
Re�nement strategies for Safety-Critical Java

Alvaro Miyazawa1 and Ana Cavalcanti2

1 alvaro.miyazawa@york.ac.uk,
2 ana.cavalcanti@york.ac.uk,

Department of Computer Science
University of York, York, UK

Abstract. Safety-Critical Java (SCJ) is a version of Java that supports
the development of real-time, embedded, safety-critical software. SCJ
introduces abstractions that enforce a simpler architecture, and simpler
concurrency and memory models, to support easier certi�cation. In this
paper, we detail a re�nement strategy that takes a state-rich process al-
gebraic design speci�cation that adheres to a cyclic executive pattern and
produces an SCJ design that can be automatically translated to code. We
then show how this re�nement strategy can be extended to support more
complex patterns that include non-terminating and multiple missions.

1 Introduction

Safety-Critical Java (SCJ) [7] is a version of Java suitable for the development of
veri�able real-time software. It incorporates part of the Real-Time Speci�cation
for Java (RTSJ) [17], introduces new abstractions such as Safelets and Missions,
and removes garbage collection by enforcing the use of scoped memory regions.
All this supports predictable timing behaviours.

SCJ enforces particular programming patterns via simpli�ed memory and
concurrency models. SCJ programs can adopt one of three pro�les, called levels,
which support an increasing number of abstractions. In this paper, we focus
on the intermediate level of SCJ programs (level 1), which enforces a structure
where a safelet (the main program) de�nes a mission sequencer, which in turn
provides a number of missions that are run in sequence as shown in Figure 1.
This level is comparable in complexity to the Ravenscar pro�le for Ada. While
adequate to a wide range of applications, it is amenable to formal reasoning.

An SCJ application is formed by a safelet, a mission sequencer, a number
of missions, and periodic and aperiodic event handlers. A safelet instantiates a
mission sequencer, and iteratively obtains a mission from the mission sequencer,
executes it and waits for it to terminate. At level 1, each mission is formed by a
collection of periodic and aperiodic event handlers that are run concurrently.

A safelet terminates when there are no missions left to be executed, and a
mission terminates when one of its handlers requests termination. In the SCJ
memory model, which is based on scoped memory regions, safelets, missions,
and handlers each have associated memory regions, which are cleared at speci�c
points of the program execution. This ensures predictable time properties.

Start HaltMission
Cleanup

Mission
Execution

Select
Mission Initialization

Mission

MissionSequencer

Fig. 1. SCJ programming model

Cavalcanti et al. [5] proposes a design technique for SCJ based on the Cir-

cus family of languages for re�nement, which are state-rich process algebras for
re�nement that include aspects such as object-orientation and timing; it has been
used to support veri�cation of a number of di�erent models such as Simulink/S-
tate�ow diagrams [4,11] and SysML [13,9].

In [12], we describe the syntax and semantics of a version of Circus called
SCJ-Circus, which includes the SCJ abstractions. In that work, we identify four
patterns of Circus speci�cations used as a basis for the development of SCJ pro-
grams de�ned by SCJ-Circus models. We also describe the main phases of a
re�nement strategy that takes a Circus speci�cation based on one of the pat-
terns for a non-terminating cyclic design with one mission whose handlers are
in lockstep. The strategy produces an SCJ-Circus program that can be directly
converted into an SCJ program. Here, we show that a re�nement strategy for
the terminating versions of the patterns identi�ed in [12] can be extended and
composed to support the re�nement of a wider variety of patterns, in particular,
non-terminating and multi-mission patterns.

We �rst focus on the terminating cyclic in lockstep pattern, and detail the
re�nement strategy for it. We then show how this strategy can be extended to
support the re�nement of the non-terminating cyclic in lockstep pattern of [12]
and a multi-mission pattern, in which the missions are provided sequentially
and each mission follows the terminating cyclic in lockstep pattern. Besides
considering re�nement for a collection of patterns that is signi�cantly larger than
that in [12], we also provide a detailed account of the strategy, instead of just
an overview. Whilst most of the laws used in our strategies have only syntactic
provisos, a few require more complex provisos, such as deadlock freedom.

Section 2 introduces Circus and Section 3 discusses our patterns, focusing
on the terminating cyclic in lockstep pattern. Section 4 details our re�nement
strategy for our target pattern. Section 5 and 6 extend the re�nement strategy of
Section 4 to cover non-terminating and multi-mission patterns. Finally, Section 7
concludes by reviewing our results and discussing future work.

2 Circus

In this section, we use the Circus process ThreeEqual in Figure 2, which models
an SCJ level 1 application that contains two event handlers, to give an overview
of the notation. It de�nes a program that takes integers as inputs, and outputs
booleans indicating whether the last three inputs are equal or not.

process ThreeEqual =̂ begin
InputHandler =̂

µX •

((input?x −→ Skip)J ID ; setBuffer !x−→
(wait 0..PTB); checkRepeats −→ Skip

)
I PD

9 wait P

 ; X

OutputHandler =̂

µX •

checkRepeats−→
getBuffer?buffer −→wait 0..ATB ;

if check(buffer) = True −→
(output !true −→ Skip)J OD

8check(buffer) = False −→
(output !false −→ Skip)J OD

fi

I AD ; X

MArea =̂ var buffer : seqN • buffer := 〈0, 0, 0〉; µX •(

setBuffer?x −→ buffer := (tail buffer a 〈x 〉); X
@getBuffer !buffer −→X @ stop −→ Skip

)
TEMission =

 InputHandler
J{} | {| stop, checkRepeats |} | {}K
OutputHandler

 \ {| checkRepeats |}

J{} | {| setBuffer , getBuffer |} | {} K MArea

 \ {| . . . |}
TEMissionSequencer =̂ TEMission
TESafelet =̂ TEMissionSequencer
• TESafelet

end

Fig. 2. SCJ Level 1 example: ThreeEqual

The main modelling element of a Circus speci�cation is a process (indicated
by the keyword process). A basic process declares state components (identi�ed
by the keyword state), a number of auxiliary actions, and a main action (at the
end pre�xed by •) that describes the overall behaviour of the process. Processes
can also be combined using CSP operators to de�ne other processes.

Processes communicate with each other and with the environment via chan-
nels. In the case of our example, the process ThreeEqual does not declare any
state components; its interface is characterised by the channels input and output .

ThreeEqual declares six auxiliary actions: InputHandler , OutputHandler ,
MArea, TEMission, TEMissionSequencer and TESafelet . Actions are speci�ed
using a combination of Z [18] for data modelling and CSP [15] for behavioural
descriptions. The main action is de�ned by a direct call to the action TESafelet .

In general, a safelet may have an initialisation, but in our example, its be-
haviour is just that of the action TEMissionSequencer . In general, a mission
sequencer de�nes a sequence of missions, but here TEMissionSequencer de�nes
just the mission TEMission. The action MArea represents a memory area that
holds a bu�er. It has a block (var . . . • . . .) that declares a local variable buffer
of type seqN, and whose body is de�ned by a recursion (µX • . . .) that at each
step o�ers a choice of reading a value on the (internal) channel setBuffer , stor-

ing it in buffer and recursing, or outputting the value of buffer on the channel
getBuffer and recursing, or synchronising on stop and terminating. The action
Mission composes in parallel (J . . . | . . . | . . . K) the two event handlers synchro-
nising on stop and checkRepeats, with checkRepeats hidden (\), and the action
MArea synchronising on the channels setBuffer and getBuffer .

The action InputHandler represents a task with period P , that must get its
input within ID time units, can take up to PTB time units to complete, but no
more than PD . It is also de�ned by a recursion, where at each step two actions
are started in interleaving. The �rst action must take at most PD time units as
indicated by the end-by deadline operator I. It reads an input with a deadline
of ID time units as indicated by the start-by deadline operator J, appends the
value to the end of the tail of buffer , waits (wait) between 0 and PTB time
units, and then synchronises on checkRepeats, before terminating (Skip). The
wait 0 . .PTB models a budget of time for the update of the bu�er of PTB time
units. We observe that data operations take no time, unless explicitly speci�ed
otherwise. The communication of checkRepeats triggers the OutputHandler . The
second interleaved action in InputHandler waits for exactly P time units and
guarantees that a new iteration of the recursion does not start before the end of
the cycle, whose duration is P time units.

The action OutputHandler represents a task triggered by a synchronisation
on the channel checkRepeats; the task can take up to ATB time units to complete,
but must terminate in less than AD time units. It is de�ned by a recursion,
where each step synchronises on checkRepeats, reads the value of the bu�er on
the channel getBuffer , waits for up to ATB time units, and checks whether
the value read is in the set check or not. In the �rst case it outputs the value
true on the channel output within OD time units, in the second case it outputs
false on the same channel under the same time restriction. The whole step must
terminate within AD time units as indicated by the deadline operator.

In general, a Circus speci�cation consists of a sequence of paragraphs that
de�ne processes (as well as channels, constants, and other constructs that sup-
port the de�nition of processes). Processes are used to de�ne the system and
its components: state is encapsulated and interaction is via channels. Processes
can be composed, via CSP operators, to de�ne other processes. In Circus Time,
wait and deadline operators can be used to de�ne time restrictions. In OhCircus

models, we can in addition de�ne paragraphs that declare classes used to de�ne
types. More information about these languages can be found in [14,16,3]. In the
sequel, we further explain the notation as needed.

3 Patterns

The cyclic executive pattern that has been identi�ed in our previous work is
shown in Figure 3. It requires that the application has a single mission with a
�xed cycle, and all periodic and aperiodic event handlers execute at each cycle.
This requirement radically simpli�es the re�nement strategy since it allows the

P =̂ begin
state S
PHandleri =̂ µX • (Fi I PD 9 wait PERIOD); X @ t −→ Skip
AHandlerj =̂ µX • (cj −→Gj)I AD ; X @ t −→ Skip
MArea =̂ . . .
Termination =̂ rt −→ µX • (rt −→X @ t −→ Skip)

Mission =̂

 (MArea ‖ (‖ i : I • PHandleri) ‖ (‖ j : J • AHandlerj))
JαS | {| t , rt |} | {}K

Termination

MissionSequencer =̂ Mission
Safelet =̂ MissionSequencer
• Safelet

end
where PD ≤ PERIOD ∧ AD ≤ PERIOD

Fig. 3. Pattern: cyclic in lockstep.

transformation of synchronous releases of aperiodic event handlers in the models
into the asynchronous releases that occur in SCJ-Circus.

In this pattern, parallelism occurs between the actions that model the mission
and the mission memory, and the termination management action, and within
the mission action between the di�erent event handlers. The mission memory
action MArea declares the variables shared by the handlers and o�ers commu-
nications over get and set channels that support reading and writing to the
shared variables. The termination management action accepts a synchronisation
on a channel rt ; this corresponds to a request from some handler to terminate.
Afterwards, the action starts a recursion where at each step, it either accepts
another communication on rt (corresponding to a further request to terminate)
and recurses, or it synchronises on t and terminates. The communication on t
has the e�ect of terminating the handlers of the mission.

A parallelism of actions in Circus needs to identify the partition of variables
that each parallel action can modify to avoid race conditions. So far, these sets
of variables have been empty. In the case of the Mission action, all variables αS
in scope can be modi�ed by the parallelism of handlers, while the termination
management action modi�es no variables.

Periodic event handlers PHandleri are de�ned as recursive actions, where each
step takes a �xed amount of time (waitPERIOD) whilst executing (in inter-
leave) some behaviour that takes at most PD time units (indicated by the I
operator). The execution of an aperiodic event handler AHandlerj , on the other
hand, is triggered by a synchronous event cj , which may occur at any time dur-
ing the cycle of the mission that lasts PERIOD time units, but must terminate
within AD time units. In order to guarantee the cyclic behaviour, the pattern
imposes timing restrictions over the behaviours of both periodic and aperiodic
handlers, which guarantee that they terminate within the cycle of the mission.

The second pattern that we consider allows for an aperiodic event handler
not to be called in a cycle. For this to be possible, the deadlines of the aperiodic
event handler must be adapted so that they can be missed as long as it has not

AHandlerj =̂ µX • (cj −→Gj)I AD ; X @ t −→ Skip @ wait PERIOD ; X

where AD ≤ PERIOD

Fig. 4. Pattern: cyclic not in lockstep.

AHandlerj =̂
var pr : boolean • pr := false;

µX •
(

cj −→ pr := true; X @ (pr)N hr −→ pr := false; X
@t −→ Skip

)
J{} | {| hr , t |} | α(Gj)K
µX • (hr −→Gj ; X @ t −→ Skip)

 \ {| hr |}

Fig. 5. Pattern: non-cyclic.

started. This pattern di�ers from that in Figure 3 just in the characterisation of
the aperiodic handlers, which is presented in Figure 4. It requires the release via
the channel cj and the associated handling action Gj to terminate within AD
time units, or termination through the channel t . Furthermore, if release or ter-
mination does not take place within PERIOD time units, the choice terminates
and a new cycle of the recursion is started. The timing restrictions of the �rst
pattern over the periodic event handlers also apply to the second pattern.

Finally, the third pattern imposes no restriction on the timing of the han-
dlers, which means that the behaviour of a periodic handler can take longer
than its period, and the behaviour of the aperiodic handler can be called mul-
tiple times even if its action is not yet completed. In this case, the pattern for
aperiodic handler models is as shown in Figure 5. In SCJ, release requests are
asynchronous. So, if requests for further releases occur before a handler is ready
to execute again, one, and just one, pending release is recorded.

Accordingly, the actions of the form described in Figure 5 accumulate an
asynchronous release. It is used to support accumulation of at most one asyn-
chronous release and consists of two parallel actions. The second parallel action
models the behaviour of the handler itself in the usual way, but it is triggered
by the internal event hr . The actual triggering is managed by the �rst parallel
action. It receives release requests through the channel cj and records them in
the local variable pr (pending release), or requests for termination on t . When
there is a pending release (pr), then it can release the handler (hr), but it can
never have more than one pending release. This is, no doubt, a very speci�c pat-
tern, in spite of the absence of time restrictions. We emphasise that the starting
point of our re�nement strategy is not an abstract model, but an SCJ design.
Such a design can be obtained using the re�nement strategy in [5], for example.

The purpose of the re�nement strategy that we propose here and detail in the
next few sections is threefold. First, it guarantees that the design embedded by
the patterns can indeed be realised in SCJ. Not every model that conforms to our
patterns can be correctly implemented in SCJ with the suggested structure of
missions and actions. For example, in the design model, there may be a possibility
that an aperiodic handler is not released in a particular cycle. Such a model

Fig. 6. Phases of the re�nement strategy

safeletSafelet =̂ begin . . . end
sequencerSequencer =̂ begin . . . end
missionMission =̂ begin . . . end
periodic handlerPHandleri =̂ begin . . .handleAsyncEvent =̂ Fi I PD end
aperiodic handlerAHandlerj =̂ begin . . .handleAsyncEvent =̂ Gj I AD end

Fig. 7. Target

cannot be realised as a cyclic execution in lockstep. Its rendering in SCJ may
lead to visible inputs and outputs not allowed in the model.

Second, by deriving via re�nement an SCJ-Circus model, we enable auto-
matic translation to SCJ code via trivial transformations whose soundness is
not a concern. Finally, we obtain a model whose abstractions are in direct corre-
spondence with those of the SCJ paradigm. In this model, reasoning about use
of the memory model, for example, is much simpler.

4 Re�nement strategy

In this section, we present the re�nement strategy for the terminating cyclic lock-
step pattern. It consists of the same phases as the re�nement strategy in [12]
shown in Figure 6. The target is an SCJ-Circus program of the form de�ned
in Figure 7. Each periodic action in the starting design model has a corre-
sponding periodic event handler paragraph in the target speci�cation, where the
handleAsyncEvent method is de�ned as Fi I PD . Similarly, each aperiodic,
mission, mission sequencer and safelet action has a corresponding paragraph.

The four phases of our re�nement strategy are as follows: (CF) introduction
of SCJ control �ow, (AP) introduction of application processes, (FW) introduc-
tion of framework processes, (Conv) conversion to SCJ-Circus. CF makes the
control �ow of the SCJ paradigm, which is implicitly de�ned in the patterns via
sequential and parallel compositions, explicitly captured by channel synchroni-
sations. For example, we introduce, a channel activate handlers that models the
synchronised start of the handlers in parallel. AP separates application-speci�c
behaviours (for example, handler behaviours) from behaviours such as starting
a mission, which are implemented by an SCJ runtime environment (framework).
FW takes the incomplete model of framework behaviour, representing a slice
of the SCJ framework actually used by the application, and replaces it by the

full-�edged framework model. Finally, Conv re�nes the speci�cation into a se-
quence of SCJ-Circus paragraphs. As illustrated in Figure 6, the �rst three phases
act only on constructs of the time and object-oriented languages, Circus Time

and OhCircus, whilst the last phase manipulates SCJ-Circus speci�cations, which
complement those two notations with SCJ speci�c constructs.

4.1 (CF) Introduction of SCJ control �ow

This phase extracts each of the SCJ abstractions from the starting design model
into parallel actions. It derives, from a design like that in Figure 3, a process
structured as shown in Figure 8. Its main action is the parallel composition
of actions corresponding to speci�c SCJ abstractions. The order of execution
imposed by the original speci�cation is maintained through the use of commu-
nication channels such as start mission and start sequencer .

Figure 9 presents the steps necessary to reach its target. The laws named
there can be found in [1]. Due to space restrictions, only some are presented and
explained here. Overall, this phase identi�es the actions of the starting process
that model speci�c abstractions and applies specialised laws to parallelise the
safelet, mission sequencer and mission actions. Next, handler laws replace syn-
chronous communications between handlers with asynchronous communications,
and separate the handlers from the mission action. Finally, Circus laws are used
to merge parallel actions associated with mission execution.

The law call-intro is used to split an action F (A) into the parallel composition
of two actions, one of which executes the behaviour of the subaction A of F (A).
To retain the control �ow of F (A), internal channels cs and ce are used to
synchronise the parallel actions. In F (A), the action A is replaced with a call to
the parallel action using the internal channels.

Law [call-intro]

F (A) v

F (cs −→ ce −→ Skip)

JwrtV (A) | {| cs, ce |} | wrtV (A)K
cs −→A; ce −→ Skip

 \ {| cs, ce |}

provided

• {| cs, ce |} ∩ usedC (A) = ∅
• wrtV (A) ∩ usedV (F (Skip)) = ∅
• wrtV (F (Skip) ∩ usedV (A) = ∅

This law is proved by structural induction over the structure of the action F
using distribution and step laws such as the ones found in [14]. The provisos
guarantee that the internal channels are fresh and that the state is appropriately
partitioned to avoid racing conditions in the parallelism. We use usedC (A) to
refer to the set of channels used in an action A, and usedV (A) and wrtV (A) to
refer to the variables used and modi�ed by A. The law call-intro is applied to
parallelise the safelet, mission sequencer and mission.

CF P =̂ begin
state S
PHandleri =̂ µX • (Fi I PD 9 wait PERIOD); X @ t −→ Skip
AHandlerj =̂ µX • (cj −→Gj)I AD ; X @ t −→ Skip
MArea =̂ . . .
Termination =̂ rt −→ µX • (rt −→X @ t −→ Skip)
CF Mission =̂ start mission−→

MArea ‖ Termination ‖
‖ i : I • SHi −→ register .i −→ start peh.i −→ activate handlers−→

done handler .i −→ Skip
‖
‖ j : J • SHj −→ register .j −→ start aeh.j −→ activate handlers−→
quaddone handler .j −→ Skip

 ;

done mission −→ Skip
Safelet =̂

‖ i : I • SHi −→ start peh.i −→ activate handlers −→ PHandleri ;
done handler .i −→ Skip
‖‖ j : J • SHj −→ start aeh.j −→ activate handlers−→

(AHandlerj J {. . .} | {| cji |} | {} K Bufferj) \ {| cji |};
done handler .j −→ Skip
‖ CF Mission
‖ start sequencer −→ start mission −→ done mission−→

done sequencer −→ Skip
‖ start sequencer −→ done sequencer −→ Skip

• Safelet
end

Fig. 8. Re�nement strategy (CF) � Target

1. Apply Law call-intro to the action Safelet with channels cs and ce replaced by
start sequencer and done sequencer ;

2. Apply Law call-intro to the action MissionSequencer with channels cs and ce re-
placed by start mission and done mission;

3. Apply Law copy-rule to the action Mission in MissionSequencer ;
4. For each aperiodic action AHandlerj in the parallelism of handler actions use asso-

ciativity and commutativity laws to obtain a parallelism between AHandlerj and
another parallelism with all other handlers, and apply Law sync-async-conv;

5. Apply Laws pre�x-par-dist [14] and par-pre�x-dist to the action Mission to distribute
the communications on start mission and done mission over all parallel actions;

6. Apply Law handler-extract to each parallel action except MArea and Termination;
7. Apply step laws of [14] to merge the left hand side actions of the parallelisms

introduced in the previous step.

Fig. 9. Re�nement strategy: (CF) Introduction of SCJ control �ow

For the treatment of event handlers, we �rst introduce asynchronous commu-
nication between the event handlers using the Law sync-async-conv (see step 4 of
Figure 9). This law, which we omit here, replaces the synchronous communica-
tion between two actions by an asynchronous communication based on a bu�er.

Handleri app =̂ . . .
Mission app =̂ . . .
MissionSequencer app =̂ . . .
Safelet app =̂ . . .

AP P =̂ AP P FW ‖
(

Safelet app 9 MissionSequencer app 9 Mission app ‖
(9i : I ∪ J • Handleri app)

)
Fig. 10. Re�nement strategy: target of phase AP

Next, parallelism distribution laws are used in step 5 to expand the par-
allelism between handlers (previously internal to the action Mission) to a top
level parallelism as shown in Figure 8. In the next step, a simple law, handler-
extract omitted here, is used wrap the handler actions with synchronisations on
new internal channels SH , register , start peh, start aeh, activate handlers and
done handler to represent the interactions corresponding to the initialisation of
a mission, including creation (SH), registration (register), starting (start peh
and start aeh) and activation (activate handlers) of handlers, and to the ter-
mination of a mission, including the cleaning of handlers (done handler). All
these synchronisations are orchestrated by a new parallel action that models the
mission execution cycle. Its repeated occurrence for each handler is eliminated
in favour of a single parallel action named CF Mission in Figure 8.

4.2 (AP) Introduction of application processes

The starting point of this phase is the target of the previous phase in Fig-
ure 8, and its target is shown in Figure 10: it de�nes a number of application
processes, and re�nes the process CF P into the parallel composition of the
interleaved application processes and a modi�ed version of the original process,
where application-speci�c behaviours have been replaced by calls to actions of
the application processes via Call and Ret channels that model method calls.

The steps of this phase are shown in Figure 11. Overall, we use the process
obtained in phase CF to identify the behaviours that are application speci�c and
construct application processes. Next, each action modelling an SCJ abstraction
is split into two parallel actions: one containing application-speci�c behaviours,
and the other containing the interactions introduced during CF to model the SCJ
control �ow. In this control action, the application-speci�c behaviour is replaced
by calls via appropriate channels. This is achieved by specialised laws handler-
split, mission-split, sequencer-split and safelet-split, for each of the di�erent SCJ
constructs. Finally the initial basic process is split into a parallelism of processes.
Since, following the application of the specialised split laws, the main action of
the basic process is a parallelism, this is a simple application of the de�nition of
process parallelism in Circus.

Due to space restrictions, we present just the Law handler-split. The others are
similar and simpler. For handlers, the new parallel actions communicate through
channels that model a call to the handleAsyncEvent method. Accordingly, this

1. Apply Law handler-split to each handler action with channels haeC and haeR
replaced by handleAsyncEventCall and handleAsyncEventRet ;

2. Apply Law mission-split to the action that models the mission;
3. Apply Law seq-interleave [1] to turn the interleaving on the left hand side of the

parallel action introduced in step 2 into a sequential composition;
4. Apply Law rec-interleave [1] to turn the interleaving on the right hand side of the

parallel action in step 2 into a recursion;
5. Apply Law sequencer-split [1] to the action that models the sequencer;
6. Apply Law safelet-split [1] to the action that models the safelet;
7. Apply the de�nition of parallel processes [14] from right to left to replace the basic

process, whose main action is parallel, with a parallelism of application processes
and the remains of the original process.

Fig. 11. Re�nement strategy: (AP) Introduction of application processes

law takes an action modelling a handler, and splits it by distributing application
aspects such as constructor channels SH and release behaviour F to one side, and
framework behaviours such as start and end channels (sh and dh) to the other
side. This law is easily proved by the application of parallelism step laws [14].

Law [handler-split]

SH .n −→ sh.n −→ µX • (F ; X); dh.n −→ Skip
vSH .n −→ sh.n −→ µX • (haeC −→ F ; haeR −→X); dh.n −→ Skip

JwrtV (F) | {| sh.n, dh.n, haeC , haeR |} | {}K
sh.n −→ µX • (haeC −→ haeR −→X); dh.n −→ Skip

\{| haeC , haeR |}

provided {| sh,SH , dh |} ∩ usedC (F) = ∅.

In step 3, the strategy applies a law to transform the interleaving of the instan-
tiation and registration of all handlers (on the application side) into a sequence.
This is possible because all the parallel actions that synchronise on the inter-
leaved events do so in interleaving (avoiding deadlock) and these events are
internal. Step 4 transforms the interleaving on the framework side of the mission
into a recursive action that at each step allows the registration of a handler, and
once all handlers have been registered, executes them in interleaving.

At the end of this phase, the application processes are completed, but the
remaining process AP P FW does not quite specify the SCJ runtime environ-
ment. This process is the focus of the next phase.

4.3 (FW) Introduction of framework processes

This phase applies to the part of the model that remains after the application
processes are extracted. It consists of a process AP P FW containing portions

1. Apply Law safelet-fw-cl to the action Safelet of CF P FW ;
2. Apply Law sequencer-fw-cl to the action Sequencer of CF P FW ;
3. Apply Law mission-fw-cl to the action Mission of CF P FW ;
4. Apply Law periodic-handler-fw-cl to the actions PHandleri of CF P FW ;
5. Apply Law aperiodic-handler-fw-cl to the action AHandlerj of CF P FW ;
6. Apply the de�nition of parallel processes [14] from right to left to replace the

process CF P FW , with a parallelism of framework processes.

Fig. 12. Re�nement strategy: (FW) Introduction of framework processes

FW P =̂

(

SafeletFW ‖ SequencerFW ‖ MissionFW (mission) ‖
(9i : I ∪ J • HandlerFW (handleri))

)
‖(

Safelet app 9 MissionSequencer app 9 Mission app ‖
(9i : I ∪ J • Handleri app)

)

Fig. 13. Re�nement strategy: target of phase FW

of the framework that are explicitly used in the design. The result is a new pro-
cess that de�nes the complete framework behaviours. For instance, our running
example never asks a mission for the sequencer that oversees its execution. This
is, however, a service provided by the framework. We can introduce the richer de-
scription of the framework because the application process is guaranteed not to
request the additional behaviour. The steps of this phase are shown in Figure 12.

The process resulting from the application of this phase is shown in Fig-
ure 13. It is the parallel composition of the application processes introduced in
the previous phase and the framework processes that model the SCJ API.

The main laws used in this phase are specialised to the cyclic in lockstep pat-
tern as indicated by the su�x -cl. The single non-application process AP P FW
obtained in the previous phase is the same for all applications that follow our
target pattern. This is because the pattern is very restrictive with respect to
the execution of missions and handlers, and most of the framework speci�c be-
haviours are introduced by the laws in the previous steps. For this reason, the
specialised laws can be used to introduce the full blown framework processes re-
lying solely on syntactic conditions over the application processes. This is done
to each abstraction in steps 1�5. These framework processes are speci�ed in [10].

At the �nal step 6, the process whose main action is the parallel composition
of the actions completed by the previous steps is split into a parallelism of frame-
work processes. The result is a parallelism of processes as shown in Figure 13.

4.4 (Conv) Conversion to SCJ-Circus

This phase rearranges the parallel processes shown in Figure 13 by pairing
framework and application processes according to the abstraction they model,
and introducing new process paragraphs that isolate these pairs. For instance,

handler S Handleri =̂ . . .
mission S Mission =̂ . . .
sequencer S MissionSequencer =̂ . . .
safelet S Safelet =̂ . . .

Fig. 14. Re�nement strategy: target of phase Conv

1. Systematically apply Law par-par-dist to rearrange the parallelism in Figure 13,
until it is structured as a parallelism of pairs of processes;

2. For each pair of processes, apply the copy rule from right to left to introduce the
corresponding action paragraph and replace the process by a call;

3. For each newly introduced action, apply the de�nition of the appropriate SCJ
abstraction from right to left.

Fig. 15. Re�nement strategy: (Conv) Conversion to SCJ-Circus

SafeletFW is paired with Safelet app, and extracted into a process Safelet . Next,
the semantics of SCJ-Circus is used to convert the newly introduced processes
into the corresponding SCJ-Circus paragraphs. For example, the process Safelet
is converted into a paragraph identi�ed by the keyword safelet.

The target of this phase is a speci�cation formed by SCJ-Circus paragraphs as
shown in Figure 14. Each action that models an SCJ abstraction in the original
design is modelled by an SCJ-Circus paragraph. These paragraphs overtly specify
only the application speci�c behaviours, leaving the framework aspects implicit.

The steps for this phase are shown in Figure 15. The �rst step extracts pairs
of application and framework processes two by two using the Law par-par-dist
below. This is carried out exhaustively until there are no more pairs to extract.

Law [par-par-dist]

(A J sA | a1 | sB K B) J sA ∪ sB | a2 ∪ b | sC ∪ sD K (C J sC | c | sD K D)
=
(A J sA | a2 | sC K C) J sA ∪ sC | a1 ∪ c | sB ∪ sD K (B J sB | b | sD K D)

provided

• usedC (A) ∩ usedC (B) ⊆ a1 ∧ a1 ∩ usedC (C ,D) = ∅
• usedC (C) ∩ usedC (D) ⊆ c ∧ c ∩ usedC (A,B) = ∅
• usedC (A) ∩ usedC (C) ⊆ a2 ∧ a2 ∩ usedC (B ,D) = ∅
• usedC (B) ∩ usedC (D) ⊆ b ∧ b ∩ usedC (A,C) = ∅

This law relies on the strict partition of the communication network between the
four parallel processes. It uses the fact that the channels used by the processes
C and D , which are matched to application processes in our strategy, to com-
municate with each other are not used by A and B , and, conversely, that the

channels used by A and B (matched to the framework processes in our strategy)
to communicate with each other are not used by the application processes.

Next, each pair of application and framework processes is used to de�ne a
new process using the reverse of the copy-rule, and the semantics of SCJ-Circus
is used to transform these newly de�ned processes into SCJ-Circus paragraphs.

5 Non-terminating pattern

Figure 16 shows the Mission action of the non-terminating cyclic in lockstep
pattern. The main di�erence from that in Figure 3 is the missing Termination
action. The target of our re�nement strategy is the same: an SCJ-Circus program
in the form described in Figure 7.

Mission =̂ (MArea ‖ (‖ i : I • PHandleri) ‖ (‖ j : Jn • AHandlerj)

Fig. 16. Non-terminating cyclic in lockstep pattern

The re�nement strategy described in Section 4 cannot be applied to models
that follow the pattern in Figure 16 because it expects the Mission action to have
an extra parallelism: see step 6 of CF and step 3 of FW. Instead of modifying the
mission speci�c laws to introduce the mechanisms of termination, it is possible to
extend the re�nement strategy in the Section 4 by introducing this parallel action
as a �rst step using the Law termination-intro, omitted here, before applying it.

This law takes a Circus action A of the form µX • F ; X and two channels
t and rt , and re�nes A into a parallelism between µX • F ; X @ t −→ Skip,
and an action that waits for a termination request on a channel rt and then
behaves as a recursive action that either accepts an event on the channel rt and
recurses, or accepts an event on the channel t and terminates. The parallelism
synchronises on both t and rt , which are made internal via the hiding operator.
This law relies on the fact that A does not terminate, and does not use rt or t .

It may seem ine�cient to complicate the model, but we note that the re�ne-
ment steps of the whole re�nement strategy are mostly automatic. Moreover, the
phase FW is already about completing the framework model to re�ect the SCJ
paradigm. The termination protocol is part of the framework model already.

6 Multiple terminating missions

For an application with multiple missions in sequence, the pattern only di�ers
in the speci�cation of the action MissionSequencer , which is de�ned as the se-
quential composition of a number of missions M1; M2; . . . ; Mn . In this case, it
is possible to modify the existing re�nement strategy at very speci�c points to
cater for a sequence of missions.

Step 2 of CF needs to be replaced with an iteration that, for each mission Mi ,
applies the Law call-intro to MissionSequencer with A instantiated as Mi and the

channels cs and ce replaced by start mission.Mi ID and done mission.Mi ID .
With that, the mission-sequencer action is re�ned to a sequence of pairs of
synchronisations on start mission and done mission, in parallel with actions
that call the mission actions. We have one parallel action for each mission, with
the call wrapped by the start mission and done mission events. This is similar
to the result obtained for the �rst pattern: the only di�erence is that, in this
case, we have several parallel calls to missions.

Next, for each mission, the modi�ed strategy applies the remaining steps
described originally, including those of the following phases. We have to take into
account, however, that the steps 5 and 6 of AP and 1 and 2 of FW only need
to be applied in the �rst iteration. These steps are related to the application
and framework processes for the safelet and the mission sequencer, and need
to be carried out just once. Moreover, step 5 of AP needs a slightly di�erent
re�nement law, which introduces a particular pattern for the implementation of
the getNextMission tailored for multiple missions in sequence.

7 Conclusions

In this paper, we detail a re�nement strategy for SCJ speci�cations. We describe
each step necessary, and present some of the specialised laws required. This
strategy di�ers from the re�nement strategy for SCJ in [5] in that the latter
takes an abstract model and re�nes it into a concrete program using speci�cation
patterns based on SCJ, but not its API. The strategy we present here re�nes a
concrete SCJ-based model into a program that makes full use of the standard
SCJ library to implement control aspects that are speci�c to SCJ. In that sense,
our re�nement strategy is similar to compilation, except that the target SCJ-

Circus programs include library calls that are not present in the starting model.
Moreover, some of the applications of re�nement laws in the strategy generate
proof obligations. Theorem proving is required when applying the strategy.

Despite that, since the Circus models used as a starting point for our strategy
already embed an SCJ design, the level of automation achievable in applying the
strategy is much higher than in [5]. For the particular pattern that we target
here, most of the laws used have only syntactic provisos.

Our re�nement strategy, possibly in combination with the one in [5], com-
plements other veri�cation techniques for SCJ. The work in [8] proposes an
annotation-free technique for the veri�cation of memory safety of SCJ programs
based on a translation to a notation similar to SCJ-Circus. Also, [6] extends the
widely used Java Modelling Language [2] with timing annotations to support
worst case execution time analysis of SCJ programs.

It is worth mentioning that the pattern on which we focus here is fairly com-
mon in safety critical systems. For instance, the re�nement strategy for control
law diagrams proposed in [4] targets Ada implementations that follow a similar
pattern, and it may be possible to adapt both re�nement strategies to support
the veri�cation of SCJ implementations of control law diagrams.

As future work, we plan to refactor our strategy by extracting a re�nement
strategy that targets missions. With this structure, our strategy can be more
easily generalised. We plan to specify strategies that target common patterns of
mission combination, as well as missions following di�erent patterns. Finally, we
plan to implement our strategies in a theorem prover such as Isabelle/HOL, and
apply them to existing examples such as a collision detection system [19].

Acknowledgements This work is funded by the EPSRC grant EP/H017461/1.
No new primary data was created during this study.

References

1. A. Miyazawa and A. Cavalcanti. Report on re�nement strategies for Safety-Critical
Java, 2015. http://www-users.cs.york.ac.uk/~alvarohm/report2015b.pdf.

2. L. Burdy et al. An overview of JML tools and applications. Int. J. Softw. Tools
Technol. Transf., 7(3):212�232, June 2005.

3. A. Cavalcanti, A. Sampaio, and J. Woodcock. Unifying classes and processes.
Software & Systems Modeling, 4(3):277�296, 2005.

4. A. L. C. Cavalcanti, P. Clayton, and C. O'Halloran. From Control Law Diagrams
to Ada via Circus. Formal Aspects of Computing, 23(4):465 � 512, 2011.

5. A. L. C. Cavalcanti et al.Safety-Critical Java programs from Circus models. Real-
Time Systems, 49(5):614�667, 2013.

6. G. Haddad et al. The design of SafeJML, a speci�cation language for SCJ with
support for WCET speci�cation. In JTRES '10, pages 155�163. ACM, 2010.

7. D. Locke et al.Safety-Critical Java technology speci�cation. Technical report.
8. C. Marriott and A. L. C. Cavalcanti. SCJ: Memory-safety checking without anno-

tations. In FM, volume 8442 of LNCS, pages 465�480. Springer, 2014.
9. A. Miyazawa and A. Cavalcanti. Formal re�nement in SysML. In iFM 2014,

volume 8739 of LNCS, pages 155�170. Springer, 2014.
10. A. Miyazawa and A. Cavalcanti. Re�nement of Circus models into SCJ-Circus,

2015. http://www-users.cs.york.ac.uk/~alvarohm/report2015a.pdf.
11. A. Miyazawa and A. L. C. Cavalcanti. Re�nement-oriented models of State�ow

charts. Science of Computer Programming, 77(10-11):1151�1177, 2012.
12. A. Miyazawa and A. L. C. Cavalcanti. SCJ-Circus: a re�nement-oriented formal

notation for Safety-Critical Java. In Re�nement Workshop, 2015.
13. A. Miyazawa, L. Lima, and A. Cavalcanti. Formal models of SysML blocks. In

ICFEM 2013, volume 8144 of LNCS, pages 249�264. Springer, 2013.
14. M. V. M. Oliveira. Formal Derivation of State-Rich Reactive Programs Using

Circus. PhD thesis, University of York, 2006.
15. A. W. Roscoe. Understanding Concurrent Systems. Texts in Computer Science.

Springer, 2011.
16. K. Wei, J. C. P. Woodcock, and A. L. C. Cavalcanti. Circus Time with Reactive

Designs. In UTP 2012, volume 7681 of LNCS, pages 68�87. Springer, 2012.
17. A. Wellings. Concurrent and Real-Time Programming in Java. John Wi-

ley & Sons, 2004.
18. J. C. P. Woodcock and J. Davies. Using Z�Speci�cation, Re�nement, and Proof.

Prentice-Hall, 1996.
19. F. Zeyda, A. Cavalcanti, A. Wellings, J. Woodcock, and K. Wei. Re�nement of

the Parallel CDx. Technical report, University of York, 2012.

http://www-users.cs.york.ac.uk/~alvarohm/report2015b.pdf
http://www-users.cs.york.ac.uk/~alvarohm/report2015a.pdf

	Refinement strategies for Safety-Critical Java

