {}K
var handlers : P ID • handlers := {}; start mission?x−→

requestTerminationCall?x!id −→ requestTerminationRet!x!id−→
µX • (requestTerminationCall?x!id −→ requestTerminationRet!x!id −→ X

@ stop handlers −→ X @ done mission.id −→ Skip)
J{} | {| done mission, stop handlers |} | {handlers}K
missionInitializeCall!id!id−→
µX • (register?h −→ handlers := handler ∪ {h}; X @ missionInitializeRet!id!id −→ Skip);(

J{| activate handlers, stop handlers |} K h : handlers • (start aeh.h −→ Skip @ start peh.h −→ Skip);
activate handlers −→ stop handlers −→ done handler.h −→ Skip

)
;

done mission.x −→ Skip

\{| stop handlers |}
v

start mission!id?s −→ µX •(
missionInitializeCall?x!id −→ SH1 −→ SH2 −→ register.id1 −→ register.id2 −→ missionInitializeRet!x!id −→ X
@cleanUpCall?x!id −→ cleanUpRet!x!id −→ X @ end mission app.id −→ Skip

)
J{} | {| start mission, register, done mission,missionInitializeCall,missionInitializeRet,

requestTerminationCall, requestTerminationRet, terminationPendingCall, terminationPendingRet |} | {}K
var sequencer : ID; handlers : P ID; terminating : B • sequencer := null; handlers := {}; terminating := false;

start mission!id?s −→ sequencer := s; missionInitializeCall?x!id−→
µX •

(
register?h −→ handlers := handlers ∪ {h}; X @ missionInitializeRet!x!id −→ Skip

)
;

if handlers = {} −→ Skip
8handlers , {} −→

(9h : handlers • [{}]start peh.h?s?p −→ Skip @ start aeh.h −→ Skip); activate handlers−→
stop handlers −→ (9h : handlers • [{}]done handler.h −→ Skip); done handlers −→ Skip
J{| stop handlers, done handlers |}K

µX •

requestTerminationCall?x!id−→
 if ¬ terminating −→ (terminating := true; stop handlers −→ Skip)

8terminating −→ Skip
fi

 ;

requestTerminationRet!x!id −→ Skip

 ; X

@terminationPendingCall?x!id −→ terminationPendingRet!x!id!terminating −→ Skip; X
@done handlers −→ Skip

\{| stop handlers, done handlers |}
fi

;

cleanUpCall!id!id −→ cleanUpRet!id!id?x −→ end mission app!id −→ done mission!id −→ Skip

\{| stop handlers, cleanUpCall, end mission app |}

where Channels SH1 and SH2 correspond to the constructor channels of the handlers with identifiers id1 and id2.

38

Lemma [mission-fw-cl-single*]

start sequencer−→

µX •

getNextMissionCall!id!id −→ getNextMissionRet!id!id?m−→ if m = null −→ end sequencer app −→ Skip

8m , null −→ start mission.m −→ done mission.m.true −→ X
fi

 ;

done sequencer −→ Skip
J{} | {| getNextMissionCall, getNextMissionRet, end sequencer app |} | {}K
var b : B • b := false;

µX •

getNextMissionCall?x!id −→

 if b −→ getNextMissionRet!x!id!null −→ Skip
8¬ b −→ getNextMissionRet!x!id!MID −→ Skip
fi

 ; X

@
end sequencer app −→ Skip

\{| getNextMissionCall, getNextMissionRet, end sequencer app |} v

start sequencer −→ µX • getNextMissionCall!id!id −→ getNextMissionRet!id!id?m−→
if m , null −→ start mission.m −→ done mission.m?continue−→

(if continue −→ X 8 ¬ continue −→ Skip fi)
8m = null −→ Skip
fi

 ;

end sequencer app −→ done sequencer −→ Skip
J{} | {| getNextMissionCall, getNextMissionRet, end sequencer app |} | {}K
var b : B • b := false;

µX •

getNextMissionCall?x!id −→

 if b −→ getNextMissionRet!x!id!null −→ Skip
8¬ b −→ getNextMissionRet!x!id!MID −→ Skip
fi

 ; X

@
end sequencer app −→ Skip

\{| getNextMissionCall, getNextMissionRet, end sequencer app |}

Law [mission-split*]

F

 sm −→

 SH1 −→ r.id1 −→ sh.id1 −→ ah −→ dh.id1 −→ Skip
J{| ah |}K

SH2 −→ r.id2 −→ sh.id2 −→ ah −→ dh.id2 −→ Skip

 \ {| r |}; dm −→ Skip

 \ {| SH1, SH2 |}

v

F

sm −→ miC −→

 SH1 −→ r.id1 −→ Skip
9
SH2 −→ r.id2 −→ Skip

 ; miR −→ dm −→ Skip

J{} | {| sm, r, dm,miC,miR |} | {}K

sm −→ miC −→

 r.id1 −→ Skip
9
r.id2 −→ Skip

 ; miR −→ Skip; sh.id1 −→ ah −→ dh.id1 −→ Skip
J{| ah |}K
sh.id2 −→ ah −→ dh.id2 −→ Skip

 ; dm −→ Skip

\ {|miC,miR, r |}

\ {| SH1, SH2 |}

provided {|miC,miR |} ∩ usedC(LHS) = ∅

39

Law [p-handler-split*]

SH −→ sh.id.s.p −→ ah −→ wait s; µX • ((AI D 9 wait p); X @ dh −→ Skip)
v

SH −→ sh.id.s.p −→ µX • ((haeC −→ AI D; haeR −→ X) @ dh −→ Skip)
JwrtV(A) | {| sh, dh, haeC, haeR |} | {}K

sh.id?start?period −→ ah −→ wait start; µX •

(

(haeC −→ haeR −→ Skip)J 0I period
9 wait period

)
; X

@dh −→ Skip

\{| haeC, haeR |}

provided {| sh, dh, haeC, haeR |} ∩ usedC(A) = ∅ ∧ D ≤ p.

Law [par-prefix-dist*]

(A J ns1 | cs | ns2 K B); c −→ Skip
v

(A; c −→ Skip J ns1 | cs ∪ {| c |} | ns2 K B; c −→ Skip)

provided ¬ c ∈ usedC(A) ∪ usedC(B).

Lemma [periodic-handler-fw-cl*]

SH −→ start peh?x!id!s!p −→ µX •
(

handleAsyncEventCall?x!id −→ (AI D; handleAsyncEventRet!x!id −→ X)
@done handler.id −→ Skip

)
JwrtV(A) | {| start peh, done handler, handleAsyncEventCall, handleAsyncEventRet |} | {}K
start peh?x.id?start?period −→ activate handlers −→ wait start;

µX •
(

((handleAsyncEventCall?x!id −→ handleAsyncEventRet!x!id −→ Skip)J 0I period 9 wait period); X
@done handler.id −→ Skip

)
v

SH −→ start peh?x!id!s!p −→ µX •
(

handleAsyncEventCall?x!id −→ (AI D; handleAsyncEventRet!x!id −→ X)
@done handler.id −→ Skip

)
JwrtV(A) | {| start peh, done handler, handleAsyncEventCall, handleAsyncEventRet |} | {}K
var start, period : R •

start peh!id?s?p −→ activate handlers −→ start := s; period := p; wait start;

 µX •

 (handleAsyncEventCall!id −→ handleAsyncEventRet!id −→ Skip)I period; X
@
done handler!id −→ Skip

J{} | {| handleAsyncEventCall.id, done handler.id |} | {}K
(µY • ((handleAsyncEventCall!id −→ wait period)J 0); Y) 4 done handler!id −→ Skip

Law [prefix-introduction]

A = (c −→ A) \ {| c |}

provided c < usedC(A).

40

Law [prefix-par-dist]

c −→ (A1 J ns1 | cs | ns2 K A2) = (c −→ A1 J ns1 | cs ∪ {| c |} | ns2 K c −→ A2)

provided c < usedC(A1) ∪ usedC(A2) ∨ c ∈ cs.

Law [rec-interleave*]

sm −→ miC −→ SH1 −→ SH2 −→ r.id1 −→ r.id2 −→ miR −→ dm −→ Skip
J{} | {| sm, r, dm,miC,miR |} | {}K
sm −→ miC −→

(
r.id1 −→ Skip 9 r.id2 −→ Skip

)
; miR −→ Skip; sh.id1 −→ ah −→ dh.id1 −→ Skip

J{| ah |}K
sh.id2 −→ ah −→ dh.id2 −→ Skip

 ; dm −→ Skip

\ {|miC,miR, r |}

v

sm −→ miC −→ SH1 −→ SH2 −→ r.id1 −→ r.id2 −→ miR −→ dm −→ Skip
J{} | {| sm, r, dm,miC,miR |} | {}K

var handlers : P ID • handlers := {};

sm −→ miC −→ µX •
(

r?h −→ handlers := handlers ∪ {h}; X
@miR −→ Skip

)
;

(J{| ah |} K h : handlers • sh.h −→ ah −→ dh.h −→ Skip); dm −→ Skip

\ {|miC,miR, r |}

provided handlers is fresh.

Lemma [safelet-fw-cl*]

getSequencerCall?x!id −→ getSequencerRet!x!id!sid −→ end safelet app −→ Skip

J{} | {| getSequencerCall, getSequencerRet, end safelet app |} | {}
getSequencerCall!id!id −→ getSequencerRet!id!id?s −→ start sequencer −→ done sequencer−→

end safelet app −→ Skip

\{| getSequencerCall, getSequencerRet, end safelet app |}
v

µX •

getSequencerCall?x!id −→
(

var return : ID • return := sid;
getSequencerRet!x!id!return −→ Skip

)
; X

@
safeletInitializeCall?x!id −→ safeletInitializeRet!x!id −→ X
@
end safelet app −→ Skip

J{} | {| getSequencerCall, getSequencerRet, safeletInitializeCall, safeletInitializeRet, end safelet app |} | {}K
safeletInitializeCall!id!id −→ safeletInitializeRet!id!id−→

getSequencerCall!id!id −→ getSequencerRet!id!id?s−→ if s , null −→ start sequencer −→ done sequencer −→ Skip
8s = null −→ Skip
fi

 ;

end safelet app −→ Skip

\{| getSequencerCall, getSequencerRet, end safelet app, safeletInitializeCall, safeletInitializeRet |}

provided sid , null

41

Law [seq-interleave*]

sm −→ miC −→

 SH1 −→ r.id1 −→ Skip
9
SH2 −→ r.id2 −→ Skip

 ; miR −→ dm −→ Skip

J{} | {| sm, r, dm,miC,miR |} | {}K
FA

 \ {|miC,miR, r |}

J{| SH1, SH2 |}K
(SH1 −→ A1 ‖ SH2 −→ A2)

\ {| SH1, SH2 |}

v

 sm −→ miC −→ SH1 −→ SH2 −→ r.id1 −→ r.id2 −→ miR −→ dm −→ Skip
J{} | {| sm, r, dm,miC,miR |} | {}K

FA

 \ {|miC,miR, r |}

J{| SH1, SH2 |}K
(SH1 −→ A1 ‖ SH2 −→ A2)

 \ {| SH1, SH2 |}

where

FA =̂ sm −→ miC −→

 r.id1 −→ Skip
9
r.id2 −→ Skip

 ; miR −→

 sh.id1 −→ ah −→ dh.id1 −→ Skip
J{| ah |}K

sh.id2 −→ ah −→ dh.id2 −→ Skip

 ; dm −→ Skip

Lemma [sequencer-split-mult-seq*]

start sequencer −→ (; i : I • start mission.i −→ done mission.i −→ Skip);
done sequencer −→ Skip

v

start sequencer−→

µX •

getNextMissionCall!id!id −→ getNextMissionRet!id!id?m−→ if m = null −→ end sequencer app −→ Skip

8m , null −→ start mission.m −→ done mission.m −→ X
fi

 ;

done sequencer −→ Skip
J{} | {| getNextMissionCall, getNextMissionRet, end sequencer app |} | {}K
var i : nat • b := 1;

µX •

getNextMissionCall?x!id−→ if i > # I −→ getNextMissionRet!x!id!null −→ Skip
8n : dom I • i = n −→ getNextMissionRet!x!id!(I n) −→ i := i + 1
fi

 ; X

@
end sequencer app −→ Skip

\{| getNextMissionCall, getNextMissionRet, end sequencer app |}

provided I ∈ seq ID ∧ # I > 1 ∧ ∀ i : I • i , null

42

Law [sequencer-split-single*]

start sequencer −→ start mission.MID−→
done mission.MID −→ done sequencer −→ Skip

v

start sequencer−→

µX •

getNextMissionCall!id!id −→ getNextMissionRet!id!id?m−→ if m = null −→ end sequencer app −→ Skip

8m , null −→ start mission.m −→ done mission.m!true −→ X
fi

 ;

done sequencer −→ Skip
J{} | {| getNextMissionCall, getNextMissionRet, end sequencer app |} | {}K
var b : B • b := false;

µX •

getNextMissionCall?x!id −→

 if b −→ getNextMissionRet!x!id!null −→ Skip
8¬ b −→ getNextMissionRet!x!id!MID −→ Skip
fi

 ; X

@
end sequencer app −→ Skip

\{| getNextMissionCall, getNextMissionRet, end sequencer app |}

provided MID , null

Law [sync-async-conv*]

µX • ((c −→ G)I D1 9 wait P); X @ end −→ Skip J ns1 | cs | ns2 K OHandlers
v

((µX • (ci −→ (GI (D1 − T))); X @ end −→ Skip) J ns1 | {| ci, end |} | {} K Buffer) \ {| ci |}

Jns1 | cs | ns2K
OHandlers

where

Buffer =̂ var pending : B • pending := false; µX •
c −→ pending := true; X @ (pending) N ci −→ pending := false; X @ end −→ Skip

OHandlers = F(µX • (B(c −→ Skip)1 I D2 9 wait P); X @ end −→ Skip)
TimeReq = µX • (c@t : (t < T) −→ wait (P − t) @ wait P); X @ end −→ Skip

provided

• B is not recursive and LHS is deadlock-free and feasible.

• ci < usedC(LHS) ∧ T < D1 < P ∧ D2 < P

• OHandlers J {| c |} K TimeReq = OHandlers

Law [termination-intro*]

µX • F; X
v

(µX • F; X @ t −→ Skip J {|wrtV(F) | {| rt, t |} | {} K rt −→ µX • rt −→ X @ t −→ Skip) \ {| rt, t |}

provided {| t, rt |} ∩ usedC(F) = ∅.

43

Appendix B. Sample proof

Law [par-prefix-dist*]

(A J ns1 | cs | ns2 K B); c −→ Skip
=

(A; c −→ Skip J ns1 | cs ∪ {| c |} | ns2 K B; c −→ Skip)

provided c < usedC(A) ∪ usedC(B).

Proof

(A J ns1 | cs | ns2 K B); c −→ Skip
= (A J ns1 | cs | ns2 K B); (c −→ Skip J ns1 | {| c |} | ns2 K Skip) (Law C.78[14])
= (A J ns1 | cs ∪ {| c |} | ns2 K B); (c −→ Skip J ns1 | {| cs ∪ {| c |}c |} | ns2 K Skip) (Law C.80[14])
= (A; c −→ Skip J ns1 | cs ∪ {| c |} | ns2 K B; c −→ Skip) (Law C.88[14])

�

Appendix C. Excerpts of the syntax of SCJ-Circus

SCJCProgram ::= {SCJCParagraph}

SCJCParagraph ::= SCJCSafelet | SCJCMissionSequencer
| SCJCMission | SCJCHandler | CircusParagraph

SCJCSafelet ::= safelet N =̂ begin
{SCJCSafeletProcessParagraph}
[state Schema-Expression)]
{SCJCSafeletProcessParagraph}
[initialize =̂ SCJCSafeletAction]
{SCJCSafeletProcessParagraph}
getSequencer =̂ res return : sequencer • SCJCSafeletAction
SCJCSafeletProcessParagraph∗

end

SCJCPeriodicHandler ::= periodic handler handler N =̂ begin
{SCJCHandlerProcessParagraph}
start Expression period Expression
{SCJCHandlerProcessParagraph}
[state Schema-Expression]
{SCJCHandlerProcessParagraph}
[initial =̂ SCJCHandlerAction]
{SCJCHandlerProcessParagraph}
handleAsyncEvent =̂ SCJCHandlerAction
{SCJCHandlerProcessParagraph}

end

SCJCHandlerProcessParagraph ::= Paragraph
| N =̂ SCJCHandlerParametrisedAction
| nameset N == NameSetExpression

44

SCJCHandlerParametrisedAction ::= SCJCHandlerAction
| val Declaration • SCJCHandlerParametrisedAction
| res Declaration • SCJCHandlerParametrisedAction

SCJCHandlerAction ::= SCJCMissionAction
| N := newPR N
| N := newPR N(Expression {,Expression})
| N := newPM N
| N := newPM N(Expression {,Expression})

. . .

45

	Introduction
	Preliminaries
	Safety-Critical Java
	Circus

	SCJ-Circus
	Syntax
	Semantic model
	Semantics

	Patterns
	Refinement Strategy
	CF: Introducing the SCJ control flow
	AP: Introducing the application processes
	FW: Introduction of framework processes
	Conv: Converting to SCJ-Circus

	Non-terminating pattern
	Multi-mission pattern
	Conclusions
	Refinement laws
	Sample proof
	Excerpts of the syntax of SCJ-Circus

